fmm_pts.txx 135 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508
  1. /**
  2. * \file fmm_pts.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 3-07-2011
  5. * \brief This file contains the implementation of the FMM_Pts class.
  6. */
  7. #include <omp.h>
  8. #include <cmath>
  9. #include <cstdlib>
  10. #include <cassert>
  11. #include <sstream>
  12. #include <iostream>
  13. #include <stdint.h>
  14. #include <set>
  15. #ifdef PVFMM_HAVE_SYS_STAT_H
  16. #include <sys/stat.h>
  17. #endif
  18. #ifdef __SSE__
  19. #include <xmmintrin.h>
  20. #endif
  21. #ifdef __SSE2__
  22. #include <emmintrin.h>
  23. #endif
  24. #ifdef __SSE3__
  25. #include <pmmintrin.h>
  26. #endif
  27. #ifdef __AVX__
  28. #include <immintrin.h>
  29. #endif
  30. #if defined(__MIC__)
  31. #include <immintrin.h>
  32. #endif
  33. #include <profile.hpp>
  34. namespace pvfmm{
  35. /**
  36. * \brief Returns the coordinates of points on the surface of a cube.
  37. * \param[in] p Number of points on an edge of the cube is (n+1)
  38. * \param[in] c Coordinates to the centre of the cube (3D array).
  39. * \param[in] alpha Scaling factor for the size of the cube.
  40. * \param[in] depth Depth of the cube in the octree.
  41. * \return Vector with coordinates of points on the surface of the cube in the
  42. * format [x0 y0 z0 x1 y1 z1 .... ].
  43. */
  44. template <class Real_t>
  45. std::vector<Real_t> surface(int p, Real_t* c, Real_t alpha, int depth){
  46. size_t n_=(6*(p-1)*(p-1)+2); //Total number of points.
  47. std::vector<Real_t> coord(n_*3);
  48. coord[0]=coord[1]=coord[2]=-1.0;
  49. size_t cnt=1;
  50. for(int i=0;i<p-1;i++)
  51. for(int j=0;j<p-1;j++){
  52. coord[cnt*3 ]=-1.0;
  53. coord[cnt*3+1]=(2.0*(i+1)-p+1)/(p-1);
  54. coord[cnt*3+2]=(2.0*j-p+1)/(p-1);
  55. cnt++;
  56. }
  57. for(int i=0;i<p-1;i++)
  58. for(int j=0;j<p-1;j++){
  59. coord[cnt*3 ]=(2.0*i-p+1)/(p-1);
  60. coord[cnt*3+1]=-1.0;
  61. coord[cnt*3+2]=(2.0*(j+1)-p+1)/(p-1);
  62. cnt++;
  63. }
  64. for(int i=0;i<p-1;i++)
  65. for(int j=0;j<p-1;j++){
  66. coord[cnt*3 ]=(2.0*(i+1)-p+1)/(p-1);
  67. coord[cnt*3+1]=(2.0*j-p+1)/(p-1);
  68. coord[cnt*3+2]=-1.0;
  69. cnt++;
  70. }
  71. for(size_t i=0;i<(n_/2)*3;i++)
  72. coord[cnt*3+i]=-coord[i];
  73. Real_t r = 0.5*pow(0.5,depth);
  74. Real_t b = alpha*r;
  75. for(size_t i=0;i<n_;i++){
  76. coord[i*3+0]=(coord[i*3+0]+1.0)*b+c[0];
  77. coord[i*3+1]=(coord[i*3+1]+1.0)*b+c[1];
  78. coord[i*3+2]=(coord[i*3+2]+1.0)*b+c[2];
  79. }
  80. return coord;
  81. }
  82. /**
  83. * \brief Returns the coordinates of points on the upward check surface of cube.
  84. * \see surface()
  85. */
  86. template <class Real_t>
  87. std::vector<Real_t> u_check_surf(int p, Real_t* c, int depth){
  88. Real_t r=0.5*pow(0.5,depth);
  89. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  90. return surface(p,coord,(Real_t)RAD1,depth);
  91. }
  92. /**
  93. * \brief Returns the coordinates of points on the upward equivalent surface of cube.
  94. * \see surface()
  95. */
  96. template <class Real_t>
  97. std::vector<Real_t> u_equiv_surf(int p, Real_t* c, int depth){
  98. Real_t r=0.5*pow(0.5,depth);
  99. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  100. return surface(p,coord,(Real_t)RAD0,depth);
  101. }
  102. /**
  103. * \brief Returns the coordinates of points on the downward check surface of cube.
  104. * \see surface()
  105. */
  106. template <class Real_t>
  107. std::vector<Real_t> d_check_surf(int p, Real_t* c, int depth){
  108. Real_t r=0.5*pow(0.5,depth);
  109. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  110. return surface(p,coord,(Real_t)RAD0,depth);
  111. }
  112. /**
  113. * \brief Returns the coordinates of points on the downward equivalent surface of cube.
  114. * \see surface()
  115. */
  116. template <class Real_t>
  117. std::vector<Real_t> d_equiv_surf(int p, Real_t* c, int depth){
  118. Real_t r=0.5*pow(0.5,depth);
  119. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  120. return surface(p,coord,(Real_t)RAD1,depth);
  121. }
  122. /**
  123. * \brief Defines the 3D grid for convolution in FFT acceleration of V-list.
  124. * \see surface()
  125. */
  126. template <class Real_t>
  127. std::vector<Real_t> conv_grid(int p, Real_t* c, int depth){
  128. Real_t r=pow(0.5,depth);
  129. Real_t a=r*RAD0;
  130. Real_t coord[3]={c[0],c[1],c[2]};
  131. int n1=p*2;
  132. int n2=(int)pow((Real_t)n1,2);
  133. int n3=(int)pow((Real_t)n1,3);
  134. std::vector<Real_t> grid(n3*3);
  135. for(int i=0;i<n1;i++)
  136. for(int j=0;j<n1;j++)
  137. for(int k=0;k<n1;k++){
  138. grid[(i+n1*j+n2*k)*3+0]=(i-p)*a/(p-1)+coord[0];
  139. grid[(i+n1*j+n2*k)*3+1]=(j-p)*a/(p-1)+coord[1];
  140. grid[(i+n1*j+n2*k)*3+2]=(k-p)*a/(p-1)+coord[2];
  141. }
  142. return grid;
  143. }
  144. template <class Real_t>
  145. void FMM_Data<Real_t>::Clear(){
  146. upward_equiv.Resize(0);
  147. }
  148. template <class Real_t>
  149. PackedData FMM_Data<Real_t>::PackMultipole(void* buff_ptr){
  150. PackedData p0; p0.data=buff_ptr;
  151. p0.length=upward_equiv.Dim()*sizeof(Real_t);
  152. if(p0.length==0) return p0;
  153. if(p0.data==NULL) p0.data=(char*)&upward_equiv[0];
  154. else mem::memcopy(p0.data,&upward_equiv[0],p0.length);
  155. return p0;
  156. }
  157. template <class Real_t>
  158. void FMM_Data<Real_t>::AddMultipole(PackedData p0){
  159. Real_t* data=(Real_t*)p0.data;
  160. size_t n=p0.length/sizeof(Real_t);
  161. assert(upward_equiv.Dim()==n);
  162. Matrix<Real_t> v0(1,n,&upward_equiv[0],false);
  163. Matrix<Real_t> v1(1,n,data,false);
  164. v0+=v1;
  165. }
  166. template <class Real_t>
  167. void FMM_Data<Real_t>::InitMultipole(PackedData p0, bool own_data){
  168. Real_t* data=(Real_t*)p0.data;
  169. size_t n=p0.length/sizeof(Real_t);
  170. if(n==0) return;
  171. if(own_data){
  172. upward_equiv=Vector<Real_t>(n, &data[0], false);
  173. }else{
  174. upward_equiv.ReInit(n, &data[0], false);
  175. }
  176. }
  177. template <class FMMNode>
  178. FMM_Pts<FMMNode>::~FMM_Pts() {
  179. if(mat!=NULL){
  180. // int rank;
  181. // MPI_Comm_rank(comm,&rank);
  182. // if(rank==0) mat->Save2File("Precomp.data");
  183. delete mat;
  184. mat=NULL;
  185. }
  186. if(vprecomp_fft_flag) FFTW_t<Real_t>::fft_destroy_plan(vprecomp_fftplan);
  187. #ifdef __INTEL_OFFLOAD0
  188. #pragma offload target(mic:0)
  189. #endif
  190. {
  191. if(vlist_fft_flag ) FFTW_t<Real_t>::fft_destroy_plan(vlist_fftplan );
  192. if(vlist_ifft_flag) FFTW_t<Real_t>::fft_destroy_plan(vlist_ifftplan);
  193. vlist_fft_flag =false;
  194. vlist_ifft_flag=false;
  195. }
  196. }
  197. template <class FMMNode>
  198. void FMM_Pts<FMMNode>::Initialize(int mult_order, const MPI_Comm& comm_, const Kernel<Real_t>* kernel_, const Kernel<Real_t>* aux_kernel_){
  199. Profile::Tic("InitFMM_Pts",&comm_,true);{
  200. multipole_order=mult_order;
  201. comm=comm_;
  202. kernel=*kernel_;
  203. aux_kernel=*(aux_kernel_?aux_kernel_:kernel_);
  204. assert(kernel.ker_dim[0]==aux_kernel.ker_dim[0]);
  205. mat=new PrecompMat<Real_t>(Homogen(), MAX_DEPTH+1);
  206. if(this->mat_fname.size()==0){
  207. std::stringstream st;
  208. st<<PVFMM_PRECOMP_DATA_PATH;
  209. if(!st.str().size()){ // look in PVFMM_DIR
  210. char* pvfmm_dir = getenv ("PVFMM_DIR");
  211. if(pvfmm_dir) st<<pvfmm_dir<<'/';
  212. }
  213. #ifndef STAT_MACROS_BROKEN
  214. if(st.str().size()){ // check if the path is a directory
  215. struct stat stat_buff;
  216. if(stat(st.str().c_str(), &stat_buff) || !S_ISDIR(stat_buff.st_mode)){
  217. std::cout<<"error: path not found: "<<st.str()<<'\n';
  218. exit(0);
  219. }
  220. }
  221. #endif
  222. st<<"Precomp_"<<kernel.ker_name.c_str()<<"_m"<<mult_order;
  223. if(sizeof(Real_t)==8) st<<"";
  224. else if(sizeof(Real_t)==4) st<<"_f";
  225. else st<<"_t"<<sizeof(Real_t);
  226. st<<".data";
  227. this->mat_fname=st.str();
  228. }
  229. this->mat->LoadFile(mat_fname.c_str(), this->comm);
  230. interac_list.Initialize(COORD_DIM, this->mat);
  231. Profile::Tic("PrecompUC2UE",&comm,false,4);
  232. this->PrecompAll(UC2UE_Type);
  233. Profile::Toc();
  234. Profile::Tic("PrecompDC2DE",&comm,false,4);
  235. this->PrecompAll(DC2DE_Type);
  236. Profile::Toc();
  237. Profile::Tic("PrecompBC",&comm,false,4);
  238. { /*
  239. int type=BC_Type;
  240. for(int l=0;l<MAX_DEPTH;l++)
  241. for(size_t indx=0;indx<this->interac_list.ListCount((Mat_Type)type);indx++){
  242. Matrix<Real_t>& M=this->mat->Mat(l, (Mat_Type)type, indx);
  243. M.Resize(0,0);
  244. } // */
  245. }
  246. this->PrecompAll(BC_Type,0);
  247. Profile::Toc();
  248. Profile::Tic("PrecompU2U",&comm,false,4);
  249. this->PrecompAll(U2U_Type);
  250. Profile::Toc();
  251. Profile::Tic("PrecompD2D",&comm,false,4);
  252. this->PrecompAll(D2D_Type);
  253. Profile::Toc();
  254. Profile::Tic("PrecompV",&comm,false,4);
  255. this->PrecompAll(V_Type);
  256. Profile::Toc();
  257. Profile::Tic("PrecompV1",&comm,false,4);
  258. this->PrecompAll(V1_Type);
  259. Profile::Toc();
  260. }Profile::Toc();
  261. }
  262. template <class FMMNode>
  263. Permutation<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::PrecompPerm(Mat_Type type, Perm_Type perm_indx){
  264. //Check if the matrix already exists.
  265. Permutation<Real_t>& P_ = mat->Perm((Mat_Type)type, perm_indx);
  266. if(P_.Dim()!=0) return P_;
  267. Matrix<size_t> swap_xy(10,9);
  268. Matrix<size_t> swap_xz(10,9);
  269. {
  270. for(int i=0;i<9;i++)
  271. for(int j=0;j<9;j++){
  272. swap_xy[i][j]=j;
  273. swap_xz[i][j]=j;
  274. }
  275. swap_xy[3][0]=1; swap_xy[3][1]=0; swap_xy[3][2]=2;
  276. swap_xz[3][0]=2; swap_xz[3][1]=1; swap_xz[3][2]=0;
  277. swap_xy[6][0]=1; swap_xy[6][1]=0; swap_xy[6][2]=2;
  278. swap_xy[6][3]=4; swap_xy[6][4]=3; swap_xy[6][5]=5;
  279. swap_xz[6][0]=2; swap_xz[6][1]=1; swap_xz[6][2]=0;
  280. swap_xz[6][3]=5; swap_xz[6][4]=4; swap_xz[6][5]=3;
  281. swap_xy[9][0]=4; swap_xy[9][1]=3; swap_xy[9][2]=5;
  282. swap_xy[9][3]=1; swap_xy[9][4]=0; swap_xy[9][5]=2;
  283. swap_xy[9][6]=7; swap_xy[9][7]=6; swap_xy[9][8]=8;
  284. swap_xz[9][0]=8; swap_xz[9][1]=7; swap_xz[9][2]=6;
  285. swap_xz[9][3]=5; swap_xz[9][4]=4; swap_xz[9][5]=3;
  286. swap_xz[9][6]=2; swap_xz[9][7]=1; swap_xz[9][8]=0;
  287. }
  288. //Compute the matrix.
  289. Permutation<Real_t> P;
  290. switch (type){
  291. case UC2UE_Type:
  292. {
  293. break;
  294. }
  295. case DC2DE_Type:
  296. {
  297. break;
  298. }
  299. case S2U_Type:
  300. {
  301. break;
  302. }
  303. case U2U_Type:
  304. {
  305. P=PrecompPerm(D2D_Type, perm_indx);
  306. break;
  307. }
  308. case D2D_Type:
  309. {
  310. Real_t eps=1e-10;
  311. int dof=kernel.ker_dim[0];
  312. size_t p_indx=perm_indx % C_Perm;
  313. Real_t c[3]={-0.5,-0.5,-0.5};
  314. std::vector<Real_t> trg_coord=d_check_surf(this->MultipoleOrder(),c,0);
  315. int n_trg=trg_coord.size()/3;
  316. P=Permutation<Real_t>(n_trg*dof);
  317. if(p_indx==ReflecX || p_indx==ReflecY || p_indx==ReflecZ){
  318. for(int i=0;i<n_trg;i++)
  319. for(int j=0;j<n_trg;j++){
  320. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+0]*(p_indx==ReflecX?-1.0:1.0))<eps)
  321. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+1]*(p_indx==ReflecY?-1.0:1.0))<eps)
  322. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+2]*(p_indx==ReflecZ?-1.0:1.0))<eps){
  323. for(int k=0;k<dof;k++){
  324. P.perm[j*dof+k]=i*dof+k;
  325. }
  326. }
  327. }
  328. if(dof==3) //stokes_vel (and like kernels)
  329. for(int j=0;j<n_trg;j++)
  330. P.scal[j*dof+(int)p_indx]*=-1.0;
  331. }else if(p_indx==SwapXY || p_indx==SwapXZ)
  332. for(int i=0;i<n_trg;i++)
  333. for(int j=0;j<n_trg;j++){
  334. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+(p_indx==SwapXY?1:2)])<eps)
  335. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+(p_indx==SwapXY?0:1)])<eps)
  336. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+(p_indx==SwapXY?2:0)])<eps){
  337. for(int k=0;k<dof;k++){
  338. P.perm[j*dof+k]=i*dof+(p_indx==SwapXY?swap_xy[dof][k]:swap_xz[dof][k]);
  339. }
  340. }
  341. }
  342. break;
  343. }
  344. case D2T_Type:
  345. {
  346. break;
  347. }
  348. case U0_Type:
  349. {
  350. break;
  351. }
  352. case U1_Type:
  353. {
  354. break;
  355. }
  356. case U2_Type:
  357. {
  358. break;
  359. }
  360. case V_Type:
  361. {
  362. break;
  363. }
  364. case V1_Type:
  365. {
  366. break;
  367. }
  368. case W_Type:
  369. {
  370. break;
  371. }
  372. case X_Type:
  373. {
  374. break;
  375. }
  376. case BC_Type:
  377. {
  378. break;
  379. }
  380. default:
  381. break;
  382. }
  383. //Save the matrix for future use.
  384. #pragma omp critical (PRECOMP_MATRIX_PTS)
  385. {
  386. if(P_.Dim()==0) P_=P;
  387. }
  388. return P_;
  389. }
  390. template <class FMMNode>
  391. Matrix<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::Precomp(int level, Mat_Type type, size_t mat_indx){
  392. if(this->Homogen()) level=0;
  393. //Check if the matrix already exists.
  394. Matrix<Real_t>& M_ = this->mat->Mat(level, type, mat_indx);
  395. if(M_.Dim(0)!=0 && M_.Dim(1)!=0) return M_;
  396. else{ //Compute matrix from symmetry class (if possible).
  397. size_t class_indx = this->interac_list.InteracClass(type, mat_indx);
  398. if(class_indx!=mat_indx){
  399. Matrix<Real_t>& M0 = this->Precomp(level, type, class_indx);
  400. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, type, mat_indx);
  401. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, type, mat_indx);
  402. if(Pr.Dim()>0 && Pc.Dim()>0 && M0.Dim(0)>0 && M0.Dim(1)>0) return M_;
  403. }
  404. }
  405. //Compute the matrix.
  406. Matrix<Real_t> M;
  407. int* ker_dim=kernel.ker_dim;
  408. int* aux_ker_dim=aux_kernel.ker_dim;
  409. //int omp_p=omp_get_max_threads();
  410. switch (type){
  411. case UC2UE_Type:
  412. {
  413. if(MultipoleOrder()==0) break;
  414. // Coord of upward check surface
  415. Real_t c[3]={0,0,0};
  416. std::vector<Real_t> uc_coord=u_check_surf(MultipoleOrder(),c,level);
  417. size_t n_uc=uc_coord.size()/3;
  418. // Coord of upward equivalent surface
  419. std::vector<Real_t> ue_coord=u_equiv_surf(MultipoleOrder(),c,level);
  420. size_t n_ue=ue_coord.size()/3;
  421. // Evaluate potential at check surface due to equivalent surface.
  422. Matrix<Real_t> M_e2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
  423. aux_kernel.BuildMatrix(&ue_coord[0], n_ue,
  424. &uc_coord[0], n_uc, &(M_e2c[0][0]));
  425. Real_t eps=1.0;
  426. while(eps+(Real_t)1.0>1.0) eps*=0.5;
  427. M=M_e2c.pinv(sqrt(eps)); //check 2 equivalent
  428. break;
  429. }
  430. case DC2DE_Type:
  431. {
  432. if(MultipoleOrder()==0) break;
  433. // Coord of downward check surface
  434. Real_t c[3]={0,0,0};
  435. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  436. size_t n_ch=check_surf.size()/3;
  437. // Coord of downward equivalent surface
  438. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  439. size_t n_eq=equiv_surf.size()/3;
  440. // Evaluate potential at check surface due to equivalent surface.
