fmm_pts.txx 141 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629
  1. /**
  2. * \file fmm_pts.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 3-07-2011
  5. * \brief This file contains the implementation of the FMM_Pts class.
  6. */
  7. #include <stdio.h>
  8. #include <mpi.h>
  9. #include <set>
  10. #include <sstream>
  11. #include <fft_wrapper.hpp>
  12. #include <mat_utils.hpp>
  13. #ifdef PVFMM_HAVE_SYS_STAT_H
  14. #include <sys/stat.h>
  15. #endif
  16. #ifdef __SSE__
  17. #include <xmmintrin.h>
  18. #endif
  19. #ifdef __SSE3__
  20. #include <pmmintrin.h>
  21. #endif
  22. #ifdef __AVX__
  23. #include <immintrin.h>
  24. #endif
  25. #ifdef __INTEL_OFFLOAD
  26. #include <immintrin.h>
  27. #endif
  28. #ifdef __INTEL_OFFLOAD0
  29. #pragma offload_attribute(push,target(mic))
  30. #endif
  31. namespace pvfmm{
  32. /**
  33. * \brief Returns the coordinates of points on the surface of a cube.
  34. * \param[in] p Number of points on an edge of the cube is (n+1)
  35. * \param[in] c Coordinates to the centre of the cube (3D array).
  36. * \param[in] alpha Scaling factor for the size of the cube.
  37. * \param[in] depth Depth of the cube in the octree.
  38. * \return Vector with coordinates of points on the surface of the cube in the
  39. * format [x0 y0 z0 x1 y1 z1 .... ].
  40. */
  41. template <class Real_t>
  42. std::vector<Real_t> surface(int p, Real_t* c, Real_t alpha, int depth){
  43. size_t n_=(6*(p-1)*(p-1)+2); //Total number of points.
  44. std::vector<Real_t> coord(n_*3);
  45. coord[0]=coord[1]=coord[2]=-1.0;
  46. size_t cnt=1;
  47. for(int i=0;i<p-1;i++)
  48. for(int j=0;j<p-1;j++){
  49. coord[cnt*3 ]=-1.0;
  50. coord[cnt*3+1]=(2.0*(i+1)-p+1)/(p-1);
  51. coord[cnt*3+2]=(2.0*j-p+1)/(p-1);
  52. cnt++;
  53. }
  54. for(int i=0;i<p-1;i++)
  55. for(int j=0;j<p-1;j++){
  56. coord[cnt*3 ]=(2.0*i-p+1)/(p-1);
  57. coord[cnt*3+1]=-1.0;
  58. coord[cnt*3+2]=(2.0*(j+1)-p+1)/(p-1);
  59. cnt++;
  60. }
  61. for(int i=0;i<p-1;i++)
  62. for(int j=0;j<p-1;j++){
  63. coord[cnt*3 ]=(2.0*(i+1)-p+1)/(p-1);
  64. coord[cnt*3+1]=(2.0*j-p+1)/(p-1);
  65. coord[cnt*3+2]=-1.0;
  66. cnt++;
  67. }
  68. for(size_t i=0;i<(n_/2)*3;i++)
  69. coord[cnt*3+i]=-coord[i];
  70. Real_t r = 0.5*pow(0.5,depth);
  71. Real_t b = alpha*r;
  72. for(size_t i=0;i<n_;i++){
  73. coord[i*3+0]=(coord[i*3+0]+1.0)*b+c[0];
  74. coord[i*3+1]=(coord[i*3+1]+1.0)*b+c[1];
  75. coord[i*3+2]=(coord[i*3+2]+1.0)*b+c[2];
  76. }
  77. return coord;
  78. }
  79. /**
  80. * \brief Returns the coordinates of points on the upward check surface of cube.
  81. * \see surface()
  82. */
  83. template <class Real_t>
  84. std::vector<Real_t> u_check_surf(int p, Real_t* c, int depth){
  85. Real_t r=0.5*pow(0.5,depth);
  86. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  87. return surface(p,coord,(Real_t)RAD1,depth);
  88. }
  89. /**
  90. * \brief Returns the coordinates of points on the upward equivalent surface of cube.
  91. * \see surface()
  92. */
  93. template <class Real_t>
  94. std::vector<Real_t> u_equiv_surf(int p, Real_t* c, int depth){
  95. Real_t r=0.5*pow(0.5,depth);
  96. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  97. return surface(p,coord,(Real_t)RAD0,depth);
  98. }
  99. /**
  100. * \brief Returns the coordinates of points on the downward check surface of cube.
  101. * \see surface()
  102. */
  103. template <class Real_t>
  104. std::vector<Real_t> d_check_surf(int p, Real_t* c, int depth){
  105. Real_t r=0.5*pow(0.5,depth);
  106. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  107. return surface(p,coord,(Real_t)RAD0,depth);
  108. }
  109. /**
  110. * \brief Returns the coordinates of points on the downward equivalent surface of cube.
  111. * \see surface()
  112. */
  113. template <class Real_t>
  114. std::vector<Real_t> d_equiv_surf(int p, Real_t* c, int depth){
  115. Real_t r=0.5*pow(0.5,depth);
  116. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  117. return surface(p,coord,(Real_t)RAD1,depth);
  118. }
  119. /**
  120. * \brief Defines the 3D grid for convolution in FFT acceleration of V-list.
  121. * \see surface()
  122. */
  123. template <class Real_t>
  124. std::vector<Real_t> conv_grid(int p, Real_t* c, int depth){
  125. Real_t r=pow(0.5,depth);
  126. Real_t a=r*RAD0;
  127. Real_t coord[3]={c[0],c[1],c[2]};
  128. int n1=p*2;
  129. int n2=(int)pow((Real_t)n1,2);
  130. int n3=(int)pow((Real_t)n1,3);
  131. std::vector<Real_t> grid(n3*3);
  132. for(int i=0;i<n1;i++)
  133. for(int j=0;j<n1;j++)
  134. for(int k=0;k<n1;k++){
  135. grid[(i+n1*j+n2*k)*3+0]=(i-p)*a/(p-1)+coord[0];
  136. grid[(i+n1*j+n2*k)*3+1]=(j-p)*a/(p-1)+coord[1];
  137. grid[(i+n1*j+n2*k)*3+2]=(k-p)*a/(p-1)+coord[2];
  138. }
  139. return grid;
  140. }
  141. #ifdef __INTEL_OFFLOAD0
  142. #pragma offload_attribute(pop)
  143. #endif
  144. template <class Real_t>
  145. void FMM_Data<Real_t>::Clear(){
  146. upward_equiv.Resize(0);
  147. }
  148. template <class Real_t>
  149. PackedData FMM_Data<Real_t>::PackMultipole(void* buff_ptr){
  150. PackedData p0; p0.data=buff_ptr;
  151. p0.length=upward_equiv.Dim()*sizeof(Real_t);
  152. if(p0.length==0) return p0;
  153. if(p0.data==NULL) p0.data=(char*)&upward_equiv[0];
  154. else mem::memcopy(p0.data,&upward_equiv[0],p0.length);
  155. return p0;
  156. }
  157. template <class Real_t>
  158. void FMM_Data<Real_t>::AddMultipole(PackedData p0){
  159. Real_t* data=(Real_t*)p0.data;
  160. size_t n=p0.length/sizeof(Real_t);
  161. assert(upward_equiv.Dim()==n);
  162. Matrix<Real_t> v0(1,n,&upward_equiv[0],false);
  163. Matrix<Real_t> v1(1,n,data,false);
  164. v0+=v1;
  165. }
  166. template <class Real_t>
  167. void FMM_Data<Real_t>::InitMultipole(PackedData p0, bool own_data){
  168. Real_t* data=(Real_t*)p0.data;
  169. size_t n=p0.length/sizeof(Real_t);
  170. if(own_data){
  171. if(n>0) upward_equiv=Vector<Real_t>(n, &data[0], false);
  172. }else{
  173. if(n>0) upward_equiv.ReInit(n, &data[0], false);
  174. }
  175. }
  176. template <class FMMNode>
  177. FMM_Pts<FMMNode>::~FMM_Pts() {
  178. if(mat!=NULL){
  179. // int rank;
  180. // MPI_Comm_rank(comm,&rank);
  181. // if(rank==0) mat->Save2File("Precomp.data");
  182. delete mat;
  183. mat=NULL;
  184. }
  185. if(vprecomp_fft_flag) FFTW_t<Real_t>::fft_destroy_plan(vprecomp_fftplan);
  186. #ifdef __INTEL_OFFLOAD0
  187. #pragma offload target(mic:0)
  188. #endif
  189. {
  190. if(vlist_fft_flag ) FFTW_t<Real_t>::fft_destroy_plan(vlist_fftplan );
  191. if(vlist_ifft_flag) FFTW_t<Real_t>::fft_destroy_plan(vlist_ifftplan);
  192. vlist_fft_flag =false;
  193. vlist_ifft_flag=false;
  194. }
  195. }
  196. template <class FMMNode>
  197. void FMM_Pts<FMMNode>::Initialize(int mult_order, const MPI_Comm& comm_, const Kernel<Real_t>* kernel_, const Kernel<Real_t>* aux_kernel_){
  198. Profile::Tic("InitFMM_Pts",&comm_,true);{
  199. multipole_order=mult_order;
  200. comm=comm_;
  201. kernel=*kernel_;
  202. aux_kernel=*(aux_kernel_?aux_kernel_:kernel_);
  203. assert(kernel.ker_dim[0]==aux_kernel.ker_dim[0]);
  204. mat=new PrecompMat<Real_t>(Homogen(), MAX_DEPTH+1);
  205. if(this->mat_fname.size()==0){
  206. std::stringstream st;
  207. st<<PVFMM_PRECOMP_DATA_PATH;
  208. if(!st.str().size()){ // look in PVFMM_DIR
  209. char* pvfmm_dir = getenv ("PVFMM_DIR");
  210. if(pvfmm_dir) st<<pvfmm_dir<<'/';
  211. }
  212. #ifndef STAT_MACROS_BROKEN
  213. if(st.str().size()){ // check if the path is a directory
  214. struct stat stat_buff;
  215. if(stat(st.str().c_str(), &stat_buff) || !S_ISDIR(stat_buff.st_mode)){
  216. std::cout<<"error: path not found: "<<st.str()<<'\n';
  217. exit(0);
  218. }
  219. }
  220. #endif
  221. st<<"Precomp_"<<kernel.ker_name.c_str()<<"_m"<<mult_order<<(typeid(Real_t)==typeid(float)?"_f":"")<<".data";
  222. this->mat_fname=st.str();
  223. }
  224. this->mat->LoadFile(mat_fname.c_str(), this->comm);
  225. interac_list.Initialize(COORD_DIM, this->mat);
  226. Profile::Tic("PrecompUC2UE",&comm,false,4);
  227. this->PrecompAll(UC2UE_Type);
  228. Profile::Toc();
  229. Profile::Tic("PrecompDC2DE",&comm,false,4);
  230. this->PrecompAll(DC2DE_Type);
  231. Profile::Toc();
  232. Profile::Tic("PrecompBC",&comm,false,4);
  233. { /*
  234. int type=BC_Type;
  235. for(int l=0;l<MAX_DEPTH;l++)
  236. for(size_t indx=0;indx<this->interac_list.ListCount((Mat_Type)type);indx++){
  237. Matrix<Real_t>& M=this->mat->Mat(l, (Mat_Type)type, indx);
  238. M.Resize(0,0);
  239. } // */
  240. }
  241. this->PrecompAll(BC_Type,0);
  242. Profile::Toc();
  243. Profile::Tic("PrecompU2U",&comm,false,4);
  244. this->PrecompAll(U2U_Type);
  245. Profile::Toc();
  246. Profile::Tic("PrecompD2D",&comm,false,4);
  247. this->PrecompAll(D2D_Type);
  248. Profile::Toc();
  249. Profile::Tic("PrecompV",&comm,false,4);
  250. this->PrecompAll(V_Type);
  251. Profile::Toc();
  252. Profile::Tic("PrecompV1",&comm,false,4);
  253. this->PrecompAll(V1_Type);
  254. Profile::Toc();
  255. }Profile::Toc();
  256. }
  257. template <class FMMNode>
  258. Permutation<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::PrecompPerm(Mat_Type type, Perm_Type perm_indx){
  259. //Check if the matrix already exists.
  260. Permutation<Real_t>& P_ = mat->Perm((Mat_Type)type, perm_indx);
  261. if(P_.Dim()!=0) return P_;
  262. Matrix<size_t> swap_xy(10,9);
  263. Matrix<size_t> swap_xz(10,9);
  264. {
  265. for(int i=0;i<9;i++)
  266. for(int j=0;j<9;j++){
  267. swap_xy[i][j]=j;
  268. swap_xz[i][j]=j;
  269. }
  270. swap_xy[3][0]=1; swap_xy[3][1]=0; swap_xy[3][2]=2;
  271. swap_xz[3][0]=2; swap_xz[3][1]=1; swap_xz[3][2]=0;
  272. swap_xy[6][0]=1; swap_xy[6][1]=0; swap_xy[6][2]=2;
  273. swap_xy[6][3]=4; swap_xy[6][4]=3; swap_xy[6][5]=5;
  274. swap_xz[6][0]=2; swap_xz[6][1]=1; swap_xz[6][2]=0;
  275. swap_xz[6][3]=5; swap_xz[6][4]=4; swap_xz[6][5]=3;
  276. swap_xy[9][0]=4; swap_xy[9][1]=3; swap_xy[9][2]=5;
  277. swap_xy[9][3]=1; swap_xy[9][4]=0; swap_xy[9][5]=2;
  278. swap_xy[9][6]=7; swap_xy[9][7]=6; swap_xy[9][8]=8;
  279. swap_xz[9][0]=8; swap_xz[9][1]=7; swap_xz[9][2]=6;
  280. swap_xz[9][3]=5; swap_xz[9][4]=4; swap_xz[9][5]=3;
  281. swap_xz[9][6]=2; swap_xz[9][7]=1; swap_xz[9][8]=0;
  282. }
  283. //Compute the matrix.
  284. Permutation<Real_t> P;
  285. switch (type){
  286. case UC2UE_Type:
  287. {
  288. break;
  289. }
  290. case DC2DE_Type:
  291. {
  292. break;
  293. }
  294. case S2U_Type:
  295. {
  296. break;
  297. }
  298. case U2U_Type:
  299. {
  300. break;
  301. }
  302. case D2D_Type:
  303. {
  304. Real_t eps=1e-10;
  305. int dof=kernel.ker_dim[0];
  306. size_t p_indx=perm_indx % C_Perm;
  307. Real_t c[3]={-0.5,-0.5,-0.5};
  308. std::vector<Real_t> trg_coord=d_check_surf(this->MultipoleOrder(),c,0);
  309. int n_trg=trg_coord.size()/3;
  310. P=Permutation<Real_t>(n_trg*dof);
  311. if(p_indx==ReflecX || p_indx==ReflecY || p_indx==ReflecZ){
  312. for(int i=0;i<n_trg;i++)
  313. for(int j=0;j<n_trg;j++){
  314. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+0]*(p_indx==ReflecX?-1.0:1.0))<eps)
  315. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+1]*(p_indx==ReflecY?-1.0:1.0))<eps)
  316. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+2]*(p_indx==ReflecZ?-1.0:1.0))<eps){
  317. for(int k=0;k<dof;k++){
  318. P.perm[j*dof+k]=i*dof+k;
  319. }
  320. }
  321. }
  322. if(dof==3) //stokes_vel (and like kernels)
  323. for(int j=0;j<n_trg;j++)
  324. P.scal[j*dof+(int)p_indx]*=-1.0;
  325. }else if(p_indx==SwapXY || p_indx==SwapXZ)
  326. for(int i=0;i<n_trg;i++)
  327. for(int j=0;j<n_trg;j++){
  328. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+(p_indx==SwapXY?1:2)])<eps)
  329. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+(p_indx==SwapXY?0:1)])<eps)
  330. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+(p_indx==SwapXY?2:0)])<eps){
  331. for(int k=0;k<dof;k++){
  332. P.perm[j*dof+k]=i*dof+(p_indx==SwapXY?swap_xy[dof][k]:swap_xz[dof][k]);
  333. }
  334. }
  335. }
  336. break;
  337. }
  338. case D2T_Type:
  339. {
  340. break;
  341. }
  342. case U0_Type:
  343. {
  344. break;
  345. }
  346. case U1_Type:
  347. {
  348. break;
  349. }
  350. case U2_Type:
  351. {
  352. break;
  353. }
  354. case V_Type:
  355. {
  356. break;
  357. }
  358. case V1_Type:
  359. {
  360. break;
  361. }
  362. case W_Type:
  363. {
  364. break;
  365. }
  366. case X_Type:
  367. {
  368. break;
  369. }
  370. case BC_Type:
  371. {
  372. break;
  373. }
  374. default:
  375. break;
  376. }
  377. //Save the matrix for future use.
  378. #pragma omp critical (PRECOMP_MATRIX_PTS)
  379. {
  380. if(P_.Dim()==0) P_=P;
  381. }
  382. return P_;
  383. }
  384. template <class FMMNode>
  385. Matrix<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::Precomp(int level, Mat_Type type, size_t mat_indx){
  386. if(this->Homogen()) level=0;
  387. //Check if the matrix already exists.
  388. Matrix<Real_t>& M_ = this->mat->Mat(level, type, mat_indx);
  389. if(M_.Dim(0)!=0 && M_.Dim(1)!=0) return M_;
  390. else{ //Compute matrix from symmetry class (if possible).
  391. size_t class_indx = this->interac_list.InteracClass(type, mat_indx);
  392. if(class_indx!=mat_indx){
  393. Matrix<Real_t>& M0 = this->Precomp(level, type, class_indx);
  394. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, type, mat_indx);
  395. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, type, mat_indx);
  396. if(Pr.Dim()>0 && Pc.Dim()>0 && M0.Dim(0)>0 && M0.Dim(1)>0) return M_;
  397. }
  398. }
  399. //Compute the matrix.
  400. Matrix<Real_t> M;
  401. int* ker_dim=kernel.ker_dim;
  402. int* aux_ker_dim=aux_kernel.ker_dim;
  403. //int omp_p=omp_get_max_threads();
  404. switch (type){
  405. case UC2UE_Type:
  406. {
  407. // Coord of upward check surface
  408. Real_t c[3]={0,0,0};
  409. std::vector<Real_t> uc_coord=u_check_surf(MultipoleOrder(),c,level);
  410. size_t n_uc=uc_coord.size()/3;
  411. // Coord of upward equivalent surface
  412. std::vector<Real_t> ue_coord=u_equiv_surf(MultipoleOrder(),c,level);
  413. size_t n_ue=ue_coord.size()/3;
  414. // Evaluate potential at check surface due to equivalent surface.
