fmm_tree.txx 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726
  1. /**
  2. * \file fmm_tree.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 12-11-2010
  5. * \brief This file contains the implementation of the class FMM_Tree.
  6. */
  7. #include <omp.h>
  8. #include <sstream>
  9. #include <iomanip>
  10. #include <cassert>
  11. #include <cstdlib>
  12. #include <mpi_node.hpp>
  13. #include <fmm_node.hpp>
  14. #include <mem_mgr.hpp>
  15. #include <mortonid.hpp>
  16. #include <profile.hpp>
  17. #include <vector.hpp>
  18. namespace pvfmm{
  19. template <class FMM_Mat_t>
  20. void FMM_Tree<FMM_Mat_t>::Initialize(typename Node_t::NodeData* init_data) {
  21. Profile::Tic("InitTree",this->Comm(),true);{
  22. //Build octree from points.
  23. MPI_Tree<Node_t>::Initialize(init_data);
  24. Profile::Tic("InitFMMData",this->Comm(),true,5);
  25. { //Initialize FMM data.
  26. std::vector<Node_t*>& nodes=this->GetNodeList();
  27. #pragma omp parallel for
  28. for(size_t i=0;i<nodes.size();i++){
  29. if(nodes[i]->FMMData()==NULL) nodes[i]->FMMData()=mem::aligned_new<typename FMM_Mat_t::FMMData>();
  30. }
  31. }
  32. Profile::Toc();
  33. }Profile::Toc();
  34. }
  35. template <class FMM_Mat_t>
  36. void FMM_Tree<FMM_Mat_t>::InitFMM_Tree(bool refine, BoundaryType bndry_) {
  37. Profile::Tic("InitFMM_Tree",this->Comm(),true);{
  38. interac_list.Initialize(this->Dim());
  39. bndry=bndry_;
  40. if(refine){
  41. //RefineTree
  42. Profile::Tic("RefineTree",this->Comm(),true,5);
  43. this->RefineTree();
  44. Profile::Toc();
  45. }
  46. //2:1 Balancing
  47. Profile::Tic("2:1Balance",this->Comm(),true,5);
  48. this->Balance21(bndry);
  49. Profile::Toc();
  50. //Redistribute nodes.
  51. Profile::Tic("Redistribute",this->Comm(),true,5);
  52. this->RedistNodes();
  53. Profile::Toc();
  54. }Profile::Toc();
  55. }
  56. template <class FMM_Mat_t>
  57. void FMM_Tree<FMM_Mat_t>::SetupFMM(FMM_Mat_t* fmm_mat_) {
  58. Profile::Tic("SetupFMM",this->Comm(),true);{
  59. typedef typename FMM_Mat_t::FMMTree_t MatTree_t;
  60. bool device=true;
  61. #ifdef __INTEL_OFFLOAD
  62. Profile::Tic("InitLocks",this->Comm(),false,3);
  63. MIC_Lock::init();
  64. Profile::Toc();
  65. #endif
  66. //int omp_p=omp_get_max_threads();
  67. if(fmm_mat!=fmm_mat_){ // Clear previous setup
  68. setup_data.clear();
  69. precomp_lst.clear();
  70. fmm_mat=fmm_mat_;
  71. }
  72. //Construct LET
  73. Profile::Tic("ConstructLET",this->Comm(),false,2);
  74. this->ConstructLET(bndry);
  75. Profile::Toc();
  76. //Set Colleagues (Needed to build U, V, W and X lists.)
  77. Profile::Tic("SetColleagues",this->Comm(),false,3);
  78. this->SetColleagues(bndry);
  79. Profile::Toc();
  80. Profile::Tic("BuildLists",this->Comm(),false,3);
  81. BuildInteracLists();
  82. Profile::Toc();
  83. Profile::Tic("CollectNodeData",this->Comm(),false,3);
  84. //Build node list.
  85. Node_t* n=dynamic_cast<Node_t*>(this->PostorderFirst());
  86. std::vector<Node_t*> all_nodes;
  87. while(n!=NULL){
  88. all_nodes.push_back(n);
  89. n=static_cast<Node_t*>(this->PostorderNxt(n));
  90. }
  91. //Collect node data into continuous array.
