fmm_pts.txx 142 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670
  1. /**
  2. * \file fmm_pts.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 3-07-2011
  5. * \brief This file contains the implementation of the FMM_Pts class.
  6. */
  7. #include <stdio.h>
  8. #include <mpi.h>
  9. #include <set>
  10. #include <sstream>
  11. #include <fft_wrapper.hpp>
  12. #include <mat_utils.hpp>
  13. #ifdef PVFMM_HAVE_SYS_STAT_H
  14. #include <sys/stat.h>
  15. #endif
  16. #ifdef __SSE__
  17. #include <xmmintrin.h>
  18. #endif
  19. #ifdef __SSE3__
  20. #include <pmmintrin.h>
  21. #endif
  22. #ifdef __AVX__
  23. #include <immintrin.h>
  24. #endif
  25. #ifdef __INTEL_OFFLOAD
  26. #include <immintrin.h>
  27. #endif
  28. #ifdef __INTEL_OFFLOAD0
  29. #pragma offload_attribute(push,target(mic))
  30. #endif
  31. namespace pvfmm{
  32. /**
  33. * \brief Returns the coordinates of points on the surface of a cube.
  34. * \param[in] p Number of points on an edge of the cube is (n+1)
  35. * \param[in] c Coordinates to the centre of the cube (3D array).
  36. * \param[in] alpha Scaling factor for the size of the cube.
  37. * \param[in] depth Depth of the cube in the octree.
  38. * \return Vector with coordinates of points on the surface of the cube in the
  39. * format [x0 y0 z0 x1 y1 z1 .... ].
  40. */
  41. template <class Real_t>
  42. std::vector<Real_t> surface(int p, Real_t* c, Real_t alpha, int depth){
  43. size_t n_=(6*(p-1)*(p-1)+2); //Total number of points.
  44. std::vector<Real_t> coord(n_*3);
  45. coord[0]=coord[1]=coord[2]=-1.0;
  46. size_t cnt=1;
  47. for(int i=0;i<p-1;i++)
  48. for(int j=0;j<p-1;j++){
  49. coord[cnt*3 ]=-1.0;
  50. coord[cnt*3+1]=(2.0*(i+1)-p+1)/(p-1);
  51. coord[cnt*3+2]=(2.0*j-p+1)/(p-1);
  52. cnt++;
  53. }
  54. for(int i=0;i<p-1;i++)
  55. for(int j=0;j<p-1;j++){
  56. coord[cnt*3 ]=(2.0*i-p+1)/(p-1);
  57. coord[cnt*3+1]=-1.0;
  58. coord[cnt*3+2]=(2.0*(j+1)-p+1)/(p-1);
  59. cnt++;
  60. }
  61. for(int i=0;i<p-1;i++)
  62. for(int j=0;j<p-1;j++){
  63. coord[cnt*3 ]=(2.0*(i+1)-p+1)/(p-1);
  64. coord[cnt*3+1]=(2.0*j-p+1)/(p-1);
  65. coord[cnt*3+2]=-1.0;
  66. cnt++;
  67. }
  68. for(size_t i=0;i<(n_/2)*3;i++)
  69. coord[cnt*3+i]=-coord[i];
  70. Real_t r = 0.5*pow(0.5,depth);
  71. Real_t b = alpha*r;
  72. for(size_t i=0;i<n_;i++){
  73. coord[i*3+0]=(coord[i*3+0]+1.0)*b+c[0];
  74. coord[i*3+1]=(coord[i*3+1]+1.0)*b+c[1];
  75. coord[i*3+2]=(coord[i*3+2]+1.0)*b+c[2];
  76. }
  77. return coord;
  78. }
  79. /**
  80. * \brief Returns the coordinates of points on the upward check surface of cube.
  81. * \see surface()
  82. */
  83. template <class Real_t>
  84. std::vector<Real_t> u_check_surf(int p, Real_t* c, int depth){
  85. Real_t r=0.5*pow(0.5,depth);
  86. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  87. return surface(p,coord,(Real_t)RAD1,depth);
  88. }
  89. /**
  90. * \brief Returns the coordinates of points on the upward equivalent surface of cube.
  91. * \see surface()
  92. */
  93. template <class Real_t>
  94. std::vector<Real_t> u_equiv_surf(int p, Real_t* c, int depth){
  95. Real_t r=0.5*pow(0.5,depth);
  96. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  97. return surface(p,coord,(Real_t)RAD0,depth);
  98. }
  99. /**
  100. * \brief Returns the coordinates of points on the downward check surface of cube.
  101. * \see surface()
  102. */
  103. template <class Real_t>
  104. std::vector<Real_t> d_check_surf(int p, Real_t* c, int depth){
  105. Real_t r=0.5*pow(0.5,depth);
  106. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  107. return surface(p,coord,(Real_t)RAD0,depth);
  108. }
  109. /**
  110. * \brief Returns the coordinates of points on the downward equivalent surface of cube.
  111. * \see surface()
  112. */
  113. template <class Real_t>
  114. std::vector<Real_t> d_equiv_surf(int p, Real_t* c, int depth){
  115. Real_t r=0.5*pow(0.5,depth);
  116. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  117. return surface(p,coord,(Real_t)RAD1,depth);
  118. }
  119. /**
  120. * \brief Defines the 3D grid for convolution in FFT acceleration of V-list.
  121. * \see surface()
  122. */
  123. template <class Real_t>
  124. std::vector<Real_t> conv_grid(int p, Real_t* c, int depth){
  125. Real_t r=pow(0.5,depth);
  126. Real_t a=r*RAD0;
  127. Real_t coord[3]={c[0],c[1],c[2]};
  128. int n1=p*2;
  129. int n2=(int)pow((Real_t)n1,2);
  130. int n3=(int)pow((Real_t)n1,3);
  131. std::vector<Real_t> grid(n3*3);
  132. for(int i=0;i<n1;i++)
  133. for(int j=0;j<n1;j++)
  134. for(int k=0;k<n1;k++){
  135. grid[(i+n1*j+n2*k)*3+0]=(i-p)*a/(p-1)+coord[0];
  136. grid[(i+n1*j+n2*k)*3+1]=(j-p)*a/(p-1)+coord[1];
  137. grid[(i+n1*j+n2*k)*3+2]=(k-p)*a/(p-1)+coord[2];
  138. }
  139. return grid;
  140. }
  141. #ifdef __INTEL_OFFLOAD0
  142. #pragma offload_attribute(pop)
  143. #endif
  144. template <class Real_t>
  145. void FMM_Data<Real_t>::Clear(){
  146. upward_equiv.Resize(0);
  147. }
  148. template <class Real_t>
  149. PackedData FMM_Data<Real_t>::PackMultipole(void* buff_ptr){
  150. PackedData p0; p0.data=buff_ptr;
  151. p0.length=upward_equiv.Dim()*sizeof(Real_t);
  152. if(p0.length==0) return p0;
  153. if(p0.data==NULL) p0.data=(char*)&upward_equiv[0];
  154. else mem::memcopy(p0.data,&upward_equiv[0],p0.length);
  155. return p0;
  156. }
  157. template <class Real_t>
  158. void FMM_Data<Real_t>::AddMultipole(PackedData p0){
  159. Real_t* data=(Real_t*)p0.data;
  160. size_t n=p0.length/sizeof(Real_t);
  161. assert(upward_equiv.Dim()==n);
  162. Matrix<Real_t> v0(1,n,&upward_equiv[0],false);
  163. Matrix<Real_t> v1(1,n,data,false);
  164. v0+=v1;
  165. }
  166. template <class Real_t>
  167. void FMM_Data<Real_t>::InitMultipole(PackedData p0, bool own_data){
  168. Real_t* data=(Real_t*)p0.data;
  169. size_t n=p0.length/sizeof(Real_t);
  170. if(own_data){
  171. if(n>0) upward_equiv=Vector<Real_t>(n, &data[0], false);
  172. }else{
  173. if(n>0) upward_equiv.ReInit(n, &data[0], false);
  174. }
  175. }
  176. template <class FMMNode>
  177. FMM_Pts<FMMNode>::~FMM_Pts() {
  178. if(mat!=NULL){
  179. // int rank;
  180. // MPI_Comm_rank(comm,&rank);
  181. // if(rank==0) mat->Save2File("Precomp.data");
  182. delete mat;
  183. mat=NULL;
  184. }
  185. if(vprecomp_fft_flag) FFTW_t<Real_t>::fft_destroy_plan(vprecomp_fftplan);
  186. #ifdef __INTEL_OFFLOAD0
  187. #pragma offload target(mic:0)
  188. #endif
  189. {
  190. if(vlist_fft_flag ) FFTW_t<Real_t>::fft_destroy_plan(vlist_fftplan );
  191. if(vlist_ifft_flag) FFTW_t<Real_t>::fft_destroy_plan(vlist_ifftplan);
  192. vlist_fft_flag =false;
  193. vlist_ifft_flag=false;
  194. }
  195. }
  196. template <class FMMNode>
  197. void FMM_Pts<FMMNode>::Initialize(int mult_order, const MPI_Comm& comm_, const Kernel<Real_t>* kernel_, const Kernel<Real_t>* aux_kernel_){
  198. Profile::Tic("InitFMM_Pts",&comm_,true);{
  199. multipole_order=mult_order;
  200. comm=comm_;
  201. kernel=*kernel_;
  202. aux_kernel=*(aux_kernel_?aux_kernel_:kernel_);
  203. assert(kernel.ker_dim[0]==aux_kernel.ker_dim[0]);
  204. mat=new PrecompMat<Real_t>(Homogen(), MAX_DEPTH+1);
  205. if(this->mat_fname.size()==0){
  206. std::stringstream st;
  207. st<<PVFMM_PRECOMP_DATA_PATH;
  208. if(!st.str().size()){ // look in PVFMM_DIR
  209. char* pvfmm_dir = getenv ("PVFMM_DIR");
  210. if(pvfmm_dir) st<<pvfmm_dir<<'/';
  211. }
  212. #ifndef STAT_MACROS_BROKEN
  213. if(st.str().size()){ // check if the path is a directory
  214. struct stat stat_buff;
  215. if(stat(st.str().c_str(), &stat_buff) || !S_ISDIR(stat_buff.st_mode)){
  216. std::cout<<"error: path not found: "<<st.str()<<'\n';
  217. exit(0);
  218. }
  219. }
  220. #endif
  221. st<<"Precomp_"<<kernel.ker_name.c_str()<<"_m"<<mult_order<<(typeid(Real_t)==typeid(float)?"_f":"")<<".data";
  222. this->mat_fname=st.str();
  223. }
  224. this->mat->LoadFile(mat_fname.c_str(), this->comm);
  225. interac_list.Initialize(COORD_DIM, this->mat);
  226. Profile::Tic("PrecompUC2UE",&comm,false,4);
  227. this->PrecompAll(UC2UE_Type);
  228. Profile::Toc();
  229. Profile::Tic("PrecompDC2DE",&comm,false,4);
  230. this->PrecompAll(DC2DE_Type);
  231. Profile::Toc();
  232. Profile::Tic("PrecompBC",&comm,false,4);
  233. { /*
  234. int type=BC_Type;
  235. for(int l=0;l<MAX_DEPTH;l++)
  236. for(size_t indx=0;indx<this->interac_list.ListCount((Mat_Type)type);indx++){
  237. Matrix<Real_t>& M=this->mat->Mat(l, (Mat_Type)type, indx);
  238. M.Resize(0,0);
  239. } // */
  240. }
  241. this->PrecompAll(BC_Type,0);
  242. Profile::Toc();
  243. Profile::Tic("PrecompU2U",&comm,false,4);
  244. this->PrecompAll(U2U_Type);
  245. Profile::Toc();
  246. Profile::Tic("PrecompD2D",&comm,false,4);
  247. this->PrecompAll(D2D_Type);
  248. Profile::Toc();
  249. Profile::Tic("PrecompV",&comm,false,4);
  250. this->PrecompAll(V_Type);
  251. Profile::Toc();
  252. Profile::Tic("PrecompV1",&comm,false,4);
  253. this->PrecompAll(V1_Type);
  254. Profile::Toc();
  255. }Profile::Toc();
  256. }
  257. template <class FMMNode>
  258. Permutation<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::PrecompPerm(Mat_Type type, Perm_Type perm_indx){
  259. //Check if the matrix already exists.
  260. Permutation<Real_t>& P_ = mat->Perm((Mat_Type)type, perm_indx);
  261. if(P_.Dim()!=0) return P_;
  262. Matrix<size_t> swap_xy(10,9);
  263. Matrix<size_t> swap_xz(10,9);
  264. {
  265. for(int i=0;i<9;i++)
  266. for(int j=0;j<9;j++){
  267. swap_xy[i][j]=j;
  268. swap_xz[i][j]=j;
  269. }
  270. swap_xy[3][0]=1; swap_xy[3][1]=0; swap_xy[3][2]=2;
  271. swap_xz[3][0]=2; swap_xz[3][1]=1; swap_xz[3][2]=0;
  272. swap_xy[6][0]=1; swap_xy[6][1]=0; swap_xy[6][2]=2;
  273. swap_xy[6][3]=4; swap_xy[6][4]=3; swap_xy[6][5]=5;
  274. swap_xz[6][0]=2; swap_xz[6][1]=1; swap_xz[6][2]=0;
  275. swap_xz[6][3]=5; swap_xz[6][4]=4; swap_xz[6][5]=3;
  276. swap_xy[9][0]=4; swap_xy[9][1]=3; swap_xy[9][2]=5;
  277. swap_xy[9][3]=1; swap_xy[9][4]=0; swap_xy[9][5]=2;
  278. swap_xy[9][6]=7; swap_xy[9][7]=6; swap_xy[9][8]=8;
  279. swap_xz[9][0]=8; swap_xz[9][1]=7; swap_xz[9][2]=6;
  280. swap_xz[9][3]=5; swap_xz[9][4]=4; swap_xz[9][5]=3;
  281. swap_xz[9][6]=2; swap_xz[9][7]=1; swap_xz[9][8]=0;
  282. }
  283. //Compute the matrix.
  284. Permutation<Real_t> P;
  285. switch (type){
  286. case UC2UE_Type:
  287. {
  288. break;
  289. }
  290. case DC2DE_Type:
  291. {
  292. break;
  293. }
  294. case S2U_Type:
  295. {
  296. break;
  297. }
  298. case U2U_Type:
  299. {
  300. break;
  301. }
  302. case D2D_Type:
  303. {
  304. Real_t eps=1e-10;
  305. int dof=kernel.ker_dim[0];
  306. size_t p_indx=perm_indx % C_Perm;
  307. Real_t c[3]={-0.5,-0.5,-0.5};
  308. std::vector<Real_t> trg_coord=d_check_surf(this->MultipoleOrder(),c,0);
  309. int n_trg=trg_coord.size()/3;
  310. P=Permutation<Real_t>(n_trg*dof);
  311. if(p_indx==ReflecX || p_indx==ReflecY || p_indx==ReflecZ){
  312. for(int i=0;i<n_trg;i++)
  313. for(int j=0;j<n_trg;j++){
  314. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+0]*(p_indx==ReflecX?-1.0:1.0))<eps)
  315. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+1]*(p_indx==ReflecY?-1.0:1.0))<eps)
  316. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+2]*(p_indx==ReflecZ?-1.0:1.0))<eps){
  317. for(int k=0;k<dof;k++){
  318. P.perm[j*dof+k]=i*dof+k;
  319. }
  320. }
  321. }
  322. if(dof==3) //stokes_vel (and like kernels)
  323. for(int j=0;j<n_trg;j++)
  324. P.scal[j*dof+(int)p_indx]*=-1.0;
  325. }else if(p_indx==SwapXY || p_indx==SwapXZ)
  326. for(int i=0;i<n_trg;i++)
  327. for(int j=0;j<n_trg;j++){
  328. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+(p_indx==SwapXY?1:2)])<eps)
  329. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+(p_indx==SwapXY?0:1)])<eps)
  330. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+(p_indx==SwapXY?2:0)])<eps){
  331. for(int k=0;k<dof;k++){
  332. P.perm[j*dof+k]=i*dof+(p_indx==SwapXY?swap_xy[dof][k]:swap_xz[dof][k]);
  333. }
  334. }
  335. }
  336. break;
  337. }
  338. case D2T_Type:
  339. {
  340. break;
  341. }
  342. case U0_Type:
  343. {
  344. break;
  345. }
  346. case U1_Type:
  347. {
  348. break;
  349. }
  350. case U2_Type:
  351. {
  352. break;
  353. }
  354. case V_Type:
  355. {
  356. break;
  357. }
  358. case V1_Type:
  359. {
  360. break;
  361. }
  362. case W_Type:
  363. {
  364. break;
  365. }
  366. case X_Type:
  367. {
  368. break;
  369. }
  370. case BC_Type:
  371. {
  372. break;
  373. }
  374. default:
  375. break;
  376. }
  377. //Save the matrix for future use.
  378. #pragma omp critical (PRECOMP_MATRIX_PTS)
  379. {
  380. if(P_.Dim()==0) P_=P;
  381. }
  382. return P_;
  383. }
  384. template <class FMMNode>
  385. Matrix<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::Precomp(int level, Mat_Type type, size_t mat_indx){
  386. if(this->Homogen()) level=0;
  387. //Check if the matrix already exists.
  388. Matrix<Real_t>& M_ = this->mat->Mat(level, type, mat_indx);
  389. if(M_.Dim(0)!=0 && M_.Dim(1)!=0) return M_;
  390. else{ //Compute matrix from symmetry class (if possible).
  391. size_t class_indx = this->interac_list.InteracClass(type, mat_indx);
  392. if(class_indx!=mat_indx){
  393. Matrix<Real_t>& M0 = this->Precomp(level, type, class_indx);
  394. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, type, mat_indx);
  395. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, type, mat_indx);
  396. if(Pr.Dim()>0 && Pc.Dim()>0 && M0.Dim(0)>0 && M0.Dim(1)>0) return M_;
  397. }
  398. }
  399. //Compute the matrix.
  400. Matrix<Real_t> M;
  401. int* ker_dim=kernel.ker_dim;
  402. int* aux_ker_dim=aux_kernel.ker_dim;
  403. //int omp_p=omp_get_max_threads();
  404. switch (type){
  405. case UC2UE_Type:
  406. {
  407. // Coord of upward check surface
  408. Real_t c[3]={0,0,0};
  409. std::vector<Real_t> uc_coord=u_check_surf(MultipoleOrder(),c,level);
  410. size_t n_uc=uc_coord.size()/3;
  411. // Coord of upward equivalent surface
  412. std::vector<Real_t> ue_coord=u_equiv_surf(MultipoleOrder(),c,level);
  413. size_t n_ue=ue_coord.size()/3;
  414. // Evaluate potential at check surface due to equivalent surface.
  415. Matrix<Real_t> M_e2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
  416. Kernel<Real_t>::Eval(&ue_coord[0], n_ue,
  417. &uc_coord[0], n_uc, &(M_e2c[0][0]),
  418. aux_kernel.ker_poten, aux_ker_dim);
  419. M=M_e2c.pinv(); //check 2 equivalent
  420. break;
  421. }
  422. case DC2DE_Type:
  423. {
  424. // Coord of downward check surface
  425. Real_t c[3]={0,0,0};
  426. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  427. size_t n_ch=check_surf.size()/3;
  428. // Coord of downward equivalent surface
  429. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  430. size_t n_eq=equiv_surf.size()/3;
  431. // Evaluate potential at check surface due to equivalent surface.
  432. Matrix<Real_t> M_e2c(n_eq*aux_ker_dim[0],n_ch*aux_ker_dim[1]);
  433. Kernel<Real_t>::Eval(&equiv_surf[0], n_eq,
  434. &check_surf[0], n_ch, &(M_e2c[0][0]),
  435. aux_kernel.ker_poten,aux_ker_dim);
  436. M=M_e2c.pinv(); //check 2 equivalent
  437. break;
  438. }
  439. case S2U_Type:
  440. {
  441. break;
  442. }
  443. case U2U_Type:
  444. {
  445. // Coord of upward check surface
  446. Real_t c[3]={0,0,0};
  447. std::vector<Real_t> check_surf=u_check_surf(MultipoleOrder(),c,level);
  448. size_t n_uc=check_surf.size()/3;
  449. // Coord of child's upward equivalent surface
  450. Real_t s=pow(0.5,(level+2));
  451. int* coord=interac_list.RelativeCoord(type,mat_indx);
  452. Real_t child_coord[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  453. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),child_coord,level+1);
  454. size_t n_ue=equiv_surf.size()/3;
  455. // Evaluate potential at check surface due to equivalent surface.