  441. Matrix<Real_t> M_e2c(n_eq*aux_ker_dim[0],n_ch*aux_ker_dim[1]);
  442. aux_kernel.BuildMatrix(&equiv_surf[0], n_eq,
  443. &check_surf[0], n_ch, &(M_e2c[0][0]));
  444. Real_t eps=1.0;
  445. while(eps+(Real_t)1.0>1.0) eps*=0.5;
  446. M=M_e2c.pinv(sqrt(eps)); //check 2 equivalent
  447. break;
  448. }
  449. case S2U_Type:
  450. {
  451. break;
  452. }
  453. case U2U_Type:
  454. {
  455. if(MultipoleOrder()==0) break;
  456. // Coord of upward check surface
  457. Real_t c[3]={0,0,0};
  458. std::vector<Real_t> check_surf=u_check_surf(MultipoleOrder(),c,level);
  459. size_t n_uc=check_surf.size()/3;
  460. // Coord of child's upward equivalent surface
  461. Real_t s=pow(0.5,(level+2));
  462. int* coord=interac_list.RelativeCoord(type,mat_indx);
  463. Real_t child_coord[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  464. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),child_coord,level+1);
  465. size_t n_ue=equiv_surf.size()/3;
  466. // Evaluate potential at check surface due to equivalent surface.
  467. Matrix<Real_t> M_ce2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
  468. aux_kernel.BuildMatrix(&equiv_surf[0], n_ue,
  469. &check_surf[0], n_uc, &(M_ce2c[0][0]));
  470. Matrix<Real_t>& M_c2e = Precomp(level, UC2UE_Type, 0);
  471. M=M_ce2c*M_c2e;
  472. break;
  473. }
  474. case D2D_Type:
  475. {
  476. if(MultipoleOrder()==0) break;
  477. // Coord of downward check surface
  478. Real_t s=pow(0.5,level+1);
  479. int* coord=interac_list.RelativeCoord(type,mat_indx);
  480. Real_t c[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  481. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  482. size_t n_dc=check_surf.size()/3;
  483. // Coord of parent's downward equivalent surface
  484. Real_t parent_coord[3]={0,0,0};
  485. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),parent_coord,level-1);
  486. size_t n_de=equiv_surf.size()/3;
  487. // Evaluate potential at check surface due to equivalent surface.
  488. Matrix<Real_t> M_pe2c(n_de*aux_ker_dim[0],n_dc*aux_ker_dim[1]);
  489. aux_kernel.BuildMatrix(&equiv_surf[0], n_de,
  490. &check_surf[0], n_dc, &(M_pe2c[0][0]));
  491. Matrix<Real_t>& M_c2e=Precomp(level,DC2DE_Type,0);
  492. M=M_pe2c*M_c2e;
  493. break;
  494. }
  495. case D2T_Type:
  496. {
  497. if(MultipoleOrder()==0) break;
  498. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  499. // Coord of target points
  500. Real_t r=pow(0.5,level);
  501. size_t n_trg=rel_trg_coord.size()/3;
  502. std::vector<Real_t> trg_coord(n_trg*3);
  503. for(size_t i=0;i<n_trg*COORD_DIM;i++) trg_coord[i]=rel_trg_coord[i]*r;
  504. // Coord of downward equivalent surface
  505. Real_t c[3]={0,0,0};
  506. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  507. size_t n_eq=equiv_surf.size()/3;
  508. // Evaluate potential at target points due to equivalent surface.
  509. {
  510. M .Resize(n_eq*ker_dim [0], n_trg*ker_dim [1]);
  511. kernel.BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  512. }
  513. break;
  514. }
  515. case U0_Type:
  516. {
  517. break;
  518. }
  519. case U1_Type:
  520. {
  521. break;
  522. }
  523. case U2_Type:
  524. {
  525. break;
  526. }
  527. case V_Type:
  528. {
  529. if(MultipoleOrder()==0) break;
  530. int n1=MultipoleOrder()*2;
  531. int n3 =n1*n1*n1;
  532. int n3_=n1*n1*(n1/2+1);
  533. //Compute the matrix.
  534. Real_t s=pow(0.5,level);
  535. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  536. Real_t coord_diff[3]={coord2[0]*s,coord2[1]*s,coord2[2]*s};
  537. //Evaluate potential.
  538. std::vector<Real_t> r_trg(COORD_DIM,0.0);
  539. std::vector<Real_t> conv_poten(n3*aux_ker_dim[0]*aux_ker_dim[1]);
  540. std::vector<Real_t> conv_coord=conv_grid(MultipoleOrder(),coord_diff,level);
  541. aux_kernel.BuildMatrix(&conv_coord[0],n3,&r_trg[0],1,&conv_poten[0]);
  542. //Rearrange data.
  543. Matrix<Real_t> M_conv(n3,aux_ker_dim[0]*aux_ker_dim[1],&conv_poten[0],false);
  544. M_conv=M_conv.Transpose();
  545. //Compute FFTW plan.
  546. int nnn[3]={n1,n1,n1};
  547. Real_t *fftw_in, *fftw_out;
  548. fftw_in = mem::aligned_malloc<Real_t>( n3 *aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  549. fftw_out = mem::aligned_malloc<Real_t>(2*n3_*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  550. #pragma omp critical (FFTW_PLAN)
  551. {
  552. if (!vprecomp_fft_flag){
  553. vprecomp_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM, nnn, aux_ker_dim[0]*aux_ker_dim[1],
  554. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*) fftw_out, NULL, 1, n3_, FFTW_ESTIMATE);
  555. vprecomp_fft_flag=true;
  556. }
  557. }
  558. //Compute FFT.
  559. mem::memcopy(fftw_in, &conv_poten[0], n3*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  560. FFTW_t<Real_t>::fft_execute_dft_r2c(vprecomp_fftplan, (Real_t*)fftw_in, (typename FFTW_t<Real_t>::cplx*)(fftw_out));
  561. Matrix<Real_t> M_(2*n3_*aux_ker_dim[0]*aux_ker_dim[1],1,(Real_t*)fftw_out,false);
  562. M=M_;
  563. //Free memory.
  564. mem::aligned_free<Real_t>(fftw_in);
  565. mem::aligned_free<Real_t>(fftw_out);
  566. break;
  567. }
  568. case V1_Type:
  569. {
  570. if(MultipoleOrder()==0) break;
  571. size_t mat_cnt =interac_list.ListCount( V_Type);
  572. for(size_t k=0;k<mat_cnt;k++) Precomp(level, V_Type, k);
  573. const size_t chld_cnt=1UL<<COORD_DIM;
  574. size_t n1=MultipoleOrder()*2;
  575. size_t M_dim=n1*n1*(n1/2+1);
  576. size_t n3=n1*n1*n1;
  577. Vector<Real_t> zero_vec(M_dim*aux_ker_dim[0]*aux_ker_dim[1]*2);
  578. zero_vec.SetZero();
  579. Vector<Real_t*> M_ptr(chld_cnt*chld_cnt);
  580. for(size_t i=0;i<chld_cnt*chld_cnt;i++) M_ptr[i]=&zero_vec[0];
  581. int* rel_coord_=interac_list.RelativeCoord(V1_Type, mat_indx);
  582. for(int j1=0;j1<chld_cnt;j1++)
  583. for(int j2=0;j2<chld_cnt;j2++){
  584. int rel_coord[3]={rel_coord_[0]*2-(j1/1)%2+(j2/1)%2,
  585. rel_coord_[1]*2-(j1/2)%2+(j2/2)%2,
  586. rel_coord_[2]*2-(j1/4)%2+(j2/4)%2};
  587. for(size_t k=0;k<mat_cnt;k++){
  588. int* ref_coord=interac_list.RelativeCoord(V_Type, k);
  589. if(ref_coord[0]==rel_coord[0] &&
  590. ref_coord[1]==rel_coord[1] &&
  591. ref_coord[2]==rel_coord[2]){
  592. Matrix<Real_t>& M = this->mat->Mat(level, V_Type, k);
  593. M_ptr[j2*chld_cnt+j1]=&M[0][0];
  594. break;
  595. }
  596. }
  597. }
  598. // Build matrix aux_ker_dim0 x aux_ker_dim1 x M_dim x 8 x 8
  599. M.Resize(aux_ker_dim[0]*aux_ker_dim[1]*M_dim, 2*chld_cnt*chld_cnt);
  600. for(int j=0;j<aux_ker_dim[0]*aux_ker_dim[1]*M_dim;j++){
  601. for(size_t k=0;k<chld_cnt*chld_cnt;k++){
  602. M[j][k*2+0]=M_ptr[k][j*2+0]/n3;
  603. M[j][k*2+1]=M_ptr[k][j*2+1]/n3;
  604. }
  605. }
  606. break;
  607. }
  608. case W_Type:
  609. {
  610. if(MultipoleOrder()==0) break;
  611. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  612. // Coord of target points
  613. Real_t s=pow(0.5,level);
  614. size_t n_trg=rel_trg_coord.size()/3;
  615. std::vector<Real_t> trg_coord(n_trg*3);
  616. for(size_t j=0;j<n_trg*COORD_DIM;j++) trg_coord[j]=rel_trg_coord[j]*s;
  617. // Coord of downward equivalent surface
  618. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  619. Real_t c[3]={(coord2[0]+1)*s*0.25,(coord2[1]+1)*s*0.25,(coord2[2]+1)*s*0.25};
  620. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),c,level+1);
  621. size_t n_eq=equiv_surf.size()/3;
  622. // Evaluate potential at target points due to equivalent surface.
  623. {
  624. M .Resize(n_eq*ker_dim [0],n_trg*ker_dim [1]);
  625. kernel.BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  626. }
  627. break;
  628. }
  629. case X_Type:
  630. {
  631. break;
  632. }
  633. case BC_Type:
  634. {
  635. if(MultipoleOrder()==0) break;
  636. size_t mat_cnt_m2m=interac_list.ListCount(U2U_Type);
  637. size_t n_surf=(6*(MultipoleOrder()-1)*(MultipoleOrder()-1)+2); //Total number of points.
  638. if((M.Dim(0)!=n_surf*aux_ker_dim[0] || M.Dim(1)!=n_surf*aux_ker_dim[1]) && level==0){
  639. Matrix<Real_t> M_m2m[BC_LEVELS+1];
  640. Matrix<Real_t> M_m2l[BC_LEVELS+1];
  641. Matrix<Real_t> M_l2l[BC_LEVELS+1];
  642. Matrix<Real_t> M_zero_avg(n_surf*aux_ker_dim[0],n_surf*aux_ker_dim[0]);
  643. { // Set average multipole charge to zero. (improves stability for large BC_LEVELS)
  644. M_zero_avg.SetZero();
  645. for(size_t i=0;i<n_surf*aux_ker_dim[0];i++)
  646. M_zero_avg[i][i]+=1;
  647. for(size_t i=0;i<n_surf;i++)
  648. for(size_t j=0;j<n_surf;j++)
  649. for(size_t k=0;k<aux_ker_dim[0];k++)
  650. M_zero_avg[i*aux_ker_dim[0]+k][j*aux_ker_dim[0]+k]-=1.0/n_surf;
  651. }
  652. for(int level=0; level>-BC_LEVELS; level--){
  653. M_l2l[-level] = this->Precomp(level, D2D_Type, 0);
  654. if(M_l2l[-level].Dim(0)==0 || M_l2l[-level].Dim(1)==0){
  655. Matrix<Real_t>& M0 = interac_list.ClassMat(level, D2D_Type, 0);
  656. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, D2D_Type, 0);
  657. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, D2D_Type, 0);
  658. M_l2l[-level] = Pr*M0*Pc;
  659. }
  660. M_m2m[-level] = M_zero_avg*this->Precomp(level, U2U_Type, 0);
  661. for(size_t mat_indx=1; mat_indx<mat_cnt_m2m; mat_indx++)
  662. M_m2m[-level] += M_zero_avg*this->Precomp(level, U2U_Type, mat_indx);
  663. }
  664. for(int level=-BC_LEVELS;level<=0;level++){
  665. if(!Homogen() || level==-BC_LEVELS){
  666. Real_t s=(1UL<<(-level));
  667. Real_t ue_coord[3]={0,0,0};
  668. Real_t dc_coord[3]={0,0,0};
  669. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  670. std::vector<Real_t> trg_coord=d_check_surf(MultipoleOrder(), dc_coord, level);
  671. Matrix<Real_t> M_ue2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  672. M_ue2dc.SetZero();
  673. for(int x0=-2;x0<4;x0++)
  674. for(int x1=-2;x1<4;x1++)
  675. for(int x2=-2;x2<4;x2++)
  676. if(abs(x0)>1 || abs(x1)>1 || abs(x2)>1){
  677. ue_coord[0]=x0*s; ue_coord[1]=x1*s; ue_coord[2]=x2*s;
  678. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  679. Matrix<Real_t> M_tmp(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  680. aux_kernel.BuildMatrix(&src_coord[0], n_surf,
  681. &trg_coord[0], n_surf, &(M_tmp[0][0]));
  682. M_ue2dc+=M_tmp;
  683. }
  684. // Shift by constant.
  685. Real_t scale_adj=(Homogen()?pow(0.5, level*aux_kernel.poten_scale):1);
  686. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  687. std::vector<Real_t> avg(aux_ker_dim[1],0);
  688. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  689. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  690. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
  691. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  692. for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]=(M_ue2dc[i][j+k]-avg[k])*scale_adj;
  693. }
  694. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  695. M_m2l[-level]=M_ue2dc*M_dc2de;
  696. }else M_m2l[-level]=M_m2l[1-level];
  697. if(level==-BC_LEVELS) M = M_m2l[-level];
  698. else M = M_m2l[-level] + M_m2m[-level]*M*M_l2l[-level];
  699. { // Shift by constant. (improves stability for large BC_LEVELS)
  700. Matrix<Real_t> M_de2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  701. { // M_de2dc TODO: For homogeneous kernels, compute only once.
  702. // Coord of downward check surface
  703. Real_t c[3]={0,0,0};
  704. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,0);
  705. size_t n_ch=check_surf.size()/3;
  706. // Coord of downward equivalent surface
  707. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  708. size_t n_eq=equiv_surf.size()/3;
  709. // Evaluate potential at check surface due to equivalent surface.
  710. aux_kernel.BuildMatrix(&equiv_surf[0], n_eq,
  711. &check_surf[0], n_ch, &(M_de2dc[0][0]));
  712. }
  713. Matrix<Real_t> M_ue2dc=M*M_de2dc;
  714. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  715. std::vector<Real_t> avg(aux_ker_dim[1],0);
  716. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  717. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  718. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
  719. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  720. for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]-=avg[k];
  721. }
  722. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  723. M=M_ue2dc*M_dc2de;
  724. }
  725. }
  726. { // ax+by+cz+d correction.
  727. std::vector<Real_t> corner_pts;
  728. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(0);
  729. corner_pts.push_back(1); corner_pts.push_back(0); corner_pts.push_back(0);
  730. corner_pts.push_back(0); corner_pts.push_back(1); corner_pts.push_back(0);
  731. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(1);
  732. size_t n_corner=corner_pts.size()/3;
  733. // Coord of downward equivalent surface
  734. Real_t c[3]={0,0,0};
  735. std::vector<Real_t> up_equiv_surf=u_equiv_surf(MultipoleOrder(),c,0);
  736. std::vector<Real_t> dn_equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  737. std::vector<Real_t> dn_check_surf=d_check_surf(MultipoleOrder(),c,0);
  738. Matrix<Real_t> M_err;
  739. { // Evaluate potential at corner due to upward and dnward equivalent surface.
  740. { // Error from local expansion.
  741. Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],n_corner*aux_ker_dim[1]);
  742. aux_kernel.BuildMatrix(&dn_equiv_surf[0], n_surf,
  743. &corner_pts[0], n_corner, &(M_e2pt[0][0]));
  744. M_err=M*M_e2pt;
  745. }
  746. for(size_t k=0;k<4;k++){ // Error from colleagues of root.
  747. for(int j0=-1;j0<=1;j0++)
  748. for(int j1=-1;j1<=1;j1++)
  749. for(int j2=-1;j2<=1;j2++){
  750. Real_t pt_coord[3]={corner_pts[k*COORD_DIM+0]-j0,
  751. corner_pts[k*COORD_DIM+1]-j1,
  752. corner_pts[k*COORD_DIM+2]-j2};
  753. if(fabs(pt_coord[0]-0.5)>1.0 || fabs(pt_coord[1]-0.5)>1.0 || fabs(pt_coord[2]-0.5)>1.0){
  754. Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],aux_ker_dim[1]);
  755. aux_kernel.BuildMatrix(&up_equiv_surf[0], n_surf,
  756. &pt_coord[0], 1, &(M_e2pt[0][0]));
  757. for(size_t i=0;i<M_e2pt.Dim(0);i++)
  758. for(size_t j=0;j<M_e2pt.Dim(1);j++)
  759. M_err[i][k*aux_ker_dim[1]+j]+=M_e2pt[i][j];
  760. }
  761. }
  762. }
  763. }
  764. Matrix<Real_t> M_grad(M_err.Dim(0),n_surf*aux_ker_dim[1]);
  765. for(size_t i=0;i<M_err.Dim(0);i++)
  766. for(size_t k=0;k<aux_ker_dim[1];k++)
  767. for(size_t j=0;j<n_surf;j++){
  768. M_grad[i][j*aux_ker_dim[1]+k]=(M_err[i][0*aux_ker_dim[1]+k] )*1.0 +
  769. (M_err[i][1*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+0]+
  770. (M_err[i][2*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+1]+
  771. (M_err[i][3*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+2];
  772. }
  773. Matrix<Real_t>& M_dc2de = Precomp(0, DC2DE_Type, 0);
  774. M-=M_grad*M_dc2de;
  775. }
  776. { // Free memory
  777. Mat_Type type=D2D_Type;
  778. for(int l=-BC_LEVELS;l<0;l++)
  779. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  780. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  781. M.Resize(0,0);
  782. }
  783. type=U2U_Type;
  784. for(int l=-BC_LEVELS;l<0;l++)
  785. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  786. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  787. M.Resize(0,0);
  788. }
  789. type=DC2DE_Type;
  790. for(int l=-BC_LEVELS;l<0;l++)
  791. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  792. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  793. M.Resize(0,0);
  794. }
  795. type=UC2UE_Type;
  796. for(int l=-BC_LEVELS;l<0;l++)
  797. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  798. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  799. M.Resize(0,0);
  800. }
  801. }
  802. }
  803. break;
  804. }
  805. default:
  806. break;
  807. }
  808. //Save the matrix for future use.
  809. #pragma omp critical (PRECOMP_MATRIX_PTS)
  810. if(M_.Dim(0)==0 && M_.Dim(1)==0){
  811. M_=M;
  812. /*
  813. M_.Resize(M.Dim(0),M.Dim(1));
  814. int dof=aux_ker_dim[0]*aux_ker_dim[1];
  815. for(int j=0;j<dof;j++){
  816. size_t a=(M.Dim(0)*M.Dim(1)* j )/dof;
  817. size_t b=(M.Dim(0)*M.Dim(1)*(j+1))/dof;
  818. #pragma omp parallel for // NUMA
  819. for(int tid=0;tid<omp_p;tid++){
  820. size_t a_=a+((b-a)* tid )/omp_p;
  821. size_t b_=a+((b-a)*(tid+1))/omp_p;
  822. mem::memcopy(&M_[0][a_], &M[0][a_], (b_-a_)*sizeof(Real_t));
  823. }
  824. }
  825. */
  826. }
  827. return M_;
  828. }
  829. template <class FMMNode>
  830. void FMM_Pts<FMMNode>::PrecompAll(Mat_Type type, int level){
  831. int depth=(Homogen()?1:MAX_DEPTH);
  832. if(level==-1){
  833. for(int l=0;l<depth;l++){
  834. std::stringstream level_str;
  835. level_str<<"level="<<l;
  836. PrecompAll(type, l);
  837. }
  838. return;
  839. }
  840. //Compute basic permutations.
  841. for(size_t i=0;i<Perm_Count;i++)
  842. this->PrecompPerm(type, (Perm_Type) i);
  843. {
  844. //Allocate matrices.
