123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515 |
- # include <cstdlib>
- # include <cmath>
- # include <iostream>
- # include <fstream>
- # include <iomanip>
- # include <ctime>
- # include <cstring>
- # include <cassert>
- # include <legendre_rule.hpp>
- //using namespace std;
- //****************************************************************************80
- /*
- int main ( int argc, char *argv[] )
- // ***************************************************************************80
- //
- // Purpose:
- //
- // MAIN is the main program for LEGENDRE_RULE.
- //
- // Discussion:
- //
- // This program computes a standard Gauss-Legendre quadrature rule
- // and writes it to a file.
- //
- // The user specifies:
- // * the ORDER (number of points) in the rule
- // * A, the left endpoint;
- // * B, the right endpoint;
- // * FILENAME, the root name of the output files.
- //
- // Licensing:
- //
- // This code is distributed under the GNU LGPL license.
- //
- // Modified:
- //
- // 23 February 2010
- //
- // Author:
- //
- // John Burkardt
- //
- {
- double a;
- double alpha;
- double b;
- double beta;
- string filename;
- int kind;
- int order;
- double *r;
- double *w;
- double *x;
- timestamp ( );
- std::cout << "\n";
- std::cout << "LEGENDRE_RULE\n";
- std::cout << " C++ version\n";
- std::cout << "\n";
- std::cout << " Compiled on " << __DATE__ << " at " << __TIME__ << ".\n";
- std::cout << "\n";
- std::cout << " Compute a Gauss-Legendre rule for approximating\n";
- std::cout << "\n";
- std::cout << " Integral ( A <= x <= B ) f(x) dx\n";
- std::cout << "\n";
- std::cout << " of order ORDER.\n";
- std::cout << "\n";
- std::cout << " The user specifies ORDER, A, B and FILENAME.\n";
- std::cout << "\n";
- std::cout << " Order is the number of points.\n";
- std::cout << "\n";
- std::cout << " A is the left endpoint.\n";
- std::cout << "\n";
- std::cout << " B is the right endpoint.\n";
- std::cout << "\n";
- std::cout << " FILENAME is used to generate 3 files:\n";
- std::cout << "\n";
- std::cout << " filename_w.txt - the weight file\n";
- std::cout << " filename_x.txt - the abscissa file.\n";
- std::cout << " filename_r.txt - the region file.\n";
- //
- // Initialize parameters;
- //
- alpha = 0.0;
- beta = 0.0;
- //
- // Get ORDER.
- //
- if ( 1 < argc )
- {
- order = atoi ( argv[1] );
- }
- else
- {
- std::cout << "\n";
- std::cout << " Enter the value of ORDER (1 or greater)\n";
- cin >> order;
- }
- //
- // Get A.
- //
- if ( 2 < argc )
- {
- a = atof ( argv[2] );
- }
- else
- {
- std::cout << "\n";
- std::cout << " Enter the value of A:\n";
- cin >> a;
- }
- //
- // Get B.
- //
- if ( 3 < argc )
- {
- b = atof ( argv[3] );
- }
- else
- {
- std::cout << "\n";
- std::cout << " Enter the value of B:\n";
- cin >> b;
- }
- //
- // Get FILENAME:
- //
- if ( 4 < argc )
- {
- filename = argv[4];
- }
- else
- {
- std::cout << "\n";
- std::cout << " Enter FILENAME, the \"root name\" of the quadrature files).\n";
- cin >> filename;
- }
- //
- // Input summary.
- //
- std::cout << "\n";
- std::cout << " ORDER = " << order << "\n";
- std::cout << " A = " << a << "\n";
- std::cout << " B = " << b << "\n";
- std::cout << " FILENAME = \"" << filename << "\".\n";
- //
- // Construct the rule.
- //
- w = new double[order];
- x = new double[order];
-
- kind = 1;
- cgqf ( order, kind, alpha, beta, a, b, x, w );
- //
- // Write the rule.
- //
- r = new double[2];
- r[0] = a;
- r[1] = b;
- rule_write ( order, filename, x, w, r );
- //
- // Terminate.
- //
- delete [] r;
- delete [] w;
- delete [] x;
- std::cout << "\n";
- std::cout << "LEGENDRE_RULE:\n";
- std::cout << " Normal end of execution.\n";
- std::cout << "\n";
- timestamp ( );
- return 0;
- }*/
- //****************************************************************************80
- void cdgqf ( int nt, int kind, double alpha, double beta, double t[],
- double wts[] )
- //****************************************************************************80
- //
- // Purpose:
- //
- // CDGQF computes a Gauss quadrature formula with default A, B and simple knots.
- //
- // Discussion:
- //
- // This routine computes all the knots and weights of a Gauss quadrature
- // formula with a classical weight function with default values for A and B,
- // and only simple knots.
- //
- // There are no moments checks and no printing is done.