  456. Matrix<Real_t> M_ce2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
  457. Kernel<Real_t>::Eval(&equiv_surf[0], n_ue,
  458. &check_surf[0], n_uc, &(M_ce2c[0][0]),
  459. aux_kernel.ker_poten, aux_ker_dim);
  460. Matrix<Real_t>& M_c2e = Precomp(level, UC2UE_Type, 0);
  461. M=M_ce2c*M_c2e;
  462. break;
  463. }
  464. case D2D_Type:
  465. {
  466. // Coord of downward check surface
  467. Real_t s=pow(0.5,level+1);
  468. int* coord=interac_list.RelativeCoord(type,mat_indx);
  469. Real_t c[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  470. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  471. size_t n_dc=check_surf.size()/3;
  472. // Coord of parent's downward equivalent surface
  473. Real_t parent_coord[3]={0,0,0};
  474. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),parent_coord,level-1);
  475. size_t n_de=equiv_surf.size()/3;
  476. // Evaluate potential at check surface due to equivalent surface.
  477. Matrix<Real_t> M_pe2c(n_de*aux_ker_dim[0],n_dc*aux_ker_dim[1]);
  478. Kernel<Real_t>::Eval(&equiv_surf[0], n_de,
  479. &check_surf[0], n_dc, &(M_pe2c[0][0]),
  480. aux_kernel.ker_poten,aux_ker_dim);
  481. Matrix<Real_t>& M_c2e=Precomp(level,DC2DE_Type,0);
  482. M=M_pe2c*M_c2e;
  483. break;
  484. }
  485. case D2T_Type:
  486. {
  487. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  488. // Coord of target points
  489. Real_t r=pow(0.5,level);
  490. size_t n_trg=rel_trg_coord.size()/3;
  491. std::vector<Real_t> trg_coord(n_trg*3);
  492. for(size_t i=0;i<n_trg*COORD_DIM;i++) trg_coord[i]=rel_trg_coord[i]*r;
  493. // Coord of downward equivalent surface
  494. Real_t c[3]={0,0,0};
  495. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  496. size_t n_eq=equiv_surf.size()/3;
  497. // Evaluate potential at target points due to equivalent surface.
  498. {
  499. M .Resize(n_eq*ker_dim [0], n_trg*ker_dim [1]);
  500. kernel.BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  501. }
  502. break;
  503. }
  504. case U0_Type:
  505. {
  506. break;
  507. }
  508. case U1_Type:
  509. {
  510. break;
  511. }
  512. case U2_Type:
  513. {
  514. break;
  515. }
  516. case V_Type:
  517. {
  518. int n1=MultipoleOrder()*2;
  519. int n3 =n1*n1*n1;
  520. int n3_=n1*n1*(n1/2+1);
  521. //Compute the matrix.
  522. Real_t s=pow(0.5,level);
  523. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  524. Real_t coord_diff[3]={coord2[0]*s,coord2[1]*s,coord2[2]*s};
  525. //Evaluate potential.
  526. std::vector<Real_t> r_trg(COORD_DIM,0.0);
  527. std::vector<Real_t> conv_poten(n3*aux_ker_dim[0]*aux_ker_dim[1]);
  528. std::vector<Real_t> conv_coord=conv_grid(MultipoleOrder(),coord_diff,level);
  529. Kernel<Real_t>::Eval(&conv_coord[0],n3,&r_trg[0],1,&conv_poten[0],aux_kernel.ker_poten,aux_ker_dim);
  530. //Rearrange data.
  531. Matrix<Real_t> M_conv(n3,aux_ker_dim[0]*aux_ker_dim[1],&conv_poten[0],false);
  532. M_conv=M_conv.Transpose();
  533. //Compute FFTW plan.
  534. int nnn[3]={n1,n1,n1};
  535. void *fftw_in, *fftw_out;
  536. fftw_in = fftw_malloc( n3 *aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  537. fftw_out = fftw_malloc(2*n3_*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  538. #pragma omp critical (FFTW_PLAN)
  539. {
  540. if (!vprecomp_fft_flag){
  541. vprecomp_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM, nnn, aux_ker_dim[0]*aux_ker_dim[1],
  542. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*) fftw_out, NULL, 1, n3_, FFTW_ESTIMATE);
  543. vprecomp_fft_flag=true;
  544. }
  545. }
  546. //Compute FFT.
  547. mem::memcopy(fftw_in, &conv_poten[0], n3*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  548. FFTW_t<Real_t>::fft_execute_dft_r2c(vprecomp_fftplan, (Real_t*)fftw_in, (typename FFTW_t<Real_t>::cplx*)(fftw_out));
  549. Matrix<Real_t> M_(2*n3_*aux_ker_dim[0]*aux_ker_dim[1],1,(Real_t*)fftw_out,false);
  550. M=M_;
  551. //Free memory.
  552. fftw_free(fftw_in);
  553. fftw_free(fftw_out);
  554. break;
  555. }
  556. case V1_Type:
  557. {
  558. size_t mat_cnt =interac_list.ListCount( V_Type);
  559. for(size_t k=0;k<mat_cnt;k++) Precomp(level, V_Type, k);
  560. const size_t chld_cnt=1UL<<COORD_DIM;
  561. size_t n1=MultipoleOrder()*2;
  562. size_t M_dim=n1*n1*(n1/2+1);
  563. size_t n3=n1*n1*n1;
  564. Vector<Real_t> zero_vec(M_dim*aux_ker_dim[0]*aux_ker_dim[1]*2);
  565. zero_vec.SetZero();
  566. Vector<Real_t*> M_ptr(chld_cnt*chld_cnt);
  567. for(size_t i=0;i<chld_cnt*chld_cnt;i++) M_ptr[i]=&zero_vec[0];
  568. int* rel_coord_=interac_list.RelativeCoord(V1_Type, mat_indx);
  569. for(int j1=0;j1<chld_cnt;j1++)
  570. for(int j2=0;j2<chld_cnt;j2++){
  571. int rel_coord[3]={rel_coord_[0]*2-(j1/1)%2+(j2/1)%2,
  572. rel_coord_[1]*2-(j1/2)%2+(j2/2)%2,
  573. rel_coord_[2]*2-(j1/4)%2+(j2/4)%2};
  574. for(size_t k=0;k<mat_cnt;k++){
  575. int* ref_coord=interac_list.RelativeCoord(V_Type, k);
  576. if(ref_coord[0]==rel_coord[0] &&
  577. ref_coord[1]==rel_coord[1] &&
  578. ref_coord[2]==rel_coord[2]){
  579. Matrix<Real_t>& M = this->mat->Mat(level, V_Type, k);
  580. M_ptr[j2*chld_cnt+j1]=&M[0][0];
  581. break;
  582. }
  583. }
  584. }
  585. // Build matrix aux_ker_dim0 x aux_ker_dim1 x M_dim x 8 x 8
  586. M.Resize(aux_ker_dim[0]*aux_ker_dim[1]*M_dim, 2*chld_cnt*chld_cnt);
  587. for(int j=0;j<aux_ker_dim[0]*aux_ker_dim[1]*M_dim;j++){
  588. for(size_t k=0;k<chld_cnt*chld_cnt;k++){
  589. M[j][k*2+0]=M_ptr[k][j*2+0]/n3;
  590. M[j][k*2+1]=M_ptr[k][j*2+1]/n3;
  591. }
  592. }
  593. break;
  594. }
  595. case W_Type:
  596. {
  597. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  598. // Coord of target points
  599. Real_t s=pow(0.5,level);
  600. size_t n_trg=rel_trg_coord.size()/3;
  601. std::vector<Real_t> trg_coord(n_trg*3);
  602. for(size_t j=0;j<n_trg*COORD_DIM;j++) trg_coord[j]=rel_trg_coord[j]*s;
  603. // Coord of downward equivalent surface
  604. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  605. Real_t c[3]={(coord2[0]+1)*s*0.25,(coord2[1]+1)*s*0.25,(coord2[2]+1)*s*0.25};
  606. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),c,level+1);
  607. size_t n_eq=equiv_surf.size()/3;
  608. // Evaluate potential at target points due to equivalent surface.
  609. {
  610. M .Resize(n_eq*ker_dim [0],n_trg*ker_dim [1]);
  611. kernel.BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  612. }
  613. break;
  614. }
  615. case X_Type:
  616. {
  617. break;
  618. }
  619. case BC_Type:
  620. {
  621. size_t mat_cnt_m2m=interac_list.ListCount(U2U_Type);
  622. size_t n_surf=(6*(MultipoleOrder()-1)*(MultipoleOrder()-1)+2); //Total number of points.
  623. if((M.Dim(0)!=n_surf*aux_ker_dim[0] || M.Dim(1)!=n_surf*aux_ker_dim[1]) && level==0){
  624. Matrix<Real_t> M_m2m[BC_LEVELS+1];
  625. Matrix<Real_t> M_m2l[BC_LEVELS+1];
  626. Matrix<Real_t> M_l2l[BC_LEVELS+1];
  627. Matrix<Real_t> M_zero_avg(n_surf*aux_ker_dim[0],n_surf*aux_ker_dim[0]);
  628. { // Set average multipole charge to zero. (improves stability for large BC_LEVELS)
  629. M_zero_avg.SetZero();
  630. for(size_t i=0;i<n_surf*aux_ker_dim[0];i++)
  631. M_zero_avg[i][i]+=1;
  632. for(size_t i=0;i<n_surf;i++)
  633. for(size_t j=0;j<n_surf;j++)
  634. for(size_t k=0;k<aux_ker_dim[0];k++)
  635. M_zero_avg[i*aux_ker_dim[0]+k][j*aux_ker_dim[0]+k]-=1.0/n_surf;
  636. }
  637. for(int level=0; level>-BC_LEVELS; level--){
  638. M_l2l[-level] = this->Precomp(level, D2D_Type, 0);
  639. if(M_l2l[-level].Dim(0)==0 || M_l2l[-level].Dim(1)==0){
  640. Matrix<Real_t>& M0 = interac_list.ClassMat(level, D2D_Type, 0);
  641. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, D2D_Type, 0);
  642. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, D2D_Type, 0);
  643. M_l2l[-level] = Pr*M0*Pc;
  644. }
  645. M_m2m[-level] = M_zero_avg*this->Precomp(level, U2U_Type, 0);
  646. for(size_t mat_indx=1; mat_indx<mat_cnt_m2m; mat_indx++)
  647. M_m2m[-level] += M_zero_avg*this->Precomp(level, U2U_Type, mat_indx);
  648. }
  649. for(int level=-BC_LEVELS;level<=0;level++){
  650. if(!Homogen() || level==-BC_LEVELS){
  651. Real_t s=(1UL<<(-level));
  652. Real_t ue_coord[3]={0,0,0};
  653. Real_t dc_coord[3]={0,0,0};
  654. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  655. std::vector<Real_t> trg_coord=d_check_surf(MultipoleOrder(), dc_coord, level);
  656. Matrix<Real_t> M_ue2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  657. M_ue2dc.SetZero();
  658. for(int x0=-2;x0<4;x0++)
  659. for(int x1=-2;x1<4;x1++)
  660. for(int x2=-2;x2<4;x2++)
  661. if(abs(x0)>1 || abs(x1)>1 || abs(x2)>1){
  662. ue_coord[0]=x0*s; ue_coord[1]=x1*s; ue_coord[2]=x2*s;
  663. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  664. Matrix<Real_t> M_tmp(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  665. Kernel<Real_t>::Eval(&src_coord[0], n_surf,
  666. &trg_coord[0], n_surf, &(M_tmp[0][0]),
  667. aux_kernel.ker_poten, aux_ker_dim);
  668. M_ue2dc+=M_tmp;
  669. }
  670. // Shift by constant.
  671. Real_t scale_adj=(Homogen()?pow(0.5, level*aux_kernel.poten_scale):1);
  672. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  673. std::vector<Real_t> avg(aux_ker_dim[1],0);
  674. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  675. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  676. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
  677. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  678. for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]=(M_ue2dc[i][j+k]-avg[k])*scale_adj;
  679. }
  680. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  681. M_m2l[-level]=M_ue2dc*M_dc2de;
  682. }else M_m2l[-level]=M_m2l[1-level];
  683. if(level==-BC_LEVELS) M = M_m2l[-level];
  684. else M = M_m2l[-level] + M_m2m[-level]*M*M_l2l[-level];
  685. { // Shift by constant. (improves stability for large BC_LEVELS)
  686. Matrix<Real_t> M_de2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  687. { // M_de2dc TODO: For homogeneous kernels, compute only once.
  688. // Coord of downward check surface
  689. Real_t c[3]={0,0,0};
  690. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,0);
  691. size_t n_ch=check_surf.size()/3;
  692. // Coord of downward equivalent surface
  693. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  694. size_t n_eq=equiv_surf.size()/3;
  695. // Evaluate potential at check surface due to equivalent surface.
  696. Kernel<Real_t>::Eval(&equiv_surf[0], n_eq,
  697. &check_surf[0], n_ch, &(M_de2dc[0][0]),
  698. aux_kernel.ker_poten,aux_ker_dim);
  699. }
  700. Matrix<Real_t> M_ue2dc=M*M_de2dc;
  701. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  702. std::vector<Real_t> avg(aux_ker_dim[1],0);
  703. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  704. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  705. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
  706. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  707. for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]-=avg[k];
  708. }
  709. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  710. M=M_ue2dc*M_dc2de;
  711. }
  712. }
  713. { // ax+by+cz+d correction.
  714. std::vector<Real_t> corner_pts;
  715. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(0);
  716. corner_pts.push_back(1); corner_pts.push_back(0); corner_pts.push_back(0);
  717. corner_pts.push_back(0); corner_pts.push_back(1); corner_pts.push_back(0);
  718. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(1);
  719. size_t n_corner=corner_pts.size()/3;
  720. // Coord of downward equivalent surface
  721. Real_t c[3]={0,0,0};
  722. std::vector<Real_t> up_equiv_surf=u_equiv_surf(MultipoleOrder(),c,0);
  723. std::vector<Real_t> dn_equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  724. std::vector<Real_t> dn_check_surf=d_check_surf(MultipoleOrder(),c,0);
  725. Matrix<Real_t> M_err;
  726. { // Evaluate potential at corner due to upward and dnward equivalent surface.
  727. { // Error from local expansion.
  728. Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],n_corner*aux_ker_dim[1]);
  729. Kernel<Real_t>::Eval(&dn_equiv_surf[0], n_surf,
  730. &corner_pts[0], n_corner, &(M_e2pt[0][0]),
  731. aux_kernel.ker_poten,aux_ker_dim);
  732. M_err=M*M_e2pt;
  733. }
  734. for(size_t k=0;k<4;k++){ // Error from colleagues of root.
  735. for(int j0=-1;j0<=1;j0++)
  736. for(int j1=-1;j1<=1;j1++)
  737. for(int j2=-1;j2<=1;j2++){
  738. Real_t pt_coord[3]={corner_pts[k*COORD_DIM+0]-j0,
  739. corner_pts[k*COORD_DIM+1]-j1,
  740. corner_pts[k*COORD_DIM+2]-j2};
  741. if(fabs(pt_coord[0]-0.5)>1.0 || fabs(pt_coord[1]-0.5)>1.0 || fabs(pt_coord[2]-0.5)>1.0){
  742. Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],aux_ker_dim[1]);
  743. Kernel<Real_t>::Eval(&up_equiv_surf[0], n_surf,
  744. &pt_coord[0], 1, &(M_e2pt[0][0]),
  745. aux_kernel.ker_poten,aux_ker_dim);
  746. for(size_t i=0;i<M_e2pt.Dim(0);i++)
  747. for(size_t j=0;j<M_e2pt.Dim(1);j++)
  748. M_err[i][k*aux_ker_dim[1]+j]+=M_e2pt[i][j];
  749. }
  750. }
  751. }
  752. }
  753. Matrix<Real_t> M_grad(M_err.Dim(0),n_surf*aux_ker_dim[1]);
  754. for(size_t i=0;i<M_err.Dim(0);i++)
  755. for(size_t k=0;k<aux_ker_dim[1];k++)
  756. for(size_t j=0;j<n_surf;j++){
  757. M_grad[i][j*aux_ker_dim[1]+k]=(M_err[i][0*aux_ker_dim[1]+k] )*1.0 +
  758. (M_err[i][1*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+0]+
  759. (M_err[i][2*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+1]+
  760. (M_err[i][3*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+2];
  761. }
  762. Matrix<Real_t>& M_dc2de = Precomp(0, DC2DE_Type, 0);
  763. M-=M_grad*M_dc2de;
  764. }
  765. { // Free memory
  766. Mat_Type type=D2D_Type;
  767. for(int l=-BC_LEVELS;l<0;l++)
  768. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  769. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  770. M.Resize(0,0);
  771. }
  772. type=U2U_Type;
  773. for(int l=-BC_LEVELS;l<0;l++)
  774. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  775. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  776. M.Resize(0,0);
  777. }
  778. type=DC2DE_Type;
  779. for(int l=-BC_LEVELS;l<0;l++)
  780. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  781. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  782. M.Resize(0,0);
  783. }
  784. type=UC2UE_Type;
  785. for(int l=-BC_LEVELS;l<0;l++)
  786. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  787. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  788. M.Resize(0,0);
  789. }
  790. }
  791. }
  792. break;
  793. }
  794. default:
  795. break;
  796. }
  797. //Save the matrix for future use.
  798. #pragma omp critical (PRECOMP_MATRIX_PTS)
  799. if(M_.Dim(0)==0 && M_.Dim(1)==0){
  800. M_=M;
  801. /*
  802. M_.Resize(M.Dim(0),M.Dim(1));
  803. int dof=aux_ker_dim[0]*aux_ker_dim[1];
  804. for(int j=0;j<dof;j++){
  805. size_t a=(M.Dim(0)*M.Dim(1)* j )/dof;
  806. size_t b=(M.Dim(0)*M.Dim(1)*(j+1))/dof;
  807. #pragma omp parallel for // NUMA
  808. for(int tid=0;tid<omp_p;tid++){
  809. size_t a_=a+((b-a)* tid )/omp_p;
  810. size_t b_=a+((b-a)*(tid+1))/omp_p;
  811. mem::memcopy(&M_[0][a_], &M[0][a_], (b_-a_)*sizeof(Real_t));
  812. }
  813. }
  814. */
  815. }
  816. return M_;
  817. }
  818. template <class FMMNode>
  819. void FMM_Pts<FMMNode>::PrecompAll(Mat_Type type, int level){
  820. int depth=(Homogen()?1:MAX_DEPTH);
  821. if(level==-1){
  822. for(int l=0;l<depth;l++){
  823. std::stringstream level_str;
  824. level_str<<"level="<<l;
  825. PrecompAll(type, l);
  826. }
  827. return;
  828. }
  829. //Compute basic permutations.
  830. for(size_t i=0;i<Perm_Count;i++)
  831. this->PrecompPerm(type, (Perm_Type) i);
  832. {
  833. //Allocate matrices.
  834. size_t mat_cnt=interac_list.ListCount((Mat_Type)type);
  835. mat->Mat(level, (Mat_Type)type, mat_cnt-1);
  836. { // Compute InteracClass matrices.
  837. std::vector<size_t> indx_lst;
  838. for(size_t i=0; i<mat_cnt; i++){
  839. if(interac_list.InteracClass((Mat_Type)type,i)==i)
  840. indx_lst.push_back(i);
  841. }
  842. //Compute Transformations.
