kernel.hpp 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235
  1. /**
  2. * \file kernel.hpp
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 12-20-2011
  5. * \brief This file contains the definition of the struct Kernel and also the
  6. * implementation of various kernels for FMM.
  7. */
  8. #include <string>
  9. #include <cstdlib>
  10. #include <pvfmm_common.hpp>
  11. #include <mem_mgr.hpp>
  12. #ifndef _PVFMM_FMM_KERNEL_HPP_
  13. #define _PVFMM_FMM_KERNEL_HPP_
  14. namespace pvfmm{
  15. template <class T>
  16. struct Kernel{
  17. public:
  18. /**
  19. * \brief Evaluate potential due to source points at target coordinates.
  20. * \param[in] r_src Coordinates of source points.
  21. * \param[in] src_cnt Number of source points.
  22. * \param[in] v_src Strength of source points.
  23. * \param[in] r_trg Coordinates of target points.
  24. * \param[in] trg_cnt Number of target points.
  25. * \param[out] k_out Output array with potential values.
  26. */
  27. typedef void (*Ker_t)(T* r_src, int src_cnt, T* v_src, int dof,
  28. T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  29. /**
  30. * \brief Constructor.
  31. */
  32. Kernel();
  33. /**
  34. * \brief Constructor.
  35. */
  36. Kernel(Ker_t poten, Ker_t dbl_poten, const char* name, int dim_,
  37. std::pair<int,int> k_dim, bool homogen_=false, T ker_scale=0,
  38. size_t dev_poten=(size_t)NULL, size_t dev_dbl_poten=(size_t)NULL);
  39. /**
  40. * \brief Compute the transformation matrix (on the source strength vector)
  41. * to get potential at target coordinates due to sources at the given
  42. * coordinates.
  43. * \param[in] r_src Coordinates of source points.
  44. * \param[in] src_cnt Number of source points.
  45. * \param[in] r_trg Coordinates of target points.
  46. * \param[in] trg_cnt Number of target points.
  47. * \param[out] k_out Output array with potential values.
  48. */
  49. void BuildMatrix(T* r_src, int src_cnt,
  50. T* r_trg, int trg_cnt, T* k_out);
  51. int dim;
  52. int ker_dim[2];
  53. Ker_t ker_poten;
  54. Ker_t dbl_layer_poten;
  55. size_t dev_ker_poten;
  56. size_t dev_dbl_layer_poten;
  57. bool homogen;
  58. T poten_scale;
  59. std::string ker_name;
  60. };
  61. template<typename T, void (*A)(T*, int, T*, int, T*, int, T*, mem::MemoryManager* mem_mgr),
  62. void (*B)(T*, int, T*, int, T*, int, T*, mem::MemoryManager* mem_mgr)>
  63. Kernel<T> BuildKernel(const char* name, int dim,
  64. std::pair<int,int> k_dim, bool homogen=false, T ker_scale=0){
  65. size_t dev_ker_poten ;
  66. size_t dev_dbl_layer_poten;
  67. #ifdef __INTEL_OFFLOAD
  68. #pragma offload target(mic:0)
  69. #endif
  70. {
  71. dev_ker_poten =(size_t)((typename Kernel<T>::Ker_t)A);
  72. dev_dbl_layer_poten=(size_t)((typename Kernel<T>::Ker_t)B);
  73. }
  74. return Kernel<T>(A, B,
  75. name, dim, k_dim, homogen, ker_scale,
  76. dev_ker_poten, dev_dbl_layer_poten);
  77. }
  78. template<typename T, void (*A)(T*, int, T*, int, T*, int, T*, mem::MemoryManager* mem_mgr)>
  79. Kernel<T> BuildKernel(const char* name, int dim,
  80. std::pair<int,int> k_dim, bool homogen=false, T ker_scale=0){
  81. size_t dev_ker_poten ;
  82. #ifdef __INTEL_OFFLOAD
  83. #pragma offload target(mic:0)
  84. #endif
  85. {
  86. dev_ker_poten =(size_t)((typename Kernel<T>::Ker_t)A);
  87. }
  88. return Kernel<T>(A, NULL,
  89. name, dim, k_dim, homogen, ker_scale,
  90. dev_ker_poten, (size_t)NULL);
  91. }
  92. }//end namespace
  93. #ifdef __INTEL_OFFLOAD
  94. #pragma offload_attribute(push,target(mic))
  95. #endif
  96. namespace pvfmm{ // Predefined Kernel-functions
  97. ////////////////////////////////////////////////////////////////////////////////
  98. //////// LAPLACE KERNEL ////////
  99. ////////////////////////////////////////////////////////////////////////////////
  100. /**
  101. * \brief Green's function for the Poisson's equation. Kernel tensor
  102. * dimension = 1x1.
  103. */
  104. template <class T>
  105. void laplace_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  106. // Laplace double layer potential.
  107. template <class T>
  108. void laplace_dbl_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  109. // Laplace grdient kernel.