- //
- // Use routine EIQFS to evaluate a quadrature computed by CGQFS.
- //
- // Licensing:
- //
- // This code is distributed under the GNU LGPL license.
- //
- // Modified:
- //
- // 08 January 2010
- //
- // Author:
- //
- // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky.
- // C++ version by John Burkardt.
- //
- // Reference:
- //
- // Sylvan Elhay, Jaroslav Kautsky,
- // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of
- // Interpolatory Quadrature,
- // ACM Transactions on Mathematical Software,
- // Volume 13, Number 4, December 1987, pages 399-415.
- //
- // Parameters:
- //
- // Input, int NT, the number of knots.
- //
- // Input, int KIND, the rule.
- // 1, Legendre, (a,b) 1.0
- // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5)
- // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha
- // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta
- // 5, Generalized Laguerre, (a,inf) (x-a)^alpha*exp(-b*(x-a))
- // 6, Generalized Hermite, (-inf,inf) |x-a|^alpha*exp(-b*(x-a)^2)
- // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha
- // 8, Rational, (a,inf) (x-a)^alpha*(x+b)^beta
- //
- // Input, double ALPHA, the value of Alpha, if needed.
- //
- // Input, double BETA, the value of Beta, if needed.
- //
- // Output, double T[NT], the knots.
- //
- // Output, double WTS[NT], the weights.
- //
- {
- double *aj;
- double *bj;
- double zemu;
- parchk ( kind, 2 * nt, alpha, beta );
- //
- // Get the Jacobi matrix and zero-th moment.
- //
- aj = new double[nt];
- bj = new double[nt];
- zemu = class_matrix ( kind, nt, alpha, beta, aj, bj );
- //
- // Compute the knots and weights.
- //
- sgqf ( nt, aj, bj, zemu, t, wts );
- delete [] aj;
- delete [] bj;
- return;
- }
- //****************************************************************************80
- void cgqf ( int nt, int kind, double alpha, double beta, double a, double b,
- double t[], double wts[] )
- //****************************************************************************80
- //
- // Purpose:
- //
- // CGQF computes knots and weights of a Gauss quadrature formula.
- //
- // Discussion:
- //
- // The user may specify the interval (A,B).
- //
- // Only simple knots are produced.
- //
- // Use routine EIQFS to evaluate this quadrature formula.
- //
- // Licensing:
- //
- // This code is distributed under the GNU LGPL license.
- //
- // Modified:
- //
- // 16 February 2010
- //
- // Author:
- //
- // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky.
- // C++ version by John Burkardt.
- //
- // Reference:
- //
- // Sylvan Elhay, Jaroslav Kautsky,
- // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of
- // Interpolatory Quadrature,
- // ACM Transactions on Mathematical Software,
- // Volume 13, Number 4, December 1987, pages 399-415.
- //
- // Parameters:
- //
- // Input, int NT, the number of knots.
- //
- // Input, int KIND, the rule.
- // 1, Legendre, (a,b) 1.0
- // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^-0.5)
- // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha
- // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta
- // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a))
- // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2)
- // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha
- // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta
- // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5)
- //
- // Input, double ALPHA, the value of Alpha, if needed.
- //
- // Input, double BETA, the value of Beta, if needed.
- //
- // Input, double A, B, the interval endpoints, or
- // other parameters.
- //
- // Output, double T[NT], the knots.
- //
- // Output, double WTS[NT], the weights.
- //
- {
- int i;
- int *mlt;
- int *ndx;
- //
- // Compute the Gauss quadrature formula for default values of A and B.
- //
- cdgqf ( nt, kind, alpha, beta, t, wts );
- //
- // Prepare to scale the quadrature formula to other weight function with
- // valid A and B.
- //
- mlt = new int[nt];
- for ( i = 0; i < nt; i++ )
- {
- mlt[i] = 1;
- }
- ndx = new int[nt];
- for ( i = 0; i < nt; i++ )
- {
- ndx[i] = i + 1;
- }
- scqf ( nt, t, mlt, wts, nt, ndx, wts, t, kind, alpha, beta, a, b );
- delete [] mlt;
- delete [] ndx;
- return;
- }
- //****************************************************************************80
- double class_matrix ( int kind, int m, double alpha, double beta, double aj[],
- double bj[] )
- //****************************************************************************80
- //
- // Purpose:
- //
- // CLASS_MATRIX computes the Jacobi matrix for a quadrature rule.
- //
- // Discussion:
- //
- // This routine computes the diagonal AJ and sub-diagonal BJ
- // elements of the order M tridiagonal symmetric Jacobi matrix
- // associated with the polynomials orthogonal with respect to
- // the weight function specified by KIND.
- //
- // For weight functions 1-7, M elements are defined in BJ even
- // though only M-1 are needed. For weight function 8, BJ(M) is
- // set to zero.