  845. size_t mat_cnt=interac_list.ListCount((Mat_Type)type);
  846. mat->Mat(level, (Mat_Type)type, mat_cnt-1);
  847. { // Compute InteracClass matrices.
  848. std::vector<size_t> indx_lst;
  849. for(size_t i=0; i<mat_cnt; i++){
  850. if(interac_list.InteracClass((Mat_Type)type,i)==i)
  851. indx_lst.push_back(i);
  852. }
  853. //Compute Transformations.
  854. //#pragma omp parallel for //lets use fine grained parallelism
  855. for(size_t i=0; i<indx_lst.size(); i++){
  856. Precomp(level, (Mat_Type)type, indx_lst[i]);
  857. }
  858. }
  859. //#pragma omp parallel for //lets use fine grained parallelism
  860. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
  861. Matrix<Real_t>& M0=interac_list.ClassMat(level,(Mat_Type)type,mat_indx);
  862. Permutation<Real_t>& pr=interac_list.Perm_R(level, (Mat_Type)type, mat_indx);
  863. Permutation<Real_t>& pc=interac_list.Perm_C(level, (Mat_Type)type, mat_indx);
  864. if(pr.Dim()!=M0.Dim(0) || pc.Dim()!=M0.Dim(1)) Precomp(level, (Mat_Type)type, mat_indx);
  865. }
  866. }
  867. }
  868. template <class FMMNode>
  869. void FMM_Pts<FMMNode>::CollectNodeData(std::vector<FMMNode*>& node, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, std::vector<size_t> extra_size){
  870. if( buff.size()<7) buff.resize(7);
  871. if( n_list.size()<7) n_list.resize(7);
  872. if(node.size()==0) return;
  873. {// 0. upward_equiv
  874. int indx=0;
  875. Matrix<Real_t>& M_uc2ue = this->interac_list.ClassMat(0, UC2UE_Type, 0);
  876. size_t vec_sz=M_uc2ue.Dim(1);
  877. std::vector< FMMNode* > node_lst;
  878. {
  879. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  880. FMMNode_t* r_node=NULL;
  881. for(size_t i=0;i<node.size();i++){
  882. if(!node[i]->IsLeaf())
  883. node_lst_[node[i]->Depth()].push_back(node[i]);
  884. if(node[i]->Depth()==0) r_node=node[i];
  885. }
  886. size_t chld_cnt=1UL<<COORD_DIM;
  887. for(int i=0;i<=MAX_DEPTH;i++)
  888. for(size_t j=0;j<node_lst_[i].size();j++)
  889. for(size_t k=0;k<chld_cnt;k++)
  890. node_lst.push_back((FMMNode_t*)node_lst_[i][j]->Child(k));
  891. if(r_node!=NULL) node_lst.push_back(r_node);
  892. }
  893. n_list[indx]=node_lst;
  894. size_t buff_size=node_lst.size()*vec_sz;
  895. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  896. #pragma omp parallel for
  897. for(size_t i=0;i<node.size();i++){ // Clear data
  898. Vector<Real_t>& upward_equiv=node[i]->FMMData()->upward_equiv;
  899. upward_equiv.ReInit(0);
  900. }
  901. buff[indx].Resize(1,buff_size);
  902. #pragma omp parallel for
  903. for(size_t i=0;i<node_lst.size();i++){
  904. Vector<Real_t>& upward_equiv=node_lst[i]->FMMData()->upward_equiv;
  905. upward_equiv.ReInit(vec_sz, buff[indx][0]+i*vec_sz, false);
  906. upward_equiv.SetZero();
  907. }
  908. buff[indx].AllocDevice(true);
  909. }
  910. {// 1. dnward_equiv
  911. int indx=1;
  912. Matrix<Real_t>& M_dc2de = this->interac_list.ClassMat(0, DC2DE_Type, 0);
  913. size_t vec_sz=M_dc2de.Dim(1);
  914. std::vector< FMMNode* > node_lst;
  915. {
  916. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  917. FMMNode_t* r_node=NULL;
  918. for(size_t i=0;i<node.size();i++){
  919. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  920. node_lst_[node[i]->Depth()].push_back(node[i]);
  921. if(node[i]->Depth()==0) r_node=node[i];
  922. }
  923. size_t chld_cnt=1UL<<COORD_DIM;
  924. for(int i=0;i<=MAX_DEPTH;i++)
  925. for(size_t j=0;j<node_lst_[i].size();j++)
  926. for(size_t k=0;k<chld_cnt;k++)
  927. node_lst.push_back((FMMNode_t*)node_lst_[i][j]->Child(k));
  928. if(r_node!=NULL) node_lst.push_back(r_node);
  929. }
  930. n_list[indx]=node_lst;
  931. size_t buff_size=node_lst.size()*vec_sz;
  932. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  933. #pragma omp parallel for
  934. for(size_t i=0;i<node.size();i++){ // Clear data
  935. Vector<Real_t>& dnward_equiv=node[i]->FMMData()->dnward_equiv;
  936. dnward_equiv.ReInit(0);
  937. }
  938. buff[indx].Resize(1,buff_size);
  939. #pragma omp parallel for
  940. for(size_t i=0;i<node_lst.size();i++){
  941. Vector<Real_t>& dnward_equiv=node_lst[i]->FMMData()->dnward_equiv;
  942. dnward_equiv.ReInit(vec_sz, buff[indx][0]+i*vec_sz, false);
  943. dnward_equiv.SetZero();
  944. }
  945. buff[indx].AllocDevice(true);
  946. }
  947. {// 2. upward_equiv_fft
  948. int indx=2;
  949. std::vector< FMMNode* > node_lst;
  950. {
  951. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  952. for(size_t i=0;i<node.size();i++)
  953. if(!node[i]->IsLeaf())
  954. node_lst_[node[i]->Depth()].push_back(node[i]);
  955. for(int i=0;i<=MAX_DEPTH;i++)
  956. for(size_t j=0;j<node_lst_[i].size();j++)
  957. node_lst.push_back(node_lst_[i][j]);
  958. }
  959. n_list[indx]=node_lst;
  960. buff[indx].AllocDevice(true);
  961. }
  962. {// 3. dnward_check_fft
  963. int indx=3;
  964. std::vector< FMMNode* > node_lst;
  965. {
  966. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  967. for(size_t i=0;i<node.size();i++)
  968. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  969. node_lst_[node[i]->Depth()].push_back(node[i]);
  970. for(int i=0;i<=MAX_DEPTH;i++)
  971. for(size_t j=0;j<node_lst_[i].size();j++)
  972. node_lst.push_back(node_lst_[i][j]);
  973. }
  974. n_list[indx]=node_lst;
  975. buff[indx].AllocDevice(true);
  976. }
  977. {// 4. src_val
  978. int indx=4;
  979. int src_dof=kernel.ker_dim[0];
  980. int surf_dof=COORD_DIM+src_dof;
  981. std::vector< FMMNode* > node_lst;
  982. size_t buff_size=0;
  983. for(size_t i=0;i<node.size();i++)
  984. if(node[i]->IsLeaf()){
  985. node_lst.push_back(node[i]);
  986. buff_size+=(node[i]->src_coord.Dim()/COORD_DIM)*src_dof;
  987. buff_size+=(node[i]->surf_coord.Dim()/COORD_DIM)*surf_dof;
  988. }
  989. n_list[indx]=node_lst;
  990. #pragma omp parallel for
  991. for(size_t i=0;i<node.size();i++){ // Move data before resizing buff[indx]
  992. { // src_value
  993. Vector<Real_t>& src_value=node[i]->src_value;
  994. Vector<Real_t> new_buff=src_value;
  995. src_value.Swap(new_buff);
  996. }
  997. { // surf_value
  998. Vector<Real_t>& surf_value=node[i]->surf_value;
  999. Vector<Real_t> new_buff=surf_value;
  1000. surf_value.Swap(new_buff);
  1001. }
  1002. }
  1003. buff[indx].Resize(1,buff_size+(extra_size.size()>indx?extra_size[indx]:0));
  1004. Real_t* buff_ptr=&buff[indx][0][0];
  1005. for(size_t i=0;i<node_lst.size();i++){
  1006. { // src_value
  1007. Vector<Real_t>& src_value=node_lst[i]->src_value;
  1008. mem::memcopy(buff_ptr,&src_value[0],src_value.Dim()*sizeof(Real_t));
  1009. src_value.ReInit((node_lst[i]->src_coord.Dim()/COORD_DIM)*src_dof, buff_ptr, false);
  1010. buff_ptr+=(node_lst[i]->src_coord.Dim()/COORD_DIM)*src_dof;
  1011. }
  1012. { // surf_value
  1013. Vector<Real_t>& surf_value=node_lst[i]->surf_value;
  1014. mem::memcopy(buff_ptr,&surf_value[0],surf_value.Dim()*sizeof(Real_t));
  1015. surf_value.ReInit((node_lst[i]->surf_coord.Dim()/COORD_DIM)*surf_dof, buff_ptr, false);
  1016. buff_ptr+=(node_lst[i]->surf_coord.Dim()/COORD_DIM)*surf_dof;
  1017. }
  1018. }
  1019. buff[indx].AllocDevice(true);
  1020. }
  1021. {// 5. trg_val
  1022. int indx=5;
  1023. int trg_dof=kernel.ker_dim[1];
  1024. std::vector< FMMNode* > node_lst;
  1025. size_t buff_size=0;
  1026. for(size_t i=0;i<node.size();i++)
  1027. if(node[i]->IsLeaf() && !node[i]->IsGhost()){
  1028. node_lst.push_back(node[i]);
  1029. buff_size+=(node[i]->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1030. }
  1031. n_list[indx]=node_lst;
  1032. #pragma omp parallel for
  1033. for(size_t i=0;i<node.size();i++){ // Clear data
  1034. { // trg_value
  1035. Vector<Real_t>& trg_value=node[i]->trg_value;
  1036. trg_value.ReInit(0);
  1037. }
  1038. }
  1039. buff[indx].Resize(1,buff_size+(extra_size.size()>indx?extra_size[indx]:0));
  1040. Real_t* buff_ptr=&buff[indx][0][0];
  1041. for(size_t i=0;i<node_lst.size();i++){
  1042. { // trg_value
  1043. Vector<Real_t>& trg_value=node_lst[i]->trg_value;
  1044. trg_value.ReInit((node_lst[i]->trg_coord.Dim()/COORD_DIM)*trg_dof, buff_ptr, false);
  1045. buff_ptr+=(node_lst[i]->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1046. }
  1047. }
  1048. #pragma omp parallel for
  1049. for(size_t i=0;i<node_lst.size();i++){
  1050. Vector<Real_t>& trg_value=node_lst[i]->trg_value;
  1051. trg_value.SetZero();
  1052. }
  1053. buff[indx].AllocDevice(true);
  1054. }
  1055. {// 6. pts_coord
  1056. int indx=6;
  1057. size_t m=MultipoleOrder();
  1058. std::vector< FMMNode* > node_lst;
  1059. size_t buff_size=0;
  1060. for(size_t i=0;i<node.size();i++)
  1061. if(node[i]->IsLeaf()){
  1062. node_lst.push_back(node[i]);
  1063. buff_size+=node[i]->src_coord.Dim();
  1064. buff_size+=node[i]->surf_coord.Dim();
  1065. buff_size+=node[i]->trg_coord.Dim();
  1066. }
  1067. n_list[indx]=node_lst;
  1068. #pragma omp parallel for
  1069. for(size_t i=0;i<node.size();i++){ // Move data before resizing buff[indx]
  1070. { // src_coord
  1071. Vector<Real_t>& src_coord=node[i]->src_coord;
  1072. Vector<Real_t> new_buff=src_coord;
  1073. src_coord.Swap(new_buff);
  1074. }
  1075. { // surf_coord
  1076. Vector<Real_t>& surf_coord=node[i]->surf_coord;
  1077. Vector<Real_t> new_buff=surf_coord;
  1078. surf_coord.Swap(new_buff);
  1079. }
  1080. { // trg_coord
  1081. Vector<Real_t>& trg_coord=node[i]->trg_coord;
  1082. Vector<Real_t> new_buff=trg_coord;
  1083. trg_coord.Swap(new_buff);
  1084. }
  1085. }
  1086. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  1087. buff_size+=4*MAX_DEPTH*(6*(m-1)*(m-1)+2)*COORD_DIM;
  1088. buff[indx].Resize(1,buff_size);
  1089. Real_t* buff_ptr=&buff[indx][0][0];
  1090. for(size_t i=0;i<node_lst.size();i++){
  1091. { // src_coord
  1092. Vector<Real_t>& src_coord=node_lst[i]->src_coord;
  1093. mem::memcopy(buff_ptr,&src_coord[0],src_coord.Dim()*sizeof(Real_t));
  1094. src_coord.ReInit(node_lst[i]->src_coord.Dim(), buff_ptr, false);
  1095. buff_ptr+=node_lst[i]->src_coord.Dim();
  1096. }
  1097. { // surf_coord
  1098. Vector<Real_t>& surf_coord=node_lst[i]->surf_coord;
  1099. mem::memcopy(buff_ptr,&surf_coord[0],surf_coord.Dim()*sizeof(Real_t));
  1100. surf_coord.ReInit(node_lst[i]->surf_coord.Dim(), buff_ptr, false);
  1101. buff_ptr+=node_lst[i]->surf_coord.Dim();
  1102. }
  1103. { // trg_coord
  1104. Vector<Real_t>& trg_coord=node_lst[i]->trg_coord;
  1105. mem::memcopy(buff_ptr,&trg_coord[0],trg_coord.Dim()*sizeof(Real_t));
  1106. trg_coord.ReInit(node_lst[i]->trg_coord.Dim(), buff_ptr, false);
  1107. buff_ptr+=node_lst[i]->trg_coord.Dim();
  1108. }
  1109. }
  1110. { // check and equiv surfaces.
  1111. upwd_check_surf.resize(MAX_DEPTH);
  1112. upwd_equiv_surf.resize(MAX_DEPTH);
  1113. dnwd_check_surf.resize(MAX_DEPTH);
  1114. dnwd_equiv_surf.resize(MAX_DEPTH);
  1115. for(size_t depth=0;depth<MAX_DEPTH;depth++){
  1116. Real_t c[3]={0.0,0.0,0.0};
  1117. upwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1118. upwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1119. dnwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1120. dnwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1121. upwd_check_surf[depth]=u_check_surf(m,c,depth);
  1122. upwd_equiv_surf[depth]=u_equiv_surf(m,c,depth);
  1123. dnwd_check_surf[depth]=d_check_surf(m,c,depth);
  1124. dnwd_equiv_surf[depth]=d_equiv_surf(m,c,depth);
  1125. }
  1126. }
  1127. buff[indx].AllocDevice(true);
  1128. }
  1129. }
  1130. template <class FMMNode>
  1131. void FMM_Pts<FMMNode>::SetupPrecomp(SetupData<Real_t>& setup_data, bool device){
  1132. if(setup_data.precomp_data==NULL || setup_data.level>MAX_DEPTH) return;
  1133. Profile::Tic("SetupPrecomp",&this->comm,true,25);
  1134. { // Build precomp_data
  1135. size_t precomp_offset=0;
  1136. int level=setup_data.level;
  1137. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1138. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1139. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1140. Mat_Type& interac_type=interac_type_lst[type_indx];
  1141. this->PrecompAll(interac_type, level); // Compute matrices.
  1142. precomp_offset=this->mat->CompactData(level, interac_type, precomp_data, precomp_offset);
  1143. }
  1144. }
  1145. Profile::Toc();
  1146. if(device){ // Host2Device
  1147. Profile::Tic("Host2Device",&this->comm,false,25);
  1148. setup_data.precomp_data->AllocDevice(true);
  1149. Profile::Toc();
  1150. }
  1151. }
  1152. template <class FMMNode>
  1153. void FMM_Pts<FMMNode>::SetupInterac(SetupData<Real_t>& setup_data, bool device){
  1154. int level=setup_data.level;
  1155. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1156. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1157. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1158. Matrix<Real_t>& input_data=*setup_data. input_data;
  1159. Matrix<Real_t>& output_data=*setup_data.output_data;
  1160. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  1161. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  1162. size_t n_in =nodes_in .size();
  1163. size_t n_out=nodes_out.size();
  1164. // Setup precomputed data.
  1165. SetupPrecomp(setup_data,device);
  1166. // Build interac_data
  1167. Profile::Tic("Interac-Data",&this->comm,true,25);
  1168. Matrix<char>& interac_data=setup_data.interac_data;
  1169. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  1170. std::vector<size_t> interac_mat;
  1171. std::vector<size_t> interac_cnt;
  1172. std::vector<size_t> interac_blk;
  1173. std::vector<size_t> input_perm;
  1174. std::vector<size_t> output_perm;
  1175. std::vector<Real_t> scaling;
  1176. size_t dof=0, M_dim0=0, M_dim1=0;
  1177. size_t precomp_offset=0;
  1178. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  1179. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1180. Mat_Type& interac_type=interac_type_lst[type_indx];
  1181. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  1182. Vector<size_t> precomp_data_offset;
  1183. { // Load precomp_data for interac_type.
  1184. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1185. char* indx_ptr=precomp_data[0]+precomp_offset;
  1186. size_t total_size=((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  1187. /*size_t mat_cnt_ =((size_t*)indx_ptr)[0];*/ indx_ptr+=sizeof(size_t);
  1188. precomp_data_offset.ReInit((1+2+2)*mat_cnt, (size_t*)indx_ptr, false);
  1189. precomp_offset+=total_size;
  1190. }
  1191. Matrix<FMMNode*> src_interac_list(n_in ,mat_cnt); src_interac_list.SetZero();
  1192. Matrix<FMMNode*> trg_interac_list(n_out,mat_cnt); trg_interac_list.SetZero();
  1193. { // Build trg_interac_list
  1194. for(size_t i=0;i<n_out;i++){
  1195. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  1196. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  1197. mem::memcopy(&trg_interac_list[i][0], &lst[0], lst.size()*sizeof(FMMNode*));
  1198. assert(lst.size()==mat_cnt);
  1199. }
  1200. }
  1201. }
  1202. { // Build src_interac_list
  1203. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  1204. for(size_t i=0;i<n_out;i++){
  1205. for(size_t j=0;j<mat_cnt;j++)
  1206. if(trg_interac_list[i][j]!=NULL){
  1207. src_interac_list[trg_interac_list[i][j]->node_id][j]=(FMMNode*)nodes_out[i];
  1208. }
  1209. }
  1210. }
  1211. Matrix<size_t> interac_dsp(n_out,mat_cnt);
  1212. std::vector<size_t> interac_blk_dsp(1,0);
  1213. { // Determine dof, M_dim0, M_dim1
  1214. dof=1;
  1215. Matrix<Real_t>& M0 = this->interac_list.ClassMat(level, interac_type_lst[0], 0);
  1216. M_dim0=M0.Dim(0); M_dim1=M0.Dim(1);
  1217. }
  1218. { // Determine interaction blocks which fit in memory.
  1219. size_t vec_size=(M_dim0+M_dim1)*sizeof(Real_t)*dof;
  1220. for(size_t j=0;j<mat_cnt;j++){// Determine minimum buff_size
  1221. size_t vec_cnt=0;
  1222. for(size_t i=0;i<n_out;i++){
  1223. if(trg_interac_list[i][j]!=NULL) vec_cnt++;
  1224. }
  1225. if(buff_size<vec_cnt*vec_size)
  1226. buff_size=vec_cnt*vec_size;
  1227. }
  1228. size_t interac_dsp_=0;
  1229. for(size_t j=0;j<mat_cnt;j++){
  1230. for(size_t i=0;i<n_out;i++){
  1231. interac_dsp[i][j]=interac_dsp_;
  1232. if(trg_interac_list[i][j]!=NULL) interac_dsp_++;
  1233. }
  1234. if(interac_dsp_*vec_size>buff_size) // Comment to disable symmetries.
