mem_mgr.hpp 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277
  1. /**
  2. * \file mem_mgr.hpp
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 6-30-2014
  5. * \brief This file contains the definition of a simple memory manager which
  6. * uses a pre-allocated buffer of size defined in call to the constructor.
  7. */
  8. #ifndef _PVFMM_MEM_MGR_HPP_
  9. #define _PVFMM_MEM_MGR_HPP_
  10. #include <map>
  11. #include <stack>
  12. #include <vector>
  13. #include <cassert>
  14. #include <cmath>
  15. #include <omp.h>
  16. namespace pvfmm{
  17. namespace mem{
  18. class MemoryManager{
  19. public:
  20. MemoryManager(size_t N){
  21. buff_size=N;
  22. buff=(char*)::malloc(buff_size); assert(buff);
  23. n_dummy_indx=new_node();
  24. size_t n_indx=new_node();
  25. node& n_dummy=node_buff[n_dummy_indx-1];
  26. node& n=node_buff[n_indx-1];
  27. n_dummy.size=0;
  28. n_dummy.free=false;
  29. n_dummy.prev=NULL;
  30. n_dummy.next=n_indx;
  31. n_dummy.mem_ptr=&buff[0];
  32. assert(n_indx);
  33. n.size=N;
  34. n.free=true;
  35. n.prev=n_dummy_indx;
  36. n.next=NULL;
  37. n.mem_ptr=&buff[0];
  38. n.it=free_map.insert(std::make_pair(N,n_indx));
  39. omp_init_lock(&omp_lock);
  40. }
  41. ~MemoryManager(){
  42. node* n=&node_buff[n_dummy_indx-1];
  43. n=&node_buff[n->next-1];
  44. if(n==NULL || !n->free || n->size!=buff_size ||
  45. node_stack.size()!=node_buff.size()-2){
  46. std::cout<<"\nWarning: memory leak detected.\n";
  47. }
  48. omp_destroy_lock(&omp_lock);
  49. if(buff) ::free(buff);
  50. }
  51. void* malloc(size_t size){
  52. if(!size) return NULL;
  53. size+=sizeof(size_t);
  54. std::multimap<size_t, size_t>::iterator it;
  55. omp_set_lock(&omp_lock);
  56. it=free_map.lower_bound(size);
  57. if(it==free_map.end()){
  58. omp_unset_lock(&omp_lock);
  59. return ::malloc(size);
  60. }else if(it->first==size){
  61. size_t n_indx=it->second;
  62. node& n=node_buff[n_indx-1];
  63. //assert(n.size==it->first);
  64. //assert(n.it==it);
  65. //assert(n.free);
  66. n.free=false;
  67. free_map.erase(it);
  68. ((size_t*)n.mem_ptr)[0]=n_indx;
  69. omp_unset_lock(&omp_lock);
  70. return &((size_t*)n.mem_ptr)[1];
  71. }else{
  72. size_t n_indx=it->second;
  73. size_t n_free_indx=new_node();
  74. node& n_free=node_buff[n_free_indx-1];
  75. node& n =node_buff[n_indx-1];
  76. //assert(n.size==it->first);
  77. //assert(n.it==it);
  78. //assert(n.free);
  79. n_free=n;
  80. n_free.size-=size;
  81. n_free.mem_ptr=(char*)n_free.mem_ptr+size;
  82. n_free.prev=n_indx;
  83. if(n_free.next){
  84. size_t n_next_indx=n_free.next;
  85. node& n_next=node_buff[n_next_indx-1];
  86. n_next.prev=n_free_indx;
  87. }
  88. n.free=false;
  89. n.size=size;
  90. n.next=n_free_indx;
  91. free_map.erase(it);
  92. n_free.it=free_map.insert(std::make_pair(n_free.size,n_free_indx));
  93. ((size_t*)n.mem_ptr)[0]=n_indx;
  94. omp_unset_lock(&omp_lock);
  95. return &((size_t*)n.mem_ptr)[1];
  96. }
  97. }
  98. void free(void* p){
  99. if(p<&buff[0] || p>=&buff[buff_size]) return ::free(p);
  100. size_t n_indx=((size_t*)p)[-1];
  101. assert(n_indx>0 && n_indx<=node_buff.size());
  102. ((size_t*)p)[-1]=0;
  103. omp_set_lock(&omp_lock);
  104. node& n=node_buff[n_indx-1];
  105. assert(!n.free && n.size>0 && n.mem_ptr==&((size_t*)p)[-1]);
  106. n.free=true;
  107. if(n.prev!=NULL && node_buff[n.prev-1].free){
  108. size_t n_prev_indx=n.prev;
  109. node& n_prev=node_buff[n_prev_indx-1];
  110. free_map.erase(n_prev.it);