- //
- // The zero-th moment of the weight function is returned in ZEMU.
- //
- // Licensing:
- //
- // This code is distributed under the GNU LGPL license.
- //
- // Modified:
- //
- // 08 January 2010
- //
- // Author:
- //
- // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky.
- // C++ version by John Burkardt.
- //
- // Reference:
- //
- // Sylvan Elhay, Jaroslav Kautsky,
- // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of
- // Interpolatory Quadrature,
- // ACM Transactions on Mathematical Software,
- // Volume 13, Number 4, December 1987, pages 399-415.
- //
- // Parameters:
- //
- // Input, int KIND, the rule.
- // 1, Legendre, (a,b) 1.0
- // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5)
- // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha
- // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta
- // 5, Generalized Laguerre, (a,inf) (x-a)^alpha*exp(-b*(x-a))
- // 6, Generalized Hermite, (-inf,inf) |x-a|^alpha*exp(-b*(x-a)^2)
- // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha
- // 8, Rational, (a,inf) (x-a)^alpha*(x+b)^beta
- //
- // Input, int M, the order of the Jacobi matrix.
- //
- // Input, double ALPHA, the value of Alpha, if needed.
- //
- // Input, double BETA, the value of Beta, if needed.
- //
- // Output, double AJ[M], BJ[M], the diagonal and subdiagonal
- // of the Jacobi matrix.
- //
- // Output, double CLASS_MATRIX, the zero-th moment.
- //
- {
- double a2b2;
- double ab;
- double aba;
- double abi;
- double abj;
- double abti;
- double apone;
- int i;
- double pi = 3.14159265358979323846264338327950;
- double zemu=0;
- parchk ( kind, 2 * m - 1, alpha, beta );
- /*
- double temp = r8_epsilon ( );
- double temp2 = 0.5;
- if ( 500.0 * temp < r8_abs ( pow ( tgamma ( temp2 ), 2 ) - pi ) )
- {
- std::cout << "\n";
- std::cout << "CLASS_MATRIX - Fatal error!\n";
- std::cout << " Gamma function does not match machine parameters.\n";
- exit ( 1 );
- }
- */
- if ( kind == 1 )
- {
- ab = 0.0;
- zemu = 2.0 / ( ab + 1.0 );
- for ( i = 0; i < m; i++ )
- {
- aj[i] = 0.0;
- }
- for ( i = 1; i <= m; i++ )
- {
- abi = i + ab * ( i % 2 );
- abj = 2 * i + ab;
- bj[i-1] = sqrt ( abi * abi / ( abj * abj - 1.0 ) );
- }
- }
- else if ( kind == 2 )
- {
- zemu = pi;
- for ( i = 0; i < m; i++ )
- {
- aj[i] = 0.0;
- }
- bj[0] = sqrt ( 0.5 );
- for ( i = 1; i < m; i++ )
- {
- bj[i] = 0.5;
- }
- }
- else if ( kind == 3 )
- {
- ab = alpha * 2.0;
- zemu = pow ( 2.0, ab + 1.0 ) * pow ( tgamma ( alpha + 1.0 ), 2 )
- / tgamma ( ab + 2.0 );
- for ( i = 0; i < m; i++ )
- {
- aj[i] = 0.0;
- }
- bj[0] = sqrt ( 1.0 / ( 2.0 * alpha + 3.0 ) );
- for ( i = 2; i <= m; i++ )
- {
- bj[i-1] = sqrt ( i * ( i + ab ) / ( 4.0 * pow ( i + alpha, 2 ) - 1.0 ) );
- }
- }
- else if ( kind == 4 )
- {
- ab = alpha + beta;
- abi = 2.0 + ab;
- zemu = pow ( 2.0, ab + 1.0 ) * tgamma ( alpha + 1.0 )
- * tgamma ( beta + 1.0 ) / tgamma ( abi );
- aj[0] = ( beta - alpha ) / abi;
- bj[0] = sqrt ( 4.0 * ( 1.0 + alpha ) * ( 1.0 + beta )
- / ( ( abi + 1.0 ) * abi * abi ) );
- a2b2 = beta * beta - alpha * alpha;
- for ( i = 2; i <= m; i++ )
- {
- abi = 2.0 * i + ab;
- aj[i-1] = a2b2 / ( ( abi - 2.0 ) * abi );
- abi = abi * abi;
- bj[i-1] = sqrt ( 4.0 * i * ( i + alpha ) * ( i + beta ) * ( i + ab )
- / ( ( abi - 1.0 ) * abi ) );
- }
- }
- else if ( kind == 5 )
- {
- zemu = tgamma ( alpha + 1.0 );
- for ( i = 1; i <= m; i++ )