  843. //#pragma omp parallel for //lets use fine grained parallelism
  844. for(size_t i=0; i<indx_lst.size(); i++){
  845. Precomp(level, (Mat_Type)type, indx_lst[i]);
  846. }
  847. }
  848. //#pragma omp parallel for //lets use fine grained parallelism
  849. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
  850. Matrix<Real_t>& M0=interac_list.ClassMat(level,(Mat_Type)type,mat_indx);
  851. assert(M0.Dim(0)>0 && M0.Dim(1)>0);
  852. Permutation<Real_t>& pr=interac_list.Perm_R(level, (Mat_Type)type, mat_indx);
  853. Permutation<Real_t>& pc=interac_list.Perm_C(level, (Mat_Type)type, mat_indx);
  854. if(pr.Dim()!=M0.Dim(0) || pc.Dim()!=M0.Dim(1)) Precomp(level, (Mat_Type)type, mat_indx);
  855. }
  856. }
  857. }
  858. template <class FMMNode>
  859. void FMM_Pts<FMMNode>::CollectNodeData(std::vector<FMMNode*>& node, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, std::vector<size_t> extra_size){
  860. if( buff.size()<7) buff.resize(7);
  861. if( n_list.size()<7) n_list.resize(7);
  862. if(node.size()==0) return;
  863. {// 0. upward_equiv
  864. int indx=0;
  865. Matrix<Real_t>& M_uc2ue = this->interac_list.ClassMat(0, UC2UE_Type, 0);
  866. size_t vec_sz=M_uc2ue.Dim(1);
  867. std::vector< FMMNode* > node_lst;
  868. {
  869. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  870. FMMNode_t* r_node=NULL;
  871. for(size_t i=0;i<node.size();i++){
  872. if(!node[i]->IsLeaf())
  873. node_lst_[node[i]->Depth()].push_back(node[i]);
  874. if(node[i]->Depth()==0) r_node=node[i];
  875. }
  876. size_t chld_cnt=1UL<<COORD_DIM;
  877. for(int i=0;i<=MAX_DEPTH;i++)
  878. for(size_t j=0;j<node_lst_[i].size();j++)
  879. for(size_t k=0;k<chld_cnt;k++)
  880. node_lst.push_back((FMMNode_t*)node_lst_[i][j]->Child(k));
  881. if(r_node!=NULL) node_lst.push_back(r_node);
  882. }
  883. n_list[indx]=node_lst;
  884. size_t buff_size=node_lst.size()*vec_sz;
  885. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  886. buff[indx].Resize(1,buff_size);
  887. #pragma omp parallel for
  888. for(size_t i=0;i<node_lst.size();i++){
  889. Vector<Real_t>& upward_equiv=node_lst[i]->FMMData()->upward_equiv;
  890. upward_equiv.ReInit(vec_sz, buff[indx][0]+i*vec_sz, false);
  891. upward_equiv.SetZero();
  892. }
  893. buff[indx].AllocDevice(true);
  894. }
  895. {// 1. dnward_equiv
  896. int indx=1;
  897. Matrix<Real_t>& M_dc2de = this->interac_list.ClassMat(0, DC2DE_Type, 0);
  898. size_t vec_sz=M_dc2de.Dim(1);
  899. std::vector< FMMNode* > node_lst;
  900. {
  901. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  902. FMMNode_t* r_node=NULL;
  903. for(size_t i=0;i<node.size();i++){
  904. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  905. node_lst_[node[i]->Depth()].push_back(node[i]);
  906. if(node[i]->Depth()==0) r_node=node[i];
  907. }
  908. size_t chld_cnt=1UL<<COORD_DIM;
  909. for(int i=0;i<=MAX_DEPTH;i++)
  910. for(size_t j=0;j<node_lst_[i].size();j++)
  911. for(size_t k=0;k<chld_cnt;k++)
  912. node_lst.push_back((FMMNode_t*)node_lst_[i][j]->Child(k));
  913. if(r_node!=NULL) node_lst.push_back(r_node);
  914. }
  915. n_list[indx]=node_lst;
  916. size_t buff_size=node_lst.size()*vec_sz;
  917. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  918. buff[indx].Resize(1,buff_size);
  919. #pragma omp parallel for
  920. for(size_t i=0;i<node_lst.size();i++){
  921. Vector<Real_t>& dnward_equiv=node_lst[i]->FMMData()->dnward_equiv;
  922. dnward_equiv.ReInit(vec_sz, buff[indx][0]+i*vec_sz, false);
  923. dnward_equiv.SetZero();
  924. }
  925. buff[indx].AllocDevice(true);
  926. }
  927. {// 2. upward_equiv_fft
  928. int indx=2;
  929. std::vector< FMMNode* > node_lst;
  930. {
  931. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  932. for(size_t i=0;i<node.size();i++)
  933. if(!node[i]->IsLeaf())
  934. node_lst_[node[i]->Depth()].push_back(node[i]);
  935. for(int i=0;i<=MAX_DEPTH;i++)
  936. for(size_t j=0;j<node_lst_[i].size();j++)
  937. node_lst.push_back(node_lst_[i][j]);
  938. }
  939. n_list[indx]=node_lst;
  940. buff[indx].AllocDevice(true);
  941. }
  942. {// 3. dnward_check_fft
  943. int indx=3;
  944. std::vector< FMMNode* > node_lst;
  945. {
  946. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  947. for(size_t i=0;i<node.size();i++)
  948. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  949. node_lst_[node[i]->Depth()].push_back(node[i]);
  950. for(int i=0;i<=MAX_DEPTH;i++)
  951. for(size_t j=0;j<node_lst_[i].size();j++)
  952. node_lst.push_back(node_lst_[i][j]);
  953. }
  954. n_list[indx]=node_lst;
  955. buff[indx].AllocDevice(true);
  956. }
  957. {// 4. src_val
  958. int indx=4;
  959. int src_dof=kernel.ker_dim[0];
  960. int surf_dof=COORD_DIM+src_dof;
  961. std::vector< FMMNode* > node_lst;
  962. size_t buff_size=0;
  963. for(size_t i=0;i<node.size();i++)
  964. if(node[i]->IsLeaf()){
  965. node_lst.push_back(node[i]);
  966. buff_size+=(node[i]->src_coord.Dim()/COORD_DIM)*src_dof;
  967. buff_size+=(node[i]->surf_coord.Dim()/COORD_DIM)*surf_dof;
  968. }
  969. n_list[indx]=node_lst;
  970. #pragma omp parallel for
  971. for(size_t i=0;i<node_lst.size();i++){ // Move data before resizing buff[indx]
  972. { // src_value
  973. Vector<Real_t>& src_value=node_lst[i]->src_value;
  974. Vector<Real_t> new_buff=src_value;
  975. src_value.ReInit(new_buff.Dim(), &new_buff[0]);
  976. }
  977. { // surf_value
  978. Vector<Real_t>& surf_value=node_lst[i]->surf_value;
  979. Vector<Real_t> new_buff=surf_value;
  980. surf_value.ReInit(new_buff.Dim(), &new_buff[0]);
  981. }
  982. }
  983. buff[indx].Resize(1,buff_size+(extra_size.size()>indx?extra_size[indx]:0));
  984. Real_t* buff_ptr=&buff[indx][0][0];
  985. for(size_t i=0;i<node_lst.size();i++){
  986. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  987. { // src_value
  988. Vector<Real_t>& src_value=node_lst[i]->src_value;
  989. mem::memcopy(buff_ptr,&src_value[0],src_value.Dim()*sizeof(Real_t));
  990. src_value.ReInit((node_lst[i]->src_coord.Dim()/COORD_DIM)*src_dof, buff_ptr, false);
  991. buff_ptr+=(node_lst[i]->src_coord.Dim()/COORD_DIM)*src_dof;
  992. }
  993. { // surf_value
  994. Vector<Real_t>& surf_value=node_lst[i]->surf_value;
  995. mem::memcopy(buff_ptr,&surf_value[0],surf_value.Dim()*sizeof(Real_t));
  996. surf_value.ReInit((node_lst[i]->surf_coord.Dim()/COORD_DIM)*surf_dof, buff_ptr, false);
  997. buff_ptr+=(node_lst[i]->surf_coord.Dim()/COORD_DIM)*surf_dof;
  998. }
  999. }
  1000. buff[indx].AllocDevice(true);
  1001. }
  1002. {// 5. trg_val
  1003. int indx=5;
  1004. int trg_dof=kernel.ker_dim[1];
  1005. std::vector< FMMNode* > node_lst;
  1006. size_t buff_size=0;
  1007. for(size_t i=0;i<node.size();i++)
  1008. if(node[i]->IsLeaf() && !node[i]->IsGhost()){
  1009. node_lst.push_back(node[i]);
  1010. FMMData* fmm_data=((FMMData*)node[i]->FMMData());
  1011. buff_size+=(node[i]->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1012. }
  1013. n_list[indx]=node_lst;
  1014. buff[indx].Resize(1,buff_size+(extra_size.size()>indx?extra_size[indx]:0));
  1015. Real_t* buff_ptr=&buff[indx][0][0];
  1016. for(size_t i=0;i<node_lst.size();i++){
  1017. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  1018. { // trg_value
  1019. Vector<Real_t>& trg_value=node_lst[i]->trg_value;
  1020. trg_value.ReInit((node_lst[i]->trg_coord.Dim()/COORD_DIM)*trg_dof, buff_ptr, false);
  1021. buff_ptr+=(node_lst[i]->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1022. }
  1023. }
  1024. #pragma omp parallel for
  1025. for(size_t i=0;i<node_lst.size();i++){
  1026. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  1027. Vector<Real_t>& trg_value=node_lst[i]->trg_value;
  1028. trg_value.SetZero();
  1029. }
  1030. buff[indx].AllocDevice(true);
  1031. }
  1032. {// 6. pts_coord
  1033. int indx=6;
  1034. size_t m=MultipoleOrder();
  1035. std::vector< FMMNode* > node_lst;
  1036. size_t buff_size=0;
  1037. for(size_t i=0;i<node.size();i++)
  1038. if(node[i]->IsLeaf()){
  1039. node_lst.push_back(node[i]);
  1040. FMMData* fmm_data=((FMMData*)node[i]->FMMData());
  1041. buff_size+=node[i]->src_coord.Dim();
  1042. buff_size+=node[i]->surf_coord.Dim();
  1043. buff_size+=node[i]->trg_coord.Dim();
  1044. }
  1045. n_list[indx]=node_lst;
  1046. #pragma omp parallel for
  1047. for(size_t i=0;i<node_lst.size();i++){ // Move data before resizing buff[indx]
  1048. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  1049. { // src_coord
  1050. Vector<Real_t>& src_coord=node_lst[i]->src_coord;
  1051. Vector<Real_t> new_buff=src_coord;
  1052. src_coord.ReInit(new_buff.Dim(), &new_buff[0]);
  1053. }
  1054. { // surf_coord
  1055. Vector<Real_t>& surf_coord=node_lst[i]->surf_coord;
  1056. Vector<Real_t> new_buff=surf_coord;
  1057. surf_coord.ReInit(new_buff.Dim(), &new_buff[0]);
  1058. }
  1059. { // trg_coord
  1060. Vector<Real_t>& trg_coord=node_lst[i]->trg_coord;
  1061. Vector<Real_t> new_buff=trg_coord;
  1062. trg_coord.ReInit(new_buff.Dim(), &new_buff[0]);
  1063. }
  1064. }
  1065. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  1066. buff_size+=4*MAX_DEPTH*(6*(m-1)*(m-1)+2)*COORD_DIM;
  1067. buff[indx].Resize(1,buff_size);
  1068. Real_t* buff_ptr=&buff[indx][0][0];
  1069. for(size_t i=0;i<node_lst.size();i++){
  1070. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  1071. { // src_coord
  1072. Vector<Real_t>& src_coord=node_lst[i]->src_coord;
  1073. mem::memcopy(buff_ptr,&src_coord[0],src_coord.Dim()*sizeof(Real_t));
  1074. src_coord.ReInit(node_lst[i]->src_coord.Dim(), buff_ptr, false);
  1075. buff_ptr+=node_lst[i]->src_coord.Dim();
  1076. }
  1077. { // surf_coord
  1078. Vector<Real_t>& surf_coord=node_lst[i]->surf_coord;
  1079. mem::memcopy(buff_ptr,&surf_coord[0],surf_coord.Dim()*sizeof(Real_t));
  1080. surf_coord.ReInit(node_lst[i]->surf_coord.Dim(), buff_ptr, false);
  1081. buff_ptr+=node_lst[i]->surf_coord.Dim();
  1082. }
  1083. { // trg_coord
  1084. Vector<Real_t>& trg_coord=node_lst[i]->trg_coord;
  1085. mem::memcopy(buff_ptr,&trg_coord[0],trg_coord.Dim()*sizeof(Real_t));
  1086. trg_coord.ReInit(node_lst[i]->trg_coord.Dim(), buff_ptr, false);
  1087. buff_ptr+=node_lst[i]->trg_coord.Dim();
  1088. }
  1089. }
  1090. { // check and equiv surfaces.
  1091. upwd_check_surf.resize(MAX_DEPTH);
  1092. upwd_equiv_surf.resize(MAX_DEPTH);
  1093. dnwd_check_surf.resize(MAX_DEPTH);
  1094. dnwd_equiv_surf.resize(MAX_DEPTH);
  1095. for(size_t depth=0;depth<MAX_DEPTH;depth++){
  1096. Real_t c[3]={0.0,0.0,0.0};
  1097. upwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1098. upwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1099. dnwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1100. dnwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1101. upwd_check_surf[depth]=u_check_surf(m,c,depth);
  1102. upwd_equiv_surf[depth]=u_equiv_surf(m,c,depth);
  1103. dnwd_check_surf[depth]=d_check_surf(m,c,depth);
  1104. dnwd_equiv_surf[depth]=d_equiv_surf(m,c,depth);
  1105. }
  1106. }
  1107. buff[indx].AllocDevice(true);
  1108. }
  1109. }
  1110. template <class FMMNode>
  1111. void FMM_Pts<FMMNode>::SetupPrecomp(SetupData<Real_t>& setup_data, bool device){
  1112. if(setup_data.precomp_data==NULL) return;
  1113. Profile::Tic("SetupPrecomp",&this->comm,true,25);
  1114. { // Build precomp_data
  1115. size_t precomp_offset=0;
  1116. int level=setup_data.level;
  1117. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1118. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1119. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1120. Mat_Type& interac_type=interac_type_lst[type_indx];
  1121. this->PrecompAll(interac_type, level); // Compute matrices.
  1122. precomp_offset=this->mat->CompactData(level, interac_type, precomp_data, precomp_offset);
  1123. }
  1124. }
  1125. Profile::Toc();
  1126. if(device){ // Host2Device
  1127. Profile::Tic("Host2Device",&this->comm,false,25);
  1128. setup_data.precomp_data->AllocDevice(true);
  1129. Profile::Toc();
  1130. }
  1131. }
  1132. template <class FMMNode>
  1133. void FMM_Pts<FMMNode>::SetupInterac(SetupData<Real_t>& setup_data, bool device){
  1134. int level=setup_data.level;
  1135. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1136. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1137. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1138. Matrix<Real_t>& input_data=*setup_data. input_data;
  1139. Matrix<Real_t>& output_data=*setup_data.output_data;
  1140. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  1141. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  1142. size_t n_in =nodes_in .size();
  1143. size_t n_out=nodes_out.size();
  1144. // Setup precomputed data.
  1145. SetupPrecomp(setup_data,device);
  1146. // Build interac_data
  1147. Profile::Tic("Interac-Data",&this->comm,true,25);
  1148. Matrix<char>& interac_data=setup_data.interac_data;
  1149. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  1150. std::vector<size_t> interac_mat;
  1151. std::vector<size_t> interac_cnt;
  1152. std::vector<size_t> interac_blk;
  1153. std::vector<size_t> input_perm;
  1154. std::vector<size_t> output_perm;
  1155. std::vector<Real_t> scaling;
  1156. size_t dof=0, M_dim0=0, M_dim1=0;
  1157. size_t precomp_offset=0;
  1158. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  1159. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1160. Mat_Type& interac_type=interac_type_lst[type_indx];
  1161. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  1162. Vector<size_t> precomp_data_offset;
  1163. { // Load precomp_data for interac_type.
  1164. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1165. char* indx_ptr=precomp_data[0]+precomp_offset;
  1166. size_t total_size=((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  1167. /*size_t mat_cnt_ =((size_t*)indx_ptr)[0];*/ indx_ptr+=sizeof(size_t);
  1168. precomp_data_offset.ReInit((1+2+2)*mat_cnt, (size_t*)indx_ptr, false);
  1169. precomp_offset+=total_size;
  1170. }
  1171. Matrix<FMMNode*> src_interac_list(n_in ,mat_cnt); src_interac_list.SetZero();
  1172. Matrix<FMMNode*> trg_interac_list(n_out,mat_cnt); trg_interac_list.SetZero();
  1173. { // Build trg_interac_list
  1174. for(size_t i=0;i<n_out;i++){
  1175. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  1176. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  1177. mem::memcopy(&trg_interac_list[i][0], &lst[0], lst.size()*sizeof(FMMNode*));
  1178. assert(lst.size()==mat_cnt);
  1179. }
  1180. }
  1181. }
  1182. { // Build src_interac_list
  1183. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  1184. for(size_t i=0;i<n_out;i++){
  1185. for(size_t j=0;j<mat_cnt;j++)
  1186. if(trg_interac_list[i][j]!=NULL){
  1187. src_interac_list[trg_interac_list[i][j]->node_id][j]=(FMMNode*)nodes_out[i];
  1188. }
  1189. }
  1190. }
  1191. Matrix<size_t> interac_dsp(n_out,mat_cnt);
  1192. std::vector<size_t> interac_blk_dsp(1,0);
  1193. { // Determine dof, M_dim0, M_dim1
  1194. dof=1;
  1195. Matrix<Real_t>& M0 = this->interac_list.ClassMat(level, interac_type_lst[0], 0);
  1196. M_dim0=M0.Dim(0); M_dim1=M0.Dim(1);
  1197. }
  1198. { // Determine interaction blocks which fit in memory.
  1199. size_t vec_size=(M_dim0+M_dim1)*sizeof(Real_t)*dof;
  1200. for(size_t j=0;j<mat_cnt;j++){// Determine minimum buff_size
  1201. size_t vec_cnt=0;
  1202. for(size_t i=0;i<n_out;i++){
  1203. if(trg_interac_list[i][j]!=NULL) vec_cnt++;
  1204. }
  1205. if(buff_size<vec_cnt*vec_size)
  1206. buff_size=vec_cnt*vec_size;
  1207. }
  1208. size_t interac_dsp_=0;
  1209. for(size_t j=0;j<mat_cnt;j++){
  1210. for(size_t i=0;i<n_out;i++){
  1211. interac_dsp[i][j]=interac_dsp_;
  1212. if(trg_interac_list[i][j]!=NULL) interac_dsp_++;
  1213. }
  1214. if(interac_dsp_*vec_size>buff_size){
  1215. interac_blk.push_back(j-interac_blk_dsp.back());
  1216. interac_blk_dsp.push_back(j);
  1217. size_t offset=interac_dsp[0][j];
  1218. for(size_t i=0;i<n_out;i++) interac_dsp[i][j]-=offset;
  1219. interac_dsp_-=offset;
  1220. assert(interac_dsp_*vec_size<=buff_size); // Problem too big for buff_size.
  1221. }
  1222. interac_mat.push_back(precomp_data_offset[5*this->interac_list.InteracClass(interac_type,j)+0]);
  1223. interac_cnt.push_back(interac_dsp_-interac_dsp[0][j]);
  1224. }
  1225. interac_blk.push_back(mat_cnt-interac_blk_dsp.back());
  1226. interac_blk_dsp.push_back(mat_cnt);
  1227. }
  1228. { // Determine input_perm.
  1229. size_t vec_size=M_dim0*dof;
  1230. for(size_t i=0;i<n_out;i++) ((FMMNode*)nodes_out[i])->node_id=i;
  1231. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1232. for(size_t i=0;i<n_in ;i++){
  1233. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1234. FMMNode_t* trg_node=src_interac_list[i][j];
  1235. if(trg_node!=NULL){
  1236. input_perm .push_back(precomp_data_offset[5*j+1]); // prem
  1237. input_perm .push_back(precomp_data_offset[5*j+2]); // scal
  1238. input_perm .push_back(interac_dsp[trg_node->node_id][j]*vec_size*sizeof(Real_t)); // trg_ptr
  1239. input_perm .push_back((size_t)(& input_vector[i][0][0]- input_data[0])); // src_ptr
  1240. assert(input_vector[i]->Dim()==vec_size);
  1241. }
  1242. }
  1243. }
  1244. }
  1245. }
  1246. { // Determine scaling and output_perm
  1247. size_t vec_size=M_dim1*dof;
  1248. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1249. for(size_t i=0;i<n_out;i++){
  1250. Real_t scaling_=0.0;
  1251. if(!this->Homogen()) scaling_=1.0;
  1252. else if(interac_type==D2D_Type) scaling_=1.0;
  1253. else if(interac_type==D2T_Type) scaling_=pow(0.5, -setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  1254. else if(interac_type== U0_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1255. else if(interac_type== U1_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1256. else if(interac_type== U2_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1257. else if(interac_type== W_Type) scaling_=pow(0.5, -setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  1258. else if(interac_type== X_Type) scaling_=pow(0.5, COORD_DIM *((FMMNode*)nodes_out[i])->Depth());
  1259. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1260. if(trg_interac_list[i][j]!=NULL){
  1261. scaling.push_back(scaling_); // scaling
  1262. output_perm.push_back(precomp_data_offset[5*j+3]); // prem
  1263. output_perm.push_back(precomp_data_offset[5*j+4]); // scal
  1264. output_perm.push_back(interac_dsp[ i ][j]*vec_size*sizeof(Real_t)); // src_ptr
  1265. output_perm.push_back((size_t)(&output_vector[i][0][0]-output_data[0])); // trg_ptr
  1266. assert(output_vector[i]->Dim()==vec_size);
  1267. }
  1268. }
  1269. }
  1270. }
  1271. }
  1272. }
  1273. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  1274. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  1275. { // Set interac_data.
  1276. size_t data_size=sizeof(size_t)*4;
  1277. data_size+=sizeof(size_t)+interac_blk.size()*sizeof(size_t);
  1278. data_size+=sizeof(size_t)+interac_cnt.size()*sizeof(size_t);
  1279. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  1280. data_size+=sizeof(size_t)+ input_perm.size()*sizeof(size_t);
  1281. data_size+=sizeof(size_t)+output_perm.size()*sizeof(size_t);
  1282. data_size+=sizeof(size_t)+scaling.size()*sizeof(Real_t);
  1283. if(interac_data.Dim(0)*interac_data.Dim(1)<sizeof(size_t)){
  1284. data_size+=sizeof(size_t);
  1285. interac_data.Resize(1,data_size);
  1286. ((size_t*)&interac_data[0][0])[0]=sizeof(size_t);
  1287. }else{
  1288. size_t pts_data_size=*((size_t*)&interac_data[0][0]);
  1289. assert(interac_data.Dim(0)*interac_data.Dim(1)>=pts_data_size);
  1290. data_size+=pts_data_size;
  1291. if(data_size>interac_data.Dim(0)*interac_data.Dim(1)){ //Resize and copy interac_data.