  1235. {
  1236. interac_blk.push_back(j-interac_blk_dsp.back());
  1237. interac_blk_dsp.push_back(j);
  1238. size_t offset=interac_dsp[0][j];
  1239. for(size_t i=0;i<n_out;i++) interac_dsp[i][j]-=offset;
  1240. interac_dsp_-=offset;
  1241. assert(interac_dsp_*vec_size<=buff_size); // Problem too big for buff_size.
  1242. }
  1243. interac_mat.push_back(precomp_data_offset[5*this->interac_list.InteracClass(interac_type,j)+0]);
  1244. interac_cnt.push_back(interac_dsp_-interac_dsp[0][j]);
  1245. }
  1246. interac_blk.push_back(mat_cnt-interac_blk_dsp.back());
  1247. interac_blk_dsp.push_back(mat_cnt);
  1248. }
  1249. { // Determine input_perm.
  1250. size_t vec_size=M_dim0*dof;
  1251. for(size_t i=0;i<n_out;i++) ((FMMNode*)nodes_out[i])->node_id=i;
  1252. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1253. for(size_t i=0;i<n_in ;i++){
  1254. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1255. FMMNode_t* trg_node=src_interac_list[i][j];
  1256. if(trg_node!=NULL){
  1257. input_perm .push_back(precomp_data_offset[5*j+1]); // prem
  1258. input_perm .push_back(precomp_data_offset[5*j+2]); // scal
  1259. input_perm .push_back(interac_dsp[trg_node->node_id][j]*vec_size*sizeof(Real_t)); // trg_ptr
  1260. input_perm .push_back((size_t)(& input_vector[i][0][0]- input_data[0])); // src_ptr
  1261. assert(input_vector[i]->Dim()==vec_size);
  1262. }
  1263. }
  1264. }
  1265. }
  1266. }
  1267. { // Determine scaling and output_perm
  1268. size_t vec_size=M_dim1*dof;
  1269. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1270. for(size_t i=0;i<n_out;i++){
  1271. Real_t scaling_=0.0;
  1272. if(!this->Homogen()) scaling_=1.0;
  1273. else if(interac_type==S2U_Type) scaling_=pow(0.5, COORD_DIM *((FMMNode*)nodes_out[i])->Depth());
  1274. else if(interac_type==U2U_Type) scaling_=1.0;
  1275. else if(interac_type==D2D_Type) scaling_=1.0;
  1276. else if(interac_type==D2T_Type) scaling_=pow(0.5, -setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  1277. else if(interac_type== U0_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1278. else if(interac_type== U1_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1279. else if(interac_type== U2_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1280. else if(interac_type== W_Type) scaling_=pow(0.5, -setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  1281. else if(interac_type== X_Type) scaling_=pow(0.5, COORD_DIM *((FMMNode*)nodes_out[i])->Depth());
  1282. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1283. if(trg_interac_list[i][j]!=NULL){
  1284. scaling.push_back(scaling_); // scaling
  1285. output_perm.push_back(precomp_data_offset[5*j+3]); // prem
  1286. output_perm.push_back(precomp_data_offset[5*j+4]); // scal
  1287. output_perm.push_back(interac_dsp[ i ][j]*vec_size*sizeof(Real_t)); // src_ptr
  1288. output_perm.push_back((size_t)(&output_vector[i][0][0]-output_data[0])); // trg_ptr
  1289. assert(output_vector[i]->Dim()==vec_size);
  1290. }
  1291. }
  1292. }
  1293. }
  1294. }
  1295. }
  1296. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  1297. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  1298. { // Set interac_data.
  1299. size_t data_size=sizeof(size_t)*4;
  1300. data_size+=sizeof(size_t)+interac_blk.size()*sizeof(size_t);
  1301. data_size+=sizeof(size_t)+interac_cnt.size()*sizeof(size_t);
  1302. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  1303. data_size+=sizeof(size_t)+ input_perm.size()*sizeof(size_t);
  1304. data_size+=sizeof(size_t)+output_perm.size()*sizeof(size_t);
  1305. data_size+=sizeof(size_t)+scaling.size()*sizeof(Real_t);
  1306. if(interac_data.Dim(0)*interac_data.Dim(1)<sizeof(size_t)){
  1307. data_size+=sizeof(size_t);
  1308. interac_data.Resize(1,data_size);
  1309. ((size_t*)&interac_data[0][0])[0]=sizeof(size_t);
  1310. }else{
  1311. size_t pts_data_size=*((size_t*)&interac_data[0][0]);
  1312. assert(interac_data.Dim(0)*interac_data.Dim(1)>=pts_data_size);
  1313. data_size+=pts_data_size;
  1314. if(data_size>interac_data.Dim(0)*interac_data.Dim(1)){ //Resize and copy interac_data.
  1315. Matrix< char> pts_interac_data=interac_data;
  1316. interac_data.Resize(1,data_size);
  1317. mem::memcopy(&interac_data[0][0],&pts_interac_data[0][0],pts_data_size);
  1318. }
  1319. }
  1320. char* data_ptr=&interac_data[0][0];
  1321. data_ptr+=((size_t*)data_ptr)[0];
  1322. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  1323. ((size_t*)data_ptr)[0]= M_dim0; data_ptr+=sizeof(size_t);
  1324. ((size_t*)data_ptr)[0]= M_dim1; data_ptr+=sizeof(size_t);
  1325. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  1326. ((size_t*)data_ptr)[0]=interac_blk.size(); data_ptr+=sizeof(size_t);
  1327. mem::memcopy(data_ptr, &interac_blk[0], interac_blk.size()*sizeof(size_t));
  1328. data_ptr+=interac_blk.size()*sizeof(size_t);
  1329. ((size_t*)data_ptr)[0]=interac_cnt.size(); data_ptr+=sizeof(size_t);
  1330. mem::memcopy(data_ptr, &interac_cnt[0], interac_cnt.size()*sizeof(size_t));
  1331. data_ptr+=interac_cnt.size()*sizeof(size_t);
  1332. ((size_t*)data_ptr)[0]=interac_mat.size(); data_ptr+=sizeof(size_t);
  1333. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  1334. data_ptr+=interac_mat.size()*sizeof(size_t);
  1335. ((size_t*)data_ptr)[0]= input_perm.size(); data_ptr+=sizeof(size_t);
  1336. mem::memcopy(data_ptr, & input_perm[0], input_perm.size()*sizeof(size_t));
  1337. data_ptr+= input_perm.size()*sizeof(size_t);
  1338. ((size_t*)data_ptr)[0]=output_perm.size(); data_ptr+=sizeof(size_t);
  1339. mem::memcopy(data_ptr, &output_perm[0], output_perm.size()*sizeof(size_t));
  1340. data_ptr+=output_perm.size()*sizeof(size_t);
  1341. ((size_t*)data_ptr)[0]=scaling.size(); data_ptr+=sizeof(size_t);
  1342. mem::memcopy(data_ptr, &scaling[0], scaling.size()*sizeof(Real_t));
  1343. data_ptr+=scaling.size()*sizeof(Real_t);
  1344. }
  1345. }
  1346. Profile::Toc();
  1347. if(device){ // Host2Device
  1348. Profile::Tic("Host2Device",&this->comm,false,25);
  1349. setup_data.interac_data .AllocDevice(true);
  1350. Profile::Toc();
  1351. }
  1352. }
  1353. template <class FMMNode>
  1354. template <int SYNC>
  1355. void FMM_Pts<FMMNode>::EvalList(SetupData<Real_t>& setup_data, bool device){
  1356. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  1357. Profile::Tic("Host2Device",&this->comm,false,25);
  1358. Profile::Toc();
  1359. Profile::Tic("DeviceComp",&this->comm,false,20);
  1360. Profile::Toc();
  1361. return;
  1362. }
  1363. Profile::Tic("Host2Device",&this->comm,false,25);
  1364. typename Vector<char>::Device buff;
  1365. typename Matrix<char>::Device precomp_data;
  1366. typename Matrix<char>::Device interac_data;
  1367. typename Matrix<Real_t>::Device input_data;
  1368. typename Matrix<Real_t>::Device output_data;
  1369. if(device){
  1370. buff = this-> dev_buffer. AllocDevice(false);
  1371. precomp_data= setup_data.precomp_data->AllocDevice(false);
  1372. interac_data= setup_data.interac_data. AllocDevice(false);
  1373. input_data = setup_data. input_data->AllocDevice(false);
  1374. output_data = setup_data. output_data->AllocDevice(false);
  1375. }else{
  1376. buff = this-> cpu_buffer;
  1377. precomp_data=*setup_data.precomp_data;
  1378. interac_data= setup_data.interac_data;
  1379. input_data =*setup_data. input_data;
  1380. output_data =*setup_data. output_data;
  1381. }
  1382. Profile::Toc();
  1383. Profile::Tic("DeviceComp",&this->comm,false,20);
  1384. int lock_idx=-1;
  1385. int wait_lock_idx=-1;
  1386. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  1387. if(device) lock_idx=MIC_Lock::get_lock();
  1388. #ifdef __INTEL_OFFLOAD
  1389. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  1390. #endif
  1391. { // Offloaded computation.
  1392. // Set interac_data.
  1393. size_t data_size, M_dim0, M_dim1, dof;
  1394. Vector<size_t> interac_blk;
  1395. Vector<size_t> interac_cnt;
  1396. Vector<size_t> interac_mat;
  1397. Vector<size_t> input_perm;
  1398. Vector<size_t> output_perm;
  1399. Vector<Real_t> scaling;
  1400. { // Set interac_data.
  1401. char* data_ptr=&interac_data[0][0];
  1402. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size;
  1403. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1404. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1405. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1406. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1407. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1408. data_ptr+=sizeof(size_t)+interac_blk.Dim()*sizeof(size_t);
  1409. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1410. data_ptr+=sizeof(size_t)+interac_cnt.Dim()*sizeof(size_t);
  1411. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1412. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  1413. input_perm .ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1414. data_ptr+=sizeof(size_t)+ input_perm.Dim()*sizeof(size_t);
  1415. output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1416. data_ptr+=sizeof(size_t)+output_perm.Dim()*sizeof(size_t);
  1417. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  1418. data_ptr+=sizeof(size_t)+scaling.Dim()*sizeof(Real_t);
  1419. }
  1420. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  1421. //Compute interaction from Chebyshev source density.
  1422. { // interactions
  1423. int omp_p=omp_get_max_threads();
  1424. size_t interac_indx=0;
  1425. size_t interac_blk_dsp=0;
  1426. for(size_t k=0;k<interac_blk.Dim();k++){
  1427. size_t vec_cnt=0;
  1428. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
  1429. char* buff_in =&buff[0];
  1430. char* buff_out=&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1431. // Input permutation.
  1432. #pragma omp parallel for
  1433. for(int tid=0;tid<omp_p;tid++){
  1434. size_t a=( tid *vec_cnt)/omp_p;
  1435. size_t b=((tid+1)*vec_cnt)/omp_p;
  1436. for(size_t i=a;i<b;i++){
  1437. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+input_perm[(interac_indx+i)*4+0]);
  1438. const Real_t* scal=( Real_t*)(precomp_data[0]+input_perm[(interac_indx+i)*4+1]);
  1439. const Real_t* v_in =( Real_t*)( input_data[0]+input_perm[(interac_indx+i)*4+3]);
  1440. Real_t* v_out=( Real_t*)( buff_in +input_perm[(interac_indx+i)*4+2]);
  1441. // TODO: Fix for dof>1
  1442. #ifdef __MIC__
  1443. {
  1444. __m512d v8;
  1445. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1446. size_t j_end =(((uintptr_t)(v_out+M_dim0) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1447. j_start/=sizeof(Real_t);
  1448. j_end /=sizeof(Real_t);
  1449. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1450. assert(((uintptr_t)(v_out+j_start))%64==0);
  1451. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1452. size_t j=0;
  1453. for(;j<j_start;j++ ){
  1454. v_out[j]=v_in[perm[j]]*scal[j];
  1455. }
  1456. for(;j<j_end ;j+=8){
  1457. v8=_mm512_setr_pd(
  1458. v_in[perm[j+0]]*scal[j+0],
  1459. v_in[perm[j+1]]*scal[j+1],
  1460. v_in[perm[j+2]]*scal[j+2],
  1461. v_in[perm[j+3]]*scal[j+3],
  1462. v_in[perm[j+4]]*scal[j+4],
  1463. v_in[perm[j+5]]*scal[j+5],
  1464. v_in[perm[j+6]]*scal[j+6],
  1465. v_in[perm[j+7]]*scal[j+7]);
  1466. _mm512_storenrngo_pd(v_out+j,v8);
  1467. }
  1468. for(;j<M_dim0 ;j++ ){
  1469. v_out[j]=v_in[perm[j]]*scal[j];
  1470. }
  1471. }
  1472. #else
  1473. for(size_t j=0;j<M_dim0;j++ ){
  1474. v_out[j]=v_in[perm[j]]*scal[j];
  1475. }
  1476. #endif
  1477. }
  1478. }
  1479. size_t vec_cnt0=0;
  1480. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];){
  1481. size_t vec_cnt1=0;
  1482. size_t interac_mat0=interac_mat[j];
  1483. for(;j<interac_blk_dsp+interac_blk[k] && interac_mat[j]==interac_mat0;j++) vec_cnt1+=interac_cnt[j];
  1484. Matrix<Real_t> M(M_dim0, M_dim1, (Real_t*)(precomp_data[0]+interac_mat0), false);
  1485. #ifdef __MIC__
  1486. {
  1487. Matrix<Real_t> Ms(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1488. Matrix<Real_t> Mt(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1489. Matrix<Real_t>::DGEMM(Mt,Ms,M);
  1490. }
  1491. #else
  1492. #pragma omp parallel for
  1493. for(int tid=0;tid<omp_p;tid++){
  1494. size_t a=(dof*vec_cnt1*(tid ))/omp_p;
  1495. size_t b=(dof*vec_cnt1*(tid+1))/omp_p;
  1496. Matrix<Real_t> Ms(b-a, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t))+M_dim0*a, false);
  1497. Matrix<Real_t> Mt(b-a, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t))+M_dim1*a, false);
  1498. Matrix<Real_t>::DGEMM(Mt,Ms,M);
  1499. }
  1500. #endif
  1501. vec_cnt0+=vec_cnt1;
  1502. }
  1503. // Output permutation.
  1504. #pragma omp parallel for
  1505. for(int tid=0;tid<omp_p;tid++){
  1506. size_t a=( tid *vec_cnt)/omp_p;
  1507. size_t b=((tid+1)*vec_cnt)/omp_p;
  1508. if(tid> 0 && a<vec_cnt){ // Find 'a' independent of other threads.
  1509. size_t out_ptr=output_perm[(interac_indx+a)*4+3];
  1510. if(tid> 0) while(a<vec_cnt && out_ptr==output_perm[(interac_indx+a)*4+3]) a++;
  1511. }
  1512. if(tid<omp_p-1 && b<vec_cnt){ // Find 'b' independent of other threads.
  1513. size_t out_ptr=output_perm[(interac_indx+b)*4+3];
  1514. if(tid<omp_p-1) while(b<vec_cnt && out_ptr==output_perm[(interac_indx+b)*4+3]) b++;
  1515. }
  1516. for(size_t i=a;i<b;i++){ // Compute permutations.
  1517. Real_t scaling_factor=scaling[interac_indx+i];
  1518. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+output_perm[(interac_indx+i)*4+0]);
  1519. const Real_t* scal=( Real_t*)(precomp_data[0]+output_perm[(interac_indx+i)*4+1]);
  1520. const Real_t* v_in =( Real_t*)( buff_out +output_perm[(interac_indx+i)*4+2]);
  1521. Real_t* v_out=( Real_t*)( output_data[0]+output_perm[(interac_indx+i)*4+3]);
  1522. // TODO: Fix for dof>1
  1523. #ifdef __MIC__
  1524. {
  1525. __m512d v8;
  1526. __m512d v_old;
  1527. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1528. size_t j_end =(((uintptr_t)(v_out+M_dim1) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1529. j_start/=sizeof(Real_t);
  1530. j_end /=sizeof(Real_t);
  1531. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1532. assert(((uintptr_t)(v_out+j_start))%64==0);
  1533. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1534. size_t j=0;
  1535. for(;j<j_start;j++ ){
  1536. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1537. }
  1538. for(;j<j_end ;j+=8){
  1539. v_old=_mm512_load_pd(v_out+j);
  1540. v8=_mm512_setr_pd(
  1541. v_in[perm[j+0]]*scal[j+0]*scaling_factor,
  1542. v_in[perm[j+1]]*scal[j+1]*scaling_factor,
  1543. v_in[perm[j+2]]*scal[j+2]*scaling_factor,
  1544. v_in[perm[j+3]]*scal[j+3]*scaling_factor,
  1545. v_in[perm[j+4]]*scal[j+4]*scaling_factor,
  1546. v_in[perm[j+5]]*scal[j+5]*scaling_factor,
  1547. v_in[perm[j+6]]*scal[j+6]*scaling_factor,
  1548. v_in[perm[j+7]]*scal[j+7]*scaling_factor);
  1549. v_old=_mm512_add_pd(v_old, v8);
  1550. _mm512_storenrngo_pd(v_out+j,v_old);
  1551. }
  1552. for(;j<M_dim1 ;j++ ){
  1553. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1554. }
  1555. }
  1556. #else
  1557. for(size_t j=0;j<M_dim1;j++ ){
  1558. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1559. }
  1560. #endif
  1561. }
  1562. }
  1563. interac_indx+=vec_cnt;
  1564. interac_blk_dsp+=interac_blk[k];
  1565. }
  1566. }
  1567. if(device) MIC_Lock::release_lock(lock_idx);
  1568. }
  1569. #ifdef __INTEL_OFFLOAD
  1570. if(SYNC){
  1571. #pragma offload if(device) target(mic:0)
  1572. {if(device) MIC_Lock::wait_lock(lock_idx);}
  1573. }
  1574. #endif
  1575. Profile::Toc();
  1576. }
  1577. template <class FMMNode>
  1578. void FMM_Pts<FMMNode>::Source2UpSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  1579. if(this->MultipoleOrder()==0) return;
  1580. { // Set setup_data
  1581. setup_data.level=level;
  1582. setup_data.kernel=&aux_kernel;
  1583. setup_data.interac_type.resize(1);
  1584. setup_data.interac_type[0]=S2U_Type;
  1585. setup_data. input_data=&buff[4];
  1586. setup_data.output_data=&buff[0];
  1587. setup_data. coord_data=&buff[6];
  1588. Vector<FMMNode_t*>& nodes_in =n_list[4];
  1589. Vector<FMMNode_t*>& nodes_out=n_list[0];
  1590. setup_data.nodes_in .clear();
  1591. setup_data.nodes_out.clear();
  1592. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  1593. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  1594. }
  1595. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1596. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1597. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  1598. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  1599. for(size_t i=0;i<nodes_in .size();i++){
  1600. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  1601. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  1602. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  1603. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  1604. }
  1605. for(size_t i=0;i<nodes_out.size();i++){
  1606. output_vector.push_back(&upwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
  1607. output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
  1608. }
  1609. //Upward check to upward equivalent matrix.
  1610. Matrix<Real_t>& M_uc2ue = this->mat->Mat(level, UC2UE_Type, 0);
  1611. this->SetupInteracPts(setup_data, false, true, &M_uc2ue,device);
  1612. { // Resize device buffer
  1613. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  1614. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  1615. }
  1616. }
  1617. template <class FMMNode>
  1618. void FMM_Pts<FMMNode>::Source2Up(SetupData<Real_t>& setup_data, bool device){
  1619. //Add Source2Up contribution.