  415. Matrix<Real_t> M_e2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
  416. Kernel<Real_t>::Eval(&ue_coord[0], n_ue,
  417. &uc_coord[0], n_uc, &(M_e2c[0][0]),
  418. aux_kernel.ker_poten, aux_ker_dim);
  419. M=M_e2c.pinv(); //check 2 equivalent
  420. break;
  421. }
  422. case DC2DE_Type:
  423. {
  424. // Coord of downward check surface
  425. Real_t c[3]={0,0,0};
  426. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  427. size_t n_ch=check_surf.size()/3;
  428. // Coord of downward equivalent surface
  429. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  430. size_t n_eq=equiv_surf.size()/3;
  431. // Evaluate potential at check surface due to equivalent surface.
  432. Matrix<Real_t> M_e2c(n_eq*aux_ker_dim[0],n_ch*aux_ker_dim[1]);
  433. Kernel<Real_t>::Eval(&equiv_surf[0], n_eq,
  434. &check_surf[0], n_ch, &(M_e2c[0][0]),
  435. aux_kernel.ker_poten,aux_ker_dim);
  436. M=M_e2c.pinv(); //check 2 equivalent
  437. break;
  438. }
  439. case S2U_Type:
  440. {
  441. break;
  442. }
  443. case U2U_Type:
  444. {
  445. // Coord of upward check surface
  446. Real_t c[3]={0,0,0};
  447. std::vector<Real_t> check_surf=u_check_surf(MultipoleOrder(),c,level);
  448. size_t n_uc=check_surf.size()/3;
  449. // Coord of child's upward equivalent surface
  450. Real_t s=pow(0.5,(level+2));
  451. int* coord=interac_list.RelativeCoord(type,mat_indx);
  452. Real_t child_coord[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  453. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),child_coord,level+1);
  454. size_t n_ue=equiv_surf.size()/3;
  455. // Evaluate potential at check surface due to equivalent surface.
  456. Matrix<Real_t> M_ce2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
  457. Kernel<Real_t>::Eval(&equiv_surf[0], n_ue,
  458. &check_surf[0], n_uc, &(M_ce2c[0][0]),
  459. aux_kernel.ker_poten, aux_ker_dim);
  460. Matrix<Real_t>& M_c2e = Precomp(level, UC2UE_Type, 0);
  461. M=M_ce2c*M_c2e;
  462. break;
  463. }
  464. case D2D_Type:
  465. {
  466. // Coord of downward check surface
  467. Real_t s=pow(0.5,level+1);
  468. int* coord=interac_list.RelativeCoord(type,mat_indx);
  469. Real_t c[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  470. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  471. size_t n_dc=check_surf.size()/3;
  472. // Coord of parent's downward equivalent surface
  473. Real_t parent_coord[3]={0,0,0};
  474. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),parent_coord,level-1);
  475. size_t n_de=equiv_surf.size()/3;
  476. // Evaluate potential at check surface due to equivalent surface.
  477. Matrix<Real_t> M_pe2c(n_de*aux_ker_dim[0],n_dc*aux_ker_dim[1]);
  478. Kernel<Real_t>::Eval(&equiv_surf[0], n_de,
  479. &check_surf[0], n_dc, &(M_pe2c[0][0]),
  480. aux_kernel.ker_poten,aux_ker_dim);
  481. Matrix<Real_t>& M_c2e=Precomp(level,DC2DE_Type,0);
  482. M=M_pe2c*M_c2e;
  483. break;
  484. }
  485. case D2T_Type:
  486. {
  487. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  488. // Coord of target points
  489. Real_t r=pow(0.5,level);
  490. size_t n_trg=rel_trg_coord.size()/3;
  491. std::vector<Real_t> trg_coord(n_trg*3);
  492. for(size_t i=0;i<n_trg*COORD_DIM;i++) trg_coord[i]=rel_trg_coord[i]*r;
  493. // Coord of downward equivalent surface
  494. Real_t c[3]={0,0,0};
  495. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  496. size_t n_eq=equiv_surf.size()/3;
  497. // Evaluate potential at target points due to equivalent surface.
  498. {
  499. M .Resize(n_eq*ker_dim [0], n_trg*ker_dim [1]);
  500. kernel.BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  501. }
  502. break;
  503. }
  504. case U0_Type:
  505. {
  506. break;
  507. }
  508. case U1_Type:
  509. {
  510. break;
  511. }
  512. case U2_Type:
  513. {
  514. break;
  515. }
  516. case V_Type:
  517. {
  518. int n1=MultipoleOrder()*2;
  519. int n3 =n1*n1*n1;
  520. int n3_=n1*n1*(n1/2+1);
  521. //Compute the matrix.
  522. Real_t s=pow(0.5,level);
  523. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  524. Real_t coord_diff[3]={coord2[0]*s,coord2[1]*s,coord2[2]*s};
  525. //Evaluate potential.
  526. std::vector<Real_t> r_trg(COORD_DIM,0.0);
  527. std::vector<Real_t> conv_poten(n3*aux_ker_dim[0]*aux_ker_dim[1]);
  528. std::vector<Real_t> conv_coord=conv_grid(MultipoleOrder(),coord_diff,level);
  529. Kernel<Real_t>::Eval(&conv_coord[0],n3,&r_trg[0],1,&conv_poten[0],aux_kernel.ker_poten,aux_ker_dim);
  530. //Rearrange data.
  531. Matrix<Real_t> M_conv(n3,aux_ker_dim[0]*aux_ker_dim[1],&conv_poten[0],false);
  532. M_conv=M_conv.Transpose();
  533. //Compute FFTW plan.
  534. int nnn[3]={n1,n1,n1};
  535. void *fftw_in, *fftw_out;
  536. fftw_in = fftw_malloc( n3 *aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  537. fftw_out = fftw_malloc(2*n3_*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  538. #pragma omp critical (FFTW_PLAN)
  539. {
  540. if (!vprecomp_fft_flag){
  541. vprecomp_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM, nnn, aux_ker_dim[0]*aux_ker_dim[1],
  542. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*) fftw_out, NULL, 1, n3_, FFTW_ESTIMATE);
  543. vprecomp_fft_flag=true;
  544. }
  545. }
  546. //Compute FFT.
  547. mem::memcopy(fftw_in, &conv_poten[0], n3*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  548. FFTW_t<Real_t>::fft_execute_dft_r2c(vprecomp_fftplan, (Real_t*)fftw_in, (typename FFTW_t<Real_t>::cplx*)(fftw_out));
  549. Matrix<Real_t> M_(2*n3_*aux_ker_dim[0]*aux_ker_dim[1],1,(Real_t*)fftw_out,false);
  550. M=M_;
  551. //Free memory.
  552. fftw_free(fftw_in);
  553. fftw_free(fftw_out);
  554. break;
  555. }
  556. case V1_Type:
  557. {
  558. size_t mat_cnt =interac_list.ListCount( V_Type);
  559. for(size_t k=0;k<mat_cnt;k++) Precomp(level, V_Type, k);
  560. const size_t chld_cnt=1UL<<COORD_DIM;
  561. size_t n1=MultipoleOrder()*2;
  562. size_t M_dim=n1*n1*(n1/2+1);
  563. size_t n3=n1*n1*n1;
  564. Vector<Real_t> zero_vec(M_dim*aux_ker_dim[0]*aux_ker_dim[1]*2);
  565. zero_vec.SetZero();
  566. Vector<Real_t*> M_ptr(chld_cnt*chld_cnt);
  567. for(size_t i=0;i<chld_cnt*chld_cnt;i++) M_ptr[i]=&zero_vec[0];
  568. int* rel_coord_=interac_list.RelativeCoord(V1_Type, mat_indx);
  569. for(int j1=0;j1<chld_cnt;j1++)
  570. for(int j2=0;j2<chld_cnt;j2++){
  571. int rel_coord[3]={rel_coord_[0]*2-(j1/1)%2+(j2/1)%2,
  572. rel_coord_[1]*2-(j1/2)%2+(j2/2)%2,
  573. rel_coord_[2]*2-(j1/4)%2+(j2/4)%2};
  574. for(size_t k=0;k<mat_cnt;k++){
  575. int* ref_coord=interac_list.RelativeCoord(V_Type, k);
  576. if(ref_coord[0]==rel_coord[0] &&
  577. ref_coord[1]==rel_coord[1] &&
  578. ref_coord[2]==rel_coord[2]){
  579. Matrix<Real_t>& M = this->mat->Mat(level, V_Type, k);
  580. M_ptr[j2*chld_cnt+j1]=&M[0][0];
  581. break;
  582. }
  583. }
  584. }
  585. // Build matrix aux_ker_dim0 x aux_ker_dim1 x M_dim x 8 x 8
  586. M.Resize(aux_ker_dim[0]*aux_ker_dim[1]*M_dim, 2*chld_cnt*chld_cnt);
  587. for(int j=0;j<aux_ker_dim[0]*aux_ker_dim[1]*M_dim;j++){
  588. for(size_t k=0;k<chld_cnt*chld_cnt;k++){
  589. M[j][k*2+0]=M_ptr[k][j*2+0]/n3;
  590. M[j][k*2+1]=M_ptr[k][j*2+1]/n3;
  591. }
  592. }
  593. break;
  594. }
  595. case W_Type:
  596. {
  597. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  598. // Coord of target points
  599. Real_t s=pow(0.5,level);
  600. size_t n_trg=rel_trg_coord.size()/3;
  601. std::vector<Real_t> trg_coord(n_trg*3);
  602. for(size_t j=0;j<n_trg*COORD_DIM;j++) trg_coord[j]=rel_trg_coord[j]*s;
  603. // Coord of downward equivalent surface
  604. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  605. Real_t c[3]={(coord2[0]+1)*s*0.25,(coord2[1]+1)*s*0.25,(coord2[2]+1)*s*0.25};
  606. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),c,level+1);
  607. size_t n_eq=equiv_surf.size()/3;
  608. // Evaluate potential at target points due to equivalent surface.
  609. {
  610. M .Resize(n_eq*ker_dim [0],n_trg*ker_dim [1]);
  611. kernel.BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  612. }
  613. break;
  614. }
  615. case X_Type:
  616. {
  617. break;
  618. }
  619. case BC_Type:
  620. {
  621. size_t mat_cnt_m2m=interac_list.ListCount(U2U_Type);
  622. size_t n_surf=(6*(MultipoleOrder()-1)*(MultipoleOrder()-1)+2); //Total number of points.
  623. if((M.Dim(0)!=n_surf*aux_ker_dim[0] || M.Dim(1)!=n_surf*aux_ker_dim[1]) && level==0){
  624. Matrix<Real_t> M_m2m[BC_LEVELS+1];
  625. Matrix<Real_t> M_m2l[BC_LEVELS+1];
  626. Matrix<Real_t> M_l2l[BC_LEVELS+1];
  627. Matrix<Real_t> M_zero_avg(n_surf*aux_ker_dim[0],n_surf*aux_ker_dim[0]);
  628. { // Set average multipole charge to zero. (improves stability for large BC_LEVELS)
  629. M_zero_avg.SetZero();
  630. for(size_t i=0;i<n_surf*aux_ker_dim[0];i++)
  631. M_zero_avg[i][i]+=1;
  632. for(size_t i=0;i<n_surf;i++)
  633. for(size_t j=0;j<n_surf;j++)
  634. for(size_t k=0;k<aux_ker_dim[0];k++)
  635. M_zero_avg[i*aux_ker_dim[0]+k][j*aux_ker_dim[0]+k]-=1.0/n_surf;
  636. }
  637. for(int level=0; level>-BC_LEVELS; level--){
  638. M_l2l[-level] = this->Precomp(level, D2D_Type, 0);
  639. if(M_l2l[-level].Dim(0)==0 || M_l2l[-level].Dim(1)==0){
  640. Matrix<Real_t>& M0 = interac_list.ClassMat(level, D2D_Type, 0);
  641. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, D2D_Type, 0);
  642. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, D2D_Type, 0);
  643. M_l2l[-level] = Pr*M0*Pc;
  644. }
  645. M_m2m[-level] = M_zero_avg*this->Precomp(level, U2U_Type, 0);
  646. for(size_t mat_indx=1; mat_indx<mat_cnt_m2m; mat_indx++)
  647. M_m2m[-level] += M_zero_avg*this->Precomp(level, U2U_Type, mat_indx);
  648. }
  649. for(int level=-BC_LEVELS;level<=0;level++){
  650. if(!Homogen() || level==-BC_LEVELS){
  651. Real_t s=(1UL<<(-level));
  652. Real_t ue_coord[3]={0,0,0};
  653. Real_t dc_coord[3]={0,0,0};
  654. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  655. std::vector<Real_t> trg_coord=d_check_surf(MultipoleOrder(), dc_coord, level);
  656. Matrix<Real_t> M_ue2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  657. M_ue2dc.SetZero();
  658. for(int x0=-2;x0<4;x0++)
  659. for(int x1=-2;x1<4;x1++)
  660. for(int x2=-2;x2<4;x2++)
  661. if(abs(x0)>1 || abs(x1)>1 || abs(x2)>1){
  662. ue_coord[0]=x0*s; ue_coord[1]=x1*s; ue_coord[2]=x2*s;
  663. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  664. Matrix<Real_t> M_tmp(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  665. Kernel<Real_t>::Eval(&src_coord[0], n_surf,
  666. &trg_coord[0], n_surf, &(M_tmp[0][0]),
  667. aux_kernel.ker_poten, aux_ker_dim);
  668. M_ue2dc+=M_tmp;
  669. }
  670. // Shift by constant.
  671. Real_t scale_adj=(Homogen()?pow(0.5, level*aux_kernel.poten_scale):1);
  672. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  673. std::vector<Real_t> avg(aux_ker_dim[1],0);
  674. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  675. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  676. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
  677. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  678. for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]=(M_ue2dc[i][j+k]-avg[k])*scale_adj;
  679. }
  680. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  681. M_m2l[-level]=M_ue2dc*M_dc2de;
  682. }else M_m2l[-level]=M_m2l[1-level];
  683. if(level==-BC_LEVELS) M = M_m2l[-level];
  684. else M = M_m2l[-level] + M_m2m[-level]*M*M_l2l[-level];
  685. { // Shift by constant. (improves stability for large BC_LEVELS)
  686. Matrix<Real_t> M_de2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  687. { // M_de2dc TODO: For homogeneous kernels, compute only once.
  688. // Coord of downward check surface
  689. Real_t c[3]={0,0,0};
  690. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,0);
  691. size_t n_ch=check_surf.size()/3;
  692. // Coord of downward equivalent surface
  693. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  694. size_t n_eq=equiv_surf.size()/3;
  695. // Evaluate potential at check surface due to equivalent surface.
  696. Kernel<Real_t>::Eval(&equiv_surf[0], n_eq,
  697. &check_surf[0], n_ch, &(M_de2dc[0][0]),
  698. aux_kernel.ker_poten,aux_ker_dim);
  699. }
  700. Matrix<Real_t> M_ue2dc=M*M_de2dc;
  701. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  702. std::vector<Real_t> avg(aux_ker_dim[1],0);
  703. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  704. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  705. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
  706. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  707. for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]-=avg[k];
  708. }
  709. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  710. M=M_ue2dc*M_dc2de;
  711. }
  712. }
  713. { // ax+by+cz+d correction.
  714. std::vector<Real_t> corner_pts;
  715. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(0);
  716. corner_pts.push_back(1); corner_pts.push_back(0); corner_pts.push_back(0);
  717. corner_pts.push_back(0); corner_pts.push_back(1); corner_pts.push_back(0);
  718. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(1);
  719. size_t n_corner=corner_pts.size()/3;
  720. // Coord of downward equivalent surface
  721. Real_t c[3]={0,0,0};
  722. std::vector<Real_t> up_equiv_surf=u_equiv_surf(MultipoleOrder(),c,0);
  723. std::vector<Real_t> dn_equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  724. std::vector<Real_t> dn_check_surf=d_check_surf(MultipoleOrder(),c,0);
  725. Matrix<Real_t> M_err;
  726. { // Evaluate potential at corner due to upward and dnward equivalent surface.
  727. { // Error from local expansion.
  728. Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],n_corner*aux_ker_dim[1]);
  729. Kernel<Real_t>::Eval(&dn_equiv_surf[0], n_surf,
  730. &corner_pts[0], n_corner, &(M_e2pt[0][0]),
  731. aux_kernel.ker_poten,aux_ker_dim);
  732. M_err=M*M_e2pt;
  733. }
  734. for(size_t k=0;k<4;k++){ // Error from colleagues of root.
  735. for(int j0=-1;j0<=1;j0++)
  736. for(int j1=-1;j1<=1;j1++)
  737. for(int j2=-1;j2<=1;j2++){
  738. Real_t pt_coord[3]={corner_pts[k*COORD_DIM+0]-j0,
  739. corner_pts[k*COORD_DIM+1]-j1,
  740. corner_pts[k*COORD_DIM+2]-j2};
  741. if(fabs(pt_coord[0]-0.5)>1.0 || fabs(pt_coord[1]-0.5)>1.0 || fabs(pt_coord[2]-0.5)>1.0){
  742. Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],aux_ker_dim[1]);
  743. Kernel<Real_t>::Eval(&up_equiv_surf[0], n_surf,
  744. &pt_coord[0], 1, &(M_e2pt[0][0]),
  745. aux_kernel.ker_poten,aux_ker_dim);
  746. for(size_t i=0;i<M_e2pt.Dim(0);i++)
  747. for(size_t j=0;j<M_e2pt.Dim(1);j++)
  748. M_err[i][k*aux_ker_dim[1]+j]+=M_e2pt[i][j];
  749. }
  750. }
  751. }
  752. }
  753. Matrix<Real_t> M_grad(M_err.Dim(0),n_surf*aux_ker_dim[1]);
  754. for(size_t i=0;i<M_err.Dim(0);i++)
  755. for(size_t k=0;k<aux_ker_dim[1];k++)
  756. for(size_t j=0;j<n_surf;j++){
  757. M_grad[i][j*aux_ker_dim[1]+k]=(M_err[i][0*aux_ker_dim[1]+k] )*1.0 +
  758. (M_err[i][1*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+0]+
  759. (M_err[i][2*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+1]+
  760. (M_err[i][3*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+2];
  761. }
  762. Matrix<Real_t>& M_dc2de = Precomp(0, DC2DE_Type, 0);
  763. M-=M_grad*M_dc2de;
  764. }
  765. { // Free memory
  766. Mat_Type type=D2D_Type;
  767. for(int l=-BC_LEVELS;l<0;l++)
  768. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  769. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  770. M.Resize(0,0);
  771. }
  772. type=U2U_Type;
  773. for(int l=-BC_LEVELS;l<0;l++)
  774. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  775. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  776. M.Resize(0,0);
  777. }
  778. type=DC2DE_Type;
  779. for(int l=-BC_LEVELS;l<0;l++)
  780. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  781. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  782. M.Resize(0,0);
  783. }
  784. type=UC2UE_Type;
  785. for(int l=-BC_LEVELS;l<0;l++)
  786. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  787. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  788. M.Resize(0,0);
  789. }
  790. }
  791. }
  792. break;
  793. }
  794. default:
  795. break;
  796. }
  797. //Save the matrix for future use.