  111. n.size+=n_prev.size;
  112. n.mem_ptr=n_prev.mem_ptr;
  113. n.prev=n_prev.prev;
  114. delete_node(n_prev_indx);
  115. if(n.prev){
  116. size_t n_prev_indx=n.prev;
  117. node& n_prev=node_buff[n_prev_indx-1];
  118. n_prev.next=n_indx;
  119. }
  120. }
  121. if(n.next!=NULL && node_buff[n.next-1].free){
  122. size_t n_next_indx=n.next;
  123. node& n_next=node_buff[n_next_indx-1];
  124. free_map.erase(n_next.it);
  125. n.size+=n_next.size;
  126. n.next=n_next.next;
  127. delete_node(n_next_indx);
  128. if(n.next){
  129. size_t n_next_indx=n.next;
  130. node& n_next=node_buff[n_next_indx-1];
  131. n_next.prev=n_indx;
  132. }
  133. }
  134. n.it=free_map.insert(std::make_pair(n.size,n_indx));
  135. omp_unset_lock(&omp_lock);
  136. }
  137. void print(){
  138. if(!buff_size) return;
  139. omp_set_lock(&omp_lock);
  140. size_t size=0;
  141. size_t largest_size=0;
  142. node* n=&node_buff[n_dummy_indx-1];
  143. std::cout<<"\n|";
  144. while(n->next){
  145. n=&node_buff[n->next-1];
  146. if(n->free){
  147. std::cout<<' ';
  148. largest_size=std::max(largest_size,n->size);
  149. }
  150. else{
  151. std::cout<<'#';
  152. size+=n->size;
  153. }
  154. }
  155. std::cout<<"| allocated="<<round(size*1000.0/buff_size)/10<<"%";
  156. std::cout<<" largest_free="<<round(largest_size*1000.0/buff_size)/10<<"%\n";
  157. omp_unset_lock(&omp_lock);
  158. }
  159. static void test(){
  160. size_t M=2000000000;
  161. { // With memory manager
  162. size_t N=M*sizeof(double)*1.1;
  163. double tt;
  164. double* tmp;
  165. std::cout<<"With memory manager: ";
  166. MemoryManager memgr(N);
  167. for(size_t j=0;j<3;j++){
  168. tmp=(double*)memgr.malloc(M*sizeof(double)); assert(tmp);
  169. tt=omp_get_wtime();
  170. #pragma omp parallel for
  171. for(size_t i=0;i<M;i++) tmp[i]=i;
  172. tt=omp_get_wtime()-tt;
  173. std::cout<<tt<<' ';
  174. memgr.free(tmp);
  175. }
  176. std::cout<<'\n';
  177. }
  178. { // Without memory manager
  179. double tt;
  180. double* tmp;
  181. //pvfmm::MemoryManager memgr(N);
  182. std::cout<<"Without memory manager: ";
  183. for(size_t j=0;j<3;j++){
  184. tmp=(double*)::malloc(M*sizeof(double)); assert(tmp);
  185. tt=omp_get_wtime();
  186. #pragma omp parallel for
  187. for(size_t i=0;i<M;i++) tmp[i]=i;
  188. tt=omp_get_wtime()-tt;
  189. std::cout<<tt<<' ';
  190. ::free(tmp);
  191. }
  192. std::cout<<'\n';
  193. }
  194. }
  195. private:
  196. struct node{
  197. bool free;
  198. size_t size;
  199. void* mem_ptr;
  200. size_t prev, next;
  201. std::multimap<size_t, size_t>::iterator it;
  202. };
  203. MemoryManager();
  204. MemoryManager(const MemoryManager& m);
  205. size_t new_node(){
  206. if(node_stack.empty()){
  207. node_buff.resize(node_buff.size()+1);
  208. node_stack.push(node_buff.size());
  209. }
  210. size_t indx=node_stack.top();
  211. node_stack.pop();
  212. assert(indx);
  213. return indx;
  214. }
  215. void delete_node(size_t indx){
  216. assert(indx);
  217. assert(indx<=node_buff.size());
  218. node& n=node_buff[indx-1];
  219. n.size=0;
  220. n.prev=0;
  221. n.next=0;
  222. n.mem_ptr=NULL;
  223. node_stack.push(indx);
  224. }
  225. char* buff;
  226. size_t buff_size;
  227. std::vector<node> node_buff;
  228. std::stack<size_t> node_stack;
  229. std::multimap<size_t, size_t> free_map;
  230. size_t n_dummy_indx;
  231. omp_lock_t omp_lock;
  232. };
  233. }//end namespace
  234. }//end namespace
  235. #endif //_PVFMM_MEM_MGR_HPP_