  1620. this->EvalListPts(setup_data, device);
  1621. }
  1622. template <class FMMNode>
  1623. void FMM_Pts<FMMNode>::Up2UpSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  1624. if(this->MultipoleOrder()==0) return;
  1625. { // Set setup_data
  1626. setup_data.level=level;
  1627. setup_data.kernel=&aux_kernel;
  1628. setup_data.interac_type.resize(1);
  1629. setup_data.interac_type[0]=U2U_Type;
  1630. setup_data. input_data=&buff[0];
  1631. setup_data.output_data=&buff[0];
  1632. Vector<FMMNode_t*>& nodes_in =n_list[0];
  1633. Vector<FMMNode_t*>& nodes_out=n_list[0];
  1634. setup_data.nodes_in .clear();
  1635. setup_data.nodes_out.clear();
  1636. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1) setup_data.nodes_in .push_back(nodes_in [i]);
  1637. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
  1638. }
  1639. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1640. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1641. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  1642. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  1643. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  1644. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
  1645. SetupInterac(setup_data,device);
  1646. }
  1647. template <class FMMNode>
  1648. void FMM_Pts<FMMNode>::Up2Up (SetupData<Real_t>& setup_data, bool device){
  1649. //Add Up2Up contribution.
  1650. EvalList(setup_data, device);
  1651. }
  1652. template <class FMMNode>
  1653. void FMM_Pts<FMMNode>::PeriodicBC(FMMNode* node){
  1654. if(this->MultipoleOrder()==0) return;
  1655. Matrix<Real_t>& M = Precomp(0, BC_Type, 0);
  1656. assert(node->FMMData()->upward_equiv.Dim()>0);
  1657. int dof=1;
  1658. Vector<Real_t>& upward_equiv=node->FMMData()->upward_equiv;
  1659. Vector<Real_t>& dnward_equiv=node->FMMData()->dnward_equiv;
  1660. assert(upward_equiv.Dim()==M.Dim(0)*dof);
  1661. assert(dnward_equiv.Dim()==M.Dim(1)*dof);
  1662. Matrix<Real_t> d_equiv(dof,M.Dim(0),&dnward_equiv[0],false);
  1663. Matrix<Real_t> u_equiv(dof,M.Dim(1),&upward_equiv[0],false);
  1664. Matrix<Real_t>::DGEMM(d_equiv,u_equiv,M);
  1665. }
  1666. template <class FMMNode>
  1667. void FMM_Pts<FMMNode>::FFT_UpEquiv(size_t dof, size_t m, size_t ker_dim0, Vector<size_t>& fft_vec,
  1668. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_){
  1669. size_t n1=m*2;
  1670. size_t n2=n1*n1;
  1671. size_t n3=n1*n2;
  1672. size_t n3_=n2*(n1/2+1);
  1673. size_t chld_cnt=1UL<<COORD_DIM;
  1674. size_t fftsize_in =2*n3_*chld_cnt*ker_dim0*dof;
  1675. int omp_p=omp_get_max_threads();
  1676. //Load permutation map.
  1677. size_t n=6*(m-1)*(m-1)+2;
  1678. static Vector<size_t> map;
  1679. { // Build map to reorder upward_equiv
  1680. size_t n_old=map.Dim();
  1681. if(n_old!=n){
  1682. Real_t c[3]={0,0,0};
  1683. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1684. map.Resize(surf.Dim()/COORD_DIM);
  1685. for(size_t i=0;i<map.Dim();i++)
  1686. map[i]=((size_t)(m-1-surf[i*3]+0.5))+((size_t)(m-1-surf[i*3+1]+0.5))*n1+((size_t)(m-1-surf[i*3+2]+0.5))*n2;
  1687. }
  1688. }
  1689. { // Build FFTW plan.
  1690. if(!vlist_fft_flag){
  1691. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1692. void *fftw_in, *fftw_out;
  1693. fftw_in = mem::aligned_malloc<Real_t>( n3 *ker_dim0*chld_cnt);
  1694. fftw_out = mem::aligned_malloc<Real_t>(2*n3_*ker_dim0*chld_cnt);
  1695. vlist_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM,nnn,ker_dim0*chld_cnt,
  1696. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*)(fftw_out),NULL, 1, n3_, FFTW_ESTIMATE);
  1697. mem::aligned_free<Real_t>((Real_t*)fftw_in );
  1698. mem::aligned_free<Real_t>((Real_t*)fftw_out);
  1699. vlist_fft_flag=true;
  1700. }
  1701. }
  1702. { // Offload section
  1703. size_t n_in = fft_vec.Dim();
  1704. #pragma omp parallel for
  1705. for(int pid=0; pid<omp_p; pid++){
  1706. size_t node_start=(n_in*(pid ))/omp_p;
  1707. size_t node_end =(n_in*(pid+1))/omp_p;
  1708. Vector<Real_t> buffer(fftsize_in, &buffer_[fftsize_in*pid], false);
  1709. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  1710. Vector<Real_t*> upward_equiv(chld_cnt);
  1711. for(size_t i=0;i<chld_cnt;i++) upward_equiv[i]=&input_data[0] + fft_vec[node_idx] + n*ker_dim0*dof*i;
  1712. Vector<Real_t> upward_equiv_fft(fftsize_in, &output_data[fftsize_in *node_idx], false);
  1713. upward_equiv_fft.SetZero();
  1714. // Rearrange upward equivalent data.
  1715. for(size_t k=0;k<n;k++){
  1716. size_t idx=map[k];
  1717. for(int j1=0;j1<dof;j1++)
  1718. for(int j0=0;j0<(int)chld_cnt;j0++)
  1719. for(int i=0;i<ker_dim0;i++)
  1720. upward_equiv_fft[idx+(j0+(i+j1*ker_dim0)*chld_cnt)*n3]=upward_equiv[j0][ker_dim0*(n*j1+k)+i];
  1721. }
  1722. // Compute FFT.
  1723. for(int i=0;i<dof;i++)
  1724. FFTW_t<Real_t>::fft_execute_dft_r2c(vlist_fftplan, (Real_t*)&upward_equiv_fft[i* n3 *ker_dim0*chld_cnt],
  1725. (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim0*chld_cnt]);
  1726. //Compute flops.
  1727. #ifndef FFTW3_MKL
  1728. double add, mul, fma;
  1729. FFTW_t<Real_t>::fftw_flops(vlist_fftplan, &add, &mul, &fma);
  1730. #ifndef __INTEL_OFFLOAD0
  1731. Profile::Add_FLOP((long long)(add+mul+2*fma));
  1732. #endif
  1733. #endif
  1734. for(int i=0;i<ker_dim0*dof;i++)
  1735. for(size_t j=0;j<n3_;j++)
  1736. for(size_t k=0;k<chld_cnt;k++){
  1737. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+0]=buffer[2*(n3_*(chld_cnt*i+k)+j)+0];
  1738. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+1]=buffer[2*(n3_*(chld_cnt*i+k)+j)+1];
  1739. }
  1740. }
  1741. }
  1742. }
  1743. }
  1744. template <class FMMNode>
  1745. void FMM_Pts<FMMNode>::FFT_Check2Equiv(size_t dof, size_t m, size_t ker_dim1, Vector<size_t>& ifft_vec,
  1746. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_, Matrix<Real_t>& M){
  1747. size_t n1=m*2;
  1748. size_t n2=n1*n1;
  1749. size_t n3=n1*n2;
  1750. size_t n3_=n2*(n1/2+1);
  1751. size_t chld_cnt=1UL<<COORD_DIM;
  1752. size_t fftsize_out=2*n3_*dof*ker_dim1*chld_cnt;
  1753. int omp_p=omp_get_max_threads();
  1754. //Load permutation map.
  1755. size_t n=6*(m-1)*(m-1)+2;
  1756. static Vector<size_t> map;
  1757. { // Build map to reorder dnward_check
  1758. size_t n_old=map.Dim();
  1759. if(n_old!=n){
  1760. Real_t c[3]={0,0,0};
  1761. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1762. map.Resize(surf.Dim()/COORD_DIM);
  1763. for(size_t i=0;i<map.Dim();i++)
  1764. map[i]=((size_t)(m*2-0.5-surf[i*3]))+((size_t)(m*2-0.5-surf[i*3+1]))*n1+((size_t)(m*2-0.5-surf[i*3+2]))*n2;
  1765. //map;//.AllocDevice(true);
  1766. }
  1767. }
  1768. { // Build FFTW plan.
  1769. if(!vlist_ifft_flag){
  1770. //Build FFTW plan.
  1771. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1772. Real_t *fftw_in, *fftw_out;
  1773. fftw_in = mem::aligned_malloc<Real_t>(2*n3_*ker_dim1*chld_cnt);
  1774. fftw_out = mem::aligned_malloc<Real_t>( n3 *ker_dim1*chld_cnt);
  1775. vlist_ifftplan = FFTW_t<Real_t>::fft_plan_many_dft_c2r(COORD_DIM,nnn,ker_dim1*chld_cnt,
  1776. (typename FFTW_t<Real_t>::cplx*)fftw_in, NULL, 1, n3_, (Real_t*)(fftw_out),NULL, 1, n3, FFTW_ESTIMATE);
  1777. mem::aligned_free<Real_t>(fftw_in);
  1778. mem::aligned_free<Real_t>(fftw_out);
  1779. vlist_ifft_flag=true;
  1780. }
  1781. }
  1782. { // Offload section
  1783. size_t n_out=ifft_vec.Dim();
  1784. #pragma omp parallel for
  1785. for(int pid=0; pid<omp_p; pid++){
  1786. size_t node_start=(n_out*(pid ))/omp_p;
  1787. size_t node_end =(n_out*(pid+1))/omp_p;
  1788. Vector<Real_t> buffer(fftsize_out, &buffer_[fftsize_out*pid], false);
  1789. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  1790. Vector<Real_t> dnward_check_fft(fftsize_out, &input_data[fftsize_out*node_idx], false);
  1791. //De-interleave data.
  1792. for(int i=0;i<ker_dim1*dof;i++)
  1793. for(size_t j=0;j<n3_;j++)
  1794. for(size_t k=0;k<chld_cnt;k++){
  1795. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+0]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+0];
  1796. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+1]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+1];
  1797. }
  1798. // Compute FFT.
  1799. for(int i=0;i<dof;i++)
  1800. FFTW_t<Real_t>::fft_execute_dft_c2r(vlist_ifftplan, (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim1*chld_cnt],
  1801. (Real_t*)&dnward_check_fft[i* n3 *ker_dim1*chld_cnt]);
  1802. //Compute flops.
  1803. #ifndef FFTW3_MKL
  1804. double add, mul, fma;
  1805. FFTW_t<Real_t>::fftw_flops(vlist_ifftplan, &add, &mul, &fma);
  1806. #ifndef __INTEL_OFFLOAD0
  1807. Profile::Add_FLOP((long long)(add+mul+2*fma));
  1808. #endif
  1809. #endif
  1810. // Rearrange downward check data.
  1811. for(size_t k=0;k<n;k++){
  1812. size_t idx=map[k];
  1813. for(int j1=0;j1<dof;j1++)
  1814. for(int j0=0;j0<(int)chld_cnt;j0++)
  1815. for(int i=0;i<ker_dim1;i++)
  1816. buffer[ker_dim1*(n*(dof*j0+j1)+k)+i]=dnward_check_fft[idx+(j1+(i+j0*ker_dim1)*dof)*n3];
  1817. }
  1818. // Compute check to equiv.
  1819. for(size_t j=0;j<chld_cnt;j++){
  1820. Matrix<Real_t> d_check(dof,M.Dim(0),&buffer[n*ker_dim1*dof*j],false);
  1821. Matrix<Real_t> d_equiv(dof,M.Dim(1),&output_data[0] + ifft_vec[node_idx] + M.Dim(1)*dof*j,false);
  1822. Matrix<Real_t>::DGEMM(d_equiv,d_check,M,1.0);
  1823. }
  1824. }
  1825. }
  1826. }
  1827. }
  1828. template<class Real_t>
  1829. inline void matmult_8x8x2(Real_t*& M_, Real_t*& IN0, Real_t*& IN1, Real_t*& OUT0, Real_t*& OUT1){
  1830. // Generic code.
  1831. Real_t out_reg000, out_reg001, out_reg010, out_reg011;
  1832. Real_t out_reg100, out_reg101, out_reg110, out_reg111;
  1833. Real_t in_reg000, in_reg001, in_reg010, in_reg011;
  1834. Real_t in_reg100, in_reg101, in_reg110, in_reg111;
  1835. Real_t m_reg000, m_reg001, m_reg010, m_reg011;
  1836. Real_t m_reg100, m_reg101, m_reg110, m_reg111;
  1837. //#pragma unroll
  1838. for(int i1=0;i1<8;i1+=2){
  1839. Real_t* IN0_=IN0;
  1840. Real_t* IN1_=IN1;
  1841. out_reg000=OUT0[ 0]; out_reg001=OUT0[ 1];
  1842. out_reg010=OUT0[ 2]; out_reg011=OUT0[ 3];
  1843. out_reg100=OUT1[ 0]; out_reg101=OUT1[ 1];
  1844. out_reg110=OUT1[ 2]; out_reg111=OUT1[ 3];
  1845. //#pragma unroll
  1846. for(int i2=0;i2<8;i2+=2){
  1847. m_reg000=M_[ 0]; m_reg001=M_[ 1];
  1848. m_reg010=M_[ 2]; m_reg011=M_[ 3];
  1849. m_reg100=M_[16]; m_reg101=M_[17];
  1850. m_reg110=M_[18]; m_reg111=M_[19];
  1851. in_reg000=IN0_[0]; in_reg001=IN0_[1];
  1852. in_reg010=IN0_[2]; in_reg011=IN0_[3];
  1853. in_reg100=IN1_[0]; in_reg101=IN1_[1];
  1854. in_reg110=IN1_[2]; in_reg111=IN1_[3];
  1855. out_reg000 += m_reg000*in_reg000 - m_reg001*in_reg001;
  1856. out_reg001 += m_reg000*in_reg001 + m_reg001*in_reg000;
  1857. out_reg010 += m_reg010*in_reg000 - m_reg011*in_reg001;
  1858. out_reg011 += m_reg010*in_reg001 + m_reg011*in_reg000;
  1859. out_reg000 += m_reg100*in_reg010 - m_reg101*in_reg011;
  1860. out_reg001 += m_reg100*in_reg011 + m_reg101*in_reg010;
  1861. out_reg010 += m_reg110*in_reg010 - m_reg111*in_reg011;
  1862. out_reg011 += m_reg110*in_reg011 + m_reg111*in_reg010;
  1863. out_reg100 += m_reg000*in_reg100 - m_reg001*in_reg101;
  1864. out_reg101 += m_reg000*in_reg101 + m_reg001*in_reg100;
  1865. out_reg110 += m_reg010*in_reg100 - m_reg011*in_reg101;
  1866. out_reg111 += m_reg010*in_reg101 + m_reg011*in_reg100;
  1867. out_reg100 += m_reg100*in_reg110 - m_reg101*in_reg111;
  1868. out_reg101 += m_reg100*in_reg111 + m_reg101*in_reg110;
  1869. out_reg110 += m_reg110*in_reg110 - m_reg111*in_reg111;
  1870. out_reg111 += m_reg110*in_reg111 + m_reg111*in_reg110;
  1871. M_+=32; // Jump to (column+2).
  1872. IN0_+=4;
  1873. IN1_+=4;
  1874. }
  1875. OUT0[ 0]=out_reg000; OUT0[ 1]=out_reg001;
  1876. OUT0[ 2]=out_reg010; OUT0[ 3]=out_reg011;
  1877. OUT1[ 0]=out_reg100; OUT1[ 1]=out_reg101;
  1878. OUT1[ 2]=out_reg110; OUT1[ 3]=out_reg111;
  1879. M_+=4-64*2; // Jump back to first column (row+2).
  1880. OUT0+=4;
  1881. OUT1+=4;
  1882. }
  1883. }
  1884. #if defined(__AVX__) || defined(__SSE3__)
  1885. template<>
  1886. inline void matmult_8x8x2<double>(double*& M_, double*& IN0, double*& IN1, double*& OUT0, double*& OUT1){
  1887. #ifdef __AVX__ //AVX code.
  1888. __m256d out00,out01,out10,out11;
  1889. __m256d out20,out21,out30,out31;
  1890. double* in0__ = IN0;
  1891. double* in1__ = IN1;
  1892. out00 = _mm256_load_pd(OUT0);
  1893. out01 = _mm256_load_pd(OUT1);
  1894. out10 = _mm256_load_pd(OUT0+4);
  1895. out11 = _mm256_load_pd(OUT1+4);
  1896. out20 = _mm256_load_pd(OUT0+8);
  1897. out21 = _mm256_load_pd(OUT1+8);
  1898. out30 = _mm256_load_pd(OUT0+12);
  1899. out31 = _mm256_load_pd(OUT1+12);
  1900. for(int i2=0;i2<8;i2+=2){
  1901. __m256d m00;
  1902. __m256d ot00;
  1903. __m256d mt0,mtt0;
  1904. __m256d in00,in00_r,in01,in01_r;
  1905. in00 = _mm256_broadcast_pd((const __m128d*)in0__);
  1906. in00_r = _mm256_permute_pd(in00,5);
  1907. in01 = _mm256_broadcast_pd((const __m128d*)in1__);
  1908. in01_r = _mm256_permute_pd(in01,5);
  1909. m00 = _mm256_load_pd(M_);
  1910. mt0 = _mm256_unpacklo_pd(m00,m00);
  1911. ot00 = _mm256_mul_pd(mt0,in00);
  1912. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1913. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1914. ot00 = _mm256_mul_pd(mt0,in01);
  1915. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1916. m00 = _mm256_load_pd(M_+4);
  1917. mt0 = _mm256_unpacklo_pd(m00,m00);
  1918. ot00 = _mm256_mul_pd(mt0,in00);
  1919. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1920. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1921. ot00 = _mm256_mul_pd(mt0,in01);
  1922. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1923. m00 = _mm256_load_pd(M_+8);
  1924. mt0 = _mm256_unpacklo_pd(m00,m00);
  1925. ot00 = _mm256_mul_pd(mt0,in00);
  1926. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1927. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1928. ot00 = _mm256_mul_pd(mt0,in01);
  1929. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1930. m00 = _mm256_load_pd(M_+12);
  1931. mt0 = _mm256_unpacklo_pd(m00,m00);
  1932. ot00 = _mm256_mul_pd(mt0,in00);
  1933. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1934. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1935. ot00 = _mm256_mul_pd(mt0,in01);
  1936. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1937. in00 = _mm256_broadcast_pd((const __m128d*) (in0__+2));
  1938. in00_r = _mm256_permute_pd(in00,5);
  1939. in01 = _mm256_broadcast_pd((const __m128d*) (in1__+2));
  1940. in01_r = _mm256_permute_pd(in01,5);
  1941. m00 = _mm256_load_pd(M_+16);
  1942. mt0 = _mm256_unpacklo_pd(m00,m00);
  1943. ot00 = _mm256_mul_pd(mt0,in00);
  1944. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1945. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1946. ot00 = _mm256_mul_pd(mt0,in01);
  1947. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1948. m00 = _mm256_load_pd(M_+20);
  1949. mt0 = _mm256_unpacklo_pd(m00,m00);
  1950. ot00 = _mm256_mul_pd(mt0,in00);
  1951. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1952. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1953. ot00 = _mm256_mul_pd(mt0,in01);
  1954. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1955. m00 = _mm256_load_pd(M_+24);
  1956. mt0 = _mm256_unpacklo_pd(m00,m00);
  1957. ot00 = _mm256_mul_pd(mt0,in00);
  1958. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1959. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1960. ot00 = _mm256_mul_pd(mt0,in01);
  1961. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1962. m00 = _mm256_load_pd(M_+28);
  1963. mt0 = _mm256_unpacklo_pd(m00,m00);
  1964. ot00 = _mm256_mul_pd(mt0,in00);
  1965. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1966. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1967. ot00 = _mm256_mul_pd(mt0,in01);
  1968. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1969. M_ += 32;
  1970. in0__ += 4;
  1971. in1__ += 4;
  1972. }
  1973. _mm256_store_pd(OUT0,out00);
  1974. _mm256_store_pd(OUT1,out01);
  1975. _mm256_store_pd(OUT0+4,out10);
  1976. _mm256_store_pd(OUT1+4,out11);
  1977. _mm256_store_pd(OUT0+8,out20);
  1978. _mm256_store_pd(OUT1+8,out21);
  1979. _mm256_store_pd(OUT0+12,out30);
  1980. _mm256_store_pd(OUT1+12,out31);
  1981. #elif defined __SSE3__ // SSE code.