- {
- aj[i-1] = 2.0 * i - 1.0 + alpha;
- bj[i-1] = sqrt ( i * ( i + alpha ) );
- }
- }
- else if ( kind == 6 )
- {
- zemu = tgamma ( ( alpha + 1.0 ) / 2.0 );
- for ( i = 0; i < m; i++ )
- {
- aj[i] = 0.0;
- }
- for ( i = 1; i <= m; i++ )
- {
- bj[i-1] = sqrt ( ( i + alpha * ( i % 2 ) ) / 2.0 );
- }
- }
- else if ( kind == 7 )
- {
- ab = alpha;
- zemu = 2.0 / ( ab + 1.0 );
- for ( i = 0; i < m; i++ )
- {
- aj[i] = 0.0;
- }
- for ( i = 1; i <= m; i++ )
- {
- abi = i + ab * ( i % 2 );
- abj = 2 * i + ab;
- bj[i-1] = sqrt ( abi * abi / ( abj * abj - 1.0 ) );
- }
- }
- else if ( kind == 8 )
- {
- ab = alpha + beta;
- zemu = tgamma ( alpha + 1.0 ) * tgamma ( - ( ab + 1.0 ) )
- / tgamma ( - beta );
- apone = alpha + 1.0;
- aba = ab * apone;
- aj[0] = - apone / ( ab + 2.0 );
- bj[0] = - aj[0] * ( beta + 1.0 ) / ( ab + 2.0 ) / ( ab + 3.0 );
- for ( i = 2; i <= m; i++ )
- {
- abti = ab + 2.0 * i;
- aj[i-1] = aba + 2.0 * ( ab + i ) * ( i - 1 );
- aj[i-1] = - aj[i-1] / abti / ( abti - 2.0 );
- }
- for ( i = 2; i <= m - 1; i++ )
- {
- abti = ab + 2.0 * i;
- bj[i-1] = i * ( alpha + i ) / ( abti - 1.0 ) * ( beta + i )
- / ( abti * abti ) * ( ab + i ) / ( abti + 1.0 );
- }
- bj[m-1] = 0.0;
- for ( i = 0; i < m; i++ )
- {
- bj[i] = sqrt ( bj[i] );
- }
- }
- return zemu;
- }
- //****************************************************************************80
- void imtqlx ( int n, double d[], double e[], double z[] )
- //****************************************************************************80
- //
- // Purpose:
- //
- // IMTQLX diagonalizes a symmetric tridiagonal matrix.
- //
- // Discussion:
- //
- // This routine is a slightly modified version of the EISPACK routine to
- // perform the implicit QL algorithm on a symmetric tridiagonal matrix.
- //
- // The authors thank the authors of EISPACK for permission to use this
- // routine.
- //
- // It has been modified to produce the product Q' * Z, where Z is an input
- // vector and Q is the orthogonal matrix diagonalizing the input matrix.
- // The changes consist (essentialy) of applying the orthogonal transformations
- // directly to Z as they are generated.
- //
- // Licensing:
- //
- // This code is distributed under the GNU LGPL license.
- //
- // Modified:
- //
- // 08 January 2010
- //
- // Author:
- //
- // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky.
- // C++ version by John Burkardt.
- //
- // Reference:
- //
- // Sylvan Elhay, Jaroslav Kautsky,
- // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of
- // Interpolatory Quadrature,
- // ACM Transactions on Mathematical Software,
- // Volume 13, Number 4, December 1987, pages 399-415.
- //
- // Roger Martin, James Wilkinson,
- // The Implicit QL Algorithm,
- // Numerische Mathematik,
- // Volume 12, Number 5, December 1968, pages 377-383.
- //
- // Parameters:
- //
- // Input, int N, the order of the matrix.
- //
- // Input/output, double D(N), the diagonal entries of the matrix.
- // On output, the information in D has been overwritten.
- //
- // Input/output, double E(N), the subdiagonal entries of the
- // matrix, in entries E(1) through E(N-1). On output, the information in
- // E has been overwritten.
- //
- // Input/output, double Z(N). On input, a vector. On output,
- // the value of Q' * Z, where Q is the matrix that diagonalizes the
- // input symmetric tridiagonal matrix.