  798. #pragma omp critical (PRECOMP_MATRIX_PTS)
  799. if(M_.Dim(0)==0 && M_.Dim(1)==0){
  800. M_=M;
  801. /*
  802. M_.Resize(M.Dim(0),M.Dim(1));
  803. int dof=aux_ker_dim[0]*aux_ker_dim[1];
  804. for(int j=0;j<dof;j++){
  805. size_t a=(M.Dim(0)*M.Dim(1)* j )/dof;
  806. size_t b=(M.Dim(0)*M.Dim(1)*(j+1))/dof;
  807. #pragma omp parallel for // NUMA
  808. for(int tid=0;tid<omp_p;tid++){
  809. size_t a_=a+((b-a)* tid )/omp_p;
  810. size_t b_=a+((b-a)*(tid+1))/omp_p;
  811. mem::memcopy(&M_[0][a_], &M[0][a_], (b_-a_)*sizeof(Real_t));
  812. }
  813. }
  814. */
  815. }
  816. return M_;
  817. }
  818. template <class FMMNode>
  819. void FMM_Pts<FMMNode>::PrecompAll(Mat_Type type, int level){
  820. int depth=(Homogen()?1:MAX_DEPTH);
  821. if(level==-1){
  822. for(int l=0;l<depth;l++){
  823. std::stringstream level_str;
  824. level_str<<"level="<<l;
  825. PrecompAll(type, l);
  826. }
  827. return;
  828. }
  829. //Compute basic permutations.
  830. for(size_t i=0;i<Perm_Count;i++)
  831. this->PrecompPerm(type, (Perm_Type) i);
  832. {
  833. //Allocate matrices.
  834. size_t mat_cnt=interac_list.ListCount((Mat_Type)type);
  835. mat->Mat(level, (Mat_Type)type, mat_cnt-1);
  836. { // Compute InteracClass matrices.
  837. std::vector<size_t> indx_lst;
  838. for(size_t i=0; i<mat_cnt; i++){
  839. if(interac_list.InteracClass((Mat_Type)type,i)==i)
  840. indx_lst.push_back(i);
  841. }
  842. //Compute Transformations.
  843. //#pragma omp parallel for //lets use fine grained parallelism
  844. for(size_t i=0; i<indx_lst.size(); i++){
  845. Precomp(level, (Mat_Type)type, indx_lst[i]);
  846. }
  847. }
  848. //#pragma omp parallel for //lets use fine grained parallelism
  849. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
  850. Matrix<Real_t>& M0=interac_list.ClassMat(level,(Mat_Type)type,mat_indx);
  851. assert(M0.Dim(0)>0 && M0.Dim(1)>0);
  852. Permutation<Real_t>& pr=interac_list.Perm_R(level, (Mat_Type)type, mat_indx);
  853. Permutation<Real_t>& pc=interac_list.Perm_C(level, (Mat_Type)type, mat_indx);
  854. if(pr.Dim()!=M0.Dim(0) || pc.Dim()!=M0.Dim(1)) Precomp(level, (Mat_Type)type, mat_indx);
  855. }
  856. }
  857. }
  858. template <class FMMNode>
  859. void FMM_Pts<FMMNode>::CollectNodeData(std::vector<FMMNode*>& node, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, std::vector<size_t> extra_size){
  860. if( buff.size()<7) buff.resize(7);
  861. if( n_list.size()<7) n_list.resize(7);
  862. if(node.size()==0) return;
  863. {// 0. upward_equiv
  864. int indx=0;
  865. Matrix<Real_t>& M_uc2ue = this->interac_list.ClassMat(0, UC2UE_Type, 0);
  866. size_t vec_sz=M_uc2ue.Dim(1);
  867. std::vector< FMMNode* > node_lst;
  868. {
  869. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  870. FMMNode_t* r_node=NULL;
  871. for(size_t i=0;i<node.size();i++){
  872. if(!node[i]->IsLeaf())
  873. node_lst_[node[i]->Depth()].push_back(node[i]);
  874. if(node[i]->Depth()==0) r_node=node[i];
  875. }
  876. size_t chld_cnt=1UL<<COORD_DIM;
  877. for(int i=0;i<=MAX_DEPTH;i++)
  878. for(size_t j=0;j<node_lst_[i].size();j++)
  879. for(size_t k=0;k<chld_cnt;k++)
  880. node_lst.push_back((FMMNode_t*)node_lst_[i][j]->Child(k));
  881. if(r_node!=NULL) node_lst.push_back(r_node);
  882. }
  883. n_list[indx]=node_lst;
  884. size_t buff_size=node_lst.size()*vec_sz;
  885. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  886. buff[indx].Resize(1,buff_size);
  887. #pragma omp parallel for
  888. for(size_t i=0;i<node_lst.size();i++){
  889. Vector<Real_t>& upward_equiv=node_lst[i]->FMMData()->upward_equiv;
  890. upward_equiv.ReInit(vec_sz, buff[indx][0]+i*vec_sz, false);
  891. upward_equiv.SetZero();
  892. }
  893. buff[indx].AllocDevice(true);
  894. }
  895. {// 1. dnward_equiv
  896. int indx=1;
  897. Matrix<Real_t>& M_dc2de = this->interac_list.ClassMat(0, DC2DE_Type, 0);
  898. size_t vec_sz=M_dc2de.Dim(1);
  899. std::vector< FMMNode* > node_lst;
  900. {
  901. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  902. FMMNode_t* r_node=NULL;
  903. for(size_t i=0;i<node.size();i++){
  904. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  905. node_lst_[node[i]->Depth()].push_back(node[i]);
  906. if(node[i]->Depth()==0) r_node=node[i];
  907. }
  908. size_t chld_cnt=1UL<<COORD_DIM;
  909. for(int i=0;i<=MAX_DEPTH;i++)
  910. for(size_t j=0;j<node_lst_[i].size();j++)
  911. for(size_t k=0;k<chld_cnt;k++)
  912. node_lst.push_back((FMMNode_t*)node_lst_[i][j]->Child(k));
  913. if(r_node!=NULL) node_lst.push_back(r_node);
  914. }
  915. n_list[indx]=node_lst;
  916. size_t buff_size=node_lst.size()*vec_sz;
  917. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  918. buff[indx].Resize(1,buff_size);
  919. #pragma omp parallel for
  920. for(size_t i=0;i<node_lst.size();i++){
  921. Vector<Real_t>& dnward_equiv=node_lst[i]->FMMData()->dnward_equiv;
  922. dnward_equiv.ReInit(vec_sz, buff[indx][0]+i*vec_sz, false);
  923. dnward_equiv.SetZero();
  924. }
  925. buff[indx].AllocDevice(true);
  926. }
  927. {// 2. upward_equiv_fft
  928. int indx=2;
  929. std::vector< FMMNode* > node_lst;
  930. {
  931. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  932. for(size_t i=0;i<node.size();i++)
  933. if(!node[i]->IsLeaf())
  934. node_lst_[node[i]->Depth()].push_back(node[i]);
  935. for(int i=0;i<=MAX_DEPTH;i++)
  936. for(size_t j=0;j<node_lst_[i].size();j++)
  937. node_lst.push_back(node_lst_[i][j]);
  938. }
  939. n_list[indx]=node_lst;
  940. buff[indx].AllocDevice(true);
  941. }
  942. {// 3. dnward_check_fft
  943. int indx=3;
  944. std::vector< FMMNode* > node_lst;
  945. {
  946. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  947. for(size_t i=0;i<node.size();i++)
  948. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  949. node_lst_[node[i]->Depth()].push_back(node[i]);
  950. for(int i=0;i<=MAX_DEPTH;i++)
  951. for(size_t j=0;j<node_lst_[i].size();j++)
  952. node_lst.push_back(node_lst_[i][j]);
  953. }
  954. n_list[indx]=node_lst;
  955. buff[indx].AllocDevice(true);
  956. }
  957. {// 4. src_val
  958. int indx=4;
  959. int src_dof=kernel.ker_dim[0];
  960. int surf_dof=COORD_DIM+src_dof;
  961. std::vector< FMMNode* > node_lst;
  962. size_t buff_size=0;
  963. for(size_t i=0;i<node.size();i++)
  964. if(node[i]->IsLeaf()){
  965. node_lst.push_back(node[i]);
  966. buff_size+=(node[i]->src_coord.Dim()/COORD_DIM)*src_dof;
  967. buff_size+=(node[i]->surf_coord.Dim()/COORD_DIM)*surf_dof;
  968. }
  969. n_list[indx]=node_lst;
  970. #pragma omp parallel for
  971. for(size_t i=0;i<node_lst.size();i++){ // Move data before resizing buff[indx]
  972. { // src_value
  973. Vector<Real_t>& src_value=node_lst[i]->src_value;
  974. Vector<Real_t> new_buff=src_value;
  975. src_value.ReInit(new_buff.Dim(), &new_buff[0]);
  976. }
  977. { // surf_value
  978. Vector<Real_t>& surf_value=node_lst[i]->surf_value;
  979. Vector<Real_t> new_buff=surf_value;
  980. surf_value.ReInit(new_buff.Dim(), &new_buff[0]);
  981. }
  982. }
  983. buff[indx].Resize(1,buff_size+(extra_size.size()>indx?extra_size[indx]:0));
  984. Real_t* buff_ptr=&buff[indx][0][0];
  985. for(size_t i=0;i<node_lst.size();i++){
  986. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  987. { // src_value
  988. Vector<Real_t>& src_value=node_lst[i]->src_value;
  989. mem::memcopy(buff_ptr,&src_value[0],src_value.Dim()*sizeof(Real_t));
  990. src_value.ReInit((node_lst[i]->src_coord.Dim()/COORD_DIM)*src_dof, buff_ptr, false);
  991. buff_ptr+=(node_lst[i]->src_coord.Dim()/COORD_DIM)*src_dof;
  992. }
  993. { // surf_value
  994. Vector<Real_t>& surf_value=node_lst[i]->surf_value;
  995. mem::memcopy(buff_ptr,&surf_value[0],surf_value.Dim()*sizeof(Real_t));
  996. surf_value.ReInit((node_lst[i]->surf_coord.Dim()/COORD_DIM)*surf_dof, buff_ptr, false);
  997. buff_ptr+=(node_lst[i]->surf_coord.Dim()/COORD_DIM)*surf_dof;
  998. }
  999. }
  1000. buff[indx].AllocDevice(true);
  1001. }
  1002. {// 5. trg_val
  1003. int indx=5;
  1004. int trg_dof=kernel.ker_dim[1];
  1005. std::vector< FMMNode* > node_lst;
  1006. size_t buff_size=0;
  1007. for(size_t i=0;i<node.size();i++)
  1008. if(node[i]->IsLeaf() && !node[i]->IsGhost()){
  1009. node_lst.push_back(node[i]);
  1010. FMMData* fmm_data=((FMMData*)node[i]->FMMData());
  1011. buff_size+=(node[i]->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1012. }
  1013. n_list[indx]=node_lst;
  1014. buff[indx].Resize(1,buff_size+(extra_size.size()>indx?extra_size[indx]:0));
  1015. Real_t* buff_ptr=&buff[indx][0][0];
  1016. for(size_t i=0;i<node_lst.size();i++){
  1017. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  1018. { // trg_value
  1019. Vector<Real_t>& trg_value=node_lst[i]->trg_value;
  1020. trg_value.ReInit((node_lst[i]->trg_coord.Dim()/COORD_DIM)*trg_dof, buff_ptr, false);
  1021. buff_ptr+=(node_lst[i]->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1022. }
  1023. }
  1024. #pragma omp parallel for
  1025. for(size_t i=0;i<node_lst.size();i++){
  1026. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  1027. Vector<Real_t>& trg_value=node_lst[i]->trg_value;
  1028. trg_value.SetZero();
  1029. }
  1030. buff[indx].AllocDevice(true);
  1031. }
  1032. {// 6. pts_coord
  1033. int indx=6;
  1034. size_t m=MultipoleOrder();
  1035. std::vector< FMMNode* > node_lst;
  1036. size_t buff_size=0;
  1037. for(size_t i=0;i<node.size();i++)
  1038. if(node[i]->IsLeaf()){
  1039. node_lst.push_back(node[i]);
  1040. FMMData* fmm_data=((FMMData*)node[i]->FMMData());
  1041. buff_size+=node[i]->src_coord.Dim();
  1042. buff_size+=node[i]->surf_coord.Dim();
  1043. buff_size+=node[i]->trg_coord.Dim();
  1044. }
  1045. n_list[indx]=node_lst;
  1046. #pragma omp parallel for
  1047. for(size_t i=0;i<node_lst.size();i++){ // Move data before resizing buff[indx]
  1048. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  1049. { // src_coord
  1050. Vector<Real_t>& src_coord=node_lst[i]->src_coord;
  1051. Vector<Real_t> new_buff=src_coord;
  1052. src_coord.ReInit(new_buff.Dim(), &new_buff[0]);
  1053. }
  1054. { // surf_coord
  1055. Vector<Real_t>& surf_coord=node_lst[i]->surf_coord;
  1056. Vector<Real_t> new_buff=surf_coord;
  1057. surf_coord.ReInit(new_buff.Dim(), &new_buff[0]);
  1058. }
  1059. { // trg_coord
  1060. Vector<Real_t>& trg_coord=node_lst[i]->trg_coord;
  1061. Vector<Real_t> new_buff=trg_coord;
  1062. trg_coord.ReInit(new_buff.Dim(), &new_buff[0]);
  1063. }
  1064. }
  1065. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  1066. buff_size+=4*MAX_DEPTH*(6*(m-1)*(m-1)+2)*COORD_DIM;
  1067. buff[indx].Resize(1,buff_size);
  1068. Real_t* buff_ptr=&buff[indx][0][0];
  1069. for(size_t i=0;i<node_lst.size();i++){
  1070. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  1071. { // src_coord
  1072. Vector<Real_t>& src_coord=node_lst[i]->src_coord;
  1073. mem::memcopy(buff_ptr,&src_coord[0],src_coord.Dim()*sizeof(Real_t));
  1074. src_coord.ReInit(node_lst[i]->src_coord.Dim(), buff_ptr, false);
  1075. buff_ptr+=node_lst[i]->src_coord.Dim();
  1076. }
  1077. { // surf_coord
  1078. Vector<Real_t>& surf_coord=node_lst[i]->surf_coord;
  1079. mem::memcopy(buff_ptr,&surf_coord[0],surf_coord.Dim()*sizeof(Real_t));
  1080. surf_coord.ReInit(node_lst[i]->surf_coord.Dim(), buff_ptr, false);
  1081. buff_ptr+=node_lst[i]->surf_coord.Dim();
  1082. }
  1083. { // trg_coord
  1084. Vector<Real_t>& trg_coord=node_lst[i]->trg_coord;
  1085. mem::memcopy(buff_ptr,&trg_coord[0],trg_coord.Dim()*sizeof(Real_t));
  1086. trg_coord.ReInit(node_lst[i]->trg_coord.Dim(), buff_ptr, false);
  1087. buff_ptr+=node_lst[i]->trg_coord.Dim();
  1088. }
  1089. }
  1090. { // check and equiv surfaces.
  1091. upwd_check_surf.resize(MAX_DEPTH);
  1092. upwd_equiv_surf.resize(MAX_DEPTH);
  1093. dnwd_check_surf.resize(MAX_DEPTH);
  1094. dnwd_equiv_surf.resize(MAX_DEPTH);
  1095. for(size_t depth=0;depth<MAX_DEPTH;depth++){
  1096. Real_t c[3]={0.0,0.0,0.0};
  1097. upwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1098. upwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1099. dnwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1100. dnwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1101. upwd_check_surf[depth]=u_check_surf(m,c,depth);
  1102. upwd_equiv_surf[depth]=u_equiv_surf(m,c,depth);
  1103. dnwd_check_surf[depth]=d_check_surf(m,c,depth);
  1104. dnwd_equiv_surf[depth]=d_equiv_surf(m,c,depth);
  1105. }
  1106. }
  1107. buff[indx].AllocDevice(true);
  1108. }
  1109. }
  1110. template <class FMMNode>
  1111. void FMM_Pts<FMMNode>::SetupPrecomp(SetupData<Real_t>& setup_data, bool device){
  1112. if(setup_data.precomp_data==NULL) return;
  1113. Profile::Tic("SetupPrecomp",&this->comm,true,25);
  1114. { // Build precomp_data
  1115. size_t precomp_offset=0;
  1116. int level=setup_data.level;
  1117. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1118. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1119. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1120. Mat_Type& interac_type=interac_type_lst[type_indx];
  1121. this->PrecompAll(interac_type, level); // Compute matrices.
  1122. precomp_offset=this->mat->CompactData(level, interac_type, precomp_data, precomp_offset);
  1123. }
  1124. }
  1125. Profile::Toc();
  1126. if(device){ // Host2Device
  1127. Profile::Tic("Host2Device",&this->comm,false,25);
  1128. setup_data.precomp_data->AllocDevice(true);
  1129. Profile::Toc();
  1130. }
  1131. }
  1132. template <class FMMNode>
  1133. void FMM_Pts<FMMNode>::SetupInterac(SetupData<Real_t>& setup_data, bool device){
  1134. int level=setup_data.level;
  1135. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1136. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1137. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1138. Matrix<Real_t>& input_data=*setup_data. input_data;
  1139. Matrix<Real_t>& output_data=*setup_data.output_data;
  1140. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  1141. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  1142. size_t n_in =nodes_in .size();
  1143. size_t n_out=nodes_out.size();
  1144. // Setup precomputed data.
  1145. SetupPrecomp(setup_data,device);
  1146. // Build interac_data
  1147. Profile::Tic("Interac-Data",&this->comm,true,25);
  1148. Matrix<char>& interac_data=setup_data.interac_data;
  1149. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  1150. std::vector<size_t> interac_mat;
  1151. std::vector<size_t> interac_cnt;
  1152. std::vector<size_t> interac_blk;
  1153. std::vector<size_t> input_perm;
  1154. std::vector<size_t> output_perm;
  1155. std::vector<Real_t> scaling;
  1156. size_t dof=0, M_dim0=0, M_dim1=0;
  1157. size_t precomp_offset=0;
  1158. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  1159. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1160. Mat_Type& interac_type=interac_type_lst[type_indx];
  1161. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  1162. Vector<size_t> precomp_data_offset;
  1163. { // Load precomp_data for interac_type.