  1982. __m128d out00, out01, out10, out11;
  1983. __m128d in00, in01, in10, in11;
  1984. __m128d m00, m01, m10, m11;
  1985. //#pragma unroll
  1986. for(int i1=0;i1<8;i1+=2){
  1987. double* IN0_=IN0;
  1988. double* IN1_=IN1;
  1989. out00 =_mm_load_pd (OUT0 );
  1990. out10 =_mm_load_pd (OUT0+2);
  1991. out01 =_mm_load_pd (OUT1 );
  1992. out11 =_mm_load_pd (OUT1+2);
  1993. //#pragma unroll
  1994. for(int i2=0;i2<8;i2+=2){
  1995. m00 =_mm_load1_pd (M_ );
  1996. m10 =_mm_load1_pd (M_+ 2);
  1997. m01 =_mm_load1_pd (M_+16);
  1998. m11 =_mm_load1_pd (M_+18);
  1999. in00 =_mm_load_pd (IN0_ );
  2000. in10 =_mm_load_pd (IN0_+2);
  2001. in01 =_mm_load_pd (IN1_ );
  2002. in11 =_mm_load_pd (IN1_+2);
  2003. out00 = _mm_add_pd (out00, _mm_mul_pd(m00 , in00 ));
  2004. out00 = _mm_add_pd (out00, _mm_mul_pd(m01 , in10 ));
  2005. out01 = _mm_add_pd (out01, _mm_mul_pd(m00 , in01 ));
  2006. out01 = _mm_add_pd (out01, _mm_mul_pd(m01 , in11 ));
  2007. out10 = _mm_add_pd (out10, _mm_mul_pd(m10 , in00 ));
  2008. out10 = _mm_add_pd (out10, _mm_mul_pd(m11 , in10 ));
  2009. out11 = _mm_add_pd (out11, _mm_mul_pd(m10 , in01 ));
  2010. out11 = _mm_add_pd (out11, _mm_mul_pd(m11 , in11 ));
  2011. m00 =_mm_load1_pd (M_+ 1);
  2012. m10 =_mm_load1_pd (M_+ 2+1);
  2013. m01 =_mm_load1_pd (M_+16+1);
  2014. m11 =_mm_load1_pd (M_+18+1);
  2015. in00 =_mm_shuffle_pd (in00,in00,_MM_SHUFFLE2(0,1));
  2016. in01 =_mm_shuffle_pd (in01,in01,_MM_SHUFFLE2(0,1));
  2017. in10 =_mm_shuffle_pd (in10,in10,_MM_SHUFFLE2(0,1));
  2018. in11 =_mm_shuffle_pd (in11,in11,_MM_SHUFFLE2(0,1));
  2019. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m00, in00));
  2020. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m01, in10));
  2021. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m00, in01));
  2022. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m01, in11));
  2023. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m10, in00));
  2024. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m11, in10));
  2025. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m10, in01));
  2026. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m11, in11));
  2027. M_+=32; // Jump to (column+2).
  2028. IN0_+=4;
  2029. IN1_+=4;
  2030. }
  2031. _mm_store_pd (OUT0 ,out00);
  2032. _mm_store_pd (OUT0+2,out10);
  2033. _mm_store_pd (OUT1 ,out01);
  2034. _mm_store_pd (OUT1+2,out11);
  2035. M_+=4-64*2; // Jump back to first column (row+2).
  2036. OUT0+=4;
  2037. OUT1+=4;
  2038. }
  2039. #endif
  2040. }
  2041. #endif
  2042. #if defined(__SSE3__)
  2043. template<>
  2044. inline void matmult_8x8x2<float>(float*& M_, float*& IN0, float*& IN1, float*& OUT0, float*& OUT1){
  2045. #if defined __SSE3__ // SSE code.
  2046. __m128 out00,out01,out10,out11;
  2047. __m128 out20,out21,out30,out31;
  2048. float* in0__ = IN0;
  2049. float* in1__ = IN1;
  2050. out00 = _mm_load_ps(OUT0);
  2051. out01 = _mm_load_ps(OUT1);
  2052. out10 = _mm_load_ps(OUT0+4);
  2053. out11 = _mm_load_ps(OUT1+4);
  2054. out20 = _mm_load_ps(OUT0+8);
  2055. out21 = _mm_load_ps(OUT1+8);
  2056. out30 = _mm_load_ps(OUT0+12);
  2057. out31 = _mm_load_ps(OUT1+12);
  2058. for(int i2=0;i2<8;i2+=2){
  2059. __m128 m00;
  2060. __m128 ot00;
  2061. __m128 mt0,mtt0;
  2062. __m128 in00,in00_r,in01,in01_r;
  2063. in00 = _mm_castpd_ps(_mm_load_pd1((const double*)in0__));
  2064. in00_r = _mm_shuffle_ps(in00,in00,_MM_SHUFFLE(2,3,0,1));
  2065. in01 = _mm_castpd_ps(_mm_load_pd1((const double*)in1__));
  2066. in01_r = _mm_shuffle_ps(in01,in01,_MM_SHUFFLE(2,3,0,1));
  2067. m00 = _mm_load_ps(M_);
  2068. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2069. out00= _mm_add_ps (out00,_mm_mul_ps( mt0,in00 ));
  2070. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2071. out00= _mm_addsub_ps(out00,_mm_mul_ps(mtt0,in00_r));
  2072. out01 = _mm_add_ps (out01,_mm_mul_ps( mt0,in01 ));
  2073. out01 = _mm_addsub_ps(out01,_mm_mul_ps(mtt0,in01_r));
  2074. m00 = _mm_load_ps(M_+4);
  2075. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2076. out10= _mm_add_ps (out10,_mm_mul_ps( mt0,in00 ));
  2077. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2078. out10= _mm_addsub_ps(out10,_mm_mul_ps(mtt0,in00_r));
  2079. out11 = _mm_add_ps (out11,_mm_mul_ps( mt0,in01 ));
  2080. out11 = _mm_addsub_ps(out11,_mm_mul_ps(mtt0,in01_r));
  2081. m00 = _mm_load_ps(M_+8);
  2082. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2083. out20= _mm_add_ps (out20,_mm_mul_ps( mt0,in00 ));
  2084. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2085. out20= _mm_addsub_ps(out20,_mm_mul_ps(mtt0,in00_r));
  2086. out21 = _mm_add_ps (out21,_mm_mul_ps( mt0,in01 ));
  2087. out21 = _mm_addsub_ps(out21,_mm_mul_ps(mtt0,in01_r));
  2088. m00 = _mm_load_ps(M_+12);
  2089. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2090. out30= _mm_add_ps (out30,_mm_mul_ps( mt0, in00));
  2091. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2092. out30= _mm_addsub_ps(out30,_mm_mul_ps(mtt0,in00_r));
  2093. out31 = _mm_add_ps (out31,_mm_mul_ps( mt0,in01 ));
  2094. out31 = _mm_addsub_ps(out31,_mm_mul_ps(mtt0,in01_r));
  2095. in00 = _mm_castpd_ps(_mm_load_pd1((const double*) (in0__+2)));
  2096. in00_r = _mm_shuffle_ps(in00,in00,_MM_SHUFFLE(2,3,0,1));
  2097. in01 = _mm_castpd_ps(_mm_load_pd1((const double*) (in1__+2)));
  2098. in01_r = _mm_shuffle_ps(in01,in01,_MM_SHUFFLE(2,3,0,1));
  2099. m00 = _mm_load_ps(M_+16);
  2100. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2101. out00= _mm_add_ps (out00,_mm_mul_ps( mt0,in00 ));
  2102. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2103. out00= _mm_addsub_ps(out00,_mm_mul_ps(mtt0,in00_r));
  2104. out01 = _mm_add_ps (out01,_mm_mul_ps( mt0,in01 ));
  2105. out01 = _mm_addsub_ps(out01,_mm_mul_ps(mtt0,in01_r));
  2106. m00 = _mm_load_ps(M_+20);
  2107. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2108. out10= _mm_add_ps (out10,_mm_mul_ps( mt0,in00 ));
  2109. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2110. out10= _mm_addsub_ps(out10,_mm_mul_ps(mtt0,in00_r));
  2111. out11 = _mm_add_ps (out11,_mm_mul_ps( mt0,in01 ));
  2112. out11 = _mm_addsub_ps(out11,_mm_mul_ps(mtt0,in01_r));
  2113. m00 = _mm_load_ps(M_+24);
  2114. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2115. out20= _mm_add_ps (out20,_mm_mul_ps( mt0,in00 ));
  2116. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2117. out20= _mm_addsub_ps(out20,_mm_mul_ps(mtt0,in00_r));
  2118. out21 = _mm_add_ps (out21,_mm_mul_ps( mt0,in01 ));
  2119. out21 = _mm_addsub_ps(out21,_mm_mul_ps(mtt0,in01_r));
  2120. m00 = _mm_load_ps(M_+28);
  2121. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2122. out30= _mm_add_ps (out30,_mm_mul_ps( mt0,in00 ));
  2123. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2124. out30= _mm_addsub_ps(out30,_mm_mul_ps(mtt0,in00_r));
  2125. out31 = _mm_add_ps (out31,_mm_mul_ps( mt0,in01 ));
  2126. out31 = _mm_addsub_ps(out31,_mm_mul_ps(mtt0,in01_r));
  2127. M_ += 32;
  2128. in0__ += 4;
  2129. in1__ += 4;
  2130. }
  2131. _mm_store_ps(OUT0,out00);
  2132. _mm_store_ps(OUT1,out01);
  2133. _mm_store_ps(OUT0+4,out10);
  2134. _mm_store_ps(OUT1+4,out11);
  2135. _mm_store_ps(OUT0+8,out20);
  2136. _mm_store_ps(OUT1+8,out21);
  2137. _mm_store_ps(OUT0+12,out30);
  2138. _mm_store_ps(OUT1+12,out31);
  2139. #endif
  2140. }
  2141. #endif
  2142. template <class Real_t>
  2143. void VListHadamard(size_t dof, size_t M_dim, size_t ker_dim0, size_t ker_dim1, Vector<size_t>& interac_dsp,
  2144. Vector<size_t>& interac_vec, Vector<Real_t*>& precomp_mat, Vector<Real_t>& fft_in, Vector<Real_t>& fft_out){
  2145. size_t chld_cnt=1UL<<COORD_DIM;
  2146. size_t fftsize_in =M_dim*ker_dim0*chld_cnt*2;
  2147. size_t fftsize_out=M_dim*ker_dim1*chld_cnt*2;
  2148. Real_t* zero_vec0=mem::aligned_malloc<Real_t>(fftsize_in );
  2149. Real_t* zero_vec1=mem::aligned_malloc<Real_t>(fftsize_out);
  2150. size_t n_out=fft_out.Dim()/fftsize_out;
  2151. // Set buff_out to zero.
  2152. #pragma omp parallel for
  2153. for(size_t k=0;k<n_out;k++){
  2154. Vector<Real_t> dnward_check_fft(fftsize_out, &fft_out[k*fftsize_out], false);
  2155. dnward_check_fft.SetZero();
  2156. }
  2157. // Build list of interaction pairs (in, out vectors).
  2158. size_t mat_cnt=precomp_mat.Dim();
  2159. size_t blk1_cnt=interac_dsp.Dim()/mat_cnt;
  2160. const size_t V_BLK_SIZE=V_BLK_CACHE*64/sizeof(Real_t);
  2161. Real_t** IN_ =new Real_t*[2*V_BLK_SIZE*blk1_cnt*mat_cnt];
  2162. Real_t** OUT_=new Real_t*[2*V_BLK_SIZE*blk1_cnt*mat_cnt];
  2163. #pragma omp parallel for
  2164. for(size_t interac_blk1=0; interac_blk1<blk1_cnt*mat_cnt; interac_blk1++){
  2165. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2166. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2167. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2168. for(size_t j=0;j<interac_cnt;j++){
  2169. IN_ [2*V_BLK_SIZE*interac_blk1 +j]=&fft_in [interac_vec[(interac_dsp0+j)*2+0]];
  2170. OUT_[2*V_BLK_SIZE*interac_blk1 +j]=&fft_out[interac_vec[(interac_dsp0+j)*2+1]];
  2171. }
  2172. IN_ [2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec0;
  2173. OUT_[2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec1;
  2174. }
  2175. int omp_p=omp_get_max_threads();
  2176. #pragma omp parallel for
  2177. for(int pid=0; pid<omp_p; pid++){
  2178. size_t a=( pid *M_dim)/omp_p;
  2179. size_t b=((pid+1)*M_dim)/omp_p;
  2180. for(size_t blk1=0; blk1<blk1_cnt; blk1++)
  2181. for(size_t k=a; k< b; k++)
  2182. for(size_t mat_indx=0; mat_indx< mat_cnt;mat_indx++){
  2183. size_t interac_blk1 = blk1*mat_cnt+mat_indx;
  2184. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2185. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2186. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2187. Real_t** IN = IN_ + 2*V_BLK_SIZE*interac_blk1;
  2188. Real_t** OUT= OUT_+ 2*V_BLK_SIZE*interac_blk1;
  2189. Real_t* M = precomp_mat[mat_indx] + k*chld_cnt*chld_cnt*2;
  2190. #ifdef __SSE__
  2191. if (mat_indx +1 < mat_cnt){ // Prefetch
  2192. _mm_prefetch(((char *)(precomp_mat[mat_indx+1] + k*chld_cnt*chld_cnt*2)), _MM_HINT_T0);
  2193. _mm_prefetch(((char *)(precomp_mat[mat_indx+1] + k*chld_cnt*chld_cnt*2) + 64), _MM_HINT_T0);
  2194. }
  2195. #endif
  2196. for(int in_dim=0;in_dim<ker_dim0;in_dim++)
  2197. for(int ot_dim=0;ot_dim<ker_dim1;ot_dim++){
  2198. for(size_t j=0;j<interac_cnt;j+=2){
  2199. Real_t* M_ = M;
  2200. Real_t* IN0 = IN [j+0] + (in_dim*M_dim+k)*chld_cnt*2;
  2201. Real_t* IN1 = IN [j+1] + (in_dim*M_dim+k)*chld_cnt*2;
  2202. Real_t* OUT0 = OUT[j+0] + (ot_dim*M_dim+k)*chld_cnt*2;
  2203. Real_t* OUT1 = OUT[j+1] + (ot_dim*M_dim+k)*chld_cnt*2;
  2204. #ifdef __SSE__
  2205. if (j+2 < interac_cnt) { // Prefetch
  2206. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2207. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2208. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2209. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2210. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2211. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2212. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2213. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2214. }
  2215. #endif
  2216. matmult_8x8x2(M_, IN0, IN1, OUT0, OUT1);
  2217. }
  2218. M += M_dim*128;
  2219. }
  2220. }
  2221. }
  2222. // Compute flops.
  2223. {
  2224. Profile::Add_FLOP(8*8*8*(interac_vec.Dim()/2)*M_dim*ker_dim0*ker_dim1*dof);
  2225. }
  2226. // Free memory
  2227. delete[] IN_ ;
  2228. delete[] OUT_;
  2229. mem::aligned_free<Real_t>(zero_vec0);
  2230. mem::aligned_free<Real_t>(zero_vec1);
  2231. }
  2232. template <class FMMNode>
  2233. void FMM_Pts<FMMNode>::V_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2234. if(this->MultipoleOrder()==0) return;
  2235. if(level==0) return;
  2236. { // Set setup_data
  2237. setup_data.level=level;
  2238. setup_data.kernel=&aux_kernel;
  2239. setup_data.interac_type.resize(1);
  2240. setup_data.interac_type[0]=V1_Type;
  2241. setup_data. input_data=&buff[0];
  2242. setup_data.output_data=&buff[1];
  2243. Vector<FMMNode_t*>& nodes_in =n_list[2];
  2244. Vector<FMMNode_t*>& nodes_out=n_list[3];
  2245. setup_data.nodes_in .clear();
  2246. setup_data.nodes_out.clear();
  2247. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2248. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level-1 || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2249. }
  2250. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2251. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2252. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2253. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2254. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_in [i])->Child(0))->FMMData())->upward_equiv);
  2255. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_out[i])->Child(0))->FMMData())->dnward_equiv);
  2256. /////////////////////////////////////////////////////////////////////////////
  2257. size_t n_in =nodes_in .size();
  2258. size_t n_out=nodes_out.size();
  2259. // Setup precomputed data.
  2260. SetupPrecomp(setup_data,device);
  2261. // Build interac_data
  2262. Profile::Tic("Interac-Data",&this->comm,true,25);
  2263. Matrix<char>& interac_data=setup_data.interac_data;
  2264. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  2265. size_t precomp_offset=0;
  2266. Mat_Type& interac_type=setup_data.interac_type[0];
  2267. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2268. Vector<size_t> precomp_data_offset;
  2269. std::vector<size_t> interac_mat;
  2270. { // Load precomp_data for interac_type.
  2271. Matrix<char>& precomp_data=*setup_data.precomp_data;
  2272. char* indx_ptr=precomp_data[0]+precomp_offset;
  2273. size_t total_size=((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  2274. /*size_t mat_cnt_ =((size_t*)indx_ptr)[0];*/ indx_ptr+=sizeof(size_t);
  2275. precomp_data_offset.ReInit((1+2+2)*mat_cnt, (size_t*)indx_ptr, false);
  2276. precomp_offset+=total_size;
  2277. for(size_t mat_id=0;mat_id<mat_cnt;mat_id++){
  2278. Matrix<Real_t>& M0 = this->mat->Mat(level, interac_type, mat_id);
  2279. assert(M0.Dim(0)>0 && M0.Dim(1)>0); UNUSED(M0);
  2280. interac_mat.push_back(precomp_data_offset[5*mat_id]);
  2281. }
  2282. }
  2283. size_t dof;
  2284. size_t m=MultipoleOrder();
  2285. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2286. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2287. size_t fftsize;
  2288. {
  2289. size_t n1=m*2;
  2290. size_t n2=n1*n1;
  2291. size_t n3_=n2*(n1/2+1);
  2292. size_t chld_cnt=1UL<<COORD_DIM;
  2293. fftsize=2*n3_*chld_cnt;
  2294. dof=1;
  2295. }
  2296. int omp_p=omp_get_max_threads();
  2297. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2298. size_t n_blk0=2*fftsize*dof*(ker_dim0*n_in +ker_dim1*n_out)*sizeof(Real_t)/buff_size;
  2299. if(n_blk0==0) n_blk0=1;
  2300. std::vector<std::vector<size_t> > fft_vec(n_blk0);
  2301. std::vector<std::vector<size_t> > ifft_vec(n_blk0);
  2302. std::vector<std::vector<size_t> > interac_vec(n_blk0);
  2303. std::vector<std::vector<size_t> > interac_dsp(n_blk0);
  2304. {
  2305. Matrix<Real_t>& input_data=*setup_data. input_data;
  2306. Matrix<Real_t>& output_data=*setup_data.output_data;
  2307. std::vector<std::vector<FMMNode*> > nodes_blk_in (n_blk0);
  2308. std::vector<std::vector<FMMNode*> > nodes_blk_out(n_blk0);
  2309. for(size_t i=0;i<n_in;i++) ((FMMNode*)nodes_in[i])->node_id=i;
  2310. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2311. size_t blk0_start=(n_out* blk0 )/n_blk0;
  2312. size_t blk0_end =(n_out*(blk0+1))/n_blk0;
  2313. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2314. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2315. { // Build node list for blk0.