  1292. Matrix< char> pts_interac_data=interac_data;
  1293. interac_data.Resize(1,data_size);
  1294. mem::memcopy(&interac_data[0][0],&pts_interac_data[0][0],pts_data_size);
  1295. }
  1296. }
  1297. char* data_ptr=&interac_data[0][0];
  1298. data_ptr+=((size_t*)data_ptr)[0];
  1299. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  1300. ((size_t*)data_ptr)[0]= M_dim0; data_ptr+=sizeof(size_t);
  1301. ((size_t*)data_ptr)[0]= M_dim1; data_ptr+=sizeof(size_t);
  1302. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  1303. ((size_t*)data_ptr)[0]=interac_blk.size(); data_ptr+=sizeof(size_t);
  1304. mem::memcopy(data_ptr, &interac_blk[0], interac_blk.size()*sizeof(size_t));
  1305. data_ptr+=interac_blk.size()*sizeof(size_t);
  1306. ((size_t*)data_ptr)[0]=interac_cnt.size(); data_ptr+=sizeof(size_t);
  1307. mem::memcopy(data_ptr, &interac_cnt[0], interac_cnt.size()*sizeof(size_t));
  1308. data_ptr+=interac_cnt.size()*sizeof(size_t);
  1309. ((size_t*)data_ptr)[0]=interac_mat.size(); data_ptr+=sizeof(size_t);
  1310. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  1311. data_ptr+=interac_mat.size()*sizeof(size_t);
  1312. ((size_t*)data_ptr)[0]= input_perm.size(); data_ptr+=sizeof(size_t);
  1313. mem::memcopy(data_ptr, & input_perm[0], input_perm.size()*sizeof(size_t));
  1314. data_ptr+= input_perm.size()*sizeof(size_t);
  1315. ((size_t*)data_ptr)[0]=output_perm.size(); data_ptr+=sizeof(size_t);
  1316. mem::memcopy(data_ptr, &output_perm[0], output_perm.size()*sizeof(size_t));
  1317. data_ptr+=output_perm.size()*sizeof(size_t);
  1318. ((size_t*)data_ptr)[0]=scaling.size(); data_ptr+=sizeof(size_t);
  1319. mem::memcopy(data_ptr, &scaling[0], scaling.size()*sizeof(Real_t));
  1320. data_ptr+=scaling.size()*sizeof(Real_t);
  1321. }
  1322. }
  1323. Profile::Toc();
  1324. if(device){ // Host2Device
  1325. Profile::Tic("Host2Device",&this->comm,false,25);
  1326. setup_data.interac_data .AllocDevice(true);
  1327. Profile::Toc();
  1328. }
  1329. }
  1330. template <class FMMNode>
  1331. void FMM_Pts<FMMNode>::EvalList_cuda(SetupData<Real_t>& setup_data) {
  1332. Vector<char> dummy(1);
  1333. dummy.AllocDevice(true);
  1334. typename Vector<char>::Device buff;
  1335. typename Vector<char>::Device buff_d;
  1336. typename Matrix<char>::Device precomp_data;
  1337. typename Matrix<char>::Device precomp_data_d;
  1338. typename Matrix<char>::Device interac_data;
  1339. typename Matrix<char>::Device interac_data_d;
  1340. typename Matrix<Real_t>::Device input_data;
  1341. typename Matrix<Real_t>::Device input_data_d;
  1342. typename Matrix<Real_t>::Device output_data;
  1343. typename Matrix<Real_t>::Device output_data_d;
  1344. /* Take CPU pointer first. */
  1345. {
  1346. buff = this-> cpu_buffer;
  1347. precomp_data=*setup_data.precomp_data;
  1348. interac_data= setup_data.interac_data;
  1349. input_data =*setup_data. input_data;
  1350. output_data =*setup_data. output_data;
  1351. }
  1352. /* Take GPU pointer now. */
  1353. {
  1354. buff_d = this->dev_buffer.AllocDevice(false);
  1355. precomp_data_d = setup_data.precomp_data->AllocDevice(false);
  1356. interac_data_d = setup_data.interac_data.AllocDevice(false);
  1357. input_data_d = setup_data.input_data->AllocDevice(false);
  1358. output_data_d = setup_data.output_data->AllocDevice(false);
  1359. }
  1360. {
  1361. size_t data_size, M_dim0, M_dim1, dof;
  1362. /* CPU pointers */
  1363. Vector<size_t> interac_blk;
  1364. Vector<size_t> interac_cnt;
  1365. Vector<size_t> interac_mat;
  1366. Vector<size_t> input_perm;
  1367. Vector<size_t> output_perm;
  1368. Vector<Real_t> scaling;
  1369. /* GPU pointers */
  1370. char *input_perm_d, *output_perm_d, *scaling_d;
  1371. {
  1372. char* data_ptr=&interac_data[0][0];
  1373. char *dev_ptr;
  1374. /* Take GPU initial pointer for later computation. */
  1375. dev_ptr = (char *) interac_data_d.dev_ptr;
  1376. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size; dev_ptr += data_size;
  1377. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1378. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1379. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1380. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1381. /* Update CPU and GPU pointers at the same time. */
  1382. /* CPU pointer */
  1383. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1384. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
  1385. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
  1386. //len_interac_cnt = ((size_t*)data_ptr)[0];
  1387. /* CPU pointer */
  1388. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1389. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
  1390. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
  1391. //len_interac_mat = ((size_t *) data_ptr)[0];
  1392. /* CPU pointer */
  1393. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1394. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
  1395. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
  1396. input_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1397. /* GPU pointer */
  1398. input_perm_d = dev_ptr + sizeof(size_t);
  1399. data_ptr += sizeof(size_t) + sizeof(size_t)*input_perm.Dim();
  1400. dev_ptr += sizeof(size_t) + sizeof(size_t)*input_perm.Dim();
  1401. output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1402. /* GPU pointer */
  1403. output_perm_d = dev_ptr + sizeof(size_t);
  1404. data_ptr += sizeof(size_t) + sizeof(size_t)*output_perm.Dim();
  1405. dev_ptr += sizeof(size_t) + sizeof(size_t)*output_perm.Dim();
  1406. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  1407. /* GPU pointer */
  1408. scaling_d = dev_ptr + sizeof(size_t);
  1409. data_ptr += sizeof(size_t) + sizeof(size_t)*scaling.Dim();
  1410. dev_ptr += sizeof(size_t) + sizeof(size_t)*scaling.Dim();
  1411. }
  1412. /* Call synchronization here to make sure all data has been copied. */
  1413. //CUDA_Lock::wait(0);
  1414. {
  1415. size_t interac_indx = 0;
  1416. size_t interac_blk_dsp = 0;
  1417. cudaError_t error;
  1418. //std::cout << "Before Loop. " << '\n';
  1419. //cuda_func<Real_t>::texture_bind_h (input_perm_d, input_perm.Dim());
  1420. for (size_t k = 0; k < interac_blk.Dim(); k++) {
  1421. size_t vec_cnt = 0;
  1422. //std::cout << "interac_blk[0] : " << interac_blk[k] << '\n';
  1423. for (size_t j = interac_blk_dsp; j < interac_blk_dsp + interac_blk[k]; j++)
  1424. vec_cnt += interac_cnt[j];
  1425. /* CPU Version */
  1426. /*
  1427. char* buff_in =&buff[0];
  1428. char* buff_out=&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1429. for(int i = 0; i < vec_cnt; i++) {
  1430. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+input_perm[(interac_indx+i)*4+0]);
  1431. const Real_t* scal=( Real_t*)(precomp_data[0]+input_perm[(interac_indx+i)*4+1]);
  1432. const Real_t* v_in =( Real_t*)( input_data[0]+input_perm[(interac_indx+i)*4+3]);
  1433. Real_t* v_out=( Real_t*)( buff_in +input_perm[(interac_indx+i)*4+2]);
  1434. if (i == 1) std::cout << "cpu input_perm[0, 1, 2] : "
  1435. << input_perm[(interac_indx + i - 1)*4 + 2]
  1436. << input_perm[(interac_indx + i )*4 + 2]
  1437. << input_perm[(interac_indx + i + 1)*4 + 2]
  1438. << '\n';
  1439. for(size_t j = 0; j < M_dim0; j++) {
  1440. v_out[j] = v_in[perm[j]]*scal[j];
  1441. }
  1442. }
  1443. */
  1444. /* GPU Kernel call */
  1445. char *buff_in_d = (char *) buff_d.dev_ptr;
  1446. char *buff_out_d = (char *) (buff_d.dev_ptr + vec_cnt*dof*M_dim0*sizeof(Real_t));
  1447. cuda_func<Real_t>::in_perm_h ((char *)precomp_data_d.dev_ptr, input_perm_d,
  1448. (char *) input_data_d.dev_ptr, buff_in_d, interac_indx, M_dim0, vec_cnt);
  1449. //CUDA_Lock::wait(0);
  1450. error = cudaGetLastError();
  1451. if (error != cudaSuccess)
  1452. std::cout << "in_perm_h(): " << cudaGetErrorString(error) << '\n';
  1453. size_t vec_cnt0 = 0;
  1454. for (size_t j = interac_blk_dsp; j < interac_blk_dsp + interac_blk[k];) {
  1455. size_t vec_cnt1 = 0;
  1456. size_t interac_mat0 = interac_mat[j];
  1457. for (; j < interac_blk_dsp + interac_blk[k] && interac_mat[j] == interac_mat0; j++)
  1458. vec_cnt1 += interac_cnt[j];
  1459. /* Compare buff_in */
  1460. //std::cout << M_dim0*vec_cnt0*dof*sizeof(Real_t) << '\n';
  1461. /*
  1462. cuda_func<Real_t>::compare_h(
  1463. (Real_t *) (buff_in + M_dim0*vec_cnt0*dof*sizeof(Real_t)),
  1464. (Real_t *) (buff_in_d + M_dim0*vec_cnt0*dof*sizeof(Real_t)),
  1465. dof*vec_cnt1*M_dim0);
  1466. */
  1467. /* GPU Gemm */
  1468. Matrix<Real_t> M_d(M_dim0, M_dim1, (Real_t*)(precomp_data_d.dev_ptr + interac_mat0), false);
  1469. Matrix<Real_t> Ms_d(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in_d + M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1470. Matrix<Real_t> Mt_d(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out_d + M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1471. Matrix<Real_t>::CUBLASXGEMM(Mt_d, Ms_d, M_d);
  1472. /* CPU Gemm */
  1473. /*
  1474. Matrix<Real_t> M(M_dim0, M_dim1, (Real_t*)(precomp_data[0]+interac_mat0), false);
  1475. Matrix<Real_t> Ms(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1476. Matrix<Real_t> Mt(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1477. Matrix<Real_t>::DGEMM(Mt,Ms,M);
  1478. */
  1479. //if (dof*vec_cnt1) std::cout << "cublasxgemm(" << dof*vec_cnt1 << ", " << M_dim1 << ")" << '\n';
  1480. /*
  1481. cuda_func<Real_t>::compare_h(
  1482. (Real_t *) (buff_out + M_dim1*vec_cnt0*dof*sizeof(Real_t)),
  1483. (Real_t *) (buff_out_d + M_dim1*vec_cnt0*dof*sizeof(Real_t)),
  1484. dof*vec_cnt1*M_dim1);
  1485. */
  1486. //std::cout << '\n';
  1487. vec_cnt0 += vec_cnt1;
  1488. }
  1489. //CUDA_Lock::wait(0);
  1490. error = cudaGetLastError();
  1491. if (error != cudaSuccess)
  1492. std::cout << "cublasXgemm(): " << cudaGetErrorString(error) << '\n';
  1493. size_t *tmp_a, *tmp_b;
  1494. size_t counter = 0;
  1495. size_t last = -1;
  1496. if (vec_cnt > 0) {
  1497. int i;
  1498. cudaMallocHost((void**)&tmp_a, sizeof(size_t)*vec_cnt);
  1499. cudaMallocHost((void**)&tmp_b, sizeof(size_t)*vec_cnt);
  1500. tmp_a[0] = 0;
  1501. for (i = 1; i < vec_cnt; i++) {
  1502. if (output_perm[(interac_indx + i)*4 + 3] != last) {
  1503. last = output_perm[(interac_indx + i)*4 + 3];
  1504. tmp_b[counter] = i;
  1505. counter ++;
  1506. tmp_a[counter] = i;
  1507. }
  1508. }
  1509. tmp_b[counter] = i;
  1510. for (i = 0; i < 12; i++) std::cout << tmp_a[i] << ", ";
  1511. std::cout << '\n';
  1512. for (i = 0; i < 12; i++) std::cout << tmp_b[i] << ", ";
  1513. std::cout << '\n';
  1514. for (i = 0; i < counter; i++) {
  1515. if (tmp_a[i] == tmp_b[i]) std::cout << tmp_a[i] << ", " << tmp_b[i] << '\n';
  1516. }
  1517. std::cout << counter << '\n';
  1518. }
  1519. /*
  1520. for(int i = 0; i < vec_cnt; i++) {
  1521. Real_t scaling_factor=scaling[interac_indx+i];
  1522. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+output_perm[(interac_indx+i)*4+0]);
  1523. const Real_t* scal=( Real_t*)(precomp_data[0]+output_perm[(interac_indx+i)*4+1]);
  1524. const Real_t* v_in =( Real_t*)( buff_out +output_perm[(interac_indx+i)*4+2]);
  1525. Real_t* v_out=( Real_t*)( output_data[0]+output_perm[(interac_indx+i)*4+3]);
  1526. for(size_t j=0;j<M_dim1;j++ ){
  1527. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1528. }
  1529. }
  1530. */
  1531. cuda_func<Real_t>::out_perm_h (scaling_d, (char *) precomp_data_d.dev_ptr, output_perm_d,
  1532. (char *) output_data_d.dev_ptr, buff_out_d, interac_indx, M_dim1, vec_cnt, tmp_a, tmp_b, counter);
  1533. if (vec_cnt > 0) {
  1534. cudaFreeHost(tmp_a);
  1535. cudaFreeHost(tmp_b);
  1536. }
  1537. //CUDA_Lock::wait(0);
  1538. error = cudaGetLastError();
  1539. if (error != cudaSuccess)
  1540. std::cout << "out_perm_h(): " << cudaGetErrorString(error) << '\n';
  1541. interac_indx += vec_cnt;
  1542. interac_blk_dsp += interac_blk[k];
  1543. }
  1544. //cuda_func<Real_t>::texture_unbind_h ();
  1545. }
  1546. }
  1547. dummy.Device2Host();
  1548. }
  1549. template <class FMMNode>
  1550. void FMM_Pts<FMMNode>::EvalList(SetupData<Real_t>& setup_data, bool device){
  1551. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  1552. Profile::Tic("Host2Device",&this->comm,false,25);
  1553. Profile::Toc();
  1554. Profile::Tic("DeviceComp",&this->comm,false,20);
  1555. Profile::Toc();
  1556. return;
  1557. }
  1558. #if defined(PVFMM_HAVE_CUDA)
  1559. if (device) {
  1560. EvalList_cuda(setup_data);
  1561. return;
  1562. }
  1563. #endif
  1564. Profile::Tic("Host2Device",&this->comm,false,25);
  1565. typename Vector<char>::Device buff;
  1566. typename Matrix<char>::Device precomp_data;
  1567. typename Matrix<char>::Device interac_data;
  1568. typename Matrix<Real_t>::Device input_data;
  1569. typename Matrix<Real_t>::Device output_data;
  1570. if(device){
  1571. buff = this-> dev_buffer. AllocDevice(false);
  1572. precomp_data= setup_data.precomp_data->AllocDevice(false);
  1573. interac_data= setup_data.interac_data. AllocDevice(false);
  1574. input_data = setup_data. input_data->AllocDevice(false);
  1575. output_data = setup_data. output_data->AllocDevice(false);
  1576. }else{
  1577. buff = this-> cpu_buffer;
  1578. precomp_data=*setup_data.precomp_data;
  1579. interac_data= setup_data.interac_data;
  1580. input_data =*setup_data. input_data;
  1581. output_data =*setup_data. output_data;
  1582. }
  1583. Profile::Toc();
  1584. Profile::Tic("DeviceComp",&this->comm,false,20);
  1585. #ifdef __INTEL_OFFLOAD
  1586. int lock_idx=-1;
  1587. int wait_lock_idx=-1;
  1588. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  1589. if(device) lock_idx=MIC_Lock::get_lock();
  1590. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  1591. #endif
  1592. { // Offloaded computation.
  1593. // Set interac_data.
  1594. size_t data_size, M_dim0, M_dim1, dof;
  1595. Vector<size_t> interac_blk;
  1596. Vector<size_t> interac_cnt;
  1597. Vector<size_t> interac_mat;
  1598. Vector<size_t> input_perm;
  1599. Vector<size_t> output_perm;
  1600. Vector<Real_t> scaling;
  1601. { // Set interac_data.
  1602. char* data_ptr=&interac_data[0][0];
  1603. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size;
  1604. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1605. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1606. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1607. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1608. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1609. data_ptr+=sizeof(size_t)+interac_blk.Dim()*sizeof(size_t);
  1610. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1611. data_ptr+=sizeof(size_t)+interac_cnt.Dim()*sizeof(size_t);
  1612. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1613. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  1614. input_perm .ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1615. data_ptr+=sizeof(size_t)+ input_perm.Dim()*sizeof(size_t);
  1616. output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1617. data_ptr+=sizeof(size_t)+output_perm.Dim()*sizeof(size_t);
  1618. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  1619. data_ptr+=sizeof(size_t)+scaling.Dim()*sizeof(Real_t);
  1620. }
  1621. #ifdef __INTEL_OFFLOAD
  1622. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  1623. #endif
  1624. //Compute interaction from Chebyshev source density.
  1625. { // interactions
  1626. int omp_p=omp_get_max_threads();
  1627. size_t interac_indx=0;
  1628. size_t interac_blk_dsp=0;
  1629. for(size_t k=0;k<interac_blk.Dim();k++){
  1630. size_t vec_cnt=0;
  1631. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
  1632. char* buff_in =&buff[0];
  1633. char* buff_out=&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1634. #pragma omp parallel for
  1635. for(int tid=0;tid<omp_p;tid++){
  1636. size_t a=( tid *vec_cnt)/omp_p;
  1637. size_t b=((tid+1)*vec_cnt)/omp_p;
  1638. for(size_t i=a;i<b;i++){
  1639. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+input_perm[(interac_indx+i)*4+0]);
  1640. const Real_t* scal=( Real_t*)(precomp_data[0]+input_perm[(interac_indx+i)*4+1]);
  1641. const Real_t* v_in =( Real_t*)( input_data[0]+input_perm[(interac_indx+i)*4+3]);
  1642. Real_t* v_out=( Real_t*)( buff_in +input_perm[(interac_indx+i)*4+2]);
  1643. // TODO: Fix for dof>1
  1644. #ifdef __MIC__
  1645. {
  1646. __m512d v8;
  1647. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1648. size_t j_end =(((uintptr_t)(v_out+M_dim0) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1649. j_start/=sizeof(Real_t);
  1650. j_end /=sizeof(Real_t);
  1651. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1652. assert(((uintptr_t)(v_out+j_start))%64==0);
  1653. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1654. size_t j=0;
  1655. for(;j<j_start;j++ ){
  1656. v_out[j]=v_in[perm[j]]*scal[j];
  1657. }
  1658. for(;j<j_end ;j+=8){
  1659. v8=_mm512_setr_pd(
  1660. v_in[perm[j+0]]*scal[j+0],
  1661. v_in[perm[j+1]]*scal[j+1],
  1662. v_in[perm[j+2]]*scal[j+2],
  1663. v_in[perm[j+3]]*scal[j+3],
  1664. v_in[perm[j+4]]*scal[j+4],
  1665. v_in[perm[j+5]]*scal[j+5],
  1666. v_in[perm[j+6]]*scal[j+6],
  1667. v_in[perm[j+7]]*scal[j+7]);
  1668. _mm512_storenrngo_pd(v_out+j,v8);
  1669. }
  1670. for(;j<M_dim0 ;j++ ){
  1671. v_out[j]=v_in[perm[j]]*scal[j];
  1672. }
  1673. }
  1674. #else
  1675. for(size_t j=0;j<M_dim0;j++ ){
  1676. v_out[j]=v_in[perm[j]]*scal[j];
  1677. }
  1678. #endif
  1679. }
  1680. }
  1681. size_t vec_cnt0=0;
  1682. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];){
  1683. size_t vec_cnt1=0;
  1684. size_t interac_mat0=interac_mat[j];
  1685. for(;j<interac_blk_dsp+interac_blk[k] && interac_mat[j]==interac_mat0;j++) vec_cnt1+=interac_cnt[j];
  1686. Matrix<Real_t> M(M_dim0, M_dim1, (Real_t*)(precomp_data[0]+interac_mat0), false);
  1687. #ifdef __MIC__
  1688. {
  1689. Matrix<Real_t> Ms(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1690. Matrix<Real_t> Mt(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1691. Matrix<Real_t>::DGEMM(Mt,Ms,M);
  1692. }
  1693. #else
  1694. #pragma omp parallel for
  1695. for(int tid=0;tid<omp_p;tid++){
  1696. size_t a=(dof*vec_cnt1*(tid ))/omp_p;
  1697. size_t b=(dof*vec_cnt1*(tid+1))/omp_p;
  1698. Matrix<Real_t> Ms(b-a, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t))+M_dim0*a, false);
  1699. Matrix<Real_t> Mt(b-a, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t))+M_dim1*a, false);
  1700. Matrix<Real_t>::DGEMM(Mt,Ms,M);
  1701. }
  1702. #endif
  1703. vec_cnt0+=vec_cnt1;
  1704. }
  1705. #pragma omp parallel for
  1706. for(int tid=0;tid<omp_p;tid++){
  1707. size_t a=( tid *vec_cnt)/omp_p;
  1708. size_t b=((tid+1)*vec_cnt)/omp_p;
  1709. if(tid> 0 && a<vec_cnt){ // Find 'a' independent of other threads.
