kernel.hpp 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233
  1. /**
  2. * \file kernel.hpp
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 12-20-2011
  5. * \brief This file contains the definition of the struct Kernel and also the
  6. * implementation of various kernels for FMM.
  7. */
  8. #ifndef _PVFMM_FMM_KERNEL_HPP_
  9. #define _PVFMM_FMM_KERNEL_HPP_
  10. #include <pvfmm_common.hpp>
  11. #include <string>
  12. #ifdef __INTEL_OFFLOAD
  13. #pragma offload_attribute(push,target(mic))
  14. #endif
  15. namespace pvfmm{
  16. template <class T>
  17. struct Kernel{
  18. public:
  19. /**
  20. * \brief Evaluate potential due to source points at target coordinates.
  21. * \param[in] r_src Coordinates of source points.
  22. * \param[in] src_cnt Number of source points.
  23. * \param[in] v_src Strength of source points.
  24. * \param[in] r_trg Coordinates of target points.
  25. * \param[in] trg_cnt Number of target points.
  26. * \param[out] k_out Output array with potential values.
  27. */
  28. typedef void (*Ker_t)(T* r_src, int src_cnt, T* v_src, int dof,
  29. T* r_trg, int trg_cnt, T* k_out);
  30. /**
  31. * \brief Constructor.
  32. */
  33. Kernel();
  34. /**
  35. * \brief Constructor.
  36. */
  37. Kernel(Ker_t poten, Ker_t dbl_poten, const char* name, int dim_,
  38. const int (&k_dim)[2], bool homogen_=false, T ker_scale=0,
  39. size_t dev_poten=(size_t)NULL, size_t dev_dbl_poten=(size_t)NULL);
  40. /**
  41. * \brief Compute the transformation matrix (on the source strength vector)
  42. * to get potential at target coordinates due to sources at the given
  43. * coordinates.
  44. * \param[in] r_src Coordinates of source points.
  45. * \param[in] src_cnt Number of source points.
  46. * \param[in] r_trg Coordinates of target points.
  47. * \param[in] trg_cnt Number of target points.
  48. * \param[out] k_out Output array with potential values.
  49. */
  50. void BuildMatrix(T* r_src, int src_cnt,
  51. T* r_trg, int trg_cnt, T* k_out);
  52. static void Eval(T* r_src, int src_cnt,
  53. T* r_trg, int trg_cnt, T* k_out,
  54. Kernel<T>::Ker_t eval_kernel, int* ker_dim);
  55. int dim;
  56. int ker_dim[2];
  57. Ker_t ker_poten;
  58. Ker_t dbl_layer_poten;
  59. size_t dev_ker_poten;
  60. size_t dev_dbl_layer_poten;
  61. bool homogen;
  62. T poten_scale;
  63. std::string ker_name;
  64. };
  65. template<typename T, void (*A)(T*, int, T*, int, T*, int, T*),
  66. void (*B)(T*, int, T*, int, T*, int, T*)>
  67. Kernel<T> BuildKernel(const char* name, int dim,
  68. const int (&k_dim)[2], bool homogen=false, T ker_scale=0){
  69. size_t dev_ker_poten ;
  70. size_t dev_dbl_layer_poten;
  71. #ifdef __INTEL_OFFLOAD
  72. #pragma offload target(mic:0)
  73. #endif
  74. {
  75. dev_ker_poten =(size_t)((typename Kernel<T>::Ker_t)A);
  76. dev_dbl_layer_poten=(size_t)((typename Kernel<T>::Ker_t)B);
  77. }
  78. return Kernel<T>(A, B,
  79. name, dim, k_dim, homogen, ker_scale,
  80. dev_ker_poten, dev_dbl_layer_poten);
  81. }
  82. template<typename T, void (*A)(T*, int, T*, int, T*, int, T*)>
  83. Kernel<T> BuildKernel(const char* name, int dim,
  84. const int (&k_dim)[2], bool homogen=false, T ker_scale=0){
  85. size_t dev_ker_poten ;
  86. #ifdef __INTEL_OFFLOAD
  87. #pragma offload target(mic:0)
  88. #endif
  89. {
  90. dev_ker_poten =(size_t)((typename Kernel<T>::Ker_t)A);
  91. }
  92. return Kernel<T>(A, NULL,
  93. name, dim, k_dim, homogen, ker_scale,
  94. dev_ker_poten, (size_t)NULL);
  95. }
  96. ////////////////////////////////////////////////////////////////////////////////
  97. //////// LAPLACE KERNEL ////////
  98. ////////////////////////////////////////////////////////////////////////////////
  99. /**
  100. * \brief Green's function for the Poisson's equation. Kernel tensor
  101. * dimension = 1x1.
  102. */
  103. template <class T>
  104. void laplace_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out);
  105. // Laplace double layer potential.