  1164. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1165. char* indx_ptr=precomp_data[0]+precomp_offset;
  1166. size_t total_size=((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  1167. /*size_t mat_cnt_ =((size_t*)indx_ptr)[0];*/ indx_ptr+=sizeof(size_t);
  1168. precomp_data_offset.ReInit((1+2+2)*mat_cnt, (size_t*)indx_ptr, false);
  1169. precomp_offset+=total_size;
  1170. }
  1171. Matrix<FMMNode*> src_interac_list(n_in ,mat_cnt); src_interac_list.SetZero();
  1172. Matrix<FMMNode*> trg_interac_list(n_out,mat_cnt); trg_interac_list.SetZero();
  1173. { // Build trg_interac_list
  1174. for(size_t i=0;i<n_out;i++){
  1175. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  1176. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  1177. mem::memcopy(&trg_interac_list[i][0], &lst[0], lst.size()*sizeof(FMMNode*));
  1178. assert(lst.size()==mat_cnt);
  1179. }
  1180. }
  1181. }
  1182. { // Build src_interac_list
  1183. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  1184. for(size_t i=0;i<n_out;i++){
  1185. for(size_t j=0;j<mat_cnt;j++)
  1186. if(trg_interac_list[i][j]!=NULL){
  1187. src_interac_list[trg_interac_list[i][j]->node_id][j]=(FMMNode*)nodes_out[i];
  1188. }
  1189. }
  1190. }
  1191. Matrix<size_t> interac_dsp(n_out,mat_cnt);
  1192. std::vector<size_t> interac_blk_dsp(1,0);
  1193. { // Determine dof, M_dim0, M_dim1
  1194. dof=1;
  1195. Matrix<Real_t>& M0 = this->interac_list.ClassMat(level, interac_type_lst[0], 0);
  1196. M_dim0=M0.Dim(0); M_dim1=M0.Dim(1);
  1197. }
  1198. { // Determine interaction blocks which fit in memory.
  1199. size_t vec_size=(M_dim0+M_dim1)*sizeof(Real_t)*dof;
  1200. for(size_t j=0;j<mat_cnt;j++){// Determine minimum buff_size
  1201. size_t vec_cnt=0;
  1202. for(size_t i=0;i<n_out;i++){
  1203. if(trg_interac_list[i][j]!=NULL) vec_cnt++;
  1204. }
  1205. if(buff_size<vec_cnt*vec_size)
  1206. buff_size=vec_cnt*vec_size;
  1207. }
  1208. size_t interac_dsp_=0;
  1209. for(size_t j=0;j<mat_cnt;j++){
  1210. for(size_t i=0;i<n_out;i++){
  1211. interac_dsp[i][j]=interac_dsp_;
  1212. if(trg_interac_list[i][j]!=NULL) interac_dsp_++;
  1213. }
  1214. if(interac_dsp_*vec_size>buff_size){
  1215. interac_blk.push_back(j-interac_blk_dsp.back());
  1216. interac_blk_dsp.push_back(j);
  1217. size_t offset=interac_dsp[0][j];
  1218. for(size_t i=0;i<n_out;i++) interac_dsp[i][j]-=offset;
  1219. interac_dsp_-=offset;
  1220. assert(interac_dsp_*vec_size<=buff_size); // Problem too big for buff_size.
  1221. }
  1222. interac_mat.push_back(precomp_data_offset[5*this->interac_list.InteracClass(interac_type,j)+0]);
  1223. interac_cnt.push_back(interac_dsp_-interac_dsp[0][j]);
  1224. }
  1225. interac_blk.push_back(mat_cnt-interac_blk_dsp.back());
  1226. interac_blk_dsp.push_back(mat_cnt);
  1227. }
  1228. { // Determine input_perm.
  1229. size_t vec_size=M_dim0*dof;
  1230. for(size_t i=0;i<n_out;i++) ((FMMNode*)nodes_out[i])->node_id=i;
  1231. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1232. for(size_t i=0;i<n_in ;i++){
  1233. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1234. FMMNode_t* trg_node=src_interac_list[i][j];
  1235. if(trg_node!=NULL){
  1236. input_perm .push_back(precomp_data_offset[5*j+1]); // prem
  1237. input_perm .push_back(precomp_data_offset[5*j+2]); // scal
  1238. input_perm .push_back(interac_dsp[trg_node->node_id][j]*vec_size*sizeof(Real_t)); // trg_ptr
  1239. input_perm .push_back((size_t)(& input_vector[i][0][0]- input_data[0])); // src_ptr
  1240. assert(input_vector[i]->Dim()==vec_size);
  1241. }
  1242. }
  1243. }
  1244. }
  1245. }
  1246. { // Determine scaling and output_perm
  1247. size_t vec_size=M_dim1*dof;
  1248. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1249. for(size_t i=0;i<n_out;i++){
  1250. Real_t scaling_=0.0;
  1251. if(!this->Homogen()) scaling_=1.0;
  1252. else if(interac_type==D2D_Type) scaling_=1.0;
  1253. else if(interac_type==D2T_Type) scaling_=pow(0.5, -setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  1254. else if(interac_type== U0_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1255. else if(interac_type== U1_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1256. else if(interac_type== U2_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1257. else if(interac_type== W_Type) scaling_=pow(0.5, -setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  1258. else if(interac_type== X_Type) scaling_=pow(0.5, COORD_DIM *((FMMNode*)nodes_out[i])->Depth());
  1259. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1260. if(trg_interac_list[i][j]!=NULL){
  1261. scaling.push_back(scaling_); // scaling
  1262. output_perm.push_back(precomp_data_offset[5*j+3]); // prem
  1263. output_perm.push_back(precomp_data_offset[5*j+4]); // scal
  1264. output_perm.push_back(interac_dsp[ i ][j]*vec_size*sizeof(Real_t)); // src_ptr
  1265. output_perm.push_back((size_t)(&output_vector[i][0][0]-output_data[0])); // trg_ptr
  1266. assert(output_vector[i]->Dim()==vec_size);
  1267. }
  1268. }
  1269. }
  1270. }
  1271. }
  1272. }
  1273. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  1274. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  1275. { // Set interac_data.
  1276. size_t data_size=sizeof(size_t)*4;
  1277. data_size+=sizeof(size_t)+interac_blk.size()*sizeof(size_t);
  1278. data_size+=sizeof(size_t)+interac_cnt.size()*sizeof(size_t);
  1279. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  1280. data_size+=sizeof(size_t)+ input_perm.size()*sizeof(size_t);
  1281. data_size+=sizeof(size_t)+output_perm.size()*sizeof(size_t);
  1282. data_size+=sizeof(size_t)+scaling.size()*sizeof(Real_t);
  1283. if(interac_data.Dim(0)*interac_data.Dim(1)<sizeof(size_t)){
  1284. data_size+=sizeof(size_t);
  1285. interac_data.Resize(1,data_size);
  1286. ((size_t*)&interac_data[0][0])[0]=sizeof(size_t);
  1287. }else{
  1288. size_t pts_data_size=*((size_t*)&interac_data[0][0]);
  1289. assert(interac_data.Dim(0)*interac_data.Dim(1)>=pts_data_size);
  1290. data_size+=pts_data_size;
  1291. if(data_size>interac_data.Dim(0)*interac_data.Dim(1)){ //Resize and copy interac_data.
  1292. Matrix< char> pts_interac_data=interac_data;
  1293. interac_data.Resize(1,data_size);
  1294. mem::memcopy(&interac_data[0][0],&pts_interac_data[0][0],pts_data_size);
  1295. }
  1296. }
  1297. char* data_ptr=&interac_data[0][0];
  1298. data_ptr+=((size_t*)data_ptr)[0];
  1299. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  1300. ((size_t*)data_ptr)[0]= M_dim0; data_ptr+=sizeof(size_t);
  1301. ((size_t*)data_ptr)[0]= M_dim1; data_ptr+=sizeof(size_t);
  1302. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  1303. ((size_t*)data_ptr)[0]=interac_blk.size(); data_ptr+=sizeof(size_t);
  1304. mem::memcopy(data_ptr, &interac_blk[0], interac_blk.size()*sizeof(size_t));
  1305. data_ptr+=interac_blk.size()*sizeof(size_t);
  1306. ((size_t*)data_ptr)[0]=interac_cnt.size(); data_ptr+=sizeof(size_t);
  1307. mem::memcopy(data_ptr, &interac_cnt[0], interac_cnt.size()*sizeof(size_t));
  1308. data_ptr+=interac_cnt.size()*sizeof(size_t);
  1309. ((size_t*)data_ptr)[0]=interac_mat.size(); data_ptr+=sizeof(size_t);
  1310. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  1311. data_ptr+=interac_mat.size()*sizeof(size_t);
  1312. ((size_t*)data_ptr)[0]= input_perm.size(); data_ptr+=sizeof(size_t);
  1313. mem::memcopy(data_ptr, & input_perm[0], input_perm.size()*sizeof(size_t));
  1314. data_ptr+= input_perm.size()*sizeof(size_t);
  1315. ((size_t*)data_ptr)[0]=output_perm.size(); data_ptr+=sizeof(size_t);
  1316. mem::memcopy(data_ptr, &output_perm[0], output_perm.size()*sizeof(size_t));
  1317. data_ptr+=output_perm.size()*sizeof(size_t);
  1318. ((size_t*)data_ptr)[0]=scaling.size(); data_ptr+=sizeof(size_t);
  1319. mem::memcopy(data_ptr, &scaling[0], scaling.size()*sizeof(Real_t));
  1320. data_ptr+=scaling.size()*sizeof(Real_t);
  1321. }
  1322. }
  1323. Profile::Toc();
  1324. if(device){ // Host2Device
  1325. Profile::Tic("Host2Device",&this->comm,false,25);
  1326. setup_data.interac_data .AllocDevice(true);
  1327. Profile::Toc();
  1328. }
  1329. }
  1330. template <class FMMNode>
  1331. void FMM_Pts<FMMNode>::EvalList_cuda(SetupData<Real_t>& setup_data) {
  1332. Vector<char> dummy(1);
  1333. dummy.AllocDevice(true);
  1334. typename Vector<char>::Device buff;
  1335. typename Vector<char>::Device buff_d;
  1336. typename Matrix<char>::Device precomp_data;
  1337. typename Matrix<char>::Device precomp_data_d;
  1338. typename Matrix<char>::Device interac_data;
  1339. typename Matrix<char>::Device interac_data_d;
  1340. typename Matrix<Real_t>::Device input_data;
  1341. typename Matrix<Real_t>::Device input_data_d;
  1342. typename Matrix<Real_t>::Device output_data;
  1343. typename Matrix<Real_t>::Device output_data_d;
  1344. /* Take CPU pointer first. */
  1345. {
  1346. buff = this-> cpu_buffer;
  1347. precomp_data=*setup_data.precomp_data;
  1348. interac_data= setup_data.interac_data;
  1349. input_data =*setup_data. input_data;
  1350. output_data =*setup_data. output_data;
  1351. }
  1352. /* Take GPU pointer now. */
  1353. {
  1354. buff_d = this->dev_buffer.AllocDevice(false);
  1355. precomp_data_d = setup_data.precomp_data->AllocDevice(false);
  1356. interac_data_d = setup_data.interac_data.AllocDevice(false);
  1357. input_data_d = setup_data.input_data->AllocDevice(false);
  1358. output_data_d = setup_data.output_data->AllocDevice(false);
  1359. }
  1360. {
  1361. size_t data_size, M_dim0, M_dim1, dof;
  1362. /* CPU pointers */
  1363. Vector<size_t> interac_blk;
  1364. Vector<size_t> interac_cnt;
  1365. Vector<size_t> interac_mat;
  1366. Vector<size_t> input_perm;
  1367. Vector<size_t> output_perm;
  1368. Vector<Real_t> scaling;
  1369. /* GPU pointers */
  1370. char *input_perm_d, *output_perm_d, *scaling_d;
  1371. {
  1372. char* data_ptr=&interac_data[0][0];
  1373. char *dev_ptr;
  1374. /* Take GPU initial pointer for later computation. */
  1375. dev_ptr = (char *) interac_data_d.dev_ptr;
  1376. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size; dev_ptr += data_size;
  1377. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1378. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1379. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1380. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1381. /* Update CPU and GPU pointers at the same time. */
  1382. /* CPU pointer */
  1383. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1384. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
  1385. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
  1386. //len_interac_cnt = ((size_t*)data_ptr)[0];
  1387. /* CPU pointer */
  1388. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1389. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
  1390. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
  1391. //len_interac_mat = ((size_t *) data_ptr)[0];
  1392. /* CPU pointer */
  1393. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1394. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
  1395. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
  1396. input_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1397. /* GPU pointer */
  1398. input_perm_d = dev_ptr + sizeof(size_t);
  1399. data_ptr += sizeof(size_t) + sizeof(size_t)*input_perm.Dim();
  1400. dev_ptr += sizeof(size_t) + sizeof(size_t)*input_perm.Dim();
  1401. output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1402. /* GPU pointer */
  1403. output_perm_d = dev_ptr + sizeof(size_t);
  1404. data_ptr += sizeof(size_t) + sizeof(size_t)*output_perm.Dim();
  1405. dev_ptr += sizeof(size_t) + sizeof(size_t)*output_perm.Dim();
  1406. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  1407. /* GPU pointer */
  1408. scaling_d = dev_ptr + sizeof(size_t);
  1409. data_ptr += sizeof(size_t) + sizeof(size_t)*scaling.Dim();
  1410. dev_ptr += sizeof(size_t) + sizeof(size_t)*scaling.Dim();
  1411. }
  1412. /* Call synchronization here to make sure all data has been copied. */
  1413. //CUDA_Lock::wait(0);
  1414. {
  1415. size_t interac_indx = 0;
  1416. size_t interac_blk_dsp = 0;
  1417. cudaError_t error;
  1418. //std::cout << "Before Loop. " << '\n';
  1419. for (size_t k = 0; k < interac_blk.Dim(); k++) {
  1420. size_t vec_cnt = 0;
  1421. //std::cout << "interac_blk[0] : " << interac_blk[k] << '\n';
  1422. for (size_t j = interac_blk_dsp; j < interac_blk_dsp + interac_blk[k]; j++)
  1423. vec_cnt += interac_cnt[j];
  1424. /* CPU Version */
  1425. char* buff_in =&buff[0];
  1426. char* buff_out=&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1427. for(int i = 0; i < vec_cnt; i++) {
  1428. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+input_perm[(interac_indx+i)*4+0]);
  1429. const Real_t* scal=( Real_t*)(precomp_data[0]+input_perm[(interac_indx+i)*4+1]);
  1430. const Real_t* v_in =( Real_t*)( input_data[0]+input_perm[(interac_indx+i)*4+3]);
  1431. Real_t* v_out=( Real_t*)( buff_in +input_perm[(interac_indx+i)*4+2]);
  1432. if (i == 1) std::cout << "cpu input_perm[0, 1, 2] : "
  1433. << input_perm[(interac_indx + i - 1)*4 + 2]
  1434. << input_perm[(interac_indx + i )*4 + 2]
  1435. << input_perm[(interac_indx + i + 1)*4 + 2]
  1436. << '\n';
  1437. for(size_t j = 0; j < M_dim0; j++) {
  1438. //v_out[j] = v_in[perm[j]]*scal[j];
  1439. }
  1440. }
  1441. /* GPU Kernel call */
  1442. char *buff_in_d = (char *) buff_d.dev_ptr;
  1443. char *buff_out_d = (char *) (buff_d.dev_ptr + vec_cnt*dof*M_dim0*sizeof(Real_t));
  1444. cuda_func<Real_t>::in_perm_h ((char *)precomp_data_d.dev_ptr, input_perm_d,
  1445. (char *) input_data_d.dev_ptr, buff_in_d, interac_indx, M_dim0, vec_cnt);
  1446. //CUDA_Lock::wait(0);
  1447. error = cudaGetLastError();
  1448. if (error != cudaSuccess)
  1449. std::cout << "in_perm_h(): " << cudaGetErrorString(error) << '\n';
  1450. size_t vec_cnt0 = 0;
  1451. for (size_t j = interac_blk_dsp; j < interac_blk_dsp + interac_blk[k];) {
  1452. size_t vec_cnt1 = 0;
  1453. size_t interac_mat0 = interac_mat[j];
  1454. for (; j < interac_blk_dsp + interac_blk[k] && interac_mat[j] == interac_mat0; j++)
  1455. vec_cnt1 += interac_cnt[j];
  1456. /* Compare buff_in */
  1457. std::cout << M_dim0*vec_cnt0*dof*sizeof(Real_t) << '\n';
  1458. /*
  1459. cuda_func<Real_t>::compare_h(
  1460. (Real_t *) (buff_in + M_dim0*vec_cnt0*dof*sizeof(Real_t)),
  1461. (Real_t *) (buff_in_d + M_dim0*vec_cnt0*dof*sizeof(Real_t)),
  1462. dof*vec_cnt1*M_dim0);
  1463. */
  1464. /* GPU Gemm */
  1465. Matrix<Real_t> M_d(M_dim0, M_dim1, (Real_t*)(precomp_data_d.dev_ptr + interac_mat0), false);
  1466. Matrix<Real_t> Ms_d(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in_d + M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1467. Matrix<Real_t> Mt_d(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out_d + M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1468. Matrix<Real_t>::CUBLASXGEMM(Mt_d, Ms_d, M_d);
  1469. /* CPU Gemm */
  1470. /*
  1471. Matrix<Real_t> M(M_dim0, M_dim1, (Real_t*)(precomp_data[0]+interac_mat0), false);
  1472. Matrix<Real_t> Ms(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1473. Matrix<Real_t> Mt(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1474. Matrix<Real_t>::DGEMM(Mt,Ms,M);
  1475. */
  1476. //if (dof*vec_cnt1) std::cout << "cublasxgemm(" << dof*vec_cnt1 << ", " << M_dim1 << ")" << '\n';
  1477. /*
  1478. cuda_func<Real_t>::compare_h(
  1479. (Real_t *) (buff_out + M_dim1*vec_cnt0*dof*sizeof(Real_t)),
  1480. (Real_t *) (buff_out_d + M_dim1*vec_cnt0*dof*sizeof(Real_t)),
  1481. dof*vec_cnt1*M_dim1);
  1482. */
  1483. std::cout << '\n';
  1484. vec_cnt0 += vec_cnt1;
  1485. }
  1486. //CUDA_Lock::wait(0);
  1487. error = cudaGetLastError();
  1488. if (error != cudaSuccess)
  1489. std::cout << "cublasXgemm(): " << cudaGetErrorString(error) << '\n';
  1490. for(int i = 0; i < vec_cnt; i++) {
  1491. Real_t scaling_factor=scaling[interac_indx+i];
  1492. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+output_perm[(interac_indx+i)*4+0]);
  1493. const Real_t* scal=( Real_t*)(precomp_data[0]+output_perm[(interac_indx+i)*4+1]);
  1494. const Real_t* v_in =( Real_t*)( buff_out +output_perm[(interac_indx+i)*4+2]);
  1495. Real_t* v_out=( Real_t*)( output_data[0]+output_perm[(interac_indx+i)*4+3]);
  1496. for(size_t j=0;j<M_dim1;j++ ){
  1497. //v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1498. }
  1499. }
  1500. cuda_func<Real_t>::out_perm_h (scaling_d, (char *) precomp_data_d.dev_ptr, output_perm_d,
  1501. (char *) output_data_d.dev_ptr, buff_out_d, interac_indx, M_dim1, vec_cnt);
  1502. //CUDA_Lock::wait(0);
  1503. error = cudaGetLastError();
  1504. if (error != cudaSuccess)
  1505. std::cout << "out_perm_h(): " << cudaGetErrorString(error) << '\n';
  1506. interac_indx += vec_cnt;
  1507. interac_blk_dsp += interac_blk[k];
  1508. }
  1509. }
  1510. }
  1511. dummy.Device2Host();
  1512. }
  1513. template <class FMMNode>
  1514. void FMM_Pts<FMMNode>::EvalList(SetupData<Real_t>& setup_data, bool device){
  1515. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  1516. Profile::Tic("Host2Device",&this->comm,false,25);
  1517. Profile::Toc();
  1518. Profile::Tic("DeviceComp",&this->comm,false,20);
  1519. Profile::Toc();
  1520. return;
  1521. }
  1522. #if defined(PVFMM_HAVE_CUDA)
  1523. if (device) {
  1524. EvalList_cuda(setup_data);
  1525. return;
  1526. }
  1527. #endif
  1528. Profile::Tic("Host2Device",&this->comm,false,25);
  1529. typename Vector<char>::Device buff;
  1530. typename Matrix<char>::Device precomp_data;
  1531. typename Matrix<char>::Device interac_data;
  1532. typename Matrix<Real_t>::Device input_data;
  1533. typename Matrix<Real_t>::Device output_data;
  1534. if(device){
  1535. buff = this-> dev_buffer. AllocDevice(false);
  1536. precomp_data= setup_data.precomp_data->AllocDevice(false);
  1537. interac_data= setup_data.interac_data. AllocDevice(false);
  1538. input_data = setup_data. input_data->AllocDevice(false);
  1539. output_data = setup_data. output_data->AllocDevice(false);
  1540. }else{
  1541. buff = this-> cpu_buffer;
  1542. precomp_data=*setup_data.precomp_data;
  1543. interac_data= setup_data.interac_data;
  1544. input_data =*setup_data. input_data;
  1545. output_data =*setup_data. output_data;
  1546. }
  1547. Profile::Toc();
  1548. Profile::Tic("DeviceComp",&this->comm,false,20);
  1549. #ifdef __INTEL_OFFLOAD
  1550. int lock_idx=-1;
  1551. int wait_lock_idx=-1;
  1552. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  1553. if(device) lock_idx=MIC_Lock::get_lock();
  1554. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  1555. #endif
  1556. { // Offloaded computation.