  1710. size_t out_ptr=output_perm[(interac_indx+a)*4+3];
  1711. if(tid> 0) while(a<vec_cnt && out_ptr==output_perm[(interac_indx+a)*4+3]) a++;
  1712. }
  1713. if(tid<omp_p-1 && b<vec_cnt){ // Find 'b' independent of other threads.
  1714. size_t out_ptr=output_perm[(interac_indx+b)*4+3];
  1715. if(tid<omp_p-1) while(b<vec_cnt && out_ptr==output_perm[(interac_indx+b)*4+3]) b++;
  1716. }
  1717. for(size_t i=a;i<b;i++){ // Compute permutations.
  1718. Real_t scaling_factor=scaling[interac_indx+i];
  1719. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+output_perm[(interac_indx+i)*4+0]);
  1720. const Real_t* scal=( Real_t*)(precomp_data[0]+output_perm[(interac_indx+i)*4+1]);
  1721. const Real_t* v_in =( Real_t*)( buff_out +output_perm[(interac_indx+i)*4+2]);
  1722. Real_t* v_out=( Real_t*)( output_data[0]+output_perm[(interac_indx+i)*4+3]);
  1723. // TODO: Fix for dof>1
  1724. #ifdef __MIC__
  1725. {
  1726. __m512d v8;
  1727. __m512d v_old;
  1728. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1729. size_t j_end =(((uintptr_t)(v_out+M_dim1) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1730. j_start/=sizeof(Real_t);
  1731. j_end /=sizeof(Real_t);
  1732. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1733. assert(((uintptr_t)(v_out+j_start))%64==0);
  1734. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1735. size_t j=0;
  1736. for(;j<j_start;j++ ){
  1737. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1738. }
  1739. for(;j<j_end ;j+=8){
  1740. v_old=_mm512_load_pd(v_out+j);
  1741. v8=_mm512_setr_pd(
  1742. v_in[perm[j+0]]*scal[j+0]*scaling_factor,
  1743. v_in[perm[j+1]]*scal[j+1]*scaling_factor,
  1744. v_in[perm[j+2]]*scal[j+2]*scaling_factor,
  1745. v_in[perm[j+3]]*scal[j+3]*scaling_factor,
  1746. v_in[perm[j+4]]*scal[j+4]*scaling_factor,
  1747. v_in[perm[j+5]]*scal[j+5]*scaling_factor,
  1748. v_in[perm[j+6]]*scal[j+6]*scaling_factor,
  1749. v_in[perm[j+7]]*scal[j+7]*scaling_factor);
  1750. v_old=_mm512_add_pd(v_old, v8);
  1751. _mm512_storenrngo_pd(v_out+j,v_old);
  1752. }
  1753. for(;j<M_dim1 ;j++ ){
  1754. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1755. }
  1756. }
  1757. #else
  1758. for(size_t j=0;j<M_dim1;j++ ){
  1759. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1760. }
  1761. #endif
  1762. }
  1763. }
  1764. interac_indx+=vec_cnt;
  1765. interac_blk_dsp+=interac_blk[k];
  1766. }
  1767. }
  1768. #ifdef __INTEL_OFFLOAD
  1769. if(device) MIC_Lock::release_lock(lock_idx);
  1770. #endif
  1771. }
  1772. #ifndef __MIC_ASYNCH__
  1773. #ifdef __INTEL_OFFLOAD
  1774. #pragma offload if(device) target(mic:0)
  1775. {if(device) MIC_Lock::wait_lock(lock_idx);}
  1776. #endif
  1777. #endif
  1778. Profile::Toc();
  1779. }
  1780. template <class FMMNode>
  1781. void FMM_Pts<FMMNode>::InitMultipole(FMMNode** node, size_t n, int level){
  1782. if(n==0) return;
  1783. int dof=1;
  1784. //Get the upward-check surface.
  1785. std::vector<Real_t> uc_coord[MAX_DEPTH+1];
  1786. size_t uc_cnt;
  1787. {
  1788. Real_t c[3]={0,0,0};
  1789. for(int i=0;i<=MAX_DEPTH;i++)
  1790. uc_coord[i]=u_check_surf(MultipoleOrder(),c,i);
  1791. uc_cnt=uc_coord[0].size()/COORD_DIM;
  1792. }
  1793. //Read matrices.
  1794. Matrix<Real_t>& M_uc2ue = this->mat->Mat(level, UC2UE_Type, 0);
  1795. //Compute multipole expansion.
  1796. #pragma omp parallel
  1797. {
  1798. int omp_p=omp_get_num_threads();
  1799. int pid = omp_get_thread_num();
  1800. size_t a=(pid*n)/omp_p;
  1801. size_t b=((pid+1)*n)/omp_p;
  1802. Matrix<Real_t> u_check(dof, M_uc2ue.Dim(0));
  1803. for (size_t j=a;j<b;j++){
  1804. Vector<Real_t>& upward_equiv=node[j]->FMMData()->upward_equiv;
  1805. assert(upward_equiv.Dim()==M_uc2ue.Dim(1)*dof);
  1806. Matrix<Real_t> u_equiv(dof,M_uc2ue.Dim(1),&upward_equiv[0],false);
  1807. u_equiv.SetZero(); // TODO: Do in setup
  1808. //Compute multipole expansion form point sources.
  1809. size_t pt_cnt=node[j]->src_coord.Dim()/COORD_DIM;
  1810. size_t surf_pt_cnt=node[j]->surf_coord.Dim()/COORD_DIM;
  1811. if(pt_cnt+surf_pt_cnt>0){
  1812. //Relative coord of upward check surf.
  1813. Real_t* c=node[j]->Coord();
  1814. std::vector<Real_t> uc_coord1(uc_cnt*COORD_DIM);
  1815. for(size_t i=0;i<uc_cnt;i++) for(int k=0;k<COORD_DIM;k++)
  1816. uc_coord1[i*COORD_DIM+k]=uc_coord[node[j]->Depth()][i*COORD_DIM+k]+c[k];
  1817. Profile::Add_FLOP((long long)uc_cnt*(long long)COORD_DIM);
  1818. //Compute upward check potential.
  1819. u_check.SetZero();
  1820. if(pt_cnt>0)
  1821. aux_kernel.ker_poten(&node[j]->src_coord[0], pt_cnt,
  1822. &node[j]->src_value[0], dof,
  1823. &uc_coord1[0], uc_cnt, u_check[0]);
  1824. if(surf_pt_cnt>0)
  1825. aux_kernel.dbl_layer_poten(&node[j]->surf_coord[0], surf_pt_cnt,
  1826. &node[j]->surf_value[0], dof,
  1827. &uc_coord1[0], uc_cnt, u_check[0]);
  1828. //Rearrange data.
  1829. {
  1830. Matrix<Real_t> M_tmp(M_uc2ue.Dim(0)/aux_kernel.ker_dim[1],aux_kernel.ker_dim[1]*dof, &u_check[0][0], false);
  1831. M_tmp=M_tmp.Transpose();
  1832. for(int i=0;i<dof;i++){
  1833. Matrix<Real_t> M_tmp1(aux_kernel.ker_dim[1], M_uc2ue.Dim(0)/aux_kernel.ker_dim[1], &u_check[i][0], false);
  1834. M_tmp1=M_tmp1.Transpose();
  1835. }
  1836. }
  1837. //Compute UC2UE (vector-matrix multiply).
  1838. Matrix<Real_t>::DGEMM(u_equiv,u_check,M_uc2ue,1.0);
  1839. }
  1840. //Adjusting for scale.
  1841. if(Homogen()){
  1842. Real_t scale_factor=pow(0.5, node[j]->Depth()*aux_kernel.poten_scale);
  1843. for(size_t i=0;i<upward_equiv.Dim();i++)
  1844. upward_equiv[i]*=scale_factor;
  1845. }
  1846. }
  1847. }
  1848. }
  1849. template <class FMMNode>
  1850. void FMM_Pts<FMMNode>::Up2Up(FMMNode** nodes, size_t n, int level){
  1851. if(n==0) return;
  1852. int dof=1;
  1853. size_t n_eq=this->interac_list.ClassMat(level,U2U_Type,0).Dim(1);
  1854. size_t mat_cnt=interac_list.ListCount(U2U_Type);
  1855. //For all non-leaf, non-ghost nodes.
  1856. #pragma omp parallel
  1857. {
  1858. int omp_p=omp_get_num_threads();
  1859. int pid = omp_get_thread_num();
  1860. size_t a=(pid*n)/omp_p;
  1861. size_t b=((pid+1)*n)/omp_p;
  1862. size_t cnt;
  1863. //Initialize this node's upward equivalent data
  1864. for(size_t i=a;i<b;i++){
  1865. Vector<Real_t>& upward_equiv=nodes[i]->FMMData()->upward_equiv;
  1866. assert(upward_equiv.Dim()==dof*n_eq);
  1867. upward_equiv.SetZero(); // TODO: Do in setup
  1868. UNUSED(upward_equiv);
  1869. UNUSED(n_eq);
  1870. }
  1871. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
  1872. Matrix<Real_t>& M = this->mat->Mat(level, U2U_Type, mat_indx);
  1873. if(M.Dim(0)!=0 && M.Dim(1)!=0){
  1874. cnt=0;
  1875. for(size_t i=a;i<b;i++)
  1876. if(/*!nodes[i]->IsGhost() && */!nodes[i]->IsLeaf()) if(((FMMNode*)nodes[i]->Child(mat_indx))->FMMData()->upward_equiv.Dim()>0) cnt++;
  1877. Matrix<Real_t> src_vec(cnt*dof,M.Dim(0));
  1878. Matrix<Real_t> trg_vec(cnt*dof,M.Dim(1));
  1879. //Get child's multipole expansion.
  1880. cnt=0;
  1881. for(size_t i=a;i<b;i++)
  1882. if(/*!nodes[i]->IsGhost() && */!nodes[i]->IsLeaf()) if(((FMMNode*)nodes[i]->Child(mat_indx))->FMMData()->upward_equiv.Dim()>0){
  1883. Vector<Real_t>& child_equiv=static_cast<FMMNode*>(nodes[i]->Child(mat_indx))->FMMData()->upward_equiv;
  1884. mem::memcopy(&(src_vec[cnt*dof][0]), &(child_equiv[0]), dof*M.Dim(0)*sizeof(Real_t));
  1885. cnt++;
  1886. }
  1887. Matrix<Real_t>::DGEMM(trg_vec,src_vec,M);
  1888. cnt=0;
  1889. size_t vec_len=M.Dim(1)*dof;
  1890. for(size_t i=a;i<b;i++)
  1891. if(/*!nodes[i]->IsGhost() && */!nodes[i]->IsLeaf()) if(((FMMNode*)nodes[i]->Child(mat_indx))->FMMData()->upward_equiv.Dim()>0){
  1892. Vector<Real_t>& upward_equiv=nodes[i]->FMMData()->upward_equiv;
  1893. assert(upward_equiv.Dim()==vec_len);
  1894. Matrix<Real_t> equiv (1,vec_len,&upward_equiv[0],false);
  1895. Matrix<Real_t> equiv_ (1,vec_len,trg_vec[cnt*dof],false);
  1896. equiv+=equiv_;
  1897. cnt++;
  1898. }
  1899. }
  1900. }
  1901. }
  1902. }
  1903. template <class FMMNode>
  1904. void FMM_Pts<FMMNode>::PeriodicBC(FMMNode* node){
  1905. Matrix<Real_t>& M = Precomp(0, BC_Type, 0);
  1906. assert(node->FMMData()->upward_equiv.Dim()>0);
  1907. int dof=1;
  1908. Vector<Real_t>& upward_equiv=node->FMMData()->upward_equiv;
  1909. Vector<Real_t>& dnward_equiv=node->FMMData()->dnward_equiv;
  1910. assert(upward_equiv.Dim()==M.Dim(0)*dof);
  1911. assert(dnward_equiv.Dim()==M.Dim(1)*dof);
  1912. Matrix<Real_t> d_equiv(dof,M.Dim(0),&dnward_equiv[0],false);
  1913. Matrix<Real_t> u_equiv(dof,M.Dim(1),&upward_equiv[0],false);
  1914. Matrix<Real_t>::DGEMM(d_equiv,u_equiv,M);
  1915. }
  1916. template <class FMMNode>
  1917. void FMM_Pts<FMMNode>::FFT_UpEquiv(size_t dof, size_t m, size_t ker_dim0, Vector<size_t>& fft_vec,
  1918. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_){
  1919. size_t n1=m*2;
  1920. size_t n2=n1*n1;
  1921. size_t n3=n1*n2;
  1922. size_t n3_=n2*(n1/2+1);
  1923. size_t chld_cnt=1UL<<COORD_DIM;
  1924. size_t fftsize_in =2*n3_*chld_cnt*ker_dim0*dof;
  1925. int omp_p=omp_get_max_threads();
  1926. //Load permutation map.
  1927. size_t n=6*(m-1)*(m-1)+2;
  1928. static Vector<size_t> map;
  1929. { // Build map to reorder upward_equiv
  1930. size_t n_old=map.Dim();
  1931. if(n_old!=n){
  1932. Real_t c[3]={0,0,0};
  1933. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1934. map.Resize(surf.Dim()/COORD_DIM);
  1935. for(size_t i=0;i<map.Dim();i++)
  1936. map[i]=((size_t)(m-1-surf[i*3]+0.5))+((size_t)(m-1-surf[i*3+1]+0.5))*n1+((size_t)(m-1-surf[i*3+2]+0.5))*n2;
  1937. }
  1938. }
  1939. { // Build FFTW plan.
  1940. if(!vlist_fft_flag){
  1941. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1942. void *fftw_in, *fftw_out;
  1943. fftw_in = mem::aligned_malloc<Real_t>( n3 *ker_dim0*chld_cnt);
  1944. fftw_out = mem::aligned_malloc<Real_t>(2*n3_*ker_dim0*chld_cnt);
  1945. vlist_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM,nnn,ker_dim0*chld_cnt,
  1946. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*)(fftw_out),NULL, 1, n3_, FFTW_ESTIMATE);
  1947. mem::aligned_free<Real_t>((Real_t*)fftw_in );
  1948. mem::aligned_free<Real_t>((Real_t*)fftw_out);
  1949. vlist_fft_flag=true;
  1950. }
  1951. }
  1952. { // Offload section
  1953. size_t n_in = fft_vec.Dim();
  1954. #pragma omp parallel for
  1955. for(int pid=0; pid<omp_p; pid++){
  1956. size_t node_start=(n_in*(pid ))/omp_p;
  1957. size_t node_end =(n_in*(pid+1))/omp_p;
  1958. Vector<Real_t> buffer(fftsize_in, &buffer_[fftsize_in*pid], false);
  1959. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  1960. Vector<Real_t*> upward_equiv(chld_cnt);
  1961. for(size_t i=0;i<chld_cnt;i++) upward_equiv[i]=&input_data[0] + fft_vec[node_idx] + n*ker_dim0*dof*i;
  1962. Vector<Real_t> upward_equiv_fft(fftsize_in, &output_data[fftsize_in *node_idx], false);
  1963. upward_equiv_fft.SetZero();
  1964. // Rearrange upward equivalent data.
  1965. for(size_t k=0;k<n;k++){
  1966. size_t idx=map[k];
  1967. for(int j1=0;j1<dof;j1++)
  1968. for(int j0=0;j0<(int)chld_cnt;j0++)
  1969. for(int i=0;i<ker_dim0;i++)
  1970. upward_equiv_fft[idx+(j0+(i+j1*ker_dim0)*chld_cnt)*n3]=upward_equiv[j0][ker_dim0*(n*j1+k)+i];
  1971. }
  1972. // Compute FFT.
  1973. for(int i=0;i<dof;i++)
  1974. FFTW_t<Real_t>::fft_execute_dft_r2c(vlist_fftplan, (Real_t*)&upward_equiv_fft[i* n3 *ker_dim0*chld_cnt],
  1975. (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim0*chld_cnt]);
  1976. //Compute flops.
  1977. #ifndef FFTW3_MKL
  1978. double add, mul, fma;
  1979. fftw_flops(vlist_fftplan, &add, &mul, &fma);
  1980. #ifndef __INTEL_OFFLOAD0
  1981. Profile::Add_FLOP((long long)(add+mul+2*fma));
  1982. #endif
  1983. #endif
  1984. for(int i=0;i<ker_dim0*dof;i++)
  1985. for(size_t j=0;j<n3_;j++)
  1986. for(size_t k=0;k<chld_cnt;k++){
  1987. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+0]=buffer[2*(n3_*(chld_cnt*i+k)+j)+0];
  1988. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+1]=buffer[2*(n3_*(chld_cnt*i+k)+j)+1];
  1989. }
  1990. }
  1991. }
  1992. }
  1993. }
  1994. template <class FMMNode>
  1995. void FMM_Pts<FMMNode>::FFT_Check2Equiv(size_t dof, size_t m, size_t ker_dim1, Vector<size_t>& ifft_vec,
  1996. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_, Matrix<Real_t>& M){
  1997. size_t n1=m*2;
  1998. size_t n2=n1*n1;
  1999. size_t n3=n1*n2;
  2000. size_t n3_=n2*(n1/2+1);
  2001. size_t chld_cnt=1UL<<COORD_DIM;
  2002. size_t fftsize_out=2*n3_*dof*ker_dim1*chld_cnt;
  2003. int omp_p=omp_get_max_threads();
  2004. //Load permutation map.
  2005. size_t n=6*(m-1)*(m-1)+2;
  2006. static Vector<size_t> map;
  2007. { // Build map to reorder dnward_check
  2008. size_t n_old=map.Dim();
  2009. if(n_old!=n){
  2010. Real_t c[3]={0,0,0};
  2011. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  2012. map.Resize(surf.Dim()/COORD_DIM);
  2013. for(size_t i=0;i<map.Dim();i++)
  2014. map[i]=((size_t)(m*2-0.5-surf[i*3]))+((size_t)(m*2-0.5-surf[i*3+1]))*n1+((size_t)(m*2-0.5-surf[i*3+2]))*n2;
  2015. //map;//.AllocDevice(true);
  2016. }
  2017. }
  2018. { // Build FFTW plan.
  2019. if(!vlist_ifft_flag){
  2020. //Build FFTW plan.
  2021. int nnn[3]={(int)n1,(int)n1,(int)n1};
  2022. void *fftw_in, *fftw_out;
  2023. fftw_in = fftw_malloc(2*n3_*ker_dim1*sizeof(Real_t)*chld_cnt);
  2024. fftw_out = fftw_malloc( n3 *ker_dim1*sizeof(Real_t)*chld_cnt);
  2025. vlist_ifftplan = FFTW_t<Real_t>::fft_plan_many_dft_c2r(COORD_DIM,nnn,ker_dim1*chld_cnt,
  2026. (typename FFTW_t<Real_t>::cplx*)fftw_in, NULL, 1, n3_, (Real_t*)(fftw_out),NULL, 1, n3, FFTW_ESTIMATE);
  2027. fftw_free(fftw_in);
  2028. fftw_free(fftw_out);
  2029. vlist_ifft_flag=true;
  2030. }
  2031. }
  2032. { // Offload section
  2033. size_t n_out=ifft_vec.Dim();
  2034. #pragma omp parallel for
  2035. for(int pid=0; pid<omp_p; pid++){
  2036. size_t node_start=(n_out*(pid ))/omp_p;
  2037. size_t node_end =(n_out*(pid+1))/omp_p;
  2038. Vector<Real_t> buffer(fftsize_out, &buffer_[fftsize_out*pid], false);
  2039. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  2040. Vector<Real_t> dnward_check_fft(fftsize_out, &input_data[fftsize_out*node_idx], false);
  2041. //De-interleave data.
  2042. for(int i=0;i<ker_dim1*dof;i++)
  2043. for(size_t j=0;j<n3_;j++)
  2044. for(size_t k=0;k<chld_cnt;k++){
  2045. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+0]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+0];
  2046. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+1]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+1];
  2047. }
  2048. // Compute FFT.