  106. template <class T>
  107. void laplace_dbl_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out);
  108. // Laplace grdient kernel.
  109. template <class T>
  110. void laplace_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out);
  111. int dim_laplace_poten[2]={1,1};
  112. const Kernel<double> laplace_potn_d=BuildKernel<double, laplace_poten, laplace_dbl_poten>("laplace" , 3, dim_laplace_poten, true, 1.0);
  113. const Kernel<float > laplace_potn_f=BuildKernel<float , laplace_poten, laplace_dbl_poten>("laplace" , 3, dim_laplace_poten, true, 1.0);
  114. int dim_laplace_grad [2]={1,3};
  115. const Kernel<double> laplace_grad_d=BuildKernel<double, laplace_grad >("laplace_grad", 3, dim_laplace_grad , true, 2.0);
  116. const Kernel<float > laplace_grad_f=BuildKernel<float , laplace_grad >("laplace_grad", 3, dim_laplace_grad , true, 2.0);
  117. template<class T>
  118. struct LaplaceKernel{
  119. static Kernel<T>* potn_ker;
  120. static Kernel<T>* grad_ker;
  121. };
  122. template<> Kernel<double>* LaplaceKernel<double>::potn_ker=(Kernel<double>*)&laplace_potn_d;
  123. template<> Kernel<double>* LaplaceKernel<double>::grad_ker=(Kernel<double>*)&laplace_grad_d;
  124. template<> Kernel<float>* LaplaceKernel<float>::potn_ker=(Kernel<float>*)&laplace_potn_f;
  125. template<> Kernel<float>* LaplaceKernel<float>::grad_ker=(Kernel<float>*)&laplace_grad_f;
  126. ////////////////////////////////////////////////////////////////////////////////
  127. //////// STOKES KERNEL ////////
  128. ////////////////////////////////////////////////////////////////////////////////
  129. /**
  130. * \brief Green's function for the Stokes's equation. Kernel tensor
  131. * dimension = 3x3.
  132. */
  133. template <class T>
  134. void stokes_vel(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out);
  135. template <class T>
  136. void stokes_dbl_vel(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out);
  137. template <class T>
  138. void stokes_press(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out);
  139. template <class T>
  140. void stokes_stress(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out);
  141. template <class T>
  142. void stokes_grad(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out);
  143. int dim_stokes_vel [2]={3,3};
  144. const Kernel<double> ker_stokes_vel =BuildKernel<double, stokes_vel, stokes_dbl_vel>("stokes_vel" , 3, dim_stokes_vel ,true,1.0);
  145. int dim_stokes_press [2]={3,1};
  146. const Kernel<double> ker_stokes_press =BuildKernel<double, stokes_press >("stokes_press" , 3, dim_stokes_press ,true,2.0);
  147. int dim_stokes_stress[2]={3,9};
  148. const Kernel<double> ker_stokes_stress=BuildKernel<double, stokes_stress >("stokes_stress", 3, dim_stokes_stress,true,2.0);
  149. int dim_stokes_grad [2]={3,9};
  150. const Kernel<double> ker_stokes_grad =BuildKernel<double, stokes_grad >("stokes_grad" , 3, dim_stokes_grad ,true,2.0);
  151. ////////////////////////////////////////////////////////////////////////////////
  152. //////// BIOT-SAVART KERNEL ////////
  153. ////////////////////////////////////////////////////////////////////////////////
  154. template <class T>
  155. void biot_savart(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out);
  156. int dim_biot_savart[2]={3,3};
  157. const Kernel<double> ker_biot_savart=BuildKernel<double, biot_savart>("biot_savart", 3, dim_biot_savart,true,2.0);
  158. ////////////////////////////////////////////////////////////////////////////////
  159. //////// HELMHOLTZ KERNEL ////////
  160. ////////////////////////////////////////////////////////////////////////////////
  161. /**
  162. * \brief Green's function for the Helmholtz's equation. Kernel tensor
  163. * dimension = 2x2.
  164. */
  165. template <class T>
  166. void helmholtz_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out);
  167. template <class T>
  168. void helmholtz_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out);
  169. int dim_helmholtz [2]={2,2};
  170. const Kernel<double> ker_helmholtz =BuildKernel<double, helmholtz_poten>("helmholtz" , 3, dim_helmholtz );
  171. int dim_helmholtz_grad[2]={2,6};
  172. const Kernel<double> ker_helmholtz_grad=BuildKernel<double, helmholtz_grad >("helmholtz_grad", 3, dim_helmholtz_grad);
  173. }//end namespace
  174. #include <kernel.txx>
  175. #ifdef __INTEL_OFFLOAD
  176. #pragma offload_attribute(pop)
  177. #endif
  178. #endif //_PVFMM_FMM_KERNEL_HPP_