  110. template <class T>
  111. void laplace_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  112. #ifdef QuadReal_t
  113. const Kernel<QuadReal_t> laplace_potn_q=BuildKernel<QuadReal_t, laplace_poten, laplace_dbl_poten>("laplace" , 3, std::pair<int,int>(1,1), true, 1.0);
  114. const Kernel<QuadReal_t> laplace_grad_q=BuildKernel<QuadReal_t, laplace_grad >("laplace_grad", 3, std::pair<int,int>(1,3), true, 2.0);
  115. #endif
  116. const Kernel<double > laplace_potn_d=BuildKernel<double , laplace_poten, laplace_dbl_poten>("laplace" , 3, std::pair<int,int>(1,1), true, 1.0);
  117. const Kernel<double > laplace_grad_d=BuildKernel<double , laplace_grad >("laplace_grad", 3, std::pair<int,int>(1,3), true, 2.0);
  118. const Kernel<float > laplace_potn_f=BuildKernel<float , laplace_poten, laplace_dbl_poten>("laplace" , 3, std::pair<int,int>(1,1), true, 1.0);
  119. const Kernel<float > laplace_grad_f=BuildKernel<float , laplace_grad >("laplace_grad", 3, std::pair<int,int>(1,3), true, 2.0);
  120. template<class T>
  121. struct LaplaceKernel{
  122. inline static const Kernel<T>& potn_ker();
  123. inline static const Kernel<T>& grad_ker();
  124. };
  125. #ifdef QuadReal_t
  126. template<> const Kernel<QuadReal_t>& LaplaceKernel<QuadReal_t>::potn_ker(){ return laplace_potn_q; };
  127. template<> const Kernel<QuadReal_t>& LaplaceKernel<QuadReal_t>::grad_ker(){ return laplace_grad_q; };
  128. #endif
  129. template<> const Kernel<double>& LaplaceKernel<double>::potn_ker(){ return laplace_potn_d; };
  130. template<> const Kernel<double>& LaplaceKernel<double>::grad_ker(){ return laplace_grad_d; };
  131. template<> const Kernel<float>& LaplaceKernel<float>::potn_ker(){ return laplace_potn_f; };
  132. template<> const Kernel<float>& LaplaceKernel<float>::grad_ker(){ return laplace_grad_f; };
  133. ////////////////////////////////////////////////////////////////////////////////
  134. //////// STOKES KERNEL ////////
  135. ////////////////////////////////////////////////////////////////////////////////
  136. /**
  137. * \brief Green's function for the Stokes's equation. Kernel tensor
  138. * dimension = 3x3.
  139. */
  140. template <class T>
  141. void stokes_vel(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  142. template <class T>
  143. void stokes_sym_dip(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  144. template <class T>
  145. void stokes_press(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  146. template <class T>
  147. void stokes_stress(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  148. template <class T>
  149. void stokes_grad(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  150. const Kernel<double> ker_stokes_vel =BuildKernel<double, stokes_vel, stokes_sym_dip>("stokes_vel" , 3, std::pair<int,int>(3,3),true,1.0);
  151. const Kernel<double> ker_stokes_press =BuildKernel<double, stokes_press >("stokes_press" , 3, std::pair<int,int>(3,1),true,2.0);
  152. const Kernel<double> ker_stokes_stress=BuildKernel<double, stokes_stress >("stokes_stress", 3, std::pair<int,int>(3,9),true,2.0);
  153. const Kernel<double> ker_stokes_grad =BuildKernel<double, stokes_grad >("stokes_grad" , 3, std::pair<int,int>(3,9),true,2.0);
  154. ////////////////////////////////////////////////////////////////////////////////
  155. //////// BIOT-SAVART KERNEL ////////
  156. ////////////////////////////////////////////////////////////////////////////////
  157. template <class T>
  158. void biot_savart(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  159. const Kernel<double> ker_biot_savart=BuildKernel<double, biot_savart>("biot_savart", 3, std::pair<int,int>(3,3),true,2.0);
  160. ////////////////////////////////////////////////////////////////////////////////
  161. //////// HELMHOLTZ KERNEL ////////
  162. ////////////////////////////////////////////////////////////////////////////////
  163. /**
  164. * \brief Green's function for the Helmholtz's equation. Kernel tensor
  165. * dimension = 2x2.
  166. */
  167. template <class T>
  168. void helmholtz_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  169. template <class T>
  170. void helmholtz_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  171. const Kernel<double> ker_helmholtz =BuildKernel<double, helmholtz_poten>("helmholtz" , 3, std::pair<int,int>(2,2));
  172. const Kernel<double> ker_helmholtz_grad=BuildKernel<double, helmholtz_grad >("helmholtz_grad", 3, std::pair<int,int>(2,6));
  173. }//end namespace
  174. #ifdef __INTEL_OFFLOAD
  175. #pragma offload_attribute(pop)
  176. #endif
  177. #include <kernel.txx>
  178. #endif //_PVFMM_FMM_KERNEL_HPP_