  2049. for(int i=0;i<dof;i++)
  2050. FFTW_t<Real_t>::fft_execute_dft_c2r(vlist_ifftplan, (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim1*chld_cnt],
  2051. (Real_t*)&dnward_check_fft[i* n3 *ker_dim1*chld_cnt]);
  2052. //Compute flops.
  2053. #ifndef FFTW3_MKL
  2054. double add, mul, fma;
  2055. fftw_flops(vlist_ifftplan, &add, &mul, &fma);
  2056. #ifndef __INTEL_OFFLOAD0
  2057. Profile::Add_FLOP((long long)(add+mul+2*fma));
  2058. #endif
  2059. #endif
  2060. // Rearrange downward check data.
  2061. for(size_t k=0;k<n;k++){
  2062. size_t idx=map[k];
  2063. for(int j1=0;j1<dof;j1++)
  2064. for(int j0=0;j0<(int)chld_cnt;j0++)
  2065. for(int i=0;i<ker_dim1;i++)
  2066. buffer[ker_dim1*(n*(dof*j0+j1)+k)+i]=dnward_check_fft[idx+(j1+(i+j0*ker_dim1)*dof)*n3];
  2067. }
  2068. // Compute check to equiv.
  2069. for(size_t j=0;j<chld_cnt;j++){
  2070. Matrix<Real_t> d_check(dof,M.Dim(0),&buffer[n*ker_dim1*dof*j],false);
  2071. Matrix<Real_t> d_equiv(dof,M.Dim(1),&output_data[0] + ifft_vec[node_idx] + M.Dim(1)*dof*j,false);
  2072. Matrix<Real_t>::DGEMM(d_equiv,d_check,M,1.0);
  2073. }
  2074. }
  2075. }
  2076. }
  2077. }
  2078. template <class Real_t>
  2079. void VListHadamard(size_t dof, size_t M_dim, size_t ker_dim0, size_t ker_dim1, Vector<size_t>& interac_dsp,
  2080. Vector<size_t>& interac_vec, Vector<Real_t*>& precomp_mat, Vector<Real_t>& fft_in, Vector<Real_t>& fft_out){
  2081. size_t chld_cnt=1UL<<COORD_DIM;
  2082. size_t fftsize_in =M_dim*ker_dim0*chld_cnt*2;
  2083. size_t fftsize_out=M_dim*ker_dim1*chld_cnt*2;
  2084. Real_t* zero_vec0=mem::aligned_malloc<Real_t>(fftsize_in );
  2085. Real_t* zero_vec1=mem::aligned_malloc<Real_t>(fftsize_out);
  2086. size_t n_out=fft_out.Dim()/fftsize_out;
  2087. // Set buff_out to zero.
  2088. #pragma omp parallel for
  2089. for(size_t k=0;k<n_out;k++){
  2090. Vector<Real_t> dnward_check_fft(fftsize_out, &fft_out[k*fftsize_out], false);
  2091. dnward_check_fft.SetZero();
  2092. }
  2093. // Build list of interaction pairs (in, out vectors).
  2094. size_t mat_cnt=precomp_mat.Dim();
  2095. size_t blk1_cnt=interac_dsp.Dim()/mat_cnt;
  2096. Real_t** IN_ =new Real_t*[2*V_BLK_SIZE*blk1_cnt*mat_cnt];
  2097. Real_t** OUT_=new Real_t*[2*V_BLK_SIZE*blk1_cnt*mat_cnt];
  2098. #pragma omp parallel for
  2099. for(size_t interac_blk1=0; interac_blk1<blk1_cnt*mat_cnt; interac_blk1++){
  2100. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2101. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2102. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2103. for(size_t j=0;j<interac_cnt;j++){
  2104. IN_ [2*V_BLK_SIZE*interac_blk1 +j]=&fft_in [interac_vec[(interac_dsp0+j)*2+0]];
  2105. OUT_[2*V_BLK_SIZE*interac_blk1 +j]=&fft_out[interac_vec[(interac_dsp0+j)*2+1]];
  2106. }
  2107. IN_ [2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec0;
  2108. OUT_[2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec1;
  2109. }
  2110. int omp_p=omp_get_max_threads();
  2111. #pragma omp parallel for
  2112. for(int pid=0; pid<omp_p; pid++){
  2113. size_t a=( pid *M_dim)/omp_p;
  2114. size_t b=((pid+1)*M_dim)/omp_p;
  2115. for(size_t blk1=0; blk1<blk1_cnt; blk1++)
  2116. for(size_t k=a; k< b; k++)
  2117. for(size_t mat_indx=0; mat_indx< mat_cnt;mat_indx++){
  2118. size_t interac_blk1 = blk1*mat_cnt+mat_indx;
  2119. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2120. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2121. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2122. Real_t** IN = IN_ + 2*V_BLK_SIZE*interac_blk1;
  2123. Real_t** OUT= OUT_+ 2*V_BLK_SIZE*interac_blk1;
  2124. Real_t* M = precomp_mat[mat_indx] + k*chld_cnt*chld_cnt*2;
  2125. #ifdef __SSE__
  2126. if (mat_indx +1 < mat_cnt){ // Prefetch
  2127. _mm_prefetch(((char *)(precomp_mat[mat_indx+1] + k*chld_cnt*chld_cnt*2)), _MM_HINT_T0);
  2128. _mm_prefetch(((char *)(precomp_mat[mat_indx+1] + k*chld_cnt*chld_cnt*2) + 64), _MM_HINT_T0);
  2129. }
  2130. #endif
  2131. for(int in_dim=0;in_dim<ker_dim0;in_dim++)
  2132. for(int ot_dim=0;ot_dim<ker_dim1;ot_dim++){
  2133. for(size_t j=0;j<interac_cnt;j+=2){
  2134. Real_t* M_ = M;
  2135. Real_t* IN0 = IN [j+0] + (in_dim*M_dim+k)*chld_cnt*2;
  2136. Real_t* IN1 = IN [j+1] + (in_dim*M_dim+k)*chld_cnt*2;
  2137. Real_t* OUT0 = OUT[j+0] + (ot_dim*M_dim+k)*chld_cnt*2;
  2138. Real_t* OUT1 = OUT[j+1] + (ot_dim*M_dim+k)*chld_cnt*2;
  2139. #ifdef __SSE__
  2140. if (j+2 < interac_cnt) { // Prefetch
  2141. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2142. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2143. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2144. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2145. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2146. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2147. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2148. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2149. }
  2150. #endif
  2151. #ifdef __AVX__ //AVX code.
  2152. __m256d out00,out01,out10,out11;
  2153. __m256d out20,out21,out30,out31;
  2154. double* in0__ = IN0;
  2155. double* in1__ = IN1;
  2156. out00 = _mm256_load_pd(OUT0);
  2157. out01 = _mm256_load_pd(OUT1);
  2158. out10 = _mm256_load_pd(OUT0+4);
  2159. out11 = _mm256_load_pd(OUT1+4);
  2160. out20 = _mm256_load_pd(OUT0+8);
  2161. out21 = _mm256_load_pd(OUT1+8);
  2162. out30 = _mm256_load_pd(OUT0+12);
  2163. out31 = _mm256_load_pd(OUT1+12);
  2164. for(int i2=0;i2<8;i2+=2){
  2165. __m256d m00;
  2166. __m256d ot00;
  2167. __m256d mt0,mtt0;
  2168. __m256d in00,in00_r,in01,in01_r;
  2169. in00 = _mm256_broadcast_pd((const __m128d*)in0__);
  2170. in00_r = _mm256_permute_pd(in00,5);
  2171. in01 = _mm256_broadcast_pd((const __m128d*)in1__);
  2172. in01_r = _mm256_permute_pd(in01,5);
  2173. m00 = _mm256_load_pd(M_);
  2174. mt0 = _mm256_unpacklo_pd(m00,m00);
  2175. ot00 = _mm256_mul_pd(mt0,in00);
  2176. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2177. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2178. ot00 = _mm256_mul_pd(mt0,in01);
  2179. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2180. m00 = _mm256_load_pd(M_+4);
  2181. mt0 = _mm256_unpacklo_pd(m00,m00);
  2182. ot00 = _mm256_mul_pd(mt0,in00);
  2183. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2184. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2185. ot00 = _mm256_mul_pd(mt0,in01);
  2186. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2187. m00 = _mm256_load_pd(M_+8);
  2188. mt0 = _mm256_unpacklo_pd(m00,m00);
  2189. ot00 = _mm256_mul_pd(mt0,in00);
  2190. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2191. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2192. ot00 = _mm256_mul_pd(mt0,in01);
  2193. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2194. m00 = _mm256_load_pd(M_+12);
  2195. mt0 = _mm256_unpacklo_pd(m00,m00);
  2196. ot00 = _mm256_mul_pd(mt0,in00);
  2197. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2198. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2199. ot00 = _mm256_mul_pd(mt0,in01);
  2200. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2201. in00 = _mm256_broadcast_pd((const __m128d*) (in0__+2));
  2202. in00_r = _mm256_permute_pd(in00,5);
  2203. in01 = _mm256_broadcast_pd((const __m128d*) (in1__+2));
  2204. in01_r = _mm256_permute_pd(in01,5);
  2205. m00 = _mm256_load_pd(M_+16);
  2206. mt0 = _mm256_unpacklo_pd(m00,m00);
  2207. ot00 = _mm256_mul_pd(mt0,in00);
  2208. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2209. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2210. ot00 = _mm256_mul_pd(mt0,in01);
  2211. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2212. m00 = _mm256_load_pd(M_+20);
  2213. mt0 = _mm256_unpacklo_pd(m00,m00);
  2214. ot00 = _mm256_mul_pd(mt0,in00);
  2215. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2216. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2217. ot00 = _mm256_mul_pd(mt0,in01);
  2218. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2219. m00 = _mm256_load_pd(M_+24);
  2220. mt0 = _mm256_unpacklo_pd(m00,m00);
  2221. ot00 = _mm256_mul_pd(mt0,in00);
  2222. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2223. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2224. ot00 = _mm256_mul_pd(mt0,in01);
  2225. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2226. m00 = _mm256_load_pd(M_+28);
  2227. mt0 = _mm256_unpacklo_pd(m00,m00);
  2228. ot00 = _mm256_mul_pd(mt0,in00);
  2229. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2230. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2231. ot00 = _mm256_mul_pd(mt0,in01);
  2232. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2233. M_ += 32;
  2234. in0__ += 4;
  2235. in1__ += 4;
  2236. }
  2237. _mm256_store_pd(OUT0,out00);
  2238. _mm256_store_pd(OUT1,out01);
  2239. _mm256_store_pd(OUT0+4,out10);
  2240. _mm256_store_pd(OUT1+4,out11);
  2241. _mm256_store_pd(OUT0+8,out20);
  2242. _mm256_store_pd(OUT1+8,out21);
  2243. _mm256_store_pd(OUT0+12,out30);
  2244. _mm256_store_pd(OUT1+12,out31);
  2245. #elif defined __SSE3__ // SSE code.
  2246. __m128d out00, out01, out10, out11;
  2247. __m128d in00, in01, in10, in11;
  2248. __m128d m00, m01, m10, m11;
  2249. //#pragma unroll
  2250. for(int i1=0;i1<8;i1+=2){
  2251. double* IN0_=IN0;
  2252. double* IN1_=IN1;
  2253. out00 =_mm_load_pd (OUT0 );
  2254. out10 =_mm_load_pd (OUT0+2);
  2255. out01 =_mm_load_pd (OUT1 );
  2256. out11 =_mm_load_pd (OUT1+2);
  2257. //#pragma unroll
  2258. for(int i2=0;i2<8;i2+=2){
  2259. m00 =_mm_load1_pd (M_ );
  2260. m10 =_mm_load1_pd (M_+ 2);
  2261. m01 =_mm_load1_pd (M_+16);
  2262. m11 =_mm_load1_pd (M_+18);
  2263. in00 =_mm_load_pd (IN0_ );
  2264. in10 =_mm_load_pd (IN0_+2);
  2265. in01 =_mm_load_pd (IN1_ );
  2266. in11 =_mm_load_pd (IN1_+2);
  2267. out00 = _mm_add_pd (out00, _mm_mul_pd(m00 , in00 ));
  2268. out00 = _mm_add_pd (out00, _mm_mul_pd(m01 , in10 ));
  2269. out01 = _mm_add_pd (out01, _mm_mul_pd(m00 , in01 ));
  2270. out01 = _mm_add_pd (out01, _mm_mul_pd(m01 , in11 ));
  2271. out10 = _mm_add_pd (out10, _mm_mul_pd(m10 , in00 ));
  2272. out10 = _mm_add_pd (out10, _mm_mul_pd(m11 , in10 ));
  2273. out11 = _mm_add_pd (out11, _mm_mul_pd(m10 , in01 ));
  2274. out11 = _mm_add_pd (out11, _mm_mul_pd(m11 , in11 ));
  2275. m00 =_mm_load1_pd (M_+ 1);
  2276. m10 =_mm_load1_pd (M_+ 2+1);
  2277. m01 =_mm_load1_pd (M_+16+1);
  2278. m11 =_mm_load1_pd (M_+18+1);
  2279. in00 =_mm_shuffle_pd (in00,in00,_MM_SHUFFLE2(0,1));
  2280. in01 =_mm_shuffle_pd (in01,in01,_MM_SHUFFLE2(0,1));
  2281. in10 =_mm_shuffle_pd (in10,in10,_MM_SHUFFLE2(0,1));
  2282. in11 =_mm_shuffle_pd (in11,in11,_MM_SHUFFLE2(0,1));
  2283. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m00, in00));
  2284. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m01, in10));
  2285. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m00, in01));
  2286. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m01, in11));
  2287. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m10, in00));
  2288. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m11, in10));
  2289. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m10, in01));
  2290. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m11, in11));
  2291. M_+=32; // Jump to (column+2).
  2292. IN0_+=4;
  2293. IN1_+=4;
  2294. }
  2295. _mm_store_pd (OUT0 ,out00);
  2296. _mm_store_pd (OUT0+2,out10);
  2297. _mm_store_pd (OUT1 ,out01);
  2298. _mm_store_pd (OUT1+2,out11);
  2299. M_+=4-64*2; // Jump back to first column (row+2).
  2300. OUT0+=4;
  2301. OUT1+=4;
  2302. }
  2303. #else // Generic code.
  2304. Real_t out_reg000, out_reg001, out_reg010, out_reg011;
  2305. Real_t out_reg100, out_reg101, out_reg110, out_reg111;
  2306. Real_t in_reg000, in_reg001, in_reg010, in_reg011;
  2307. Real_t in_reg100, in_reg101, in_reg110, in_reg111;
  2308. Real_t m_reg000, m_reg001, m_reg010, m_reg011;
  2309. Real_t m_reg100, m_reg101, m_reg110, m_reg111;
  2310. //#pragma unroll
  2311. for(int i1=0;i1<8;i1+=2){
  2312. Real_t* IN0_=IN0;
  2313. Real_t* IN1_=IN1;
  2314. out_reg000=OUT0[ 0]; out_reg001=OUT0[ 1];
  2315. out_reg010=OUT0[ 2]; out_reg011=OUT0[ 3];
  2316. out_reg100=OUT1[ 0]; out_reg101=OUT1[ 1];
  2317. out_reg110=OUT1[ 2]; out_reg111=OUT1[ 3];
  2318. //#pragma unroll
  2319. for(int i2=0;i2<8;i2+=2){
  2320. m_reg000=M_[ 0]; m_reg001=M_[ 1];
  2321. m_reg010=M_[ 2]; m_reg011=M_[ 3];
  2322. m_reg100=M_[16]; m_reg101=M_[17];
  2323. m_reg110=M_[18]; m_reg111=M_[19];
  2324. in_reg000=IN0_[0]; in_reg001=IN0_[1];
  2325. in_reg010=IN0_[2]; in_reg011=IN0_[3];
  2326. in_reg100=IN1_[0]; in_reg101=IN1_[1];
  2327. in_reg110=IN1_[2]; in_reg111=IN1_[3];
  2328. out_reg000 += m_reg000*in_reg000 - m_reg001*in_reg001;
  2329. out_reg001 += m_reg000*in_reg001 + m_reg001*in_reg000;
  2330. out_reg010 += m_reg010*in_reg000 - m_reg011*in_reg001;
  2331. out_reg011 += m_reg010*in_reg001 + m_reg011*in_reg000;
  2332. out_reg000 += m_reg100*in_reg010 - m_reg101*in_reg011;
  2333. out_reg001 += m_reg100*in_reg011 + m_reg101*in_reg010;
  2334. out_reg010 += m_reg110*in_reg010 - m_reg111*in_reg011;
  2335. out_reg011 += m_reg110*in_reg011 + m_reg111*in_reg010;
  2336. out_reg100 += m_reg000*in_reg100 - m_reg001*in_reg101;
  2337. out_reg101 += m_reg000*in_reg101 + m_reg001*in_reg100;
  2338. out_reg110 += m_reg010*in_reg100 - m_reg011*in_reg101;
  2339. out_reg111 += m_reg010*in_reg101 + m_reg011*in_reg100;
  2340. out_reg100 += m_reg100*in_reg110 - m_reg101*in_reg111;
  2341. out_reg101 += m_reg100*in_reg111 + m_reg101*in_reg110;
  2342. out_reg110 += m_reg110*in_reg110 - m_reg111*in_reg111;
  2343. out_reg111 += m_reg110*in_reg111 + m_reg111*in_reg110;
  2344. M_+=32; // Jump to (column+2).
  2345. IN0_+=4;
  2346. IN1_+=4;
  2347. }
  2348. OUT0[ 0]=out_reg000; OUT0[ 1]=out_reg001;
  2349. OUT0[ 2]=out_reg010; OUT0[ 3]=out_reg011;
  2350. OUT1[ 0]=out_reg100; OUT1[ 1]=out_reg101;
  2351. OUT1[ 2]=out_reg110; OUT1[ 3]=out_reg111;
  2352. M_+=4-64*2; // Jump back to first column (row+2).
  2353. OUT0+=4;
  2354. OUT1+=4;
  2355. }
  2356. #endif
  2357. }
  2358. M += M_dim*128;
  2359. }
  2360. }
  2361. }
  2362. // Compute flops.
  2363. {
  2364. Profile::Add_FLOP(8*8*8*(interac_vec.Dim()/2)*M_dim*ker_dim0*ker_dim1*dof);
  2365. }
  2366. // Free memory
  2367. delete[] IN_ ;
  2368. delete[] OUT_;
  2369. mem::aligned_free<Real_t>(zero_vec0);
  2370. mem::aligned_free<Real_t>(zero_vec1);
  2371. }
  2372. template <class FMMNode>
  2373. void FMM_Pts<FMMNode>::V_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2374. if(level==0) return;
  2375. { // Set setup_data
  2376. setup_data.level=level;
  2377. setup_data.kernel=&aux_kernel;
  2378. setup_data.interac_type.resize(1);
  2379. setup_data.interac_type[0]=V1_Type;
  2380. setup_data. input_data=&buff[0];
  2381. setup_data.output_data=&buff[1];
  2382. Vector<FMMNode_t*>& nodes_in =n_list[2];
  2383. Vector<FMMNode_t*>& nodes_out=n_list[3];
  2384. setup_data.nodes_in .clear();
  2385. setup_data.nodes_out.clear();
  2386. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2387. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level-1 || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2388. }
  2389. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2390. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2391. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2392. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2393. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_in [i])->Child(0))->FMMData())->upward_equiv);
  2394. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_out[i])->Child(0))->FMMData())->dnward_equiv);
  2395. /////////////////////////////////////////////////////////////////////////////
  2396. size_t n_in =nodes_in .size();
  2397. size_t n_out=nodes_out.size();
  2398. // Setup precomputed data.
  2399. SetupPrecomp(setup_data,device);
  2400. // Build interac_data
  2401. Profile::Tic("Interac-Data",&this->comm,true,25);
  2402. Matrix<char>& interac_data=setup_data.interac_data;
  2403. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  2404. size_t precomp_offset=0;
  2405. Mat_Type& interac_type=setup_data.interac_type[0];
  2406. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2407. Vector<size_t> precomp_data_offset;
  2408. std::vector<size_t> interac_mat;
  2409. { // Load precomp_data for interac_type.