- //
- {
- double b;
- double c;
- double f;
- double g;
- int i;
- int ii;
- int itn = 30;
- int j;
- int k;
- int l;
- int m=0;
- int mml;
- double p;
- double prec;
- double r;
- double s;
- prec = r8_epsilon ( );
- if ( n == 1 )
- {
- return;
- }
- e[n-1] = 0.0;
- for ( l = 1; l <= n; l++ )
- {
- j = 0;
- for ( ; ; )
- {
- for ( m = l; m <= n; m++ )
- {
- if ( m == n )
- {
- break;
- }
- if ( r8_abs ( e[m-1] ) <= prec * ( r8_abs ( d[m-1] ) + r8_abs ( d[m] ) ) )
- {
- break;
- }
- }
- p = d[l-1];
- if ( m == l )
- {
- break;
- }
- if ( itn <= j )
- {
- std::cout << "\n";
- std::cout << "IMTQLX - Fatal error!\n";
- std::cout << " Iteration limit exceeded\n";
- exit ( 1 );
- }
- j = j + 1;
- g = ( d[l] - p ) / ( 2.0 * e[l-1] );
- r = sqrt ( g * g + 1.0 );
- g = d[m-1] - p + e[l-1] / ( g + r8_abs ( r ) * r8_sign ( g ) );
- s = 1.0;
- c = 1.0;
- p = 0.0;
- mml = m - l;
- for ( ii = 1; ii <= mml; ii++ )
- {
- i = m - ii;
- f = s * e[i-1];
- b = c * e[i-1];
- if ( r8_abs ( g ) <= r8_abs ( f ) )
- {
- c = g / f;
- r = sqrt ( c * c + 1.0 );
- e[i] = f * r;
- s = 1.0 / r;
- c = c * s;
- }
- else
- {
- s = f / g;
- r = sqrt ( s * s + 1.0 );
- e[i] = g * r;
- c = 1.0 / r;
- s = s * c;
- }
- g = d[i] - p;
- r = ( d[i-1] - g ) * s + 2.0 * c * b;
- p = s * r;
- d[i] = g + p;
- g = c * r - b;
- f = z[i];
- z[i] = s * z[i-1] + c * f;
- z[i-1] = c * z[i-1] - s * f;
- }
- d[l-1] = d[l-1] - p;
- e[l-1] = g;
- e[m-1] = 0.0;
- }
- }
- //
- // Sorting.
- //
- for ( ii = 2; ii <= m; ii++ )
- {
- i = ii - 1;
- k = i;
- p = d[i-1];
- for ( j = ii; j <= n; j++ )
- {
- if ( d[j-1] < p )
- {
- k = j;
- p = d[j-1];
- }
- }
- if ( k != i )
- {
- d[k-1] = d[i-1];
- d[i-1] = p;
- p = z[i-1];
- z[i-1] = z[k-1];
- z[k-1] = p;
- }
- }
- return;
- }
- //****************************************************************************80
- void parchk ( int kind, int m, double alpha, double beta )
- //****************************************************************************80
- //
- // Purpose:
- //
- // PARCHK checks parameters ALPHA and BETA for classical weight functions.
- //
- // Licensing:
- //
- // This code is distributed under the GNU LGPL license.
- //
- // Modified:
- //
- // 07 January 2010
- //
- // Author:
- //
- // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky.
- // C++ version by John Burkardt.
- //
- // Reference:
- //
- // Sylvan Elhay, Jaroslav Kautsky,
- // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of
- // Interpolatory Quadrature,
- // ACM Transactions on Mathematical Software,
- // Volume 13, Number 4, December 1987, pages 399-415.
- //
- // Parameters:
- //
- // Input, int KIND, the rule.
- // 1, Legendre, (a,b) 1.0
- // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5)
- // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha
- // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta
- // 5, Generalized Laguerre, (a,inf) (x-a)^alpha*exp(-b*(x-a))
- // 6, Generalized Hermite, (-inf,inf) |x-a|^alpha*exp(-b*(x-a)^2)
- // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha
- // 8, Rational, (a,inf) (x-a)^alpha*(x+b)^beta
- //
- // Input, int M, the order of the highest moment to
- // be calculated. This value is only needed when KIND = 8.
- //
- // Input, double ALPHA, BETA, the parameters, if required
- // by the value of KIND.
- //
- {
- double tmp;
- if ( kind <= 0 )
- {
- std::cout << "\n";
- std::cout << "PARCHK - Fatal error!\n";
- std::cout << " KIND <= 0.\n";
- exit ( 1 );
- }
- //
- // Check ALPHA for Gegenbauer, Jacobi, Laguerre, Hermite, Exponential.
- //
- if ( 3 <= kind && alpha <= -1.0 )
- {
- std::cout << "\n";
- std::cout << "PARCHK - Fatal error!\n";
- std::cout << " 3 <= KIND and ALPHA <= -1.\n";
- exit ( 1 );
- }
- //
- // Check BETA for Jacobi.
- //
- if ( kind == 4 && beta <= -1.0 )
- {
- std::cout << "\n";
- std::cout << "PARCHK - Fatal error!\n";
- std::cout << " KIND == 4 and BETA <= -1.0.\n";
- exit ( 1 );
- }
- //
- // Check ALPHA and BETA for rational.
- //
- if ( kind == 8 )
- {
- tmp = alpha + beta + m + 1.0;
- if ( 0.0 <= tmp || tmp <= beta )
- {
- std::cout << "\n";
- std::cout << "PARCHK - Fatal error!\n";
- std::cout << " KIND == 8 but condition on ALPHA and BETA fails.\n";
- exit ( 1 );
- }
- }
- return;
- }
- //****************************************************************************80
- double r8_abs ( double x )
- //****************************************************************************80
- //
- // Purpose:
- //
- // R8_ABS returns the absolute value of an R8.