  1557. // Set interac_data.
  1558. size_t data_size, M_dim0, M_dim1, dof;
  1559. Vector<size_t> interac_blk;
  1560. Vector<size_t> interac_cnt;
  1561. Vector<size_t> interac_mat;
  1562. Vector<size_t> input_perm;
  1563. Vector<size_t> output_perm;
  1564. Vector<Real_t> scaling;
  1565. { // Set interac_data.
  1566. char* data_ptr=&interac_data[0][0];
  1567. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size;
  1568. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1569. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1570. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1571. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1572. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1573. data_ptr+=sizeof(size_t)+interac_blk.Dim()*sizeof(size_t);
  1574. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1575. data_ptr+=sizeof(size_t)+interac_cnt.Dim()*sizeof(size_t);
  1576. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1577. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  1578. input_perm .ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1579. data_ptr+=sizeof(size_t)+ input_perm.Dim()*sizeof(size_t);
  1580. output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1581. data_ptr+=sizeof(size_t)+output_perm.Dim()*sizeof(size_t);
  1582. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  1583. data_ptr+=sizeof(size_t)+scaling.Dim()*sizeof(Real_t);
  1584. }
  1585. #ifdef __INTEL_OFFLOAD
  1586. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  1587. #endif
  1588. //Compute interaction from Chebyshev source density.
  1589. { // interactions
  1590. int omp_p=omp_get_max_threads();
  1591. size_t interac_indx=0;
  1592. size_t interac_blk_dsp=0;
  1593. for(size_t k=0;k<interac_blk.Dim();k++){
  1594. size_t vec_cnt=0;
  1595. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
  1596. char* buff_in =&buff[0];
  1597. char* buff_out=&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1598. #pragma omp parallel for
  1599. for(int tid=0;tid<omp_p;tid++){
  1600. size_t a=( tid *vec_cnt)/omp_p;
  1601. size_t b=((tid+1)*vec_cnt)/omp_p;
  1602. for(size_t i=a;i<b;i++){
  1603. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+input_perm[(interac_indx+i)*4+0]);
  1604. const Real_t* scal=( Real_t*)(precomp_data[0]+input_perm[(interac_indx+i)*4+1]);
  1605. const Real_t* v_in =( Real_t*)( input_data[0]+input_perm[(interac_indx+i)*4+3]);
  1606. Real_t* v_out=( Real_t*)( buff_in +input_perm[(interac_indx+i)*4+2]);
  1607. // TODO: Fix for dof>1
  1608. #ifdef __MIC__
  1609. {
  1610. __m512d v8;
  1611. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1612. size_t j_end =(((uintptr_t)(v_out+M_dim0) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1613. j_start/=sizeof(Real_t);
  1614. j_end /=sizeof(Real_t);
  1615. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1616. assert(((uintptr_t)(v_out+j_start))%64==0);
  1617. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1618. size_t j=0;
  1619. for(;j<j_start;j++ ){
  1620. v_out[j]=v_in[perm[j]]*scal[j];
  1621. }
  1622. for(;j<j_end ;j+=8){
  1623. v8=_mm512_setr_pd(
  1624. v_in[perm[j+0]]*scal[j+0],
  1625. v_in[perm[j+1]]*scal[j+1],
  1626. v_in[perm[j+2]]*scal[j+2],
  1627. v_in[perm[j+3]]*scal[j+3],
  1628. v_in[perm[j+4]]*scal[j+4],
  1629. v_in[perm[j+5]]*scal[j+5],
  1630. v_in[perm[j+6]]*scal[j+6],
  1631. v_in[perm[j+7]]*scal[j+7]);
  1632. _mm512_storenrngo_pd(v_out+j,v8);
  1633. }
  1634. for(;j<M_dim0 ;j++ ){
  1635. v_out[j]=v_in[perm[j]]*scal[j];
  1636. }
  1637. }
  1638. #else
  1639. for(size_t j=0;j<M_dim0;j++ ){
  1640. v_out[j]=v_in[perm[j]]*scal[j];
  1641. }
  1642. #endif
  1643. }
  1644. }
  1645. size_t vec_cnt0=0;
  1646. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];){
  1647. size_t vec_cnt1=0;
  1648. size_t interac_mat0=interac_mat[j];
  1649. for(;j<interac_blk_dsp+interac_blk[k] && interac_mat[j]==interac_mat0;j++) vec_cnt1+=interac_cnt[j];
  1650. Matrix<Real_t> M(M_dim0, M_dim1, (Real_t*)(precomp_data[0]+interac_mat0), false);
  1651. #ifdef __MIC__
  1652. {
  1653. Matrix<Real_t> Ms(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1654. Matrix<Real_t> Mt(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1655. Matrix<Real_t>::DGEMM(Mt,Ms,M);
  1656. }
  1657. #else
  1658. #pragma omp parallel for
  1659. for(int tid=0;tid<omp_p;tid++){
  1660. size_t a=(dof*vec_cnt1*(tid ))/omp_p;
  1661. size_t b=(dof*vec_cnt1*(tid+1))/omp_p;
  1662. Matrix<Real_t> Ms(b-a, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t))+M_dim0*a, false);
  1663. Matrix<Real_t> Mt(b-a, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t))+M_dim1*a, false);
  1664. Matrix<Real_t>::DGEMM(Mt,Ms,M);
  1665. }
  1666. #endif
  1667. vec_cnt0+=vec_cnt1;
  1668. }
  1669. #pragma omp parallel for
  1670. for(int tid=0;tid<omp_p;tid++){
  1671. size_t a=( tid *vec_cnt)/omp_p;
  1672. size_t b=((tid+1)*vec_cnt)/omp_p;
  1673. if(tid> 0 && a<vec_cnt){ // Find 'a' independent of other threads.
  1674. size_t out_ptr=output_perm[(interac_indx+a)*4+3];
  1675. if(tid> 0) while(a<vec_cnt && out_ptr==output_perm[(interac_indx+a)*4+3]) a++;
  1676. }
  1677. if(tid<omp_p-1 && b<vec_cnt){ // Find 'b' independent of other threads.
  1678. size_t out_ptr=output_perm[(interac_indx+b)*4+3];
  1679. if(tid<omp_p-1) while(b<vec_cnt && out_ptr==output_perm[(interac_indx+b)*4+3]) b++;
  1680. }
  1681. for(size_t i=a;i<b;i++){ // Compute permutations.
  1682. Real_t scaling_factor=scaling[interac_indx+i];
  1683. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+output_perm[(interac_indx+i)*4+0]);
  1684. const Real_t* scal=( Real_t*)(precomp_data[0]+output_perm[(interac_indx+i)*4+1]);
  1685. const Real_t* v_in =( Real_t*)( buff_out +output_perm[(interac_indx+i)*4+2]);
  1686. Real_t* v_out=( Real_t*)( output_data[0]+output_perm[(interac_indx+i)*4+3]);
  1687. // TODO: Fix for dof>1
  1688. #ifdef __MIC__
  1689. {
  1690. __m512d v8;
  1691. __m512d v_old;
  1692. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1693. size_t j_end =(((uintptr_t)(v_out+M_dim1) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1694. j_start/=sizeof(Real_t);
  1695. j_end /=sizeof(Real_t);
  1696. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1697. assert(((uintptr_t)(v_out+j_start))%64==0);
  1698. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1699. size_t j=0;
  1700. for(;j<j_start;j++ ){
  1701. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1702. }
  1703. for(;j<j_end ;j+=8){
  1704. v_old=_mm512_load_pd(v_out+j);
  1705. v8=_mm512_setr_pd(
  1706. v_in[perm[j+0]]*scal[j+0]*scaling_factor,
  1707. v_in[perm[j+1]]*scal[j+1]*scaling_factor,
  1708. v_in[perm[j+2]]*scal[j+2]*scaling_factor,
  1709. v_in[perm[j+3]]*scal[j+3]*scaling_factor,
  1710. v_in[perm[j+4]]*scal[j+4]*scaling_factor,
  1711. v_in[perm[j+5]]*scal[j+5]*scaling_factor,
  1712. v_in[perm[j+6]]*scal[j+6]*scaling_factor,
  1713. v_in[perm[j+7]]*scal[j+7]*scaling_factor);
  1714. v_old=_mm512_add_pd(v_old, v8);
  1715. _mm512_storenrngo_pd(v_out+j,v_old);
  1716. }
  1717. for(;j<M_dim1 ;j++ ){
  1718. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1719. }
  1720. }
  1721. #else
  1722. for(size_t j=0;j<M_dim1;j++ ){
  1723. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1724. }
  1725. #endif
  1726. }
  1727. }
  1728. interac_indx+=vec_cnt;
  1729. interac_blk_dsp+=interac_blk[k];
  1730. }
  1731. }
  1732. #ifdef __INTEL_OFFLOAD
  1733. if(device) MIC_Lock::release_lock(lock_idx);
  1734. #endif
  1735. }
  1736. #ifndef __MIC_ASYNCH__
  1737. #ifdef __INTEL_OFFLOAD
  1738. #pragma offload if(device) target(mic:0)
  1739. {if(device) MIC_Lock::wait_lock(lock_idx);}
  1740. #endif
  1741. #endif
  1742. Profile::Toc();
  1743. }
  1744. template <class FMMNode>
  1745. void FMM_Pts<FMMNode>::InitMultipole(FMMNode** node, size_t n, int level){
  1746. if(n==0) return;
  1747. int dof=1;
  1748. //Get the upward-check surface.
  1749. std::vector<Real_t> uc_coord[MAX_DEPTH+1];
  1750. size_t uc_cnt;
  1751. {
  1752. Real_t c[3]={0,0,0};
  1753. for(int i=0;i<=MAX_DEPTH;i++)
  1754. uc_coord[i]=u_check_surf(MultipoleOrder(),c,i);
  1755. uc_cnt=uc_coord[0].size()/COORD_DIM;
  1756. }
  1757. //Read matrices.
  1758. Matrix<Real_t>& M_uc2ue = this->mat->Mat(level, UC2UE_Type, 0);
  1759. //Compute multipole expansion.
  1760. #pragma omp parallel
  1761. {
  1762. int omp_p=omp_get_num_threads();
  1763. int pid = omp_get_thread_num();
  1764. size_t a=(pid*n)/omp_p;
  1765. size_t b=((pid+1)*n)/omp_p;
  1766. Matrix<Real_t> u_check(dof, M_uc2ue.Dim(0));
  1767. for (size_t j=a;j<b;j++){
  1768. Vector<Real_t>& upward_equiv=node[j]->FMMData()->upward_equiv;
  1769. assert(upward_equiv.Dim()==M_uc2ue.Dim(1)*dof);
  1770. Matrix<Real_t> u_equiv(dof,M_uc2ue.Dim(1),&upward_equiv[0],false);
  1771. u_equiv.SetZero(); // TODO: Do in setup
  1772. //Compute multipole expansion form point sources.
  1773. size_t pt_cnt=node[j]->src_coord.Dim()/COORD_DIM;
  1774. size_t surf_pt_cnt=node[j]->surf_coord.Dim()/COORD_DIM;
  1775. if(pt_cnt+surf_pt_cnt>0){
  1776. //Relative coord of upward check surf.
  1777. Real_t* c=node[j]->Coord();
  1778. std::vector<Real_t> uc_coord1(uc_cnt*COORD_DIM);
  1779. for(size_t i=0;i<uc_cnt;i++) for(int k=0;k<COORD_DIM;k++)
  1780. uc_coord1[i*COORD_DIM+k]=uc_coord[node[j]->Depth()][i*COORD_DIM+k]+c[k];
  1781. Profile::Add_FLOP((long long)uc_cnt*(long long)COORD_DIM);
  1782. //Compute upward check potential.
  1783. u_check.SetZero();
  1784. if(pt_cnt>0)
  1785. aux_kernel.ker_poten(&node[j]->src_coord[0], pt_cnt,
  1786. &node[j]->src_value[0], dof,
  1787. &uc_coord1[0], uc_cnt, u_check[0]);
  1788. if(surf_pt_cnt>0)
  1789. aux_kernel.dbl_layer_poten(&node[j]->surf_coord[0], surf_pt_cnt,
  1790. &node[j]->surf_value[0], dof,
  1791. &uc_coord1[0], uc_cnt, u_check[0]);
  1792. //Rearrange data.
  1793. {
  1794. Matrix<Real_t> M_tmp(M_uc2ue.Dim(0)/aux_kernel.ker_dim[1],aux_kernel.ker_dim[1]*dof, &u_check[0][0], false);
  1795. M_tmp=M_tmp.Transpose();
  1796. for(int i=0;i<dof;i++){
  1797. Matrix<Real_t> M_tmp1(aux_kernel.ker_dim[1], M_uc2ue.Dim(0)/aux_kernel.ker_dim[1], &u_check[i][0], false);
  1798. M_tmp1=M_tmp1.Transpose();
  1799. }
  1800. }
  1801. //Compute UC2UE (vector-matrix multiply).
  1802. Matrix<Real_t>::DGEMM(u_equiv,u_check,M_uc2ue,1.0);
  1803. }
  1804. //Adjusting for scale.
  1805. if(Homogen()){
  1806. Real_t scale_factor=pow(0.5, node[j]->Depth()*aux_kernel.poten_scale);
  1807. for(size_t i=0;i<upward_equiv.Dim();i++)
  1808. upward_equiv[i]*=scale_factor;
  1809. }
  1810. }
  1811. }
  1812. }
  1813. template <class FMMNode>
  1814. void FMM_Pts<FMMNode>::Up2Up(FMMNode** nodes, size_t n, int level){
  1815. if(n==0) return;
  1816. int dof=1;
  1817. size_t n_eq=this->interac_list.ClassMat(level,U2U_Type,0).Dim(1);
  1818. size_t mat_cnt=interac_list.ListCount(U2U_Type);
  1819. //For all non-leaf, non-ghost nodes.
  1820. #pragma omp parallel
  1821. {
  1822. int omp_p=omp_get_num_threads();
  1823. int pid = omp_get_thread_num();
  1824. size_t a=(pid*n)/omp_p;
  1825. size_t b=((pid+1)*n)/omp_p;
  1826. size_t cnt;
  1827. //Initialize this node's upward equivalent data
  1828. for(size_t i=a;i<b;i++){
  1829. Vector<Real_t>& upward_equiv=nodes[i]->FMMData()->upward_equiv;
  1830. assert(upward_equiv.Dim()==dof*n_eq);
  1831. upward_equiv.SetZero(); // TODO: Do in setup
  1832. UNUSED(upward_equiv);
  1833. UNUSED(n_eq);
  1834. }
  1835. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
  1836. Matrix<Real_t>& M = this->mat->Mat(level, U2U_Type, mat_indx);
  1837. if(M.Dim(0)!=0 && M.Dim(1)!=0){
  1838. cnt=0;
  1839. for(size_t i=a;i<b;i++)
  1840. if(/*!nodes[i]->IsGhost() && */!nodes[i]->IsLeaf()) if(((FMMNode*)nodes[i]->Child(mat_indx))->FMMData()->upward_equiv.Dim()>0) cnt++;
  1841. Matrix<Real_t> src_vec(cnt*dof,M.Dim(0));
  1842. Matrix<Real_t> trg_vec(cnt*dof,M.Dim(1));
  1843. //Get child's multipole expansion.
  1844. cnt=0;
  1845. for(size_t i=a;i<b;i++)
  1846. if(/*!nodes[i]->IsGhost() && */!nodes[i]->IsLeaf()) if(((FMMNode*)nodes[i]->Child(mat_indx))->FMMData()->upward_equiv.Dim()>0){
  1847. Vector<Real_t>& child_equiv=static_cast<FMMNode*>(nodes[i]->Child(mat_indx))->FMMData()->upward_equiv;
  1848. mem::memcopy(&(src_vec[cnt*dof][0]), &(child_equiv[0]), dof*M.Dim(0)*sizeof(Real_t));
  1849. cnt++;
  1850. }
  1851. Matrix<Real_t>::DGEMM(trg_vec,src_vec,M);
  1852. cnt=0;
  1853. size_t vec_len=M.Dim(1)*dof;
  1854. for(size_t i=a;i<b;i++)
  1855. if(/*!nodes[i]->IsGhost() && */!nodes[i]->IsLeaf()) if(((FMMNode*)nodes[i]->Child(mat_indx))->FMMData()->upward_equiv.Dim()>0){
  1856. Vector<Real_t>& upward_equiv=nodes[i]->FMMData()->upward_equiv;
  1857. assert(upward_equiv.Dim()==vec_len);
  1858. Matrix<Real_t> equiv (1,vec_len,&upward_equiv[0],false);
  1859. Matrix<Real_t> equiv_ (1,vec_len,trg_vec[cnt*dof],false);
  1860. equiv+=equiv_;
  1861. cnt++;
  1862. }
  1863. }
  1864. }
  1865. }
  1866. }
  1867. template <class FMMNode>
  1868. void FMM_Pts<FMMNode>::PeriodicBC(FMMNode* node){
  1869. Matrix<Real_t>& M = Precomp(0, BC_Type, 0);
  1870. assert(node->FMMData()->upward_equiv.Dim()>0);
  1871. int dof=1;
  1872. Vector<Real_t>& upward_equiv=node->FMMData()->upward_equiv;
  1873. Vector<Real_t>& dnward_equiv=node->FMMData()->dnward_equiv;
  1874. assert(upward_equiv.Dim()==M.Dim(0)*dof);
  1875. assert(dnward_equiv.Dim()==M.Dim(1)*dof);
  1876. Matrix<Real_t> d_equiv(dof,M.Dim(0),&dnward_equiv[0],false);
  1877. Matrix<Real_t> u_equiv(dof,M.Dim(1),&upward_equiv[0],false);
  1878. Matrix<Real_t>::DGEMM(d_equiv,u_equiv,M);
  1879. }
  1880. template <class FMMNode>
  1881. void FMM_Pts<FMMNode>::FFT_UpEquiv(size_t dof, size_t m, size_t ker_dim0, Vector<size_t>& fft_vec,
  1882. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_){
  1883. size_t n1=m*2;
  1884. size_t n2=n1*n1;
  1885. size_t n3=n1*n2;
  1886. size_t n3_=n2*(n1/2+1);
  1887. size_t chld_cnt=1UL<<COORD_DIM;
  1888. size_t fftsize_in =2*n3_*chld_cnt*ker_dim0*dof;
  1889. int omp_p=omp_get_max_threads();
  1890. //Load permutation map.