  92. std::vector<Vector<Node_t*> > node_lists; // TODO: Remove this parameter, not really needed
  93. fmm_mat->CollectNodeData((MatTree_t*)this,all_nodes, node_data_buff, node_lists);
  94. Profile::Toc();
  95. setup_data.resize(8*MAX_DEPTH);
  96. precomp_lst.resize(8);
  97. Profile::Tic("UListSetup",this->Comm(),false,3);
  98. for(size_t i=0;i<MAX_DEPTH;i++){
  99. setup_data[i+MAX_DEPTH*0].precomp_data=&precomp_lst[0];
  100. fmm_mat->U_ListSetup(setup_data[i+MAX_DEPTH*0],(MatTree_t*)this,node_data_buff,node_lists,fmm_mat->ScaleInvar()?(i==0?-1:MAX_DEPTH+1):i, device);
  101. }
  102. Profile::Toc();
  103. Profile::Tic("WListSetup",this->Comm(),false,3);
  104. for(size_t i=0;i<MAX_DEPTH;i++){
  105. setup_data[i+MAX_DEPTH*1].precomp_data=&precomp_lst[1];
  106. fmm_mat->W_ListSetup(setup_data[i+MAX_DEPTH*1],(MatTree_t*)this,node_data_buff,node_lists,fmm_mat->ScaleInvar()?(i==0?-1:MAX_DEPTH+1):i, device);
  107. }
  108. Profile::Toc();
  109. Profile::Tic("XListSetup",this->Comm(),false,3);
  110. for(size_t i=0;i<MAX_DEPTH;i++){
  111. setup_data[i+MAX_DEPTH*2].precomp_data=&precomp_lst[2];
  112. fmm_mat->X_ListSetup(setup_data[i+MAX_DEPTH*2],(MatTree_t*)this,node_data_buff,node_lists,fmm_mat->ScaleInvar()?(i==0?-1:MAX_DEPTH+1):i, device);
  113. }
  114. Profile::Toc();
  115. Profile::Tic("VListSetup",this->Comm(),false,3);
  116. for(size_t i=0;i<MAX_DEPTH;i++){
  117. setup_data[i+MAX_DEPTH*3].precomp_data=&precomp_lst[3];
  118. fmm_mat->V_ListSetup(setup_data[i+MAX_DEPTH*3],(MatTree_t*)this,node_data_buff,node_lists,fmm_mat->ScaleInvar()?(i==0?-1:MAX_DEPTH+1):i, /*device*/ false);
  119. }
  120. Profile::Toc();
  121. Profile::Tic("D2DSetup",this->Comm(),false,3);
  122. for(size_t i=0;i<MAX_DEPTH;i++){
  123. setup_data[i+MAX_DEPTH*4].precomp_data=&precomp_lst[4];
  124. fmm_mat->Down2DownSetup(setup_data[i+MAX_DEPTH*4],(MatTree_t*)this,node_data_buff,node_lists,i, /*device*/ false);
  125. }
  126. Profile::Toc();
  127. Profile::Tic("D2TSetup",this->Comm(),false,3);
  128. for(size_t i=0;i<MAX_DEPTH;i++){
  129. setup_data[i+MAX_DEPTH*5].precomp_data=&precomp_lst[5];
  130. fmm_mat->Down2TargetSetup(setup_data[i+MAX_DEPTH*5],(MatTree_t*)this,node_data_buff,node_lists,fmm_mat->ScaleInvar()?(i==0?-1:MAX_DEPTH+1):i, /*device*/ false);
  131. }
  132. Profile::Toc();
  133. Profile::Tic("S2USetup",this->Comm(),false,3);
  134. for(size_t i=0;i<MAX_DEPTH;i++){
  135. setup_data[i+MAX_DEPTH*6].precomp_data=&precomp_lst[6];
  136. fmm_mat->Source2UpSetup(setup_data[i+MAX_DEPTH*6],(MatTree_t*)this,node_data_buff,node_lists,fmm_mat->ScaleInvar()?(i==0?-1:MAX_DEPTH+1):i, /*device*/ false);
  137. }
  138. Profile::Toc();
  139. Profile::Tic("U2USetup",this->Comm(),false,3);