- //
- // Licensing:
- //
- // This code is distributed under the GNU LGPL license.
- //
- // Modified:
- //
- // 14 November 2006
- //
- // Author:
- //
- // John Burkardt
- //
- // Parameters:
- //
- // Input, double X, the quantity whose absolute value is desired.
- //
- // Output, double R8_ABS, the absolute value of X.
- //
- {
- double value;
- if ( 0.0 <= x )
- {
- value = x;
- }
- else
- {
- value = - x;
- }
- return value;
- }
- //****************************************************************************80
- double r8_epsilon ( )
- //****************************************************************************80
- //
- // Purpose:
- //
- // R8_EPSILON returns the R8 roundoff unit.
- //
- // Discussion:
- //
- // The roundoff unit is a number R which is a power of 2 with the
- // property that, to the precision of the computer's arithmetic,
- // 1 < 1 + R
- // but
- // 1 = ( 1 + R / 2 )
- //
- // Licensing:
- //
- // This code is distributed under the GNU LGPL license.
- //
- // Modified:
- //
- // 01 July 2004
- //
- // Author:
- //
- // John Burkardt
- //
- // Parameters:
- //
- // Output, double R8_EPSILON, the R8 round-off unit.
- //
- {
- double value;
- value = 1.0;
- while ( 1.0 < ( double ) ( 1.0 + value ) )
- {
- value = value / 2.0;
- }
- value = 2.0 * value;
- return value;
- }
- //****************************************************************************80
- double r8_sign ( double x )
- //****************************************************************************80
- //
- // Purpose:
- //
- // R8_SIGN returns the sign of an R8.
- //
- // Licensing:
- //
- // This code is distributed under the GNU LGPL license.
- //
- // Modified:
- //
- // 18 October 2004
- //
- // Author:
- //
- // John Burkardt
- //
- // Parameters:
- //
- // Input, double X, the number whose sign is desired.
- //
- // Output, double R8_SIGN, the sign of X.
- //
- {
- double value;
- if ( x < 0.0 )
- {
- value = -1.0;
- }
- else
- {
- value = 1.0;
- }
- return value;
- }
- //****************************************************************************80
- void r8mat_write ( std::string output_filename, int m, int n, double table[] )
- //****************************************************************************80
- //
- // Purpose:
- //
- // R8MAT_WRITE writes an R8MAT file with no header.
- //
- // Licensing:
- //
- // This code is distributed under the GNU LGPL license.
- //
- // Modified:
- //
- // 29 June 2009
- //
- // Author:
- //
- // John Burkardt
- //
- // Parameters:
- //
- // Input, string OUTPUT_FILENAME, the output filename.
- //
- // Input, int M, the spatial dimension.
- //
- // Input, int N, the number of points.
- //
- // Input, double TABLE[M*N], the table data.
- //
- {
- int i;
- int j;
- std::ofstream output;
- //
- // Open the file.
- //
- output.open ( output_filename.c_str ( ) );
- if ( !output )
- {
- std::cerr << "\n";
- std::cerr << "R8MAT_WRITE - Fatal error!\n";
- std::cerr << " Could not open the output file.\n";
- return;
- }
- //
- // Write the data.
- //
- for ( j = 0; j < n; j++ )
- {
- for ( i = 0; i < m; i++ )
- {
- output << " " << std::setw(24) << std::setprecision(16) << table[i+j*m];
- }
- output << "\n";
- }
- //
- // Close the file.
- //
- output.close ( );
- return;
- }
- //****************************************************************************80
- void rule_write ( int order, std::string filename, double x[], double w[],
- double r[] )
- //****************************************************************************80
- //
- // Purpose:
- //
- // RULE_WRITE writes a quadrature rule to three files.
- //
- // Licensing:
- //
- // This code is distributed under the GNU LGPL license.
- //
- // Modified:
- //
- // 18 February 2010
- //
- // Author:
- //
- // John Burkardt
- //
- // Parameters:
- //
- // Input, int ORDER, the order of the rule.
- //
- // Input, double A, the left endpoint.
- //
- // Input, double B, the right endpoint.
- //
- // Input, string FILENAME, specifies the output filenames.
- // "filename_w.txt", "filename_x.txt", "filename_r.txt"
- // defining weights, abscissas, and region.