  2316. std::set<void*> nodes_in;
  2317. for(size_t i=blk0_start;i<blk0_end;i++){
  2318. nodes_out_.push_back((FMMNode*)nodes_out[i]);
  2319. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2320. for(size_t k=0;k<mat_cnt;k++) if(lst[k]!=NULL) nodes_in.insert(lst[k]);
  2321. }
  2322. for(std::set<void*>::iterator node=nodes_in.begin(); node != nodes_in.end(); node++){
  2323. nodes_in_.push_back((FMMNode*)*node);
  2324. }
  2325. size_t input_dim=nodes_in_ .size()*ker_dim0*dof*fftsize;
  2326. size_t output_dim=nodes_out_.size()*ker_dim1*dof*fftsize;
  2327. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2328. if(buff_size<(input_dim + output_dim + buffer_dim)*sizeof(Real_t))
  2329. buff_size=(input_dim + output_dim + buffer_dim)*sizeof(Real_t);
  2330. }
  2331. { // Set fft vectors.
  2332. for(size_t i=0;i<nodes_in_ .size();i++) fft_vec[blk0].push_back((size_t)(& input_vector[nodes_in_[i]->node_id][0][0]- input_data[0]));
  2333. for(size_t i=0;i<nodes_out_.size();i++)ifft_vec[blk0].push_back((size_t)(&output_vector[blk0_start + i ][0][0]-output_data[0]));
  2334. }
  2335. }
  2336. for(size_t blk0=0;blk0<n_blk0;blk0++){ // Hadamard interactions.
  2337. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2338. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2339. for(size_t i=0;i<nodes_in_.size();i++) nodes_in_[i]->node_id=i;
  2340. { // Next blocking level.
  2341. size_t n_blk1=nodes_out_.size()*(ker_dim0+ker_dim1)*sizeof(Real_t)/(64*V_BLK_CACHE);
  2342. if(n_blk1==0) n_blk1=1;
  2343. size_t interac_dsp_=0;
  2344. for(size_t blk1=0;blk1<n_blk1;blk1++){
  2345. size_t blk1_start=(nodes_out_.size()* blk1 )/n_blk1;
  2346. size_t blk1_end =(nodes_out_.size()*(blk1+1))/n_blk1;
  2347. for(size_t k=0;k<mat_cnt;k++){
  2348. for(size_t i=blk1_start;i<blk1_end;i++){
  2349. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out_[i])->interac_list[interac_type];
  2350. if(lst[k]!=NULL){
  2351. interac_vec[blk0].push_back(lst[k]->node_id*fftsize*ker_dim0*dof);
  2352. interac_vec[blk0].push_back( i *fftsize*ker_dim1*dof);
  2353. interac_dsp_++;
  2354. }
  2355. }
  2356. interac_dsp[blk0].push_back(interac_dsp_);
  2357. }
  2358. }
  2359. }
  2360. }
  2361. }
  2362. { // Set interac_data.
  2363. size_t data_size=sizeof(size_t)*5; // m, dof, ker_dim0, ker_dim1, n_blk0
  2364. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2365. data_size+=sizeof(size_t)+ fft_vec[blk0].size()*sizeof(size_t);
  2366. data_size+=sizeof(size_t)+ ifft_vec[blk0].size()*sizeof(size_t);
  2367. data_size+=sizeof(size_t)+interac_vec[blk0].size()*sizeof(size_t);
  2368. data_size+=sizeof(size_t)+interac_dsp[blk0].size()*sizeof(size_t);
  2369. }
  2370. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  2371. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2372. interac_data.Resize(1,data_size);
  2373. char* data_ptr=&interac_data[0][0];
  2374. ((size_t*)data_ptr)[0]=buff_size; data_ptr+=sizeof(size_t);
  2375. ((size_t*)data_ptr)[0]= m; data_ptr+=sizeof(size_t);
  2376. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2377. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2378. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2379. ((size_t*)data_ptr)[0]= n_blk0; data_ptr+=sizeof(size_t);
  2380. ((size_t*)data_ptr)[0]= interac_mat.size(); data_ptr+=sizeof(size_t);
  2381. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  2382. data_ptr+=interac_mat.size()*sizeof(size_t);
  2383. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2384. ((size_t*)data_ptr)[0]= fft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2385. mem::memcopy(data_ptr, & fft_vec[blk0][0], fft_vec[blk0].size()*sizeof(size_t));
  2386. data_ptr+= fft_vec[blk0].size()*sizeof(size_t);
  2387. ((size_t*)data_ptr)[0]=ifft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2388. mem::memcopy(data_ptr, &ifft_vec[blk0][0], ifft_vec[blk0].size()*sizeof(size_t));
  2389. data_ptr+=ifft_vec[blk0].size()*sizeof(size_t);
  2390. ((size_t*)data_ptr)[0]=interac_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2391. mem::memcopy(data_ptr, &interac_vec[blk0][0], interac_vec[blk0].size()*sizeof(size_t));
  2392. data_ptr+=interac_vec[blk0].size()*sizeof(size_t);
  2393. ((size_t*)data_ptr)[0]=interac_dsp[blk0].size(); data_ptr+=sizeof(size_t);
  2394. mem::memcopy(data_ptr, &interac_dsp[blk0][0], interac_dsp[blk0].size()*sizeof(size_t));
  2395. data_ptr+=interac_dsp[blk0].size()*sizeof(size_t);
  2396. }
  2397. }
  2398. }
  2399. Profile::Toc();
  2400. Profile::Tic("Host2Device",&this->comm,false,25);
  2401. if(device){ // Host2Device
  2402. setup_data.interac_data. AllocDevice(true);
  2403. }
  2404. Profile::Toc();
  2405. }
  2406. template <class FMMNode>
  2407. void FMM_Pts<FMMNode>::V_List (SetupData<Real_t>& setup_data, bool device){
  2408. assert(!device); //Can not run on accelerator yet.
  2409. int np;
  2410. MPI_Comm_size(comm,&np);
  2411. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2412. if(np>1) Profile::Tic("Host2Device",&this->comm,false,25);
  2413. if(np>1) Profile::Toc();
  2414. return;
  2415. }
  2416. Profile::Tic("Host2Device",&this->comm,false,25);
  2417. int level=setup_data.level;
  2418. size_t buff_size=*((size_t*)&setup_data.interac_data[0][0]);
  2419. typename Matrix<Real_t>::Device M_d;
  2420. typename Vector<char>::Device buff;
  2421. typename Matrix<char>::Device precomp_data;
  2422. typename Matrix<char>::Device interac_data;
  2423. typename Matrix<Real_t>::Device input_data;
  2424. typename Matrix<Real_t>::Device output_data;
  2425. Matrix<Real_t>& M = this->mat->Mat(level, DC2DE_Type, 0);
  2426. if(device){
  2427. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  2428. M_d = M. AllocDevice(false);
  2429. buff = this-> dev_buffer. AllocDevice(false);
  2430. precomp_data= setup_data.precomp_data->AllocDevice(false);
  2431. interac_data= setup_data.interac_data. AllocDevice(false);
  2432. input_data = setup_data. input_data->AllocDevice(false);
  2433. output_data = setup_data. output_data->AllocDevice(false);
  2434. }else{
  2435. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  2436. M_d = M;
  2437. buff = this-> cpu_buffer;
  2438. precomp_data=*setup_data.precomp_data;
  2439. interac_data= setup_data.interac_data;
  2440. input_data =*setup_data. input_data;
  2441. output_data =*setup_data. output_data;
  2442. }
  2443. Profile::Toc();
  2444. { // Offloaded computation.
  2445. // Set interac_data.
  2446. size_t m, dof, ker_dim0, ker_dim1, n_blk0;
  2447. std::vector<Vector<size_t> > fft_vec;
  2448. std::vector<Vector<size_t> > ifft_vec;
  2449. std::vector<Vector<size_t> > interac_vec;
  2450. std::vector<Vector<size_t> > interac_dsp;
  2451. Vector<Real_t*> precomp_mat;
  2452. { // Set interac_data.
  2453. char* data_ptr=&interac_data[0][0];
  2454. buff_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2455. m =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2456. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2457. ker_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2458. ker_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2459. n_blk0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2460. fft_vec .resize(n_blk0);
  2461. ifft_vec.resize(n_blk0);
  2462. interac_vec.resize(n_blk0);
  2463. interac_dsp.resize(n_blk0);
  2464. Vector<size_t> interac_mat;
  2465. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2466. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  2467. precomp_mat.Resize(interac_mat.Dim());
  2468. for(size_t i=0;i<interac_mat.Dim();i++){
  2469. precomp_mat[i]=(Real_t*)(precomp_data[0]+interac_mat[i]);
  2470. }
  2471. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2472. fft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2473. data_ptr+=sizeof(size_t)+fft_vec[blk0].Dim()*sizeof(size_t);
  2474. ifft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2475. data_ptr+=sizeof(size_t)+ifft_vec[blk0].Dim()*sizeof(size_t);
  2476. interac_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2477. data_ptr+=sizeof(size_t)+interac_vec[blk0].Dim()*sizeof(size_t);
  2478. interac_dsp[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2479. data_ptr+=sizeof(size_t)+interac_dsp[blk0].Dim()*sizeof(size_t);
  2480. }
  2481. }
  2482. int omp_p=omp_get_max_threads();
  2483. size_t M_dim, fftsize;
  2484. {
  2485. size_t n1=m*2;
  2486. size_t n2=n1*n1;
  2487. size_t n3_=n2*(n1/2+1);
  2488. size_t chld_cnt=1UL<<COORD_DIM;
  2489. fftsize=2*n3_*chld_cnt;
  2490. M_dim=n3_;
  2491. }
  2492. for(size_t blk0=0;blk0<n_blk0;blk0++){ // interactions
  2493. size_t n_in = fft_vec[blk0].Dim();
  2494. size_t n_out=ifft_vec[blk0].Dim();
  2495. size_t input_dim=n_in *ker_dim0*dof*fftsize;
  2496. size_t output_dim=n_out*ker_dim1*dof*fftsize;
  2497. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2498. Vector<Real_t> fft_in ( input_dim, (Real_t*)&buff[ 0 ],false);
  2499. Vector<Real_t> fft_out(output_dim, (Real_t*)&buff[ input_dim *sizeof(Real_t)],false);
  2500. Vector<Real_t> buffer(buffer_dim, (Real_t*)&buff[(input_dim+output_dim)*sizeof(Real_t)],false);
  2501. { // FFT
  2502. if(np==1) Profile::Tic("FFT",&comm,false,100);
  2503. Vector<Real_t> input_data_( input_data.dim[0]* input_data.dim[1], input_data[0], false);
  2504. FFT_UpEquiv(dof, m, ker_dim0, fft_vec[blk0], input_data_, fft_in, buffer);
  2505. if(np==1) Profile::Toc();
  2506. }
  2507. { // Hadamard
  2508. #ifdef PVFMM_HAVE_PAPI
  2509. #ifdef __VERBOSE__
  2510. std::cout << "Starting counters new\n";
  2511. if (PAPI_start(EventSet) != PAPI_OK) std::cout << "handle_error3" << std::endl;
  2512. #endif
  2513. #endif
  2514. if(np==1) Profile::Tic("HadamardProduct",&comm,false,100);
  2515. VListHadamard<Real_t>(dof, M_dim, ker_dim0, ker_dim1, interac_dsp[blk0], interac_vec[blk0], precomp_mat, fft_in, fft_out);
  2516. if(np==1) Profile::Toc();
  2517. #ifdef PVFMM_HAVE_PAPI
  2518. #ifdef __VERBOSE__
  2519. if (PAPI_stop(EventSet, values) != PAPI_OK) std::cout << "handle_error4" << std::endl;
  2520. std::cout << "Stopping counters\n";
  2521. #endif
  2522. #endif
  2523. }
  2524. { // IFFT
  2525. if(np==1) Profile::Tic("IFFT",&comm,false,100);
  2526. Matrix<Real_t> M(M_d.dim[0],M_d.dim[1],M_d[0],false);
  2527. Vector<Real_t> output_data_(output_data.dim[0]*output_data.dim[1], output_data[0], false);
  2528. FFT_Check2Equiv(dof, m, ker_dim1, ifft_vec[blk0], fft_out, output_data_, buffer, M);
  2529. if(np==1) Profile::Toc();
  2530. }
  2531. }
  2532. }
  2533. }
  2534. template <class FMMNode>
  2535. void FMM_Pts<FMMNode>::Down2DownSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2536. if(this->MultipoleOrder()==0) return;
  2537. { // Set setup_data
  2538. setup_data.level=level;
  2539. setup_data.kernel=&aux_kernel;
  2540. setup_data.interac_type.resize(1);
  2541. setup_data.interac_type[0]=D2D_Type;
  2542. setup_data. input_data=&buff[1];
  2543. setup_data.output_data=&buff[1];
  2544. Vector<FMMNode_t*>& nodes_in =n_list[1];
  2545. Vector<FMMNode_t*>& nodes_out=n_list[1];
  2546. setup_data.nodes_in .clear();
  2547. setup_data.nodes_out.clear();
  2548. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2549. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
  2550. }
  2551. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2552. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2553. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2554. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2555. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  2556. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  2557. SetupInterac(setup_data,device);
  2558. }
  2559. template <class FMMNode>
  2560. void FMM_Pts<FMMNode>::Down2Down (SetupData<Real_t>& setup_data, bool device){
  2561. //Add Down2Down contribution.
  2562. EvalList(setup_data, device);
  2563. }
  2564. template <class FMMNode>
  2565. void FMM_Pts<FMMNode>::SetupInteracPts(SetupData<Real_t>& setup_data, bool shift_src, bool shift_trg, Matrix<Real_t>* M, bool device){
  2566. int level=setup_data.level;
  2567. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  2568. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2569. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2570. Matrix<Real_t>& output_data=*setup_data.output_data;
  2571. Matrix<Real_t>& input_data=*setup_data. input_data;
  2572. Matrix<Real_t>& coord_data=*setup_data. coord_data;
  2573. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  2574. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  2575. size_t n_in =nodes_in .size();
  2576. size_t n_out=nodes_out.size();
  2577. //setup_data.precomp_data=NULL;
  2578. // Build interac_data
  2579. Profile::Tic("Interac-Data",&this->comm,true,25);
  2580. Matrix<char>& interac_data=setup_data.interac_data;
  2581. if(n_out>0 && n_in >0){
  2582. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2583. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2584. size_t dof=1;
  2585. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  2586. std::vector<size_t> trg_interac_cnt(n_out,0);
  2587. std::vector<size_t> trg_coord(n_out);
  2588. std::vector<size_t> trg_value(n_out);
  2589. std::vector<size_t> trg_cnt(n_out);
  2590. std::vector<Real_t> scaling(n_out,0);
  2591. { // Set trg data
  2592. Mat_Type& interac_type=interac_type_lst[0];
  2593. for(size_t i=0;i<n_out;i++){
  2594. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2595. trg_cnt [i]=output_vector[i*2+0]->Dim()/COORD_DIM;
  2596. trg_coord[i]=(size_t)(&output_vector[i*2+0][0][0]- coord_data[0]);
  2597. trg_value[i]=(size_t)(&output_vector[i*2+1][0][0]-output_data[0]);
  2598. if(!this->Homogen()) scaling[i]=1.0;
  2599. else if(interac_type==S2U_Type) scaling[i]=pow(0.5, setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  2600. else if(interac_type== X_Type) scaling[i]=pow(0.5, setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  2601. }
  2602. }
  2603. }
  2604. std::vector<std::vector<size_t> > src_cnt(n_out);
  2605. std::vector<std::vector<size_t> > src_coord(n_out);
  2606. std::vector<std::vector<size_t> > src_value(n_out);
  2607. std::vector<std::vector<Real_t> > shift_coord(n_out);
  2608. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  2609. Mat_Type& interac_type=interac_type_lst[type_indx];
  2610. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2611. for(size_t i=0;i<n_out;i++){ // For each target node.
  2612. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2613. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2614. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++) if(lst[mat_indx]!=NULL){ // For each direction.
  2615. size_t j=lst[mat_indx]->node_id;
  2616. if(input_vector[j*4+0]->Dim()>0 || input_vector[j*4+2]->Dim()>0){
  2617. trg_interac_cnt[i]++;
  2618. { // Determine shift for periodic boundary condition
  2619. Real_t* sc=lst[mat_indx]->Coord();
  2620. Real_t* tc=((FMMNode*)nodes_out[i])->Coord();
  2621. int* rel_coord=this->interac_list.RelativeCoord(interac_type, mat_indx);
  2622. shift_coord[i].push_back((tc[0]>sc[0] && rel_coord[0]>0? 1.0:
  2623. (tc[0]<sc[0] && rel_coord[0]<0?-1.0:0.0)) +
  2624. (shift_src?sc[0]:0) - (shift_trg?tc[0]:0) );
  2625. shift_coord[i].push_back((tc[1]>sc[1] && rel_coord[1]>0? 1.0:
  2626. (tc[1]<sc[1] && rel_coord[1]<0?-1.0:0.0)) +
  2627. (shift_src?sc[1]:0) - (shift_trg?tc[1]:0) );
  2628. shift_coord[i].push_back((tc[2]>sc[2] && rel_coord[2]>0? 1.0:
  2629. (tc[2]<sc[2] && rel_coord[2]<0?-1.0:0.0)) +
  2630. (shift_src?sc[2]:0) - (shift_trg?tc[2]:0) );
  2631. }
  2632. { // Set src data
  2633. if(input_vector[j*4+0]!=NULL){
  2634. src_cnt [i].push_back(input_vector[j*4+0]->Dim()/COORD_DIM);
  2635. src_coord[i].push_back((size_t)(& input_vector[j*4+0][0][0]- coord_data[0]));
  2636. src_value[i].push_back((size_t)(& input_vector[j*4+1][0][0]- input_data[0]));
  2637. }else{
  2638. src_cnt [i].push_back(0);
  2639. src_coord[i].push_back(0);
  2640. src_value[i].push_back(0);
  2641. }
  2642. if(input_vector[j*4+2]!=NULL){
  2643. src_cnt [i].push_back(input_vector[j*4+2]->Dim()/COORD_DIM);
  2644. src_coord[i].push_back((size_t)(& input_vector[j*4+2][0][0]- coord_data[0]));
  2645. src_value[i].push_back((size_t)(& input_vector[j*4+3][0][0]- input_data[0]));
  2646. }else{
  2647. src_cnt [i].push_back(0);
  2648. src_coord[i].push_back(0);
  2649. src_value[i].push_back(0);
  2650. }
  2651. }
  2652. }
  2653. }
  2654. }
  2655. }
  2656. }
  2657. { // Set interac_data.