  140. for(size_t i=0;i<MAX_DEPTH;i++){
  141. setup_data[i+MAX_DEPTH*7].precomp_data=&precomp_lst[7];
  142. fmm_mat->Up2UpSetup(setup_data[i+MAX_DEPTH*7],(MatTree_t*)this,node_data_buff,node_lists,i, /*device*/ false);
  143. }
  144. Profile::Toc();
  145. #ifdef __INTEL_OFFLOAD
  146. int wait_lock_idx=-1;
  147. wait_lock_idx=MIC_Lock::curr_lock();
  148. #pragma offload target(mic:0)
  149. {MIC_Lock::wait_lock(wait_lock_idx);}
  150. #endif
  151. ClearFMMData();
  152. }Profile::Toc();
  153. }
  154. template <class FMM_Mat_t>
  155. void FMM_Tree<FMM_Mat_t>::ClearFMMData() {
  156. Profile::Tic("ClearFMMData",this->Comm(),true);{
  157. bool device=true;
  158. int omp_p=omp_get_max_threads();
  159. #pragma omp parallel for
  160. for(int j=0;j<omp_p;j++){
  161. Matrix<Real_t>* mat;
  162. mat=setup_data[0+MAX_DEPTH*1]. input_data;
  163. if(mat!=NULL){
  164. size_t a=(mat->Dim(0)*mat->Dim(1)*(j+0))/omp_p;
  165. size_t b=(mat->Dim(0)*mat->Dim(1)*(j+1))/omp_p;
  166. memset(&(*mat)[0][a],0,(b-a)*sizeof(Real_t));
  167. }
  168. mat=setup_data[0+MAX_DEPTH*2].output_data;
  169. if(mat!=NULL){
  170. size_t a=(mat->Dim(0)*mat->Dim(1)*(j+0))/omp_p;
  171. size_t b=(mat->Dim(0)*mat->Dim(1)*(j+1))/omp_p;
  172. memset(&(*mat)[0][a],0,(b-a)*sizeof(Real_t));
  173. }
  174. mat=setup_data[0+MAX_DEPTH*0].output_data;
  175. if(mat!=NULL){
  176. size_t a=(mat->Dim(0)*mat->Dim(1)*(j+0))/omp_p;
  177. size_t b=(mat->Dim(0)*mat->Dim(1)*(j+1))/omp_p;
  178. memset(&(*mat)[0][a],0,(b-a)*sizeof(Real_t));
  179. }
  180. }
  181. if(device){ // Host2Device
  182. if(setup_data[0+MAX_DEPTH*1]. input_data!=NULL) setup_data[0+MAX_DEPTH*1]. input_data->AllocDevice(true);
  183. if(setup_data[0+MAX_DEPTH*2].output_data!=NULL) setup_data[0+MAX_DEPTH*2].output_data->AllocDevice(true);
  184. if(setup_data[0+MAX_DEPTH*0].output_data!=NULL) setup_data[0+MAX_DEPTH*0].output_data->AllocDevice(true);
  185. #ifdef __INTEL_OFFLOAD
  186. if(!fmm_mat->ScaleInvar()){ // Wait
  187. int wait_lock_idx=-1;
  188. wait_lock_idx=MIC_Lock::curr_lock();
  189. #pragma offload target(mic:0)
  190. {MIC_Lock::wait_lock(wait_lock_idx);}
  191. }
  192. MIC_Lock::init();
  193. #endif
  194. }
  195. }Profile::Toc();
  196. }
  197. template <class FMM_Mat_t>
  198. void FMM_Tree<FMM_Mat_t>::RunFMM() {
  199. Profile::Tic("RunFMM",this->Comm(),true);{
  200. //Upward Pass
  201. Profile::Tic("UpwardPass",this->Comm(),false,2);
  202. UpwardPass();
  203. Profile::Toc();
  204. //Multipole Reduce Broadcast.
  205. Profile::Tic("ReduceBcast",this->Comm(),true,2);
  206. MultipoleReduceBcast();
  207. Profile::Toc();
  208. //Local 2:1 Balancing.
  209. //This can cause load imbalance, always use global 2:1 balance instead.