- //
- {
- std::string filename_r;
- std::string filename_w;
- std::string filename_x;
- filename_w = filename + "_w.txt";
- filename_x = filename + "_x.txt";
- filename_r = filename + "_r.txt";
- std::cout << "\n";
- std::cout << " Creating quadrature files.\n";
- std::cout << "\n";
- std::cout << " Root file name is \"" << filename << "\".\n";
- std::cout << "\n";
- std::cout << " Weight file will be \"" << filename_w << "\".\n";
- std::cout << " Abscissa file will be \"" << filename_x << "\".\n";
- std::cout << " Region file will be \"" << filename_r << "\".\n";
-
- r8mat_write ( filename_w, 1, order, w );
- r8mat_write ( filename_x, 1, order, x );
- r8mat_write ( filename_r, 1, 2, r );
-
- return;
- }
- //****************************************************************************80
- void scqf ( int nt, double t[], int mlt[], double wts[], int nwts, int ndx[],
- double swts[], double st[], int kind, double alpha, double beta, double a,
- double b )
- //****************************************************************************80
- //
- // Purpose:
- //
- // SCQF scales a quadrature formula to a nonstandard interval.
- //
- // Discussion:
- //
- // The arrays WTS and SWTS may coincide.
- //
- // The arrays T and ST may coincide.
- //
- // Licensing:
- //
- // This code is distributed under the GNU LGPL license.
- //
- // Modified:
- //
- // 16 February 2010
- //
- // Author:
- //
- // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky.
- // C++ version by John Burkardt.
- //
- // Reference:
- //
- // Sylvan Elhay, Jaroslav Kautsky,
- // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of
- // Interpolatory Quadrature,
- // ACM Transactions on Mathematical Software,
- // Volume 13, Number 4, December 1987, pages 399-415.
- //
- // Parameters:
- //
- // Input, int NT, the number of knots.
- //
- // Input, double T[NT], the original knots.
- //
- // Input, int MLT[NT], the multiplicity of the knots.
- //
- // Input, double WTS[NWTS], the weights.
- //
- // Input, int NWTS, the number of weights.
- //
- // Input, int NDX[NT], used to index the array WTS.
- // For more details see the comments in CAWIQ.
- //
- // Output, double SWTS[NWTS], the scaled weights.
- //
- // Output, double ST[NT], the scaled knots.
- //
- // Input, int KIND, the rule.
- // 1, Legendre, (a,b) 1.0
- // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5)
- // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha
- // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta
- // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a))
- // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2)
- // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha
- // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta
- // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5)
- //
- // Input, double ALPHA, the value of Alpha, if needed.
- //
- // Input, double BETA, the value of Beta, if needed.
- //
- // Input, double A, B, the interval endpoints.
- //
- {
- double al=0;
- double be=0;
- int i;
- int k;
- int l;
- double p;
- double shft=0;
- double slp=0;
- double temp;
- double tmp;
- temp = r8_epsilon ( );
- parchk ( kind, 1, alpha, beta );
- if ( kind == 1 )
- {
- al = 0.0;
- be = 0.0;
- if ( r8_abs ( b - a ) <= temp )
- {
- std::cout << "\n";
- std::cout << "SCQF - Fatal error!\n";
- std::cout << " |B - A| too small.\n";
- exit ( 1 );
- }
- shft = ( a + b ) / 2.0;
- slp = ( b - a ) / 2.0;
- }
- else if ( kind == 2 )
- {
- al = -0.5;
- be = -0.5;
- if ( r8_abs ( b - a ) <= temp )
- {
- std::cout << "\n";
- std::cout << "SCQF - Fatal error!\n";
- std::cout << " |B - A| too small.\n";
- exit ( 1 );
- }
- shft = ( a + b ) / 2.0;
- slp = ( b - a ) / 2.0;
- }
- else if ( kind == 3 )
- {
- al = alpha;
- be = alpha;
- if ( r8_abs ( b - a ) <= temp )
- {
- std::cout << "\n";
- std::cout << "SCQF - Fatal error!\n";
- std::cout << " |B - A| too small.\n";
- exit ( 1 );
- }
- shft = ( a + b ) / 2.0;
- slp = ( b - a ) / 2.0;
- }
- else if ( kind == 4 )
- {
- al = alpha;
- be = beta;
- if ( r8_abs ( b - a ) <= temp )
- {
- std::cout << "\n";
- std::cout << "SCQF - Fatal error!\n";
- std::cout << " |B - A| too small.\n";
- exit ( 1 );
- }
- shft = ( a + b ) / 2.0;
- slp = ( b - a ) / 2.0;
- }
- else if ( kind == 5 )
- {
- if ( b <= 0.0 )
- {
- std::cout << "\n";
- std::cout << "SCQF - Fatal error!\n";