  1891. size_t n=6*(m-1)*(m-1)+2;
  1892. static Vector<size_t> map;
  1893. { // Build map to reorder upward_equiv
  1894. size_t n_old=map.Dim();
  1895. if(n_old!=n){
  1896. Real_t c[3]={0,0,0};
  1897. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1898. map.Resize(surf.Dim()/COORD_DIM);
  1899. for(size_t i=0;i<map.Dim();i++)
  1900. map[i]=((size_t)(m-1-surf[i*3]+0.5))+((size_t)(m-1-surf[i*3+1]+0.5))*n1+((size_t)(m-1-surf[i*3+2]+0.5))*n2;
  1901. }
  1902. }
  1903. { // Build FFTW plan.
  1904. if(!vlist_fft_flag){
  1905. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1906. void *fftw_in, *fftw_out;
  1907. fftw_in = mem::aligned_malloc<Real_t>( n3 *ker_dim0*chld_cnt);
  1908. fftw_out = mem::aligned_malloc<Real_t>(2*n3_*ker_dim0*chld_cnt);
  1909. vlist_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM,nnn,ker_dim0*chld_cnt,
  1910. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*)(fftw_out),NULL, 1, n3_, FFTW_ESTIMATE);
  1911. mem::aligned_free<Real_t>((Real_t*)fftw_in );
  1912. mem::aligned_free<Real_t>((Real_t*)fftw_out);
  1913. vlist_fft_flag=true;
  1914. }
  1915. }
  1916. { // Offload section
  1917. size_t n_in = fft_vec.Dim();
  1918. #pragma omp parallel for
  1919. for(int pid=0; pid<omp_p; pid++){
  1920. size_t node_start=(n_in*(pid ))/omp_p;
  1921. size_t node_end =(n_in*(pid+1))/omp_p;
  1922. Vector<Real_t> buffer(fftsize_in, &buffer_[fftsize_in*pid], false);
  1923. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  1924. Vector<Real_t*> upward_equiv(chld_cnt);
  1925. for(size_t i=0;i<chld_cnt;i++) upward_equiv[i]=&input_data[0] + fft_vec[node_idx] + n*ker_dim0*dof*i;
  1926. Vector<Real_t> upward_equiv_fft(fftsize_in, &output_data[fftsize_in *node_idx], false);
  1927. upward_equiv_fft.SetZero();
  1928. // Rearrange upward equivalent data.
  1929. for(size_t k=0;k<n;k++){
  1930. size_t idx=map[k];
  1931. for(int j1=0;j1<dof;j1++)
  1932. for(int j0=0;j0<(int)chld_cnt;j0++)
  1933. for(int i=0;i<ker_dim0;i++)
  1934. upward_equiv_fft[idx+(j0+(i+j1*ker_dim0)*chld_cnt)*n3]=upward_equiv[j0][ker_dim0*(n*j1+k)+i];
  1935. }
  1936. // Compute FFT.
  1937. for(int i=0;i<dof;i++)
  1938. FFTW_t<Real_t>::fft_execute_dft_r2c(vlist_fftplan, (Real_t*)&upward_equiv_fft[i* n3 *ker_dim0*chld_cnt],
  1939. (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim0*chld_cnt]);
  1940. //Compute flops.
  1941. #ifndef FFTW3_MKL
  1942. double add, mul, fma;
  1943. fftw_flops(vlist_fftplan, &add, &mul, &fma);
  1944. #ifndef __INTEL_OFFLOAD0
  1945. Profile::Add_FLOP((long long)(add+mul+2*fma));
  1946. #endif
  1947. #endif
  1948. for(int i=0;i<ker_dim0*dof;i++)
  1949. for(size_t j=0;j<n3_;j++)
  1950. for(size_t k=0;k<chld_cnt;k++){
  1951. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+0]=buffer[2*(n3_*(chld_cnt*i+k)+j)+0];
  1952. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+1]=buffer[2*(n3_*(chld_cnt*i+k)+j)+1];
  1953. }
  1954. }
  1955. }
  1956. }
  1957. }
  1958. template <class FMMNode>
  1959. void FMM_Pts<FMMNode>::FFT_Check2Equiv(size_t dof, size_t m, size_t ker_dim1, Vector<size_t>& ifft_vec,
  1960. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_, Matrix<Real_t>& M){
  1961. size_t n1=m*2;
  1962. size_t n2=n1*n1;
  1963. size_t n3=n1*n2;
  1964. size_t n3_=n2*(n1/2+1);
  1965. size_t chld_cnt=1UL<<COORD_DIM;
  1966. size_t fftsize_out=2*n3_*dof*ker_dim1*chld_cnt;
  1967. int omp_p=omp_get_max_threads();
  1968. //Load permutation map.
  1969. size_t n=6*(m-1)*(m-1)+2;
  1970. static Vector<size_t> map;
  1971. { // Build map to reorder dnward_check
  1972. size_t n_old=map.Dim();
  1973. if(n_old!=n){
  1974. Real_t c[3]={0,0,0};
  1975. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1976. map.Resize(surf.Dim()/COORD_DIM);
  1977. for(size_t i=0;i<map.Dim();i++)
  1978. map[i]=((size_t)(m*2-0.5-surf[i*3]))+((size_t)(m*2-0.5-surf[i*3+1]))*n1+((size_t)(m*2-0.5-surf[i*3+2]))*n2;
  1979. //map;//.AllocDevice(true);
  1980. }
  1981. }
  1982. { // Build FFTW plan.
  1983. if(!vlist_ifft_flag){
  1984. //Build FFTW plan.
  1985. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1986. void *fftw_in, *fftw_out;
  1987. fftw_in = fftw_malloc(2*n3_*ker_dim1*sizeof(Real_t)*chld_cnt);
  1988. fftw_out = fftw_malloc( n3 *ker_dim1*sizeof(Real_t)*chld_cnt);
  1989. vlist_ifftplan = FFTW_t<Real_t>::fft_plan_many_dft_c2r(COORD_DIM,nnn,ker_dim1*chld_cnt,
  1990. (typename FFTW_t<Real_t>::cplx*)fftw_in, NULL, 1, n3_, (Real_t*)(fftw_out),NULL, 1, n3, FFTW_ESTIMATE);
  1991. fftw_free(fftw_in);
  1992. fftw_free(fftw_out);
  1993. vlist_ifft_flag=true;
  1994. }
  1995. }
  1996. { // Offload section
  1997. size_t n_out=ifft_vec.Dim();
  1998. #pragma omp parallel for
  1999. for(int pid=0; pid<omp_p; pid++){
  2000. size_t node_start=(n_out*(pid ))/omp_p;
  2001. size_t node_end =(n_out*(pid+1))/omp_p;
  2002. Vector<Real_t> buffer(fftsize_out, &buffer_[fftsize_out*pid], false);
  2003. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  2004. Vector<Real_t> dnward_check_fft(fftsize_out, &input_data[fftsize_out*node_idx], false);
  2005. //De-interleave data.
  2006. for(int i=0;i<ker_dim1*dof;i++)
  2007. for(size_t j=0;j<n3_;j++)
  2008. for(size_t k=0;k<chld_cnt;k++){
  2009. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+0]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+0];
  2010. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+1]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+1];
  2011. }
  2012. // Compute FFT.
  2013. for(int i=0;i<dof;i++)
  2014. FFTW_t<Real_t>::fft_execute_dft_c2r(vlist_ifftplan, (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim1*chld_cnt],
  2015. (Real_t*)&dnward_check_fft[i* n3 *ker_dim1*chld_cnt]);
  2016. //Compute flops.
  2017. #ifndef FFTW3_MKL
  2018. double add, mul, fma;
  2019. fftw_flops(vlist_ifftplan, &add, &mul, &fma);
  2020. #ifndef __INTEL_OFFLOAD0
  2021. Profile::Add_FLOP((long long)(add+mul+2*fma));
  2022. #endif
  2023. #endif
  2024. // Rearrange downward check data.
  2025. for(size_t k=0;k<n;k++){
  2026. size_t idx=map[k];
  2027. for(int j1=0;j1<dof;j1++)
  2028. for(int j0=0;j0<(int)chld_cnt;j0++)
  2029. for(int i=0;i<ker_dim1;i++)
  2030. buffer[ker_dim1*(n*(dof*j0+j1)+k)+i]=dnward_check_fft[idx+(j1+(i+j0*ker_dim1)*dof)*n3];
  2031. }
  2032. // Compute check to equiv.
  2033. for(size_t j=0;j<chld_cnt;j++){
  2034. Matrix<Real_t> d_check(dof,M.Dim(0),&buffer[n*ker_dim1*dof*j],false);
  2035. Matrix<Real_t> d_equiv(dof,M.Dim(1),&output_data[0] + ifft_vec[node_idx] + M.Dim(1)*dof*j,false);
  2036. Matrix<Real_t>::DGEMM(d_equiv,d_check,M,1.0);
  2037. }
  2038. }
  2039. }
  2040. }
  2041. }
  2042. template <class Real_t>
  2043. void VListHadamard(size_t dof, size_t M_dim, size_t ker_dim0, size_t ker_dim1, Vector<size_t>& interac_dsp,
  2044. Vector<size_t>& interac_vec, Vector<Real_t*>& precomp_mat, Vector<Real_t>& fft_in, Vector<Real_t>& fft_out){
  2045. size_t chld_cnt=1UL<<COORD_DIM;
  2046. size_t fftsize_in =M_dim*ker_dim0*chld_cnt*2;
  2047. size_t fftsize_out=M_dim*ker_dim1*chld_cnt*2;
  2048. Real_t* zero_vec0=mem::aligned_malloc<Real_t>(fftsize_in );
  2049. Real_t* zero_vec1=mem::aligned_malloc<Real_t>(fftsize_out);
  2050. size_t n_out=fft_out.Dim()/fftsize_out;
  2051. // Set buff_out to zero.
  2052. #pragma omp parallel for
  2053. for(size_t k=0;k<n_out;k++){
  2054. Vector<Real_t> dnward_check_fft(fftsize_out, &fft_out[k*fftsize_out], false);
  2055. dnward_check_fft.SetZero();
  2056. }
  2057. // Build list of interaction pairs (in, out vectors).
  2058. size_t mat_cnt=precomp_mat.Dim();
  2059. size_t blk1_cnt=interac_dsp.Dim()/mat_cnt;
  2060. Real_t** IN_ =new Real_t*[2*V_BLK_SIZE*blk1_cnt*mat_cnt];
  2061. Real_t** OUT_=new Real_t*[2*V_BLK_SIZE*blk1_cnt*mat_cnt];
  2062. #pragma omp parallel for
  2063. for(size_t interac_blk1=0; interac_blk1<blk1_cnt*mat_cnt; interac_blk1++){
  2064. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2065. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2066. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2067. for(size_t j=0;j<interac_cnt;j++){
  2068. IN_ [2*V_BLK_SIZE*interac_blk1 +j]=&fft_in [interac_vec[(interac_dsp0+j)*2+0]];
  2069. OUT_[2*V_BLK_SIZE*interac_blk1 +j]=&fft_out[interac_vec[(interac_dsp0+j)*2+1]];
  2070. }
  2071. IN_ [2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec0;
  2072. OUT_[2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec1;
  2073. }
  2074. int omp_p=omp_get_max_threads();
  2075. #pragma omp parallel for
  2076. for(int pid=0; pid<omp_p; pid++){
  2077. size_t a=( pid *M_dim)/omp_p;
  2078. size_t b=((pid+1)*M_dim)/omp_p;
  2079. for(size_t blk1=0; blk1<blk1_cnt; blk1++)
  2080. for(size_t k=a; k< b; k++)
  2081. for(size_t mat_indx=0; mat_indx< mat_cnt;mat_indx++){
  2082. size_t interac_blk1 = blk1*mat_cnt+mat_indx;
  2083. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2084. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2085. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2086. Real_t** IN = IN_ + 2*V_BLK_SIZE*interac_blk1;
  2087. Real_t** OUT= OUT_+ 2*V_BLK_SIZE*interac_blk1;
  2088. Real_t* M = precomp_mat[mat_indx] + k*chld_cnt*chld_cnt*2;
  2089. #ifdef __SSE__
  2090. if (mat_indx +1 < mat_cnt){ // Prefetch
  2091. _mm_prefetch(((char *)(precomp_mat[mat_indx+1] + k*chld_cnt*chld_cnt*2)), _MM_HINT_T0);
  2092. _mm_prefetch(((char *)(precomp_mat[mat_indx+1] + k*chld_cnt*chld_cnt*2) + 64), _MM_HINT_T0);
  2093. }
  2094. #endif
  2095. for(int in_dim=0;in_dim<ker_dim0;in_dim++)
  2096. for(int ot_dim=0;ot_dim<ker_dim1;ot_dim++){
  2097. for(size_t j=0;j<interac_cnt;j+=2){
  2098. Real_t* M_ = M;
  2099. Real_t* IN0 = IN [j+0] + (in_dim*M_dim+k)*chld_cnt*2;
  2100. Real_t* IN1 = IN [j+1] + (in_dim*M_dim+k)*chld_cnt*2;
  2101. Real_t* OUT0 = OUT[j+0] + (ot_dim*M_dim+k)*chld_cnt*2;
  2102. Real_t* OUT1 = OUT[j+1] + (ot_dim*M_dim+k)*chld_cnt*2;
  2103. #ifdef __SSE__
  2104. if (j+2 < interac_cnt) { // Prefetch
  2105. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2106. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2107. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2108. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2109. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2110. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2111. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2112. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2113. }
  2114. #endif
  2115. #ifdef __AVX__ //AVX code.
  2116. __m256d out00,out01,out10,out11;
  2117. __m256d out20,out21,out30,out31;
  2118. double* in0__ = IN0;
  2119. double* in1__ = IN1;
  2120. out00 = _mm256_load_pd(OUT0);
  2121. out01 = _mm256_load_pd(OUT1);
  2122. out10 = _mm256_load_pd(OUT0+4);
  2123. out11 = _mm256_load_pd(OUT1+4);
  2124. out20 = _mm256_load_pd(OUT0+8);
  2125. out21 = _mm256_load_pd(OUT1+8);
  2126. out30 = _mm256_load_pd(OUT0+12);
  2127. out31 = _mm256_load_pd(OUT1+12);
  2128. for(int i2=0;i2<8;i2+=2){
  2129. __m256d m00;
  2130. __m256d ot00;
  2131. __m256d mt0,mtt0;
  2132. __m256d in00,in00_r,in01,in01_r;
  2133. in00 = _mm256_broadcast_pd((const __m128d*)in0__);
  2134. in00_r = _mm256_permute_pd(in00,5);
  2135. in01 = _mm256_broadcast_pd((const __m128d*)in1__);
  2136. in01_r = _mm256_permute_pd(in01,5);
  2137. m00 = _mm256_load_pd(M_);
  2138. mt0 = _mm256_unpacklo_pd(m00,m00);
  2139. ot00 = _mm256_mul_pd(mt0,in00);
  2140. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2141. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2142. ot00 = _mm256_mul_pd(mt0,in01);
  2143. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2144. m00 = _mm256_load_pd(M_+4);
  2145. mt0 = _mm256_unpacklo_pd(m00,m00);
  2146. ot00 = _mm256_mul_pd(mt0,in00);
  2147. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2148. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2149. ot00 = _mm256_mul_pd(mt0,in01);
  2150. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2151. m00 = _mm256_load_pd(M_+8);
  2152. mt0 = _mm256_unpacklo_pd(m00,m00);
  2153. ot00 = _mm256_mul_pd(mt0,in00);
  2154. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2155. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2156. ot00 = _mm256_mul_pd(mt0,in01);
  2157. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2158. m00 = _mm256_load_pd(M_+12);
  2159. mt0 = _mm256_unpacklo_pd(m00,m00);
  2160. ot00 = _mm256_mul_pd(mt0,in00);
  2161. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2162. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2163. ot00 = _mm256_mul_pd(mt0,in01);
  2164. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2165. in00 = _mm256_broadcast_pd((const __m128d*) (in0__+2));
  2166. in00_r = _mm256_permute_pd(in00,5);
  2167. in01 = _mm256_broadcast_pd((const __m128d*) (in1__+2));
  2168. in01_r = _mm256_permute_pd(in01,5);
  2169. m00 = _mm256_load_pd(M_+16);
  2170. mt0 = _mm256_unpacklo_pd(m00,m00);
  2171. ot00 = _mm256_mul_pd(mt0,in00);
  2172. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2173. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2174. ot00 = _mm256_mul_pd(mt0,in01);
  2175. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2176. m00 = _mm256_load_pd(M_+20);
  2177. mt0 = _mm256_unpacklo_pd(m00,m00);
  2178. ot00 = _mm256_mul_pd(mt0,in00);
  2179. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2180. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2181. ot00 = _mm256_mul_pd(mt0,in01);
  2182. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2183. m00 = _mm256_load_pd(M_+24);
  2184. mt0 = _mm256_unpacklo_pd(m00,m00);
  2185. ot00 = _mm256_mul_pd(mt0,in00);
  2186. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2187. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2188. ot00 = _mm256_mul_pd(mt0,in01);
  2189. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2190. m00 = _mm256_load_pd(M_+28);
  2191. mt0 = _mm256_unpacklo_pd(m00,m00);
  2192. ot00 = _mm256_mul_pd(mt0,in00);
  2193. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2194. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2195. ot00 = _mm256_mul_pd(mt0,in01);
  2196. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2197. M_ += 32;
  2198. in0__ += 4;
  2199. in1__ += 4;
  2200. }
  2201. _mm256_store_pd(OUT0,out00);
  2202. _mm256_store_pd(OUT1,out01);
  2203. _mm256_store_pd(OUT0+4,out10);
  2204. _mm256_store_pd(OUT1+4,out11);
  2205. _mm256_store_pd(OUT0+8,out20);
  2206. _mm256_store_pd(OUT1+8,out21);
  2207. _mm256_store_pd(OUT0+12,out30);
  2208. _mm256_store_pd(OUT1+12,out31);
  2209. #elif defined __SSE3__ // SSE code.