  210. //Profile::Tic("2:1Balance(local)",this->Comm(),false,3);
  211. //this->Balance21_local(bndry);
  212. //UpwardPass(true);
  213. //Profile::Toc();
  214. //Downward Pass
  215. Profile::Tic("DownwardPass",this->Comm(),true,2);
  216. DownwardPass();
  217. Profile::Toc();
  218. }Profile::Toc();
  219. }
  220. template <class FMM_Mat_t>
  221. void FMM_Tree<FMM_Mat_t>::UpwardPass() {
  222. //bool device=true;
  223. int max_depth=0;
  224. { // Get max_depth
  225. int max_depth_loc=0;
  226. std::vector<Node_t*>& nodes=this->GetNodeList();
  227. for(size_t i=0;i<nodes.size();i++){
  228. Node_t* n=nodes[i];
  229. if(n->Depth()>max_depth_loc) max_depth_loc=n->Depth();
  230. }
  231. MPI_Allreduce(&max_depth_loc, &max_depth, 1, MPI_INT, MPI_MAX, *this->Comm());
  232. }
  233. //Upward Pass (initialize all leaf nodes)
  234. Profile::Tic("S2U",this->Comm(),false,5);
  235. for(int i=0; i<=(fmm_mat->ScaleInvar()?0:max_depth); i++){ // Source2Up
  236. if(!fmm_mat->ScaleInvar()) fmm_mat->SetupPrecomp(setup_data[i+MAX_DEPTH*6],/*device*/ false);
  237. fmm_mat->Source2Up(setup_data[i+MAX_DEPTH*6]);
  238. }
  239. Profile::Toc();
  240. //Upward Pass (level by level)
  241. Profile::Tic("U2U",this->Comm(),false,5);
  242. for(int i=max_depth-1; i>=0; i--){ // Up2Up
  243. if(!fmm_mat->ScaleInvar()) fmm_mat->SetupPrecomp(setup_data[i+MAX_DEPTH*7],/*device*/ false);
  244. fmm_mat->Up2Up(setup_data[i+MAX_DEPTH*7]);
  245. }
  246. Profile::Toc();
  247. }
  248. template <class FMM_Mat_t>
  249. void FMM_Tree<FMM_Mat_t>::BuildInteracLists() {
  250. std::vector<Node_t*>& n_list=this->GetNodeList();
  251. size_t node_cnt=n_list.size();
  252. size_t all_interac_cnt=0;
  253. size_t interac_cnt[Type_Count];
  254. for(size_t i=0;i<Type_Count;i++){
  255. interac_cnt[i]=interac_list.ListCount((Mat_Type)i);
  256. all_interac_cnt+=interac_cnt[i];
  257. }
  258. node_interac_lst.ReInit(node_cnt,all_interac_cnt);
  259. // Build interaction lists.
  260. int omp_p=omp_get_max_threads();
  261. #pragma omp parallel for
  262. for(int j=0;j<omp_p;j++){
  263. size_t a=(node_cnt*(j ))/omp_p;
  264. size_t b=(node_cnt*(j+1))/omp_p;
  265. for(size_t i=a;i<b;i++){
  266. size_t offset=0;
  267. Node_t* n=n_list[i];
  268. for(size_t k=0;k<Type_Count;k++){
  269. n->interac_list[k].ReInit(interac_cnt[k],&node_interac_lst[i][offset],false);
  270. interac_list.BuildList(n,(Mat_Type)k);
  271. offset+=interac_cnt[k];
  272. }
  273. }
  274. }
  275. }
  276. template <class FMM_Mat_t>
  277. void FMM_Tree<FMM_Mat_t>::MultipoleReduceBcast() {
  278. int num_p,rank;
  279. MPI_Comm_size(*this->Comm(),&num_p);
  280. MPI_Comm_rank(*this->Comm(),&rank );
  281. if(num_p==1) return;
  282. Profile::Tic("Reduce",this->Comm(),true,3);
  283. std::vector<MortonId> mins=this->GetMins();
  284. size_t bit_mask=1;
  285. size_t max_child=(1UL<<this->Dim());
  286. //Initialize initial send nodes.
  287. std::vector<Node_t*> send_nodes[2];
  288. //Initialize send_node[0]
  289. Node_t* tmp_node=static_cast<Node_t*>(this->RootNode());
  290. assert(!tmp_node->IsGhost());
  291. while(!tmp_node->IsLeaf()){
  292. Node_t* tmp_node_=NULL;
  293. for(size_t i=0;i<max_child;i++){
  294. tmp_node_=static_cast<Node_t*>(tmp_node->Child(i));
  295. if(tmp_node_!=NULL) if(!tmp_node_->IsGhost()) break;
  296. }
  297. tmp_node=tmp_node_; assert(tmp_node!=NULL);
  298. }
  299. int n[2];
  300. n[0]=tmp_node->Depth()+1;
  301. send_nodes[0].resize(n[0]);
  302. send_nodes[0][n[0]-1]=tmp_node;
  303. for(int i=n[0]-1;i>0;i--)
  304. send_nodes[0][i-1]=static_cast<Node_t*>(send_nodes[0][i]->Parent());
  305. //Initialize send_node[1]
  306. tmp_node=static_cast<Node_t*>(this->RootNode());
  307. while(!tmp_node->IsLeaf()){
  308. Node_t* tmp_node_=NULL;
  309. for(int i=max_child-1;i>=0;i--){
  310. tmp_node_=static_cast<Node_t*>(tmp_node->Child(i));
  311. if(tmp_node_!=NULL) if(!tmp_node_->IsGhost()) break;
  312. }
  313. tmp_node=tmp_node_; assert(tmp_node!=NULL);
  314. }
  315. n[1]=tmp_node->Depth()+1;
  316. send_nodes[1].resize(n[1]);
  317. send_nodes[1][n[1]-1]=tmp_node;
  318. for(int i=n[1]-1;i>0;i--)
  319. send_nodes[1][i-1]=static_cast<Node_t*>(send_nodes[1][i]->Parent());
  320. //Hypercube reduction.