  2658. size_t data_size=sizeof(size_t)*4;
  2659. data_size+=sizeof(size_t)+trg_interac_cnt.size()*sizeof(size_t);
  2660. data_size+=sizeof(size_t)+trg_coord.size()*sizeof(size_t);
  2661. data_size+=sizeof(size_t)+trg_value.size()*sizeof(size_t);
  2662. data_size+=sizeof(size_t)+trg_cnt .size()*sizeof(size_t);
  2663. data_size+=sizeof(size_t)+scaling .size()*sizeof(Real_t);
  2664. data_size+=sizeof(size_t)*2+(M!=NULL?M->Dim(0)*M->Dim(1)*sizeof(Real_t):0);
  2665. for(size_t i=0;i<n_out;i++){
  2666. data_size+=sizeof(size_t)+src_cnt [i].size()*sizeof(size_t);
  2667. data_size+=sizeof(size_t)+src_coord[i].size()*sizeof(size_t);
  2668. data_size+=sizeof(size_t)+src_value[i].size()*sizeof(size_t);
  2669. data_size+=sizeof(size_t)+shift_coord[i].size()*sizeof(Real_t);
  2670. }
  2671. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2672. interac_data.Resize(1,data_size);
  2673. char* data_ptr=&interac_data[0][0];
  2674. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  2675. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2676. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2677. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2678. ((size_t*)data_ptr)[0]=trg_interac_cnt.size(); data_ptr+=sizeof(size_t);
  2679. mem::memcopy(data_ptr, &trg_interac_cnt[0], trg_interac_cnt.size()*sizeof(size_t));
  2680. data_ptr+=trg_interac_cnt.size()*sizeof(size_t);
  2681. ((size_t*)data_ptr)[0]=trg_coord.size(); data_ptr+=sizeof(size_t);
  2682. mem::memcopy(data_ptr, &trg_coord[0], trg_coord.size()*sizeof(size_t));
  2683. data_ptr+=trg_coord.size()*sizeof(size_t);
  2684. ((size_t*)data_ptr)[0]=trg_value.size(); data_ptr+=sizeof(size_t);
  2685. mem::memcopy(data_ptr, &trg_value[0], trg_value.size()*sizeof(size_t));
  2686. data_ptr+=trg_value.size()*sizeof(size_t);
  2687. ((size_t*)data_ptr)[0]=trg_cnt.size(); data_ptr+=sizeof(size_t);
  2688. mem::memcopy(data_ptr, &trg_cnt[0], trg_cnt.size()*sizeof(size_t));
  2689. data_ptr+=trg_cnt.size()*sizeof(size_t);
  2690. ((size_t*)data_ptr)[0]=scaling.size(); data_ptr+=sizeof(size_t);
  2691. mem::memcopy(data_ptr, &scaling[0], scaling.size()*sizeof(Real_t));
  2692. data_ptr+=scaling.size()*sizeof(Real_t);
  2693. if(M!=NULL){
  2694. ((size_t*)data_ptr)[0]=M->Dim(0); data_ptr+=sizeof(size_t);
  2695. ((size_t*)data_ptr)[0]=M->Dim(1); data_ptr+=sizeof(size_t);
  2696. mem::memcopy(data_ptr, M[0][0], M->Dim(0)*M->Dim(1)*sizeof(Real_t));
  2697. data_ptr+=M->Dim(0)*M->Dim(1)*sizeof(Real_t);
  2698. }else{
  2699. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2700. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2701. }
  2702. for(size_t i=0;i<n_out;i++){
  2703. ((size_t*)data_ptr)[0]=src_cnt[i].size(); data_ptr+=sizeof(size_t);
  2704. mem::memcopy(data_ptr, &src_cnt[i][0], src_cnt[i].size()*sizeof(size_t));
  2705. data_ptr+=src_cnt[i].size()*sizeof(size_t);
  2706. ((size_t*)data_ptr)[0]=src_coord[i].size(); data_ptr+=sizeof(size_t);
  2707. mem::memcopy(data_ptr, &src_coord[i][0], src_coord[i].size()*sizeof(size_t));
  2708. data_ptr+=src_coord[i].size()*sizeof(size_t);
  2709. ((size_t*)data_ptr)[0]=src_value[i].size(); data_ptr+=sizeof(size_t);
  2710. mem::memcopy(data_ptr, &src_value[i][0], src_value[i].size()*sizeof(size_t));
  2711. data_ptr+=src_value[i].size()*sizeof(size_t);
  2712. ((size_t*)data_ptr)[0]=shift_coord[i].size(); data_ptr+=sizeof(size_t);
  2713. mem::memcopy(data_ptr, &shift_coord[i][0], shift_coord[i].size()*sizeof(Real_t));
  2714. data_ptr+=shift_coord[i].size()*sizeof(Real_t);
  2715. }
  2716. }
  2717. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2718. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  2719. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  2720. }
  2721. Profile::Toc();
  2722. Profile::Tic("Host2Device",&this->comm,false,25);
  2723. if(device){ // Host2Device
  2724. setup_data.interac_data .AllocDevice(true);
  2725. }
  2726. Profile::Toc();
  2727. }
  2728. template <class FMMNode>
  2729. template <int SYNC>
  2730. void FMM_Pts<FMMNode>::EvalListPts(SetupData<Real_t>& setup_data, bool device){
  2731. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2732. Profile::Tic("Host2Device",&this->comm,false,25);
  2733. Profile::Toc();
  2734. Profile::Tic("DeviceComp",&this->comm,false,20);
  2735. Profile::Toc();
  2736. return;
  2737. }
  2738. Profile::Tic("Host2Device",&this->comm,false,25);
  2739. typename Vector<char>::Device buff;
  2740. //typename Matrix<char>::Device precomp_data;
  2741. typename Matrix<char>::Device interac_data;
  2742. typename Matrix<Real_t>::Device coord_data;
  2743. typename Matrix<Real_t>::Device input_data;
  2744. typename Matrix<Real_t>::Device output_data;
  2745. if(device){
  2746. buff = this-> dev_buffer. AllocDevice(false);
  2747. interac_data= setup_data.interac_data. AllocDevice(false);
  2748. //if(setup_data.precomp_data!=NULL) precomp_data= setup_data.precomp_data->AllocDevice(false);
  2749. if(setup_data. coord_data!=NULL) coord_data = setup_data. coord_data->AllocDevice(false);
  2750. if(setup_data. input_data!=NULL) input_data = setup_data. input_data->AllocDevice(false);
  2751. if(setup_data. output_data!=NULL) output_data = setup_data. output_data->AllocDevice(false);
  2752. }else{
  2753. buff = this-> cpu_buffer;
  2754. interac_data= setup_data.interac_data;
  2755. //if(setup_data.precomp_data!=NULL) precomp_data=*setup_data.precomp_data;
  2756. if(setup_data. coord_data!=NULL) coord_data =*setup_data. coord_data;
  2757. if(setup_data. input_data!=NULL) input_data =*setup_data. input_data;
  2758. if(setup_data. output_data!=NULL) output_data =*setup_data. output_data;
  2759. }
  2760. Profile::Toc();
  2761. size_t ptr_single_layer_kernel=(size_t)setup_data.kernel->ker_poten;
  2762. size_t ptr_double_layer_kernel=(size_t)setup_data.kernel->dbl_layer_poten;
  2763. Profile::Tic("DeviceComp",&this->comm,false,20);
  2764. int lock_idx=-1;
  2765. int wait_lock_idx=-1;
  2766. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  2767. if(device) lock_idx=MIC_Lock::get_lock();
  2768. #ifdef __INTEL_OFFLOAD
  2769. if(device) ptr_single_layer_kernel=setup_data.kernel->dev_ker_poten;
  2770. if(device) ptr_double_layer_kernel=setup_data.kernel->dev_dbl_layer_poten;
  2771. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  2772. #endif
  2773. { // Offloaded computation.
  2774. // Set interac_data.
  2775. //size_t data_size;
  2776. //size_t ker_dim0;
  2777. size_t ker_dim1;
  2778. size_t dof, n_out;
  2779. Vector<size_t> trg_interac_cnt;
  2780. Vector<size_t> trg_coord;
  2781. Vector<size_t> trg_value;
  2782. Vector<size_t> trg_cnt;
  2783. Vector<Real_t> scaling;
  2784. Matrix<Real_t> M;
  2785. Vector< Vector<size_t> > src_cnt;
  2786. Vector< Vector<size_t> > src_coord;
  2787. Vector< Vector<size_t> > src_value;
  2788. Vector< Vector<Real_t> > shift_coord;
  2789. { // Set interac_data.
  2790. char* data_ptr=&interac_data[0][0];
  2791. /*data_size=((size_t*)data_ptr)[0];*/ data_ptr+=sizeof(size_t);
  2792. /*ker_dim0=((size_t*)data_ptr)[0];*/ data_ptr+=sizeof(size_t);
  2793. ker_dim1=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2794. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2795. trg_interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2796. data_ptr+=sizeof(size_t)+trg_interac_cnt.Dim()*sizeof(size_t);
  2797. n_out=trg_interac_cnt.Dim();
  2798. trg_coord.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2799. data_ptr+=sizeof(size_t)+trg_coord.Dim()*sizeof(size_t);
  2800. trg_value.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2801. data_ptr+=sizeof(size_t)+trg_value.Dim()*sizeof(size_t);
  2802. trg_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2803. data_ptr+=sizeof(size_t)+trg_cnt.Dim()*sizeof(size_t);
  2804. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2805. data_ptr+=sizeof(size_t)+scaling.Dim()*sizeof(Real_t);
  2806. M.ReInit(((size_t*)data_ptr)[0],((size_t*)data_ptr)[1],(Real_t*)(data_ptr+2*sizeof(size_t)),false);
  2807. data_ptr+=sizeof(size_t)*2+M.Dim(0)*M.Dim(1)*sizeof(Real_t);
  2808. src_cnt.Resize(n_out);
  2809. src_coord.Resize(n_out);
  2810. src_value.Resize(n_out);
  2811. shift_coord.Resize(n_out);
  2812. for(size_t i=0;i<n_out;i++){
  2813. src_cnt[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2814. data_ptr+=sizeof(size_t)+src_cnt[i].Dim()*sizeof(size_t);
  2815. src_coord[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2816. data_ptr+=sizeof(size_t)+src_coord[i].Dim()*sizeof(size_t);
  2817. src_value[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2818. data_ptr+=sizeof(size_t)+src_value[i].Dim()*sizeof(size_t);
  2819. shift_coord[i].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2820. data_ptr+=sizeof(size_t)+shift_coord[i].Dim()*sizeof(Real_t);
  2821. }
  2822. }
  2823. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  2824. //Compute interaction from point sources.
  2825. { // interactions
  2826. typename Kernel<Real_t>::Ker_t single_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_single_layer_kernel;
  2827. typename Kernel<Real_t>::Ker_t double_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_double_layer_kernel;
  2828. int omp_p=omp_get_max_threads();
  2829. Vector<Real_t*> thread_buff(omp_p);
  2830. size_t thread_buff_size=buff.dim/sizeof(Real_t)/omp_p;
  2831. for(int i=0;i<omp_p;i++) thread_buff[i]=(Real_t*)&buff[i*thread_buff_size*sizeof(Real_t)];
  2832. #pragma omp parallel for
  2833. for(size_t i=0;i<n_out;i++)
  2834. if(trg_interac_cnt[i]>0 && trg_cnt[i]>0){
  2835. int thread_id=omp_get_thread_num();
  2836. Real_t* s_coord=thread_buff[thread_id];
  2837. Real_t* t_value=output_data[0]+trg_value[i];
  2838. if(M.Dim(0)>0 && M.Dim(1)>0){
  2839. s_coord+=dof*M.Dim(0);
  2840. t_value=thread_buff[thread_id];
  2841. for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]=0;
  2842. }
  2843. size_t interac_cnt=0;
  2844. for(size_t j=0;j<trg_interac_cnt[i];j++){
  2845. if(ptr_single_layer_kernel!=(size_t)NULL){// Single layer kernel
  2846. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+0];
  2847. assert(thread_buff_size>=dof*M.Dim(0)+src_cnt[i][2*j+0]*COORD_DIM);
  2848. for(size_t k1=0;k1<src_cnt[i][2*j+0];k1++){ // Compute shifted source coordinates.
  2849. for(size_t k0=0;k0<COORD_DIM;k0++){
  2850. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  2851. }
  2852. }
  2853. single_layer_kernel( s_coord , src_cnt[i][2*j+0], input_data[0]+src_value[i][2*j+0], dof,
  2854. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value, NULL);
  2855. interac_cnt+=src_cnt[i][2*j+0]*trg_cnt[i];
  2856. }else if(src_cnt[i][2*j+0]!=0 && trg_cnt[i]!=0){
  2857. assert(ptr_single_layer_kernel); // Single-layer kernel not implemented
  2858. }
  2859. if(ptr_double_layer_kernel!=(size_t)NULL){// Double layer kernel
  2860. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+1];
  2861. assert(thread_buff_size>=dof*M.Dim(0)+src_cnt[i][2*j+1]*COORD_DIM);
  2862. for(size_t k1=0;k1<src_cnt[i][2*j+1];k1++){ // Compute shifted source coordinates.
  2863. for(size_t k0=0;k0<COORD_DIM;k0++){
  2864. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  2865. }
  2866. }
  2867. double_layer_kernel( s_coord , src_cnt[i][2*j+1], input_data[0]+src_value[i][2*j+1], dof,
  2868. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value, NULL);
  2869. interac_cnt+=src_cnt[i][2*j+1]*trg_cnt[i];
  2870. }else if(src_cnt[i][2*j+1]!=0 && trg_cnt[i]!=0){
  2871. assert(ptr_double_layer_kernel); // Double-layer kernel not implemented
  2872. }
  2873. }
  2874. if(M.Dim(0)>0 && M.Dim(1)>0 && interac_cnt>0){
  2875. assert(trg_cnt[i]*ker_dim1==M.Dim(0)); UNUSED(ker_dim1);
  2876. for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]*=scaling[i];
  2877. Matrix<Real_t> in_vec(dof, M.Dim(0), t_value , false);
  2878. Matrix<Real_t> out_vec(dof, M.Dim(1), output_data[0]+trg_value[i], false);
  2879. Matrix<Real_t>::DGEMM(out_vec, in_vec, M, 1.0);
  2880. }
  2881. }
  2882. }
  2883. if(device) MIC_Lock::release_lock(lock_idx);
  2884. }
  2885. #ifdef __INTEL_OFFLOAD
  2886. if(SYNC){
  2887. #pragma offload if(device) target(mic:0)
  2888. {if(device) MIC_Lock::wait_lock(lock_idx);}
  2889. }
  2890. #endif
  2891. Profile::Toc();
  2892. }
  2893. template <class FMMNode>
  2894. void FMM_Pts<FMMNode>::X_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2895. if(this->MultipoleOrder()==0) return;
  2896. { // Set setup_data
  2897. setup_data.level=level;
  2898. setup_data.kernel=&aux_kernel;
  2899. setup_data.interac_type.resize(1);
  2900. setup_data.interac_type[0]=X_Type;
  2901. setup_data. input_data=&buff[4];
  2902. setup_data.output_data=&buff[1];
  2903. setup_data. coord_data=&buff[6];
  2904. Vector<FMMNode_t*>& nodes_in =n_list[4];
  2905. Vector<FMMNode_t*>& nodes_out=n_list[1];
  2906. setup_data.nodes_in .clear();
  2907. setup_data.nodes_out.clear();
  2908. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2909. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2910. }
  2911. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2912. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2913. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2914. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2915. for(size_t i=0;i<nodes_in .size();i++){
  2916. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  2917. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  2918. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  2919. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  2920. }
  2921. for(size_t i=0;i<nodes_out.size();i++){
  2922. output_vector.push_back(&dnwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
  2923. output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  2924. }
  2925. //Downward check to downward equivalent matrix.
  2926. Matrix<Real_t>& M_dc2de = this->mat->Mat(level, DC2DE_Type, 0);
  2927. this->SetupInteracPts(setup_data, false, true, &M_dc2de,device);
  2928. { // Resize device buffer
  2929. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  2930. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  2931. }
  2932. }
  2933. template <class FMMNode>
  2934. void FMM_Pts<FMMNode>::X_List (SetupData<Real_t>& setup_data, bool device){
  2935. //Add X_List contribution.
  2936. this->EvalListPts(setup_data, device);
  2937. }
  2938. template <class FMMNode>
  2939. void FMM_Pts<FMMNode>::W_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2940. if(this->MultipoleOrder()==0) return;
  2941. { // Set setup_data
  2942. setup_data.level=level;
  2943. setup_data.kernel=&kernel;
  2944. setup_data.interac_type.resize(1);
  2945. setup_data.interac_type[0]=W_Type;
  2946. setup_data. input_data=&buff[0];
  2947. setup_data.output_data=&buff[5];
  2948. setup_data. coord_data=&buff[6];
  2949. Vector<FMMNode_t*>& nodes_in =n_list[0];
  2950. Vector<FMMNode_t*>& nodes_out=n_list[5];
  2951. setup_data.nodes_in .clear();
  2952. setup_data.nodes_out.clear();
  2953. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2954. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2955. }
  2956. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2957. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2958. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2959. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2960. for(size_t i=0;i<nodes_in .size();i++){
  2961. input_vector .push_back(&upwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  2962. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  2963. input_vector .push_back(NULL);
  2964. input_vector .push_back(NULL);
  2965. }
  2966. for(size_t i=0;i<nodes_out.size();i++){
  2967. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  2968. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  2969. }
  2970. this->SetupInteracPts(setup_data, true, false, NULL, device);
  2971. { // Resize device buffer
  2972. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  2973. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  2974. }
  2975. }
  2976. template <class FMMNode>
  2977. void FMM_Pts<FMMNode>::W_List (SetupData<Real_t>& setup_data, bool device){
  2978. //Add W_List contribution.
  2979. this->EvalListPts(setup_data, device);
  2980. }
  2981. template <class FMMNode>
  2982. void FMM_Pts<FMMNode>::U_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2983. { // Set setup_data
  2984. setup_data.level=level;
  2985. setup_data.kernel=&kernel;
  2986. setup_data.interac_type.resize(3);
  2987. setup_data.interac_type[0]=U0_Type;
  2988. setup_data.interac_type[1]=U1_Type;
  2989. setup_data.interac_type[2]=U2_Type;
  2990. setup_data. input_data=&buff[4];
  2991. setup_data.output_data=&buff[5];
  2992. setup_data. coord_data=&buff[6];
  2993. Vector<FMMNode_t*>& nodes_in =n_list[4];
  2994. Vector<FMMNode_t*>& nodes_out=n_list[5];
  2995. setup_data.nodes_in .clear();
  2996. setup_data.nodes_out.clear();
  2997. for(size_t i=0;i<nodes_in .Dim();i++) if((level-1<=nodes_in [i]->Depth() && nodes_in [i]->Depth()<=level+1) || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2998. for(size_t i=0;i<nodes_out.Dim();i++) if(( nodes_out[i]->Depth()==level ) || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2999. }
  3000. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3001. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3002. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3003. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3004. for(size_t i=0;i<nodes_in .size();i++){
  3005. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  3006. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  3007. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  3008. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  3009. }
  3010. for(size_t i=0;i<nodes_out.size();i++){
  3011. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3012. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3013. }
  3014. this->SetupInteracPts(setup_data, false, false, NULL, device);
  3015. { // Resize device buffer
  3016. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3017. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3018. }
  3019. }
  3020. template <class FMMNode>
  3021. void FMM_Pts<FMMNode>::U_List (SetupData<Real_t>& setup_data, bool device){
  3022. //Add U_List contribution.
  3023. this->EvalListPts(setup_data, device);
  3024. }
  3025. template <class FMMNode>
  3026. void FMM_Pts<FMMNode>::Down2TargetSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3027. if(this->MultipoleOrder()==0) return;
  3028. { // Set setup_data
  3029. setup_data.level=level;
  3030. setup_data.kernel=&kernel;
  3031. setup_data.interac_type.resize(1);
  3032. setup_data.interac_type[0]=D2T_Type;
  3033. setup_data. input_data=&buff[1];
  3034. setup_data.output_data=&buff[5];
  3035. setup_data. coord_data=&buff[6];
  3036. Vector<FMMNode_t*>& nodes_in =n_list[1];
  3037. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3038. setup_data.nodes_in .clear();
  3039. setup_data.nodes_out.clear();
  3040. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3041. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3042. }
  3043. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3044. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3045. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3046. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3047. for(size_t i=0;i<nodes_in .size();i++){
  3048. input_vector .push_back(&dnwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  3049. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  3050. input_vector .push_back(NULL);
  3051. input_vector .push_back(NULL);
  3052. }
  3053. for(size_t i=0;i<nodes_out.size();i++){
  3054. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3055. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3056. }
  3057. this->SetupInteracPts(setup_data, true, false, NULL, device);
  3058. { // Resize device buffer
  3059. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3060. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3061. }
  3062. }
  3063. template <class FMMNode>
  3064. void FMM_Pts<FMMNode>::Down2Target(SetupData<Real_t>& setup_data, bool device){
  3065. //Add Down2Target contribution.
  3066. this->EvalListPts(setup_data, device);
  3067. }
  3068. template <class FMMNode>
  3069. void FMM_Pts<FMMNode>::PostProcessing(std::vector<FMMNode_t*>& nodes){
  3070. }
  3071. template <class FMMNode>
  3072. void FMM_Pts<FMMNode>::CopyOutput(FMMNode** nodes, size_t n){
  3073. }
  3074. }//end namespace