  2210. __m128d out00, out01, out10, out11;
  2211. __m128d in00, in01, in10, in11;
  2212. __m128d m00, m01, m10, m11;
  2213. //#pragma unroll
  2214. for(int i1=0;i1<8;i1+=2){
  2215. double* IN0_=IN0;
  2216. double* IN1_=IN1;
  2217. out00 =_mm_load_pd (OUT0 );
  2218. out10 =_mm_load_pd (OUT0+2);
  2219. out01 =_mm_load_pd (OUT1 );
  2220. out11 =_mm_load_pd (OUT1+2);
  2221. //#pragma unroll
  2222. for(int i2=0;i2<8;i2+=2){
  2223. m00 =_mm_load1_pd (M_ );
  2224. m10 =_mm_load1_pd (M_+ 2);
  2225. m01 =_mm_load1_pd (M_+16);
  2226. m11 =_mm_load1_pd (M_+18);
  2227. in00 =_mm_load_pd (IN0_ );
  2228. in10 =_mm_load_pd (IN0_+2);
  2229. in01 =_mm_load_pd (IN1_ );
  2230. in11 =_mm_load_pd (IN1_+2);
  2231. out00 = _mm_add_pd (out00, _mm_mul_pd(m00 , in00 ));
  2232. out00 = _mm_add_pd (out00, _mm_mul_pd(m01 , in10 ));
  2233. out01 = _mm_add_pd (out01, _mm_mul_pd(m00 , in01 ));
  2234. out01 = _mm_add_pd (out01, _mm_mul_pd(m01 , in11 ));
  2235. out10 = _mm_add_pd (out10, _mm_mul_pd(m10 , in00 ));
  2236. out10 = _mm_add_pd (out10, _mm_mul_pd(m11 , in10 ));
  2237. out11 = _mm_add_pd (out11, _mm_mul_pd(m10 , in01 ));
  2238. out11 = _mm_add_pd (out11, _mm_mul_pd(m11 , in11 ));
  2239. m00 =_mm_load1_pd (M_+ 1);
  2240. m10 =_mm_load1_pd (M_+ 2+1);
  2241. m01 =_mm_load1_pd (M_+16+1);
  2242. m11 =_mm_load1_pd (M_+18+1);
  2243. in00 =_mm_shuffle_pd (in00,in00,_MM_SHUFFLE2(0,1));
  2244. in01 =_mm_shuffle_pd (in01,in01,_MM_SHUFFLE2(0,1));
  2245. in10 =_mm_shuffle_pd (in10,in10,_MM_SHUFFLE2(0,1));
  2246. in11 =_mm_shuffle_pd (in11,in11,_MM_SHUFFLE2(0,1));
  2247. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m00, in00));
  2248. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m01, in10));
  2249. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m00, in01));
  2250. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m01, in11));
  2251. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m10, in00));
  2252. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m11, in10));
  2253. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m10, in01));
  2254. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m11, in11));
  2255. M_+=32; // Jump to (column+2).
  2256. IN0_+=4;
  2257. IN1_+=4;
  2258. }
  2259. _mm_store_pd (OUT0 ,out00);
  2260. _mm_store_pd (OUT0+2,out10);
  2261. _mm_store_pd (OUT1 ,out01);
  2262. _mm_store_pd (OUT1+2,out11);
  2263. M_+=4-64*2; // Jump back to first column (row+2).
  2264. OUT0+=4;
  2265. OUT1+=4;
  2266. }
  2267. #else // Generic code.
  2268. Real_t out_reg000, out_reg001, out_reg010, out_reg011;
  2269. Real_t out_reg100, out_reg101, out_reg110, out_reg111;
  2270. Real_t in_reg000, in_reg001, in_reg010, in_reg011;
  2271. Real_t in_reg100, in_reg101, in_reg110, in_reg111;
  2272. Real_t m_reg000, m_reg001, m_reg010, m_reg011;
  2273. Real_t m_reg100, m_reg101, m_reg110, m_reg111;
  2274. //#pragma unroll
  2275. for(int i1=0;i1<8;i1+=2){
  2276. Real_t* IN0_=IN0;
  2277. Real_t* IN1_=IN1;
  2278. out_reg000=OUT0[ 0]; out_reg001=OUT0[ 1];
  2279. out_reg010=OUT0[ 2]; out_reg011=OUT0[ 3];
  2280. out_reg100=OUT1[ 0]; out_reg101=OUT1[ 1];
  2281. out_reg110=OUT1[ 2]; out_reg111=OUT1[ 3];
  2282. //#pragma unroll
  2283. for(int i2=0;i2<8;i2+=2){
  2284. m_reg000=M_[ 0]; m_reg001=M_[ 1];
  2285. m_reg010=M_[ 2]; m_reg011=M_[ 3];
  2286. m_reg100=M_[16]; m_reg101=M_[17];
  2287. m_reg110=M_[18]; m_reg111=M_[19];
  2288. in_reg000=IN0_[0]; in_reg001=IN0_[1];
  2289. in_reg010=IN0_[2]; in_reg011=IN0_[3];
  2290. in_reg100=IN1_[0]; in_reg101=IN1_[1];
  2291. in_reg110=IN1_[2]; in_reg111=IN1_[3];
  2292. out_reg000 += m_reg000*in_reg000 - m_reg001*in_reg001;
  2293. out_reg001 += m_reg000*in_reg001 + m_reg001*in_reg000;
  2294. out_reg010 += m_reg010*in_reg000 - m_reg011*in_reg001;
  2295. out_reg011 += m_reg010*in_reg001 + m_reg011*in_reg000;
  2296. out_reg000 += m_reg100*in_reg010 - m_reg101*in_reg011;
  2297. out_reg001 += m_reg100*in_reg011 + m_reg101*in_reg010;
  2298. out_reg010 += m_reg110*in_reg010 - m_reg111*in_reg011;
  2299. out_reg011 += m_reg110*in_reg011 + m_reg111*in_reg010;
  2300. out_reg100 += m_reg000*in_reg100 - m_reg001*in_reg101;
  2301. out_reg101 += m_reg000*in_reg101 + m_reg001*in_reg100;
  2302. out_reg110 += m_reg010*in_reg100 - m_reg011*in_reg101;
  2303. out_reg111 += m_reg010*in_reg101 + m_reg011*in_reg100;
  2304. out_reg100 += m_reg100*in_reg110 - m_reg101*in_reg111;
  2305. out_reg101 += m_reg100*in_reg111 + m_reg101*in_reg110;
  2306. out_reg110 += m_reg110*in_reg110 - m_reg111*in_reg111;
  2307. out_reg111 += m_reg110*in_reg111 + m_reg111*in_reg110;
  2308. M_+=32; // Jump to (column+2).
  2309. IN0_+=4;
  2310. IN1_+=4;
  2311. }
  2312. OUT0[ 0]=out_reg000; OUT0[ 1]=out_reg001;
  2313. OUT0[ 2]=out_reg010; OUT0[ 3]=out_reg011;
  2314. OUT1[ 0]=out_reg100; OUT1[ 1]=out_reg101;
  2315. OUT1[ 2]=out_reg110; OUT1[ 3]=out_reg111;
  2316. M_+=4-64*2; // Jump back to first column (row+2).
  2317. OUT0+=4;
  2318. OUT1+=4;
  2319. }
  2320. #endif
  2321. }
  2322. M += M_dim*128;
  2323. }
  2324. }
  2325. }
  2326. // Compute flops.
  2327. {
  2328. Profile::Add_FLOP(8*8*8*(interac_vec.Dim()/2)*M_dim*ker_dim0*ker_dim1*dof);
  2329. }
  2330. // Free memory
  2331. delete[] IN_ ;
  2332. delete[] OUT_;
  2333. mem::aligned_free<Real_t>(zero_vec0);
  2334. mem::aligned_free<Real_t>(zero_vec1);
  2335. }
  2336. template <class FMMNode>
  2337. void FMM_Pts<FMMNode>::V_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2338. if(level==0) return;
  2339. { // Set setup_data
  2340. setup_data.level=level;
  2341. setup_data.kernel=&aux_kernel;
  2342. setup_data.interac_type.resize(1);
  2343. setup_data.interac_type[0]=V1_Type;
  2344. setup_data. input_data=&buff[0];
  2345. setup_data.output_data=&buff[1];
  2346. Vector<FMMNode_t*>& nodes_in =n_list[2];
  2347. Vector<FMMNode_t*>& nodes_out=n_list[3];
  2348. setup_data.nodes_in .clear();
  2349. setup_data.nodes_out.clear();
  2350. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2351. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level-1 || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2352. }
  2353. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2354. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2355. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2356. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2357. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_in [i])->Child(0))->FMMData())->upward_equiv);
  2358. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_out[i])->Child(0))->FMMData())->dnward_equiv);
  2359. /////////////////////////////////////////////////////////////////////////////
  2360. size_t n_in =nodes_in .size();
  2361. size_t n_out=nodes_out.size();
  2362. // Setup precomputed data.
  2363. SetupPrecomp(setup_data,device);
  2364. // Build interac_data
  2365. Profile::Tic("Interac-Data",&this->comm,true,25);
  2366. Matrix<char>& interac_data=setup_data.interac_data;
  2367. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  2368. size_t precomp_offset=0;
  2369. Mat_Type& interac_type=setup_data.interac_type[0];
  2370. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2371. Vector<size_t> precomp_data_offset;
  2372. std::vector<size_t> interac_mat;
  2373. { // Load precomp_data for interac_type.
  2374. Matrix<char>& precomp_data=*setup_data.precomp_data;
  2375. char* indx_ptr=precomp_data[0]+precomp_offset;
  2376. size_t total_size=((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  2377. /*size_t mat_cnt_ =((size_t*)indx_ptr)[0];*/ indx_ptr+=sizeof(size_t);
  2378. precomp_data_offset.ReInit((1+2+2)*mat_cnt, (size_t*)indx_ptr, false);
  2379. precomp_offset+=total_size;
  2380. for(size_t mat_id=0;mat_id<mat_cnt;mat_id++){
  2381. Matrix<Real_t>& M0 = this->mat->Mat(level, interac_type, mat_id);
  2382. assert(M0.Dim(0)>0 && M0.Dim(1)>0); UNUSED(M0);
  2383. interac_mat.push_back(precomp_data_offset[5*mat_id]);
  2384. }
  2385. }
  2386. size_t dof;
  2387. size_t m=MultipoleOrder();
  2388. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2389. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2390. size_t fftsize;
  2391. {
  2392. size_t n1=m*2;
  2393. size_t n2=n1*n1;
  2394. size_t n3_=n2*(n1/2+1);
  2395. size_t chld_cnt=1UL<<COORD_DIM;
  2396. fftsize=2*n3_*chld_cnt;
  2397. dof=1;
  2398. }
  2399. int omp_p=omp_get_max_threads();
  2400. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2401. size_t n_blk0=2*fftsize*dof*(ker_dim0*n_in +ker_dim1*n_out)*sizeof(Real_t)/buff_size;
  2402. if(n_blk0==0) n_blk0=1;
  2403. std::vector<std::vector<size_t> > fft_vec(n_blk0);
  2404. std::vector<std::vector<size_t> > ifft_vec(n_blk0);
  2405. std::vector<std::vector<size_t> > interac_vec(n_blk0);
  2406. std::vector<std::vector<size_t> > interac_dsp(n_blk0);
  2407. {
  2408. Matrix<Real_t>& input_data=*setup_data. input_data;
  2409. Matrix<Real_t>& output_data=*setup_data.output_data;
  2410. std::vector<std::vector<FMMNode*> > nodes_blk_in (n_blk0);
  2411. std::vector<std::vector<FMMNode*> > nodes_blk_out(n_blk0);
  2412. for(size_t i=0;i<n_in;i++) ((FMMNode*)nodes_in[i])->node_id=i;
  2413. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2414. size_t blk0_start=(n_out* blk0 )/n_blk0;
  2415. size_t blk0_end =(n_out*(blk0+1))/n_blk0;
  2416. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2417. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2418. { // Build node list for blk0.
  2419. std::set<void*> nodes_in;
  2420. for(size_t i=blk0_start;i<blk0_end;i++){
  2421. nodes_out_.push_back((FMMNode*)nodes_out[i]);
  2422. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2423. for(size_t k=0;k<mat_cnt;k++) if(lst[k]!=NULL) nodes_in.insert(lst[k]);
  2424. }
  2425. for(std::set<void*>::iterator node=nodes_in.begin(); node != nodes_in.end(); node++){
  2426. nodes_in_.push_back((FMMNode*)*node);
  2427. }
  2428. size_t input_dim=nodes_in_ .size()*ker_dim0*dof*fftsize;
  2429. size_t output_dim=nodes_out_.size()*ker_dim1*dof*fftsize;
  2430. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2431. if(buff_size<(input_dim + output_dim + buffer_dim)*sizeof(Real_t))
  2432. buff_size=(input_dim + output_dim + buffer_dim)*sizeof(Real_t);
  2433. }
  2434. { // Set fft vectors.
  2435. for(size_t i=0;i<nodes_in_ .size();i++) fft_vec[blk0].push_back((size_t)(& input_vector[nodes_in_[i]->node_id][0][0]- input_data[0]));
  2436. for(size_t i=0;i<nodes_out_.size();i++)ifft_vec[blk0].push_back((size_t)(&output_vector[blk0_start + i ][0][0]-output_data[0]));
  2437. }
  2438. }
  2439. for(size_t blk0=0;blk0<n_blk0;blk0++){ // Hadamard interactions.
  2440. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2441. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2442. for(size_t i=0;i<nodes_in_.size();i++) nodes_in_[i]->node_id=i;
  2443. { // Next blocking level.
  2444. size_t n_blk1=nodes_out_.size()*(ker_dim0+ker_dim1)/V_BLK_SIZE; //64 vectors should fit in L1.
  2445. if(n_blk1==0) n_blk1=1;
  2446. size_t interac_dsp_=0;
  2447. for(size_t blk1=0;blk1<n_blk1;blk1++){
  2448. size_t blk1_start=(nodes_out_.size()* blk1 )/n_blk1;
  2449. size_t blk1_end =(nodes_out_.size()*(blk1+1))/n_blk1;
  2450. for(size_t k=0;k<mat_cnt;k++){
  2451. for(size_t i=blk1_start;i<blk1_end;i++){
  2452. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out_[i])->interac_list[interac_type];
  2453. if(lst[k]!=NULL){
  2454. interac_vec[blk0].push_back(lst[k]->node_id*fftsize*ker_dim0*dof);
  2455. interac_vec[blk0].push_back( i *fftsize*ker_dim1*dof);
  2456. interac_dsp_++;
  2457. }
  2458. }
  2459. interac_dsp[blk0].push_back(interac_dsp_);
  2460. }
  2461. }
  2462. }
  2463. }
  2464. }
  2465. { // Set interac_data.
  2466. size_t data_size=sizeof(size_t)*5; // m, dof, ker_dim0, ker_dim1, n_blk0
  2467. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2468. data_size+=sizeof(size_t)+ fft_vec[blk0].size()*sizeof(size_t);
  2469. data_size+=sizeof(size_t)+ ifft_vec[blk0].size()*sizeof(size_t);
  2470. data_size+=sizeof(size_t)+interac_vec[blk0].size()*sizeof(size_t);
  2471. data_size+=sizeof(size_t)+interac_dsp[blk0].size()*sizeof(size_t);
  2472. }
  2473. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  2474. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2475. interac_data.Resize(1,data_size);
  2476. char* data_ptr=&interac_data[0][0];
  2477. ((size_t*)data_ptr)[0]=buff_size; data_ptr+=sizeof(size_t);
  2478. ((size_t*)data_ptr)[0]= m; data_ptr+=sizeof(size_t);
  2479. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2480. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2481. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2482. ((size_t*)data_ptr)[0]= n_blk0; data_ptr+=sizeof(size_t);
  2483. ((size_t*)data_ptr)[0]= interac_mat.size(); data_ptr+=sizeof(size_t);
  2484. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  2485. data_ptr+=interac_mat.size()*sizeof(size_t);
  2486. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2487. ((size_t*)data_ptr)[0]= fft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2488. mem::memcopy(data_ptr, & fft_vec[blk0][0], fft_vec[blk0].size()*sizeof(size_t));
  2489. data_ptr+= fft_vec[blk0].size()*sizeof(size_t);
  2490. ((size_t*)data_ptr)[0]=ifft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2491. mem::memcopy(data_ptr, &ifft_vec[blk0][0], ifft_vec[blk0].size()*sizeof(size_t));
  2492. data_ptr+=ifft_vec[blk0].size()*sizeof(size_t);
  2493. ((size_t*)data_ptr)[0]=interac_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2494. mem::memcopy(data_ptr, &interac_vec[blk0][0], interac_vec[blk0].size()*sizeof(size_t));
  2495. data_ptr+=interac_vec[blk0].size()*sizeof(size_t);
  2496. ((size_t*)data_ptr)[0]=interac_dsp[blk0].size(); data_ptr+=sizeof(size_t);
  2497. mem::memcopy(data_ptr, &interac_dsp[blk0][0], interac_dsp[blk0].size()*sizeof(size_t));
  2498. data_ptr+=interac_dsp[blk0].size()*sizeof(size_t);
  2499. }
  2500. }
  2501. }
  2502. Profile::Toc();
  2503. Profile::Tic("Host2Device",&this->comm,false,25);
  2504. if(device){ // Host2Device
  2505. setup_data.interac_data. AllocDevice(true);
  2506. }
  2507. Profile::Toc();
  2508. }
  2509. template <class FMMNode>
  2510. void FMM_Pts<FMMNode>::V_List (SetupData<Real_t>& setup_data, bool device){
  2511. assert(!device); //Can not run on accelerator yet.