  321. while(bit_mask<(size_t)num_p){
  322. size_t partner=rank^bit_mask; //Partner process id
  323. int merge_indx=((bit_mask & rank)==0?1:0);
  324. bit_mask=bit_mask<<1;
  325. //if(rank >= num_p - (num_p % bit_mask)) break;
  326. //Initialize send data.
  327. size_t s_node_cnt[2]={send_nodes[0].size(),send_nodes[1].size()};
  328. int send_size=2*sizeof(size_t)+(s_node_cnt[0]+s_node_cnt[1])*sizeof(MortonId);
  329. std::vector<PackedData> send_data(s_node_cnt[0]+s_node_cnt[1]);
  330. size_t s_iter=0;
  331. for(int i=0;i<2;i++)
  332. for(size_t j=0;j<s_node_cnt[i];j++){
  333. assert(send_nodes[i][j]!=NULL);
  334. send_data[s_iter]=send_nodes[i][j]->PackMultipole();
  335. send_size+=send_data[s_iter].length+sizeof(size_t);
  336. s_iter++;
  337. }
  338. char* send_buff=mem::aligned_new<char>(send_size);
  339. char* buff_iter=send_buff;
  340. ((size_t*)buff_iter)[0]=s_node_cnt[0];
  341. ((size_t*)buff_iter)[1]=s_node_cnt[1];
  342. buff_iter+=2*sizeof(size_t);
  343. s_iter=0;
  344. for(int i=0;i<2;i++)
  345. for(size_t j=0;j<s_node_cnt[i];j++){
  346. ((MortonId*)buff_iter)[0]=send_nodes[i][j]->GetMortonId();
  347. buff_iter+=sizeof(MortonId);
  348. ((size_t*)buff_iter)[0]=send_data[s_iter].length;
  349. buff_iter+=sizeof(size_t);
  350. mem::memcopy((void*)buff_iter,send_data[s_iter].data,send_data[s_iter].length);
  351. buff_iter+=send_data[s_iter].length;
  352. s_iter++;
  353. }
  354. //Exchange send and recv sizes
  355. int recv_size=0;
  356. MPI_Status status;
  357. char* recv_buff=NULL;
  358. if(partner<(size_t)num_p){
  359. MPI_Sendrecv(&send_size, 1, MPI_INT, partner, 0, &recv_size, 1, MPI_INT, partner, 0, *this->Comm(), &status);
  360. recv_buff=mem::aligned_new<char>(recv_size);
  361. MPI_Sendrecv(send_buff, send_size, MPI_BYTE, partner, 0, recv_buff, recv_size, MPI_BYTE, partner, 0, *this->Comm(), &status);
  362. }
  363. //Need an extra broadcast for incomplete hypercubes.
  364. size_t p0_start=num_p - (num_p % (bit_mask ));
  365. size_t p0_end =num_p - (num_p % (bit_mask>>1));
  366. if(((size_t)rank >= p0_start) && ((size_t)num_p>p0_end) && ((size_t)rank < p0_end) ){
  367. size_t bit_mask0=1;
  368. size_t num_p0=p0_end-p0_start;
  369. while( bit_mask0 < num_p0 ){
  370. if( (bit_mask0<<1) > (num_p - p0_end) ){
  371. size_t partner0=rank^bit_mask0;
  372. if( rank-p0_start < bit_mask0 ){
  373. //Send
  374. MPI_Send(&recv_size, 1, MPI_INT , partner0, 0, *this->Comm());
  375. MPI_Send( recv_buff, recv_size, MPI_BYTE, partner0, 0, *this->Comm());
  376. }else if( rank-p0_start < (bit_mask0<<1) ){
  377. //Receive
  378. if(recv_size>0) mem::aligned_delete<char>(recv_buff);
  379. MPI_Recv(&recv_size, 1, MPI_INT , partner0, 0, *this->Comm(), &status);
  380. recv_buff=mem::aligned_new<char>(recv_size);
  381. MPI_Recv( recv_buff, recv_size, MPI_BYTE, partner0, 0, *this->Comm(), &status);
  382. }
  383. }
  384. bit_mask0=bit_mask0<<1;
  385. }
  386. }
  387. //Construct nodes from received data.