  2410. Matrix<char>& precomp_data=*setup_data.precomp_data;
  2411. char* indx_ptr=precomp_data[0]+precomp_offset;
  2412. size_t total_size=((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  2413. /*size_t mat_cnt_ =((size_t*)indx_ptr)[0];*/ indx_ptr+=sizeof(size_t);
  2414. precomp_data_offset.ReInit((1+2+2)*mat_cnt, (size_t*)indx_ptr, false);
  2415. precomp_offset+=total_size;
  2416. for(size_t mat_id=0;mat_id<mat_cnt;mat_id++){
  2417. Matrix<Real_t>& M0 = this->mat->Mat(level, interac_type, mat_id);
  2418. assert(M0.Dim(0)>0 && M0.Dim(1)>0); UNUSED(M0);
  2419. interac_mat.push_back(precomp_data_offset[5*mat_id]);
  2420. }
  2421. }
  2422. size_t dof;
  2423. size_t m=MultipoleOrder();
  2424. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2425. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2426. size_t fftsize;
  2427. {
  2428. size_t n1=m*2;
  2429. size_t n2=n1*n1;
  2430. size_t n3_=n2*(n1/2+1);
  2431. size_t chld_cnt=1UL<<COORD_DIM;
  2432. fftsize=2*n3_*chld_cnt;
  2433. dof=1;
  2434. }
  2435. int omp_p=omp_get_max_threads();
  2436. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2437. size_t n_blk0=2*fftsize*dof*(ker_dim0*n_in +ker_dim1*n_out)*sizeof(Real_t)/buff_size;
  2438. if(n_blk0==0) n_blk0=1;
  2439. std::vector<std::vector<size_t> > fft_vec(n_blk0);
  2440. std::vector<std::vector<size_t> > ifft_vec(n_blk0);
  2441. std::vector<std::vector<size_t> > interac_vec(n_blk0);
  2442. std::vector<std::vector<size_t> > interac_dsp(n_blk0);
  2443. {
  2444. Matrix<Real_t>& input_data=*setup_data. input_data;
  2445. Matrix<Real_t>& output_data=*setup_data.output_data;
  2446. std::vector<std::vector<FMMNode*> > nodes_blk_in (n_blk0);
  2447. std::vector<std::vector<FMMNode*> > nodes_blk_out(n_blk0);
  2448. for(size_t i=0;i<n_in;i++) ((FMMNode*)nodes_in[i])->node_id=i;
  2449. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2450. size_t blk0_start=(n_out* blk0 )/n_blk0;
  2451. size_t blk0_end =(n_out*(blk0+1))/n_blk0;
  2452. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2453. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2454. { // Build node list for blk0.
  2455. std::set<void*> nodes_in;
  2456. for(size_t i=blk0_start;i<blk0_end;i++){
  2457. nodes_out_.push_back((FMMNode*)nodes_out[i]);
  2458. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2459. for(size_t k=0;k<mat_cnt;k++) if(lst[k]!=NULL) nodes_in.insert(lst[k]);
  2460. }
  2461. for(std::set<void*>::iterator node=nodes_in.begin(); node != nodes_in.end(); node++){
  2462. nodes_in_.push_back((FMMNode*)*node);
  2463. }
  2464. size_t input_dim=nodes_in_ .size()*ker_dim0*dof*fftsize;
  2465. size_t output_dim=nodes_out_.size()*ker_dim1*dof*fftsize;
  2466. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2467. if(buff_size<(input_dim + output_dim + buffer_dim)*sizeof(Real_t))
  2468. buff_size=(input_dim + output_dim + buffer_dim)*sizeof(Real_t);
  2469. }
  2470. { // Set fft vectors.
  2471. for(size_t i=0;i<nodes_in_ .size();i++) fft_vec[blk0].push_back((size_t)(& input_vector[nodes_in_[i]->node_id][0][0]- input_data[0]));
  2472. for(size_t i=0;i<nodes_out_.size();i++)ifft_vec[blk0].push_back((size_t)(&output_vector[blk0_start + i ][0][0]-output_data[0]));
  2473. }
  2474. }
  2475. for(size_t blk0=0;blk0<n_blk0;blk0++){ // Hadamard interactions.
  2476. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2477. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2478. for(size_t i=0;i<nodes_in_.size();i++) nodes_in_[i]->node_id=i;
  2479. { // Next blocking level.
  2480. size_t n_blk1=nodes_out_.size()*(ker_dim0+ker_dim1)/V_BLK_SIZE; //64 vectors should fit in L1.
  2481. if(n_blk1==0) n_blk1=1;
  2482. size_t interac_dsp_=0;
  2483. for(size_t blk1=0;blk1<n_blk1;blk1++){
  2484. size_t blk1_start=(nodes_out_.size()* blk1 )/n_blk1;
  2485. size_t blk1_end =(nodes_out_.size()*(blk1+1))/n_blk1;
  2486. for(size_t k=0;k<mat_cnt;k++){
  2487. for(size_t i=blk1_start;i<blk1_end;i++){
  2488. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out_[i])->interac_list[interac_type];
  2489. if(lst[k]!=NULL){
  2490. interac_vec[blk0].push_back(lst[k]->node_id*fftsize*ker_dim0*dof);
  2491. interac_vec[blk0].push_back( i *fftsize*ker_dim1*dof);
  2492. interac_dsp_++;
  2493. }
  2494. }
  2495. interac_dsp[blk0].push_back(interac_dsp_);
  2496. }
  2497. }
  2498. }
  2499. }
  2500. }
  2501. { // Set interac_data.
  2502. size_t data_size=sizeof(size_t)*5; // m, dof, ker_dim0, ker_dim1, n_blk0
  2503. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2504. data_size+=sizeof(size_t)+ fft_vec[blk0].size()*sizeof(size_t);
  2505. data_size+=sizeof(size_t)+ ifft_vec[blk0].size()*sizeof(size_t);
  2506. data_size+=sizeof(size_t)+interac_vec[blk0].size()*sizeof(size_t);
  2507. data_size+=sizeof(size_t)+interac_dsp[blk0].size()*sizeof(size_t);
  2508. }
  2509. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  2510. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2511. interac_data.Resize(1,data_size);
  2512. char* data_ptr=&interac_data[0][0];
  2513. ((size_t*)data_ptr)[0]=buff_size; data_ptr+=sizeof(size_t);
  2514. ((size_t*)data_ptr)[0]= m; data_ptr+=sizeof(size_t);
  2515. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2516. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2517. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2518. ((size_t*)data_ptr)[0]= n_blk0; data_ptr+=sizeof(size_t);
  2519. ((size_t*)data_ptr)[0]= interac_mat.size(); data_ptr+=sizeof(size_t);
  2520. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  2521. data_ptr+=interac_mat.size()*sizeof(size_t);
  2522. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2523. ((size_t*)data_ptr)[0]= fft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2524. mem::memcopy(data_ptr, & fft_vec[blk0][0], fft_vec[blk0].size()*sizeof(size_t));
  2525. data_ptr+= fft_vec[blk0].size()*sizeof(size_t);
  2526. ((size_t*)data_ptr)[0]=ifft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2527. mem::memcopy(data_ptr, &ifft_vec[blk0][0], ifft_vec[blk0].size()*sizeof(size_t));
  2528. data_ptr+=ifft_vec[blk0].size()*sizeof(size_t);
  2529. ((size_t*)data_ptr)[0]=interac_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2530. mem::memcopy(data_ptr, &interac_vec[blk0][0], interac_vec[blk0].size()*sizeof(size_t));
  2531. data_ptr+=interac_vec[blk0].size()*sizeof(size_t);
  2532. ((size_t*)data_ptr)[0]=interac_dsp[blk0].size(); data_ptr+=sizeof(size_t);
  2533. mem::memcopy(data_ptr, &interac_dsp[blk0][0], interac_dsp[blk0].size()*sizeof(size_t));
  2534. data_ptr+=interac_dsp[blk0].size()*sizeof(size_t);
  2535. }
  2536. }
  2537. }
  2538. Profile::Toc();
  2539. Profile::Tic("Host2Device",&this->comm,false,25);
  2540. if(device){ // Host2Device
  2541. setup_data.interac_data. AllocDevice(true);
  2542. }
  2543. Profile::Toc();
  2544. }
  2545. template <class FMMNode>
  2546. void FMM_Pts<FMMNode>::V_List (SetupData<Real_t>& setup_data, bool device){
  2547. assert(!device); //Can not run on accelerator yet.
  2548. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2549. Profile::Tic("Host2Device",&this->comm,false,25);
  2550. Profile::Toc();
  2551. Profile::Tic("FFT",&comm,false,100);
  2552. Profile::Toc();
  2553. Profile::Tic("HadamardProduct",&comm,false,100);
  2554. Profile::Toc();
  2555. Profile::Tic("IFFT",&comm,false,100);
  2556. Profile::Toc();
  2557. return;
  2558. }
  2559. Profile::Tic("Host2Device",&this->comm,false,25);
  2560. int level=setup_data.level;
  2561. size_t buff_size=*((size_t*)&setup_data.interac_data[0][0]);
  2562. typename Matrix<Real_t>::Device M_d;
  2563. typename Vector<char>::Device buff;
  2564. typename Matrix<char>::Device precomp_data;
  2565. typename Matrix<char>::Device interac_data;
  2566. typename Matrix<Real_t>::Device input_data;
  2567. typename Matrix<Real_t>::Device output_data;
  2568. Matrix<Real_t>& M = this->mat->Mat(level, DC2DE_Type, 0);
  2569. if(device){
  2570. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  2571. M_d = M. AllocDevice(false);
  2572. buff = this-> dev_buffer. AllocDevice(false);
  2573. precomp_data= setup_data.precomp_data->AllocDevice(false);
  2574. interac_data= setup_data.interac_data. AllocDevice(false);
  2575. input_data = setup_data. input_data->AllocDevice(false);
  2576. output_data = setup_data. output_data->AllocDevice(false);
  2577. }else{
  2578. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  2579. M_d = M;
  2580. buff = this-> cpu_buffer;
  2581. precomp_data=*setup_data.precomp_data;
  2582. interac_data= setup_data.interac_data;
  2583. input_data =*setup_data. input_data;
  2584. output_data =*setup_data. output_data;
  2585. }
  2586. Profile::Toc();
  2587. { // Offloaded computation.
  2588. // Set interac_data.
  2589. size_t m, dof, ker_dim0, ker_dim1, n_blk0;
  2590. std::vector<Vector<size_t> > fft_vec;
  2591. std::vector<Vector<size_t> > ifft_vec;
  2592. std::vector<Vector<size_t> > interac_vec;
  2593. std::vector<Vector<size_t> > interac_dsp;
  2594. Vector<Real_t*> precomp_mat;
  2595. { // Set interac_data.
  2596. char* data_ptr=&interac_data[0][0];
  2597. buff_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2598. m =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2599. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2600. ker_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2601. ker_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2602. n_blk0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2603. fft_vec .resize(n_blk0);
  2604. ifft_vec.resize(n_blk0);
  2605. interac_vec.resize(n_blk0);
  2606. interac_dsp.resize(n_blk0);
  2607. Vector<size_t> interac_mat;
  2608. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2609. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  2610. precomp_mat.Resize(interac_mat.Dim());
  2611. for(size_t i=0;i<interac_mat.Dim();i++){
  2612. precomp_mat[i]=(Real_t*)(precomp_data[0]+interac_mat[i]);
  2613. }
  2614. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2615. fft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2616. data_ptr+=sizeof(size_t)+fft_vec[blk0].Dim()*sizeof(size_t);
  2617. ifft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2618. data_ptr+=sizeof(size_t)+ifft_vec[blk0].Dim()*sizeof(size_t);
  2619. interac_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2620. data_ptr+=sizeof(size_t)+interac_vec[blk0].Dim()*sizeof(size_t);
  2621. interac_dsp[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2622. data_ptr+=sizeof(size_t)+interac_dsp[blk0].Dim()*sizeof(size_t);
  2623. }
  2624. }
  2625. int omp_p=omp_get_max_threads();
  2626. size_t M_dim, fftsize;
  2627. {
  2628. size_t n1=m*2;
  2629. size_t n2=n1*n1;
  2630. size_t n3_=n2*(n1/2+1);
  2631. size_t chld_cnt=1UL<<COORD_DIM;
  2632. fftsize=2*n3_*chld_cnt;
  2633. M_dim=n3_;
  2634. }
  2635. for(size_t blk0=0;blk0<n_blk0;blk0++){ // interactions
  2636. size_t n_in = fft_vec[blk0].Dim();
  2637. size_t n_out=ifft_vec[blk0].Dim();
  2638. size_t input_dim=n_in *ker_dim0*dof*fftsize;
  2639. size_t output_dim=n_out*ker_dim1*dof*fftsize;
  2640. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2641. Vector<Real_t> fft_in ( input_dim, (Real_t*)&buff[ 0 ],false);
  2642. Vector<Real_t> fft_out(output_dim, (Real_t*)&buff[ input_dim *sizeof(Real_t)],false);
  2643. Vector<Real_t> buffer(buffer_dim, (Real_t*)&buff[(input_dim+output_dim)*sizeof(Real_t)],false);
  2644. { // FFT
  2645. Profile::Tic("FFT",&comm,false,100);
  2646. Vector<Real_t> input_data_( input_data.dim[0]* input_data.dim[1], input_data[0], false);
  2647. FFT_UpEquiv(dof, m, ker_dim0, fft_vec[blk0], input_data_, fft_in, buffer);
  2648. Profile::Toc();
  2649. }
  2650. { // Hadamard
  2651. #ifdef PVFMM_HAVE_PAPI
  2652. #ifdef __VERBOSE__
  2653. std::cout << "Starting counters new\n";
  2654. if (PAPI_start(EventSet) != PAPI_OK) std::cout << "handle_error3" << std::endl;
  2655. #endif
  2656. #endif
  2657. Profile::Tic("HadamardProduct",&comm,false,100);
  2658. VListHadamard<Real_t>(dof, M_dim, ker_dim0, ker_dim1, interac_dsp[blk0], interac_vec[blk0], precomp_mat, fft_in, fft_out);
  2659. Profile::Toc();
  2660. #ifdef PVFMM_HAVE_PAPI
  2661. #ifdef __VERBOSE__
  2662. if (PAPI_stop(EventSet, values) != PAPI_OK) std::cout << "handle_error4" << std::endl;
  2663. std::cout << "Stopping counters\n";
  2664. #endif
  2665. #endif
  2666. }
  2667. { // IFFT
  2668. Profile::Tic("IFFT",&comm,false,100);
  2669. Matrix<Real_t> M(M_d.dim[0],M_d.dim[1],M_d[0],false);
  2670. Vector<Real_t> output_data_(output_data.dim[0]*output_data.dim[1], output_data[0], false);
  2671. FFT_Check2Equiv(dof, m, ker_dim1, ifft_vec[blk0], fft_out, output_data_, buffer, M);
  2672. Profile::Toc();
  2673. }
  2674. }
  2675. }
  2676. }
  2677. template <class FMMNode>
  2678. void FMM_Pts<FMMNode>::Down2DownSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2679. { // Set setup_data
  2680. setup_data.level=level;
  2681. setup_data.kernel=&aux_kernel;
  2682. setup_data.interac_type.resize(1);
  2683. setup_data.interac_type[0]=D2D_Type;
  2684. setup_data. input_data=&buff[1];
  2685. setup_data.output_data=&buff[1];
  2686. Vector<FMMNode_t*>& nodes_in =n_list[1];
  2687. Vector<FMMNode_t*>& nodes_out=n_list[1];
  2688. setup_data.nodes_in .clear();
  2689. setup_data.nodes_out.clear();
  2690. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2691. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
  2692. }
  2693. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2694. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2695. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2696. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2697. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  2698. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  2699. SetupInterac(setup_data,device);
  2700. }
  2701. template <class FMMNode>
  2702. void FMM_Pts<FMMNode>::Down2Down (SetupData<Real_t>& setup_data, bool device){
  2703. //Add Down2Down contribution.
  2704. EvalList(setup_data, device);
  2705. }
  2706. template <class FMMNode>
  2707. void FMM_Pts<FMMNode>::SetupInteracPts(SetupData<Real_t>& setup_data, bool shift_src, bool shift_trg, Matrix<Real_t>* M, bool device){
  2708. int level=setup_data.level;
  2709. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  2710. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2711. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2712. Matrix<Real_t>& output_data=*setup_data.output_data;
  2713. Matrix<Real_t>& input_data=*setup_data. input_data;
  2714. Matrix<Real_t>& coord_data=*setup_data. coord_data;
  2715. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  2716. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  2717. size_t n_in =nodes_in .size();
  2718. size_t n_out=nodes_out.size();
  2719. //setup_data.precomp_data=NULL;
  2720. // Build interac_data
  2721. Profile::Tic("Interac-Data",&this->comm,true,25);
  2722. Matrix<char>& interac_data=setup_data.interac_data;
  2723. if(n_out>0 && n_in >0){
  2724. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2725. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2726. size_t dof=1;
  2727. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  2728. std::vector<size_t> trg_interac_cnt(n_out,0);
  2729. std::vector<size_t> trg_coord(n_out);
  2730. std::vector<size_t> trg_value(n_out);
  2731. std::vector<size_t> trg_cnt(n_out);
  2732. std::vector<Real_t> scaling(n_out,0);
  2733. { // Set trg data
  2734. Mat_Type& interac_type=interac_type_lst[0];
  2735. for(size_t i=0;i<n_out;i++){
  2736. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2737. trg_cnt [i]=output_vector[i*2+0]->Dim()/COORD_DIM;
  2738. trg_coord[i]=(size_t)(&output_vector[i*2+0][0][0]- coord_data[0]);
  2739. trg_value[i]=(size_t)(&output_vector[i*2+1][0][0]-output_data[0]);
  2740. if(!this->Homogen()) scaling[i]=1.0;
  2741. else if(interac_type==X_Type) scaling[i]=pow(0.5, setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  2742. }
  2743. }
  2744. }
  2745. std::vector<std::vector<size_t> > src_cnt(n_out);
  2746. std::vector<std::vector<size_t> > src_coord(n_out);
  2747. std::vector<std::vector<size_t> > src_value(n_out);
  2748. std::vector<std::vector<Real_t> > shift_coord(n_out);
  2749. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  2750. Mat_Type& interac_type=interac_type_lst[type_indx];
  2751. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2752. for(size_t i=0;i<n_out;i++){ // For each target node.
  2753. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2754. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2755. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++) if(lst[mat_indx]!=NULL){ // For each direction.
  2756. size_t j=lst[mat_indx]->node_id;
  2757. if(input_vector[j*4+0]->Dim()>0 || input_vector[j*4+2]->Dim()>0){
  2758. trg_interac_cnt[i]++;
  2759. { // Determine shift for periodic boundary condition
  2760. Real_t* sc=lst[mat_indx]->Coord();
  2761. Real_t* tc=((FMMNode*)nodes_out[i])->Coord();
  2762. int* rel_coord=this->interac_list.RelativeCoord(interac_type, mat_indx);
  2763. shift_coord[i].push_back((tc[0]>sc[0] && rel_coord[0]>0? 1.0:
  2764. (tc[0]<sc[0] && rel_coord[0]<0?-1.0:0.0)) +
  2765. (shift_src?sc[0]:0) - (shift_trg?tc[0]:0) );
  2766. shift_coord[i].push_back((tc[1]>sc[1] && rel_coord[1]>0? 1.0:
  2767. (tc[1]<sc[1] && rel_coord[1]<0?-1.0:0.0)) +
  2768. (shift_src?sc[1]:0) - (shift_trg?tc[1]:0) );
  2769. shift_coord[i].push_back((tc[2]>sc[2] && rel_coord[2]>0? 1.0:
  2770. (tc[2]<sc[2] && rel_coord[2]<0?-1.0:0.0)) +
  2771. (shift_src?sc[2]:0) - (shift_trg?tc[2]:0) );
  2772. }
  2773. { // Set src data
  2774. if(input_vector[j*4+0]!=NULL){
  2775. src_cnt [i].push_back(input_vector[j*4+0]->Dim()/COORD_DIM);
  2776. src_coord[i].push_back((size_t)(& input_vector[j*4+0][0][0]- coord_data[0]));
  2777. src_value[i].push_back((size_t)(& input_vector[j*4+1][0][0]- input_data[0]));
  2778. }else{
  2779. src_cnt [i].push_back(0);
  2780. src_coord[i].push_back(0);
  2781. src_value[i].push_back(0);
  2782. }
  2783. if(input_vector[j*4+2]!=NULL){
  2784. src_cnt [i].push_back(input_vector[j*4+2]->Dim()/COORD_DIM);
  2785. src_coord[i].push_back((size_t)(& input_vector[j*4+2][0][0]- coord_data[0]));
  2786. src_value[i].push_back((size_t)(& input_vector[j*4+3][0][0]- input_data[0]));
  2787. }else{
  2788. src_cnt [i].push_back(0);
  2789. src_coord[i].push_back(0);
  2790. src_value[i].push_back(0);
  2791. }
  2792. }
  2793. }
  2794. }
  2795. }
  2796. }
  2797. }
  2798. { // Set interac_data.