- std::cout << " B <= 0\n";
- exit ( 1 );
- }
- shft = a;
- slp = 1.0 / b;
- al = alpha;
- be = 0.0;
- }
- else if ( kind == 6 )
- {
- if ( b <= 0.0 )
- {
- std::cout << "\n";
- std::cout << "SCQF - Fatal error!\n";
- std::cout << " B <= 0.\n";
- exit ( 1 );
- }
- shft = a;
- slp = 1.0 / sqrt ( b );
- al = alpha;
- be = 0.0;
- }
- else if ( kind == 7 )
- {
- al = alpha;
- be = 0.0;
- if ( r8_abs ( b - a ) <= temp )
- {
- std::cout << "\n";
- std::cout << "SCQF - Fatal error!\n";
- std::cout << " |B - A| too small.\n";
- exit ( 1 );
- }
- shft = ( a + b ) / 2.0;
- slp = ( b - a ) / 2.0;
- }
- else if ( kind == 8 )
- {
- if ( a + b <= 0.0 )
- {
- std::cout << "\n";
- std::cout << "SCQF - Fatal error!\n";
- std::cout << " A + B <= 0.\n";
- exit ( 1 );
- }
- shft = a;
- slp = a + b;
- al = alpha;
- be = beta;
- }
- else if ( kind == 9 )
- {
- al = 0.5;
- be = 0.5;
- if ( r8_abs ( b - a ) <= temp )
- {
- std::cout << "\n";
- std::cout << "SCQF - Fatal error!\n";
- std::cout << " |B - A| too small.\n";
- exit ( 1 );
- }
- shft = ( a + b ) / 2.0;
- slp = ( b - a ) / 2.0;
- }
- p = pow ( slp, al + be + 1.0 );
- for ( k = 0; k < nt; k++ )
- {
- st[k] = shft + slp * t[k];
- l = abs ( ndx[k] );
- if ( l != 0 )
- {
- tmp = p;
- for ( i = l - 1; i <= l - 1 + mlt[k] - 1; i++ )
- {
- swts[i] = wts[i] * tmp;
- tmp = tmp * slp;
- }
- }
- }
- return;
- }
- //****************************************************************************80
- void sgqf ( int nt, double aj[], double bj[], double zemu, double t[],
- double wts[] )
- //****************************************************************************80
- //
- // Purpose:
- //
- // SGQF computes knots and weights of a Gauss Quadrature formula.
- //
- // Discussion:
- //
- // This routine computes all the knots and weights of a Gauss quadrature
- // formula with simple knots from the Jacobi matrix and the zero-th
- // moment of the weight function, using the Golub-Welsch technique.
- //
- // Licensing:
- //
- // This code is distributed under the GNU LGPL license.
- //
- // Modified:
- //
- // 08 January 2010
- //
- // Author:
- //
- // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky.
- // C++ version by John Burkardt.
- //
- // Reference:
- //
- // Sylvan Elhay, Jaroslav Kautsky,
- // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of
- // Interpolatory Quadrature,
- // ACM Transactions on Mathematical Software,
- // Volume 13, Number 4, December 1987, pages 399-415.
- //
- // Parameters:
- //
- // Input, int NT, the number of knots.
- //
- // Input, double AJ[NT], the diagonal of the Jacobi matrix.
- //
- // Input/output, double BJ[NT], the subdiagonal of the Jacobi
- // matrix, in entries 1 through NT-1. On output, BJ has been overwritten.
- //
- // Input, double ZEMU, the zero-th moment of the weight function.
- //
- // Output, double T[NT], the knots.
- //
- // Output, double WTS[NT], the weights.
- //
- {
- int i;
- //
- // Exit if the zero-th moment is not positive.
- //
- if ( zemu <= 0.0 )
- {
- std::cout << "\n";
- std::cout << "SGQF - Fatal error!\n";
- std::cout << " ZEMU <= 0.\n";
- exit ( 1 );
- }
- //
- // Set up vectors for IMTQLX.
- //
- for ( i = 0; i < nt; i++ )
- {
- t[i] = aj[i];
- }
- wts[0] = sqrt ( zemu );
- for ( i = 1; i < nt; i++ )
- {
- wts[i] = 0.0;
- }
- //
- // Diagonalize the Jacobi matrix.
- //
- imtqlx ( nt, t, bj, wts );
- for ( i = 0; i < nt; i++ )
- {
- wts[i] = wts[i] * wts[i];
- }
- return;
- }
- //****************************************************************************80
- void timestamp ( )
- //****************************************************************************80
- //
- // Purpose:
- //
- // TIMESTAMP prints the current YMDHMS date as a time stamp.
- //
- // Example:
- //
- // 31 May 2001 09:45:54 AM
- //
- // Licensing:
- //
- // This code is distributed under the GNU LGPL license.
- //
- // Modified:
- //
- // 08 July 2009
- //
- // Author:
- //
- // John Burkardt
- //
- // Parameters:
- //
- // None
- //
- {
- # define TIME_SIZE 40
- static char time_buffer[TIME_SIZE];
- const struct std::tm *tm_ptr;
- size_t len;
- std::time_t now;
- now = std::time ( NULL );
- tm_ptr = std::localtime ( &now );
- len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr );
- assert(len>0);
- std::cout << time_buffer << "\n";
- return;
- # undef TIME_SIZE
- }
|