  388. if(recv_size>0){
  389. buff_iter=recv_buff;
  390. size_t r_node_cnt[2]={((size_t*)buff_iter)[0],((size_t*)buff_iter)[1]};
  391. buff_iter+=2*sizeof(size_t);
  392. std::vector<MortonId> r_mid[2];
  393. r_mid[0].resize(r_node_cnt[0]);
  394. r_mid[1].resize(r_node_cnt[1]);
  395. std::vector<Node_t*> recv_nodes[2];
  396. recv_nodes[0].resize(r_node_cnt[0]);
  397. recv_nodes[1].resize(r_node_cnt[1]);
  398. std::vector<PackedData> recv_data[2];
  399. recv_data[0].resize(r_node_cnt[0]);
  400. recv_data[1].resize(r_node_cnt[1]);
  401. for(int i=0;i<2;i++)
  402. for(size_t j=0;j<r_node_cnt[i];j++){
  403. r_mid[i][j]=((MortonId*)buff_iter)[0];
  404. buff_iter+=sizeof(MortonId);
  405. recv_data[i][j].length=((size_t*)buff_iter)[0];
  406. buff_iter+=sizeof(size_t);
  407. recv_data[i][j].data=(void*)buff_iter;
  408. buff_iter+=recv_data[i][j].length;
  409. }
  410. // Add multipole expansion to existing nodes.
  411. for(size_t i=0;i<r_node_cnt[1-merge_indx];i++){
  412. if(i<send_nodes[merge_indx].size()){
  413. if(r_mid[1-merge_indx][i]==send_nodes[merge_indx][i]->GetMortonId()){
  414. send_nodes[merge_indx][i]->AddMultipole(recv_data[1-merge_indx][i]);
  415. }else break;
  416. }else break;
  417. }
  418. bool new_branch=false;
  419. for(size_t i=0;i<r_node_cnt[merge_indx];i++){
  420. if(i<send_nodes[merge_indx].size() && !new_branch){
  421. if(r_mid[merge_indx][i]==send_nodes[merge_indx][i]->GetMortonId()){
  422. recv_nodes[merge_indx][i]=send_nodes[merge_indx][i];
  423. }else{
  424. new_branch=true;
  425. size_t n_=(i<(size_t)n[merge_indx]?n[merge_indx]:i);
  426. for(size_t j=n_;j<send_nodes[merge_indx].size();j++)
  427. mem::aligned_delete(send_nodes[merge_indx][j]);
  428. if(i<(size_t)n[merge_indx]) n[merge_indx]=i;
  429. }
  430. }
  431. if(i>=send_nodes[merge_indx].size() || new_branch){
  432. recv_nodes[merge_indx][i]=static_cast<Node_t*>(this->NewNode());
  433. recv_nodes[merge_indx][i]->SetCoord(r_mid[merge_indx][i]);
  434. recv_nodes[merge_indx][i]->InitMultipole(recv_data[merge_indx][i]);
  435. }
  436. }
  437. send_nodes[merge_indx]=recv_nodes[merge_indx];
  438. }
  439. mem::aligned_delete<char>(send_buff);
  440. mem::aligned_delete<char>(recv_buff);
  441. }
  442. for(int i=0;i<2;i++)
  443. for(size_t j=n[i];j<send_nodes[i].size();j++)
  444. mem::aligned_delete(send_nodes[i][j]);
  445. Profile::Toc();
  446. //Now Broadcast nodes to build LET.
  447. Profile::Tic("Broadcast",this->Comm(),true,4);
  448. this->ConstructLET(bndry);
  449. Profile::Toc();
  450. }
  451. template <class FMM_Mat_t>
  452. void FMM_Tree<FMM_Mat_t>::DownwardPass() {
  453. bool device=true;
  454. Profile::Tic("Setup",this->Comm(),true,3);
  455. std::vector<Node_t*> leaf_nodes;
  456. int max_depth=0;
  457. { // Build leaf node list
  458. int max_depth_loc=0;
  459. std::vector<Node_t*>& nodes=this->GetNodeList();
  460. for(size_t i=0;i<nodes.size();i++){
  461. Node_t* n=nodes[i];
  462. if(!n->IsGhost() && n->IsLeaf()) leaf_nodes.push_back(n);
  463. if(n->Depth()>max_depth_loc) max_depth_loc=n->Depth();
  464. }
  465. MPI_Allreduce(&max_depth_loc, &max_depth, 1, MPI_INT, MPI_MAX, *this->Comm());
  466. }
  467. Profile::Toc();
  468. #if defined(__INTEL_OFFLOAD) || defined(PVFMM_HAVE_CUDA)
  469. if(device){ // Host2Device:Src
  470. Profile::Tic("Host2Device:Src",this->Comm(),false,5);
  471. if(setup_data[0+MAX_DEPTH*2]. coord_data!=NULL) setup_data[0+MAX_DEPTH*2]. coord_data->AllocDevice(true);
  472. if(setup_data[0+MAX_DEPTH*2]. input_data!=NULL) setup_data[0+MAX_DEPTH*2]. input_data->AllocDevice(true);
  473. Profile::Toc();
  474. }
  475. #endif
  476. if(bndry==Periodic){ //Add contribution from periodic infinite tiling.