  2799. size_t data_size=sizeof(size_t)*4;
  2800. data_size+=sizeof(size_t)+trg_interac_cnt.size()*sizeof(size_t);
  2801. data_size+=sizeof(size_t)+trg_coord.size()*sizeof(size_t);
  2802. data_size+=sizeof(size_t)+trg_value.size()*sizeof(size_t);
  2803. data_size+=sizeof(size_t)+trg_cnt .size()*sizeof(size_t);
  2804. data_size+=sizeof(size_t)+scaling .size()*sizeof(Real_t);
  2805. data_size+=sizeof(size_t)*2+(M!=NULL?M->Dim(0)*M->Dim(1)*sizeof(Real_t):0);
  2806. for(size_t i=0;i<n_out;i++){
  2807. data_size+=sizeof(size_t)+src_cnt [i].size()*sizeof(size_t);
  2808. data_size+=sizeof(size_t)+src_coord[i].size()*sizeof(size_t);
  2809. data_size+=sizeof(size_t)+src_value[i].size()*sizeof(size_t);
  2810. data_size+=sizeof(size_t)+shift_coord[i].size()*sizeof(Real_t);
  2811. }
  2812. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2813. interac_data.Resize(1,data_size);
  2814. char* data_ptr=&interac_data[0][0];
  2815. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  2816. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2817. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2818. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2819. ((size_t*)data_ptr)[0]=trg_interac_cnt.size(); data_ptr+=sizeof(size_t);
  2820. mem::memcopy(data_ptr, &trg_interac_cnt[0], trg_interac_cnt.size()*sizeof(size_t));
  2821. data_ptr+=trg_interac_cnt.size()*sizeof(size_t);
  2822. ((size_t*)data_ptr)[0]=trg_coord.size(); data_ptr+=sizeof(size_t);
  2823. mem::memcopy(data_ptr, &trg_coord[0], trg_coord.size()*sizeof(size_t));
  2824. data_ptr+=trg_coord.size()*sizeof(size_t);
  2825. ((size_t*)data_ptr)[0]=trg_value.size(); data_ptr+=sizeof(size_t);
  2826. mem::memcopy(data_ptr, &trg_value[0], trg_value.size()*sizeof(size_t));
  2827. data_ptr+=trg_value.size()*sizeof(size_t);
  2828. ((size_t*)data_ptr)[0]=trg_cnt.size(); data_ptr+=sizeof(size_t);
  2829. mem::memcopy(data_ptr, &trg_cnt[0], trg_cnt.size()*sizeof(size_t));
  2830. data_ptr+=trg_cnt.size()*sizeof(size_t);
  2831. ((size_t*)data_ptr)[0]=scaling.size(); data_ptr+=sizeof(size_t);
  2832. mem::memcopy(data_ptr, &scaling[0], scaling.size()*sizeof(Real_t));
  2833. data_ptr+=scaling.size()*sizeof(Real_t);
  2834. if(M!=NULL){
  2835. ((size_t*)data_ptr)[0]=M->Dim(0); data_ptr+=sizeof(size_t);
  2836. ((size_t*)data_ptr)[0]=M->Dim(1); data_ptr+=sizeof(size_t);
  2837. mem::memcopy(data_ptr, M[0][0], M->Dim(0)*M->Dim(1)*sizeof(Real_t));
  2838. data_ptr+=M->Dim(0)*M->Dim(1)*sizeof(Real_t);
  2839. }else{
  2840. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2841. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2842. }
  2843. for(size_t i=0;i<n_out;i++){
  2844. ((size_t*)data_ptr)[0]=src_cnt[i].size(); data_ptr+=sizeof(size_t);
  2845. mem::memcopy(data_ptr, &src_cnt[i][0], src_cnt[i].size()*sizeof(size_t));
  2846. data_ptr+=src_cnt[i].size()*sizeof(size_t);
  2847. ((size_t*)data_ptr)[0]=src_coord[i].size(); data_ptr+=sizeof(size_t);
  2848. mem::memcopy(data_ptr, &src_coord[i][0], src_coord[i].size()*sizeof(size_t));
  2849. data_ptr+=src_coord[i].size()*sizeof(size_t);
  2850. ((size_t*)data_ptr)[0]=src_value[i].size(); data_ptr+=sizeof(size_t);
  2851. mem::memcopy(data_ptr, &src_value[i][0], src_value[i].size()*sizeof(size_t));
  2852. data_ptr+=src_value[i].size()*sizeof(size_t);
  2853. ((size_t*)data_ptr)[0]=shift_coord[i].size(); data_ptr+=sizeof(size_t);
  2854. mem::memcopy(data_ptr, &shift_coord[i][0], shift_coord[i].size()*sizeof(Real_t));
  2855. data_ptr+=shift_coord[i].size()*sizeof(Real_t);
  2856. }
  2857. }
  2858. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2859. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  2860. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  2861. }
  2862. Profile::Toc();
  2863. Profile::Tic("Host2Device",&this->comm,false,25);
  2864. if(device){ // Host2Device
  2865. setup_data.interac_data .AllocDevice(true);
  2866. }
  2867. Profile::Toc();
  2868. }
  2869. template <class FMMNode>
  2870. void FMM_Pts<FMMNode>::EvalListPts(SetupData<Real_t>& setup_data, bool device){
  2871. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2872. Profile::Tic("Host2Device",&this->comm,false,25);
  2873. Profile::Toc();
  2874. Profile::Tic("DeviceComp",&this->comm,false,20);
  2875. Profile::Toc();
  2876. return;
  2877. }
  2878. std::cout << "EvalListPts, device = " << device << '\n';
  2879. Profile::Tic("Host2Device",&this->comm,false,25);
  2880. typename Vector<char>::Device buff;
  2881. //typename Matrix<char>::Device precomp_data;
  2882. typename Matrix<char>::Device interac_data;
  2883. typename Matrix<Real_t>::Device coord_data;
  2884. typename Matrix<Real_t>::Device input_data;
  2885. typename Matrix<Real_t>::Device output_data;
  2886. if(device){
  2887. buff = this-> dev_buffer. AllocDevice(false);
  2888. interac_data= setup_data.interac_data. AllocDevice(false);
  2889. //if(setup_data.precomp_data!=NULL) precomp_data= setup_data.precomp_data->AllocDevice(false);
  2890. if(setup_data. coord_data!=NULL) coord_data = setup_data. coord_data->AllocDevice(false);
  2891. if(setup_data. input_data!=NULL) input_data = setup_data. input_data->AllocDevice(false);
  2892. if(setup_data. output_data!=NULL) output_data = setup_data. output_data->AllocDevice(false);
  2893. }else{
  2894. buff = this-> cpu_buffer;
  2895. interac_data= setup_data.interac_data;
  2896. //if(setup_data.precomp_data!=NULL) precomp_data=*setup_data.precomp_data;
  2897. if(setup_data. coord_data!=NULL) coord_data =*setup_data. coord_data;
  2898. if(setup_data. input_data!=NULL) input_data =*setup_data. input_data;
  2899. if(setup_data. output_data!=NULL) output_data =*setup_data. output_data;
  2900. }
  2901. Profile::Toc();
  2902. std::cout << "EvalListPts, end allocation. " << '\n';
  2903. size_t ptr_single_layer_kernel=(size_t)setup_data.kernel->ker_poten;
  2904. size_t ptr_double_layer_kernel=(size_t)setup_data.kernel->dbl_layer_poten;
  2905. Profile::Tic("DeviceComp",&this->comm,false,20);
  2906. #ifdef __INTEL_OFFLOAD
  2907. int lock_idx=-1;
  2908. int wait_lock_idx=-1;
  2909. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  2910. if(device) lock_idx=MIC_Lock::get_lock();
  2911. if(device) ptr_single_layer_kernel=setup_data.kernel->dev_ker_poten;
  2912. if(device) ptr_double_layer_kernel=setup_data.kernel->dev_dbl_layer_poten;
  2913. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  2914. #endif
  2915. { // Offloaded computation.
  2916. // Set interac_data.
  2917. //size_t data_size;
  2918. //size_t ker_dim0;
  2919. size_t ker_dim1;
  2920. size_t dof, n_out;
  2921. Vector<size_t> trg_interac_cnt;
  2922. Vector<size_t> trg_coord;
  2923. Vector<size_t> trg_value;
  2924. Vector<size_t> trg_cnt;
  2925. Vector<Real_t> scaling;
  2926. Matrix<Real_t> M;
  2927. Vector< Vector<size_t> > src_cnt;
  2928. Vector< Vector<size_t> > src_coord;
  2929. Vector< Vector<size_t> > src_value;
  2930. Vector< Vector<Real_t> > shift_coord;
  2931. { // Set interac_data.
  2932. char* data_ptr=&interac_data[0][0];
  2933. std::cout << "EvalListPts, converting device ptr to char* " << '\n';
  2934. /*data_size=((size_t*)data_ptr)[0];*/ data_ptr+=sizeof(size_t);
  2935. /*ker_dim0=((size_t*)data_ptr)[0];*/ data_ptr+=sizeof(size_t);
  2936. ker_dim1=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2937. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2938. std::cout << "EvalListPts, device ptr evaluation " << '\n';
  2939. trg_interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2940. data_ptr+=sizeof(size_t)+trg_interac_cnt.Dim()*sizeof(size_t);
  2941. n_out=trg_interac_cnt.Dim();
  2942. std::cout << "EvalListPts, 1.st ReInit " << '\n';
  2943. trg_coord.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2944. data_ptr+=sizeof(size_t)+trg_coord.Dim()*sizeof(size_t);
  2945. trg_value.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2946. data_ptr+=sizeof(size_t)+trg_value.Dim()*sizeof(size_t);
  2947. trg_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2948. data_ptr+=sizeof(size_t)+trg_cnt.Dim()*sizeof(size_t);
  2949. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2950. data_ptr+=sizeof(size_t)+scaling.Dim()*sizeof(Real_t);
  2951. M.ReInit(((size_t*)data_ptr)[0],((size_t*)data_ptr)[1],(Real_t*)(data_ptr+2*sizeof(size_t)),false);
  2952. data_ptr+=sizeof(size_t)*2+M.Dim(0)*M.Dim(1)*sizeof(Real_t);
  2953. src_cnt.Resize(n_out);
  2954. src_coord.Resize(n_out);
  2955. src_value.Resize(n_out);
  2956. shift_coord.Resize(n_out);
  2957. for(size_t i=0;i<n_out;i++){
  2958. src_cnt[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2959. data_ptr+=sizeof(size_t)+src_cnt[i].Dim()*sizeof(size_t);
  2960. src_coord[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2961. data_ptr+=sizeof(size_t)+src_coord[i].Dim()*sizeof(size_t);
  2962. src_value[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2963. data_ptr+=sizeof(size_t)+src_value[i].Dim()*sizeof(size_t);
  2964. shift_coord[i].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2965. data_ptr+=sizeof(size_t)+shift_coord[i].Dim()*sizeof(Real_t);
  2966. }
  2967. }
  2968. #ifdef __INTEL_OFFLOAD
  2969. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  2970. #endif
  2971. std::cout << "EvalListPts, end reallocation." << '\n';
  2972. //Compute interaction from point sources.
  2973. { // interactions
  2974. typename Kernel<Real_t>::Ker_t single_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_single_layer_kernel;
  2975. typename Kernel<Real_t>::Ker_t double_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_double_layer_kernel;
  2976. int omp_p=omp_get_max_threads();
  2977. Vector<Real_t*> thread_buff(omp_p);
  2978. size_t thread_buff_size=buff.dim/sizeof(Real_t)/omp_p;
  2979. for(int i=0;i<omp_p;i++) thread_buff[i]=(Real_t*)&buff[i*thread_buff_size*sizeof(Real_t)];
  2980. #pragma omp parallel for
  2981. for(size_t i=0;i<n_out;i++)
  2982. if(trg_interac_cnt[i]>0 && trg_cnt[i]>0){
  2983. int thread_id=omp_get_thread_num();
  2984. Real_t* s_coord=thread_buff[thread_id];
  2985. Real_t* t_value=output_data[0]+trg_value[i];
  2986. if(M.Dim(0)>0 && M.Dim(1)>0){
  2987. s_coord+=dof*M.Dim(0);
  2988. t_value=thread_buff[thread_id];
  2989. for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]=0;
  2990. }
  2991. size_t interac_cnt=0;
  2992. for(size_t j=0;j<trg_interac_cnt[i];j++){
  2993. if(ptr_single_layer_kernel!=(size_t)NULL){// Single layer kernel
  2994. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+0];
  2995. assert(thread_buff_size>=dof*M.Dim(0)+src_cnt[i][2*j+0]*COORD_DIM);
  2996. for(size_t k1=0;k1<src_cnt[i][2*j+0];k1++){ // Compute shifted source coordinates.
  2997. for(size_t k0=0;k0<COORD_DIM;k0++){
  2998. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  2999. }
  3000. }
  3001. single_layer_kernel( s_coord , src_cnt[i][2*j+0], input_data[0]+src_value[i][2*j+0], dof,
  3002. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value);
  3003. interac_cnt+=src_cnt[i][2*j+0]*trg_cnt[i];
  3004. }
  3005. if(ptr_double_layer_kernel!=(size_t)NULL){// Double layer kernel
  3006. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+1];
  3007. assert(thread_buff_size>=dof*M.Dim(0)+src_cnt[i][2*j+1]*COORD_DIM);
  3008. for(size_t k1=0;k1<src_cnt[i][2*j+1];k1++){ // Compute shifted source coordinates.
  3009. for(size_t k0=0;k0<COORD_DIM;k0++){
  3010. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  3011. }
  3012. }
  3013. double_layer_kernel( s_coord , src_cnt[i][2*j+1], input_data[0]+src_value[i][2*j+1], dof,
  3014. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value);
  3015. interac_cnt+=src_cnt[i][2*j+1]*trg_cnt[i];
  3016. }
  3017. }
  3018. if(M.Dim(0)>0 && M.Dim(1)>0 && interac_cnt>0){
  3019. assert(trg_cnt[i]*ker_dim1==M.Dim(0)); UNUSED(ker_dim1);
  3020. for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]*=scaling[i];
  3021. Matrix<Real_t> in_vec(dof, M.Dim(0), t_value , false);
  3022. Matrix<Real_t> out_vec(dof, M.Dim(1), output_data[0]+trg_value[i], false);
  3023. Matrix<Real_t>::DGEMM(out_vec, in_vec, M, 1.0);
  3024. }
  3025. }
  3026. }
  3027. #ifdef __INTEL_OFFLOAD
  3028. if(device) MIC_Lock::release_lock(lock_idx);
  3029. #endif
  3030. }
  3031. #ifndef __MIC_ASYNCH__
  3032. #ifdef __INTEL_OFFLOAD
  3033. #pragma offload if(device) target(mic:0)
  3034. {if(device) MIC_Lock::wait_lock(lock_idx);}
  3035. #endif
  3036. #endif
  3037. Profile::Toc();
  3038. }
  3039. template <class FMMNode>
  3040. void FMM_Pts<FMMNode>::X_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3041. { // Set setup_data
  3042. setup_data.level=level;
  3043. setup_data.kernel=&aux_kernel;
  3044. setup_data.interac_type.resize(1);
  3045. setup_data.interac_type[0]=X_Type;
  3046. setup_data. input_data=&buff[4];
  3047. setup_data.output_data=&buff[1];
  3048. setup_data. coord_data=&buff[6];
  3049. Vector<FMMNode_t*>& nodes_in =n_list[4];
  3050. Vector<FMMNode_t*>& nodes_out=n_list[1];
  3051. setup_data.nodes_in .clear();
  3052. setup_data.nodes_out.clear();
  3053. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3054. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3055. }
  3056. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3057. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3058. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3059. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3060. for(size_t i=0;i<nodes_in .size();i++){
  3061. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  3062. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  3063. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  3064. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  3065. }
  3066. for(size_t i=0;i<nodes_out.size();i++){
  3067. output_vector.push_back(&dnwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
  3068. output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  3069. }
  3070. //Downward check to downward equivalent matrix.
  3071. Matrix<Real_t>& M_dc2de = this->mat->Mat(level, DC2DE_Type, 0);
  3072. this->SetupInteracPts(setup_data, false, true, &M_dc2de,device);
  3073. { // Resize device buffer
  3074. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3075. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3076. }
  3077. }
  3078. template <class FMMNode>
  3079. void FMM_Pts<FMMNode>::X_List (SetupData<Real_t>& setup_data, bool device){
  3080. //Add X_List contribution.
  3081. //this->EvalListPts(setup_data, device);
  3082. }
  3083. template <class FMMNode>
  3084. void FMM_Pts<FMMNode>::W_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3085. { // Set setup_data
  3086. setup_data.level=level;
  3087. setup_data.kernel=&kernel;
  3088. setup_data.interac_type.resize(1);
  3089. setup_data.interac_type[0]=W_Type;
  3090. setup_data. input_data=&buff[0];
  3091. setup_data.output_data=&buff[5];
  3092. setup_data. coord_data=&buff[6];
  3093. Vector<FMMNode_t*>& nodes_in =n_list[0];
  3094. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3095. setup_data.nodes_in .clear();
  3096. setup_data.nodes_out.clear();
  3097. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3098. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3099. }
  3100. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3101. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3102. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3103. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3104. for(size_t i=0;i<nodes_in .size();i++){
  3105. input_vector .push_back(&upwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  3106. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  3107. input_vector .push_back(NULL);
  3108. input_vector .push_back(NULL);
  3109. }
  3110. for(size_t i=0;i<nodes_out.size();i++){
  3111. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3112. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3113. }
  3114. this->SetupInteracPts(setup_data, true, false, NULL, device);
  3115. { // Resize device buffer
  3116. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3117. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3118. }
  3119. }
  3120. template <class FMMNode>
  3121. void FMM_Pts<FMMNode>::W_List (SetupData<Real_t>& setup_data, bool device){
  3122. //Add W_List contribution.
  3123. //this->EvalListPts(setup_data, device);
  3124. }
  3125. template <class FMMNode>
  3126. void FMM_Pts<FMMNode>::U_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3127. { // Set setup_data
  3128. setup_data.level=level;
  3129. setup_data.kernel=&kernel;
  3130. setup_data.interac_type.resize(3);
  3131. setup_data.interac_type[0]=U0_Type;
  3132. setup_data.interac_type[1]=U1_Type;
  3133. setup_data.interac_type[2]=U2_Type;
  3134. setup_data. input_data=&buff[4];
  3135. setup_data.output_data=&buff[5];
  3136. setup_data. coord_data=&buff[6];
  3137. Vector<FMMNode_t*>& nodes_in =n_list[4];
  3138. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3139. setup_data.nodes_in .clear();
  3140. setup_data.nodes_out.clear();
  3141. for(size_t i=0;i<nodes_in .Dim();i++) if((level-1<=nodes_in [i]->Depth() && nodes_in [i]->Depth()<=level+1) || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3142. for(size_t i=0;i<nodes_out.Dim();i++) if(( nodes_out[i]->Depth()==level ) || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3143. }
  3144. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3145. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3146. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3147. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3148. for(size_t i=0;i<nodes_in .size();i++){
  3149. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  3150. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  3151. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  3152. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  3153. }
  3154. for(size_t i=0;i<nodes_out.size();i++){
  3155. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3156. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3157. }
  3158. this->SetupInteracPts(setup_data, false, false, NULL, device);
  3159. { // Resize device buffer
  3160. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3161. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3162. }
  3163. }
  3164. template <class FMMNode>
  3165. void FMM_Pts<FMMNode>::U_List (SetupData<Real_t>& setup_data, bool device){
  3166. //Add U_List contribution.
  3167. //this->EvalListPts(setup_data, device);
  3168. }
  3169. template <class FMMNode>
  3170. void FMM_Pts<FMMNode>::Down2TargetSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3171. { // Set setup_data
  3172. setup_data.level=level;
  3173. setup_data.kernel=&kernel;
  3174. setup_data.interac_type.resize(1);
  3175. setup_data.interac_type[0]=D2T_Type;
  3176. setup_data. input_data=&buff[1];
  3177. setup_data.output_data=&buff[5];
  3178. setup_data. coord_data=&buff[6];
  3179. Vector<FMMNode_t*>& nodes_in =n_list[1];
  3180. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3181. setup_data.nodes_in .clear();
  3182. setup_data.nodes_out.clear();
  3183. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3184. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3185. }
  3186. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3187. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3188. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3189. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3190. for(size_t i=0;i<nodes_in .size();i++){
  3191. input_vector .push_back(&dnwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  3192. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  3193. input_vector .push_back(NULL);
  3194. input_vector .push_back(NULL);
  3195. }
  3196. for(size_t i=0;i<nodes_out.size();i++){
  3197. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3198. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3199. }
  3200. this->SetupInteracPts(setup_data, true, false, NULL, device);
  3201. { // Resize device buffer
  3202. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3203. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3204. }
  3205. }
  3206. template <class FMMNode>
  3207. void FMM_Pts<FMMNode>::Down2Target(SetupData<Real_t>& setup_data, bool device){
  3208. //Add Down2Target contribution.
  3209. //this->EvalListPts(setup_data, device);
  3210. }
  3211. template <class FMMNode>
  3212. void FMM_Pts<FMMNode>::PostProcessing(std::vector<FMMNode_t*>& nodes){
  3213. }
  3214. template <class FMMNode>
  3215. void FMM_Pts<FMMNode>::CopyOutput(FMMNode** nodes, size_t n){
  3216. // for(size_t i=0;i<n;i++){
  3217. // FMMData* fmm_data=((FMMData*)nodes[i]->FMMData());
  3218. // }
  3219. }
  3220. }//end namespace