  477. Profile::Tic("BoundaryCondition",this->Comm(),false,5);
  478. fmm_mat->PeriodicBC(dynamic_cast<Node_t*>(this->RootNode()));
  479. Profile::Toc();
  480. }
  481. for(size_t i=0; i<=(fmm_mat->ScaleInvar()?0:max_depth); i++){ // U,V,W,X-lists
  482. if(!fmm_mat->ScaleInvar()){ // Precomp
  483. std::stringstream level_str;
  484. level_str<<"Level-"<<std::setfill('0')<<std::setw(2)<<i<<"\0";
  485. Profile::Tic(level_str.str().c_str(),this->Comm(),false,5);
  486. Profile::Tic("Precomp",this->Comm(),false,5);
  487. {// Precomp U
  488. Profile::Tic("Precomp-U",this->Comm(),false,10);
  489. fmm_mat->SetupPrecomp(setup_data[i+MAX_DEPTH*0],device);
  490. Profile::Toc();
  491. }
  492. {// Precomp W
  493. Profile::Tic("Precomp-W",this->Comm(),false,10);
  494. fmm_mat->SetupPrecomp(setup_data[i+MAX_DEPTH*1],device);
  495. Profile::Toc();
  496. }
  497. {// Precomp X
  498. Profile::Tic("Precomp-X",this->Comm(),false,10);
  499. fmm_mat->SetupPrecomp(setup_data[i+MAX_DEPTH*2],device);
  500. Profile::Toc();
  501. }
  502. {// Precomp V
  503. Profile::Tic("Precomp-V",this->Comm(),false,10);
  504. fmm_mat->SetupPrecomp(setup_data[i+MAX_DEPTH*3], /*device*/ false);
  505. Profile::Toc();
  506. }
  507. Profile::Toc();
  508. }
  509. {// X-List
  510. Profile::Tic("X-List",this->Comm(),false,5);
  511. fmm_mat->X_List(setup_data[i+MAX_DEPTH*2], device);
  512. Profile::Toc();
  513. }
  514. #if defined(__INTEL_OFFLOAD) || defined(PVFMM_HAVE_CUDA)
  515. if(i==0 && device){ // Host2Device:Mult
  516. Profile::Tic("Host2Device:Mult",this->Comm(),false,5);
  517. if(setup_data[0+MAX_DEPTH*1]. input_data!=NULL) setup_data[0+MAX_DEPTH*1]. input_data->AllocDevice(true);
  518. Profile::Toc();
  519. }
  520. if(device) if(i==(fmm_mat->ScaleInvar()?0:max_depth)){ // Device2Host: LocalExp
  521. Profile::Tic("Device2Host:LocExp",this->Comm(),false,5);
  522. if(setup_data[0+MAX_DEPTH*2].output_data!=NULL){
  523. Matrix<Real_t>& output_data=*setup_data[0+MAX_DEPTH*2].output_data;
  524. assert(fmm_mat->dev_buffer.Dim()>=output_data.Dim(0)*output_data.Dim(1));
  525. output_data.Device2Host((Real_t*)&fmm_mat->dev_buffer[0]);
  526. }
  527. Profile::Toc();
  528. }
  529. #endif
  530. {// W-List
  531. Profile::Tic("W-List",this->Comm(),false,5);
  532. fmm_mat->W_List(setup_data[i+MAX_DEPTH*1], device);
  533. Profile::Toc();
  534. }
  535. {// U-List
  536. Profile::Tic("U-List",this->Comm(),false,5);
  537. fmm_mat->U_List(setup_data[i+MAX_DEPTH*0], device);
  538. Profile::Toc();
  539. }
  540. {// V-List
  541. Profile::Tic("V-List",this->Comm(),false,5);
  542. fmm_mat->V_List(setup_data[i+MAX_DEPTH*3], /*device*/ false);
  543. Profile::Toc();
  544. }
  545. if(!fmm_mat->ScaleInvar()){ // Wait
  546. #ifdef __INTEL_OFFLOAD
  547. int wait_lock_idx=-1;
  548. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  549. #pragma offload if(device) target(mic:0)
  550. {if(device) MIC_Lock::wait_lock(wait_lock_idx);}
  551. #endif
  552. Profile::Toc();
  553. }
  554. }
  555. #if defined(__INTEL_OFFLOAD) || defined(PVFMM_HAVE_CUDA)
  556. Profile::Tic("D2H_Wait:LocExp",this->Comm(),false,5);
  557. if(device) if(setup_data[0+MAX_DEPTH*2].output_data!=NULL){
  558. Real_t* dev_ptr=(Real_t*)&fmm_mat->dev_buffer[0];
  559. Matrix<Real_t>& output_data=*setup_data[0+MAX_DEPTH*2].output_data;
  560. size_t n=output_data.Dim(0)*output_data.Dim(1);
  561. Real_t* host_ptr=output_data[0];
  562. output_data.Device2HostWait();
  563. #pragma omp parallel for
  564. for(size_t i=0;i<n;i++){
  565. host_ptr[i]+=dev_ptr[i];
  566. }
  567. }
  568. Profile::Toc();
  569. Profile::Tic("Device2Host:Trg",this->Comm(),false,5);
  570. if(device) if(setup_data[0+MAX_DEPTH*0].output_data!=NULL){ // Device2Host: Target
  571. Matrix<Real_t>& output_data=*setup_data[0+MAX_DEPTH*0].output_data;
  572. assert(fmm_mat->dev_buffer.Dim()>=output_data.Dim(0)*output_data.Dim(1));
  573. output_data.Device2Host((Real_t*)&fmm_mat->dev_buffer[0]);
  574. }
  575. Profile::Toc();
  576. #endif
  577. Profile::Tic("D2D",this->Comm(),false,5);
  578. for(size_t i=0; i<=max_depth; i++){ // Down2Down
  579. if(!fmm_mat->ScaleInvar()) fmm_mat->SetupPrecomp(setup_data[i+MAX_DEPTH*4],/*device*/ false);
  580. fmm_mat->Down2Down(setup_data[i+MAX_DEPTH*4]);
  581. }
  582. Profile::Toc();
  583. Profile::Tic("D2T",this->Comm(),false,5);
  584. for(int i=0; i<=(fmm_mat->ScaleInvar()?0:max_depth); i++){ // Down2Target
  585. if(!fmm_mat->ScaleInvar()) fmm_mat->SetupPrecomp(setup_data[i+MAX_DEPTH*5],/*device*/ false);
  586. fmm_mat->Down2Target(setup_data[i+MAX_DEPTH*5]);
  587. }
  588. Profile::Toc();
  589. #if defined(__INTEL_OFFLOAD) || defined(PVFMM_HAVE_CUDA)
  590. Profile::Tic("D2H_Wait:Trg",this->Comm(),false,5);
  591. if(device) if(setup_data[0+MAX_DEPTH*0].output_data!=NULL){
  592. Real_t* dev_ptr=(Real_t*)&fmm_mat->dev_buffer[0];
  593. Matrix<Real_t>& output_data=*setup_data[0+MAX_DEPTH*0].output_data;
  594. size_t n=output_data.Dim(0)*output_data.Dim(1);
  595. Real_t* host_ptr=output_data[0];
  596. output_data.Device2HostWait();
  597. #pragma omp parallel for
  598. for(size_t i=0;i<n;i++){
  599. host_ptr[i]+=dev_ptr[i];
  600. }
  601. }
  602. Profile::Toc();
  603. #endif
  604. Profile::Tic("PostProc",this->Comm(),false,5);
  605. fmm_mat->PostProcessing(leaf_nodes);
  606. Profile::Toc();
  607. }
  608. template <class FMM_Mat_t>
  609. void FMM_Tree<FMM_Mat_t>::Copy_FMMOutput() {
  610. std::vector<Node_t*>& all_nodes=this->GetNodeList();
  611. int omp_p=omp_get_max_threads();
  612. // Copy output to the tree.
  613. {
  614. size_t k=all_nodes.size();
  615. #pragma omp parallel for
  616. for(int j=0;j<omp_p;j++){
  617. size_t a=(k*j)/omp_p;
  618. size_t b=(k*(j+1))/omp_p;
  619. fmm_mat->CopyOutput(&(all_nodes[a]),b-a);
  620. }
  621. }
  622. }
  623. }//end namespace