  2512. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2513. Profile::Tic("Host2Device",&this->comm,false,25);
  2514. Profile::Toc();
  2515. Profile::Tic("FFT",&comm,false,100);
  2516. Profile::Toc();
  2517. Profile::Tic("HadamardProduct",&comm,false,100);
  2518. Profile::Toc();
  2519. Profile::Tic("IFFT",&comm,false,100);
  2520. Profile::Toc();
  2521. return;
  2522. }
  2523. Profile::Tic("Host2Device",&this->comm,false,25);
  2524. int level=setup_data.level;
  2525. size_t buff_size=*((size_t*)&setup_data.interac_data[0][0]);
  2526. typename Matrix<Real_t>::Device M_d;
  2527. typename Vector<char>::Device buff;
  2528. typename Matrix<char>::Device precomp_data;
  2529. typename Matrix<char>::Device interac_data;
  2530. typename Matrix<Real_t>::Device input_data;
  2531. typename Matrix<Real_t>::Device output_data;
  2532. Matrix<Real_t>& M = this->mat->Mat(level, DC2DE_Type, 0);
  2533. if(device){
  2534. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  2535. M_d = M. AllocDevice(false);
  2536. buff = this-> dev_buffer. AllocDevice(false);
  2537. precomp_data= setup_data.precomp_data->AllocDevice(false);
  2538. interac_data= setup_data.interac_data. AllocDevice(false);
  2539. input_data = setup_data. input_data->AllocDevice(false);
  2540. output_data = setup_data. output_data->AllocDevice(false);
  2541. }else{
  2542. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  2543. M_d = M;
  2544. buff = this-> cpu_buffer;
  2545. precomp_data=*setup_data.precomp_data;
  2546. interac_data= setup_data.interac_data;
  2547. input_data =*setup_data. input_data;
  2548. output_data =*setup_data. output_data;
  2549. }
  2550. Profile::Toc();
  2551. { // Offloaded computation.
  2552. // Set interac_data.
  2553. size_t m, dof, ker_dim0, ker_dim1, n_blk0;
  2554. std::vector<Vector<size_t> > fft_vec;
  2555. std::vector<Vector<size_t> > ifft_vec;
  2556. std::vector<Vector<size_t> > interac_vec;
  2557. std::vector<Vector<size_t> > interac_dsp;
  2558. Vector<Real_t*> precomp_mat;
  2559. { // Set interac_data.
  2560. char* data_ptr=&interac_data[0][0];
  2561. buff_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2562. m =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2563. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2564. ker_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2565. ker_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2566. n_blk0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2567. fft_vec .resize(n_blk0);
  2568. ifft_vec.resize(n_blk0);
  2569. interac_vec.resize(n_blk0);
  2570. interac_dsp.resize(n_blk0);
  2571. Vector<size_t> interac_mat;
  2572. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2573. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  2574. precomp_mat.Resize(interac_mat.Dim());
  2575. for(size_t i=0;i<interac_mat.Dim();i++){
  2576. precomp_mat[i]=(Real_t*)(precomp_data[0]+interac_mat[i]);
  2577. }
  2578. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2579. fft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2580. data_ptr+=sizeof(size_t)+fft_vec[blk0].Dim()*sizeof(size_t);
  2581. ifft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2582. data_ptr+=sizeof(size_t)+ifft_vec[blk0].Dim()*sizeof(size_t);
  2583. interac_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2584. data_ptr+=sizeof(size_t)+interac_vec[blk0].Dim()*sizeof(size_t);
  2585. interac_dsp[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2586. data_ptr+=sizeof(size_t)+interac_dsp[blk0].Dim()*sizeof(size_t);
  2587. }
  2588. }
  2589. int omp_p=omp_get_max_threads();
  2590. size_t M_dim, fftsize;
  2591. {
  2592. size_t n1=m*2;
  2593. size_t n2=n1*n1;
  2594. size_t n3_=n2*(n1/2+1);
  2595. size_t chld_cnt=1UL<<COORD_DIM;
  2596. fftsize=2*n3_*chld_cnt;
  2597. M_dim=n3_;
  2598. }
  2599. for(size_t blk0=0;blk0<n_blk0;blk0++){ // interactions
  2600. size_t n_in = fft_vec[blk0].Dim();
  2601. size_t n_out=ifft_vec[blk0].Dim();
  2602. size_t input_dim=n_in *ker_dim0*dof*fftsize;
  2603. size_t output_dim=n_out*ker_dim1*dof*fftsize;
  2604. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2605. Vector<Real_t> fft_in ( input_dim, (Real_t*)&buff[ 0 ],false);
  2606. Vector<Real_t> fft_out(output_dim, (Real_t*)&buff[ input_dim *sizeof(Real_t)],false);
  2607. Vector<Real_t> buffer(buffer_dim, (Real_t*)&buff[(input_dim+output_dim)*sizeof(Real_t)],false);
  2608. { // FFT
  2609. Profile::Tic("FFT",&comm,false,100);
  2610. Vector<Real_t> input_data_( input_data.dim[0]* input_data.dim[1], input_data[0], false);
  2611. FFT_UpEquiv(dof, m, ker_dim0, fft_vec[blk0], input_data_, fft_in, buffer);
  2612. Profile::Toc();
  2613. }
  2614. { // Hadamard
  2615. #ifdef PVFMM_HAVE_PAPI
  2616. #ifdef __VERBOSE__
  2617. std::cout << "Starting counters new\n";
  2618. if (PAPI_start(EventSet) != PAPI_OK) std::cout << "handle_error3" << std::endl;
  2619. #endif
  2620. #endif
  2621. Profile::Tic("HadamardProduct",&comm,false,100);
  2622. VListHadamard<Real_t>(dof, M_dim, ker_dim0, ker_dim1, interac_dsp[blk0], interac_vec[blk0], precomp_mat, fft_in, fft_out);
  2623. Profile::Toc();
  2624. #ifdef PVFMM_HAVE_PAPI
  2625. #ifdef __VERBOSE__
  2626. if (PAPI_stop(EventSet, values) != PAPI_OK) std::cout << "handle_error4" << std::endl;
  2627. std::cout << "Stopping counters\n";
  2628. #endif
  2629. #endif
  2630. }
  2631. { // IFFT
  2632. Profile::Tic("IFFT",&comm,false,100);
  2633. Matrix<Real_t> M(M_d.dim[0],M_d.dim[1],M_d[0],false);
  2634. Vector<Real_t> output_data_(output_data.dim[0]*output_data.dim[1], output_data[0], false);
  2635. FFT_Check2Equiv(dof, m, ker_dim1, ifft_vec[blk0], fft_out, output_data_, buffer, M);
  2636. Profile::Toc();
  2637. }
  2638. }
  2639. }
  2640. }
  2641. template <class FMMNode>
  2642. void FMM_Pts<FMMNode>::Down2DownSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2643. { // Set setup_data
  2644. setup_data.level=level;
  2645. setup_data.kernel=&aux_kernel;
  2646. setup_data.interac_type.resize(1);
  2647. setup_data.interac_type[0]=D2D_Type;
  2648. setup_data. input_data=&buff[1];
  2649. setup_data.output_data=&buff[1];
  2650. Vector<FMMNode_t*>& nodes_in =n_list[1];
  2651. Vector<FMMNode_t*>& nodes_out=n_list[1];
  2652. setup_data.nodes_in .clear();
  2653. setup_data.nodes_out.clear();
  2654. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2655. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
  2656. }
  2657. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2658. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2659. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2660. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2661. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  2662. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  2663. SetupInterac(setup_data,device);
  2664. }
  2665. template <class FMMNode>
  2666. void FMM_Pts<FMMNode>::Down2Down (SetupData<Real_t>& setup_data, bool device){
  2667. //Add Down2Down contribution.
  2668. EvalList(setup_data, device);
  2669. }
  2670. template <class FMMNode>
  2671. void FMM_Pts<FMMNode>::SetupInteracPts(SetupData<Real_t>& setup_data, bool shift_src, bool shift_trg, Matrix<Real_t>* M, bool device){
  2672. int level=setup_data.level;
  2673. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  2674. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2675. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2676. Matrix<Real_t>& output_data=*setup_data.output_data;
  2677. Matrix<Real_t>& input_data=*setup_data. input_data;
  2678. Matrix<Real_t>& coord_data=*setup_data. coord_data;
  2679. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  2680. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  2681. size_t n_in =nodes_in .size();
  2682. size_t n_out=nodes_out.size();
  2683. //setup_data.precomp_data=NULL;
  2684. // Build interac_data
  2685. Profile::Tic("Interac-Data",&this->comm,true,25);
  2686. Matrix<char>& interac_data=setup_data.interac_data;
  2687. if(n_out>0 && n_in >0){
  2688. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2689. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2690. size_t dof=1;
  2691. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  2692. std::vector<size_t> trg_interac_cnt(n_out,0);
  2693. std::vector<size_t> trg_coord(n_out);
  2694. std::vector<size_t> trg_value(n_out);
  2695. std::vector<size_t> trg_cnt(n_out);
  2696. std::vector<Real_t> scaling(n_out,0);
  2697. { // Set trg data
  2698. Mat_Type& interac_type=interac_type_lst[0];
  2699. for(size_t i=0;i<n_out;i++){
  2700. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2701. trg_cnt [i]=output_vector[i*2+0]->Dim()/COORD_DIM;
  2702. trg_coord[i]=(size_t)(&output_vector[i*2+0][0][0]- coord_data[0]);
  2703. trg_value[i]=(size_t)(&output_vector[i*2+1][0][0]-output_data[0]);
  2704. if(!this->Homogen()) scaling[i]=1.0;
  2705. else if(interac_type==X_Type) scaling[i]=pow(0.5, setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  2706. }
  2707. }
  2708. }
  2709. std::vector<std::vector<size_t> > src_cnt(n_out);
  2710. std::vector<std::vector<size_t> > src_coord(n_out);
  2711. std::vector<std::vector<size_t> > src_value(n_out);
  2712. std::vector<std::vector<Real_t> > shift_coord(n_out);
  2713. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  2714. Mat_Type& interac_type=interac_type_lst[type_indx];
  2715. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2716. for(size_t i=0;i<n_out;i++){ // For each target node.
  2717. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2718. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2719. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++) if(lst[mat_indx]!=NULL){ // For each direction.
  2720. size_t j=lst[mat_indx]->node_id;
  2721. if(input_vector[j*4+0]->Dim()>0 || input_vector[j*4+2]->Dim()>0){
  2722. trg_interac_cnt[i]++;
  2723. { // Determine shift for periodic boundary condition
  2724. Real_t* sc=lst[mat_indx]->Coord();
  2725. Real_t* tc=((FMMNode*)nodes_out[i])->Coord();
  2726. int* rel_coord=this->interac_list.RelativeCoord(interac_type, mat_indx);
  2727. shift_coord[i].push_back((tc[0]>sc[0] && rel_coord[0]>0? 1.0:
  2728. (tc[0]<sc[0] && rel_coord[0]<0?-1.0:0.0)) +
  2729. (shift_src?sc[0]:0) - (shift_trg?tc[0]:0) );
  2730. shift_coord[i].push_back((tc[1]>sc[1] && rel_coord[1]>0? 1.0:
  2731. (tc[1]<sc[1] && rel_coord[1]<0?-1.0:0.0)) +
  2732. (shift_src?sc[1]:0) - (shift_trg?tc[1]:0) );
  2733. shift_coord[i].push_back((tc[2]>sc[2] && rel_coord[2]>0? 1.0:
  2734. (tc[2]<sc[2] && rel_coord[2]<0?-1.0:0.0)) +
  2735. (shift_src?sc[2]:0) - (shift_trg?tc[2]:0) );
  2736. }
  2737. { // Set src data
  2738. if(input_vector[j*4+0]!=NULL){
  2739. src_cnt [i].push_back(input_vector[j*4+0]->Dim()/COORD_DIM);
  2740. src_coord[i].push_back((size_t)(& input_vector[j*4+0][0][0]- coord_data[0]));
  2741. src_value[i].push_back((size_t)(& input_vector[j*4+1][0][0]- input_data[0]));
  2742. }else{
  2743. src_cnt [i].push_back(0);
  2744. src_coord[i].push_back(0);
  2745. src_value[i].push_back(0);
  2746. }
  2747. if(input_vector[j*4+2]!=NULL){
  2748. src_cnt [i].push_back(input_vector[j*4+2]->Dim()/COORD_DIM);
  2749. src_coord[i].push_back((size_t)(& input_vector[j*4+2][0][0]- coord_data[0]));
  2750. src_value[i].push_back((size_t)(& input_vector[j*4+3][0][0]- input_data[0]));
  2751. }else{
  2752. src_cnt [i].push_back(0);
  2753. src_coord[i].push_back(0);
  2754. src_value[i].push_back(0);
  2755. }
  2756. }
  2757. }
  2758. }
  2759. }
  2760. }
  2761. }
  2762. { // Set interac_data.
  2763. size_t data_size=sizeof(size_t)*4;
  2764. data_size+=sizeof(size_t)+trg_interac_cnt.size()*sizeof(size_t);
  2765. data_size+=sizeof(size_t)+trg_coord.size()*sizeof(size_t);
  2766. data_size+=sizeof(size_t)+trg_value.size()*sizeof(size_t);
  2767. data_size+=sizeof(size_t)+trg_cnt .size()*sizeof(size_t);
  2768. data_size+=sizeof(size_t)+scaling .size()*sizeof(Real_t);
  2769. data_size+=sizeof(size_t)*2+(M!=NULL?M->Dim(0)*M->Dim(1)*sizeof(Real_t):0);
  2770. for(size_t i=0;i<n_out;i++){
  2771. data_size+=sizeof(size_t)+src_cnt [i].size()*sizeof(size_t);
  2772. data_size+=sizeof(size_t)+src_coord[i].size()*sizeof(size_t);
  2773. data_size+=sizeof(size_t)+src_value[i].size()*sizeof(size_t);
  2774. data_size+=sizeof(size_t)+shift_coord[i].size()*sizeof(Real_t);
  2775. }
  2776. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2777. interac_data.Resize(1,data_size);
  2778. char* data_ptr=&interac_data[0][0];
  2779. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  2780. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2781. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2782. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2783. ((size_t*)data_ptr)[0]=trg_interac_cnt.size(); data_ptr+=sizeof(size_t);
  2784. mem::memcopy(data_ptr, &trg_interac_cnt[0], trg_interac_cnt.size()*sizeof(size_t));
  2785. data_ptr+=trg_interac_cnt.size()*sizeof(size_t);
  2786. ((size_t*)data_ptr)[0]=trg_coord.size(); data_ptr+=sizeof(size_t);
  2787. mem::memcopy(data_ptr, &trg_coord[0], trg_coord.size()*sizeof(size_t));
  2788. data_ptr+=trg_coord.size()*sizeof(size_t);
  2789. ((size_t*)data_ptr)[0]=trg_value.size(); data_ptr+=sizeof(size_t);
  2790. mem::memcopy(data_ptr, &trg_value[0], trg_value.size()*sizeof(size_t));
  2791. data_ptr+=trg_value.size()*sizeof(size_t);
  2792. ((size_t*)data_ptr)[0]=trg_cnt.size(); data_ptr+=sizeof(size_t);
  2793. mem::memcopy(data_ptr, &trg_cnt[0], trg_cnt.size()*sizeof(size_t));
  2794. data_ptr+=trg_cnt.size()*sizeof(size_t);
  2795. ((size_t*)data_ptr)[0]=scaling.size(); data_ptr+=sizeof(size_t);
  2796. mem::memcopy(data_ptr, &scaling[0], scaling.size()*sizeof(Real_t));
  2797. data_ptr+=scaling.size()*sizeof(Real_t);
  2798. if(M!=NULL){
  2799. ((size_t*)data_ptr)[0]=M->Dim(0); data_ptr+=sizeof(size_t);
  2800. ((size_t*)data_ptr)[0]=M->Dim(1); data_ptr+=sizeof(size_t);
  2801. mem::memcopy(data_ptr, M[0][0], M->Dim(0)*M->Dim(1)*sizeof(Real_t));
  2802. data_ptr+=M->Dim(0)*M->Dim(1)*sizeof(Real_t);
  2803. }else{
  2804. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2805. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2806. }
  2807. for(size_t i=0;i<n_out;i++){
  2808. ((size_t*)data_ptr)[0]=src_cnt[i].size(); data_ptr+=sizeof(size_t);
  2809. mem::memcopy(data_ptr, &src_cnt[i][0], src_cnt[i].size()*sizeof(size_t));
  2810. data_ptr+=src_cnt[i].size()*sizeof(size_t);
  2811. ((size_t*)data_ptr)[0]=src_coord[i].size(); data_ptr+=sizeof(size_t);
  2812. mem::memcopy(data_ptr, &src_coord[i][0], src_coord[i].size()*sizeof(size_t));
  2813. data_ptr+=src_coord[i].size()*sizeof(size_t);
  2814. ((size_t*)data_ptr)[0]=src_value[i].size(); data_ptr+=sizeof(size_t);
  2815. mem::memcopy(data_ptr, &src_value[i][0], src_value[i].size()*sizeof(size_t));
  2816. data_ptr+=src_value[i].size()*sizeof(size_t);
  2817. ((size_t*)data_ptr)[0]=shift_coord[i].size(); data_ptr+=sizeof(size_t);
  2818. mem::memcopy(data_ptr, &shift_coord[i][0], shift_coord[i].size()*sizeof(Real_t));
  2819. data_ptr+=shift_coord[i].size()*sizeof(Real_t);
  2820. }
  2821. }
  2822. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2823. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  2824. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  2825. }
  2826. Profile::Toc();
  2827. Profile::Tic("Host2Device",&this->comm,false,25);
  2828. if(device){ // Host2Device
  2829. setup_data.interac_data .AllocDevice(true);
  2830. }
  2831. Profile::Toc();
  2832. }
  2833. template <class FMMNode>
  2834. void FMM_Pts<FMMNode>::EvalListPts(SetupData<Real_t>& setup_data, bool device){
  2835. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2836. Profile::Tic("Host2Device",&this->comm,false,25);
  2837. Profile::Toc();
  2838. Profile::Tic("DeviceComp",&this->comm,false,20);
  2839. Profile::Toc();
  2840. return;
  2841. }
  2842. std::cout << "EvalListPts, device = " << device << '\n';
  2843. Profile::Tic("Host2Device",&this->comm,false,25);
  2844. typename Vector<char>::Device buff;
  2845. //typename Matrix<char>::Device precomp_data;
  2846. typename Matrix<char>::Device interac_data;
  2847. typename Matrix<Real_t>::Device coord_data;
  2848. typename Matrix<Real_t>::Device input_data;
  2849. typename Matrix<Real_t>::Device output_data;
  2850. if(device){
  2851. buff = this-> dev_buffer. AllocDevice(false);
  2852. interac_data= setup_data.interac_data. AllocDevice(false);
  2853. //if(setup_data.precomp_data!=NULL) precomp_data= setup_data.precomp_data->AllocDevice(false);
  2854. if(setup_data. coord_data!=NULL) coord_data = setup_data. coord_data->AllocDevice(false);
  2855. if(setup_data. input_data!=NULL) input_data = setup_data. input_data->AllocDevice(false);
  2856. if(setup_data. output_data!=NULL) output_data = setup_data. output_data->AllocDevice(false);
  2857. }else{
  2858. buff = this-> cpu_buffer;
  2859. interac_data= setup_data.interac_data;
  2860. //if(setup_data.precomp_data!=NULL) precomp_data=*setup_data.precomp_data;
  2861. if(setup_data. coord_data!=NULL) coord_data =*setup_data. coord_data;
  2862. if(setup_data. input_data!=NULL) input_data =*setup_data. input_data;
  2863. if(setup_data. output_data!=NULL) output_data =*setup_data. output_data;
  2864. }
  2865. Profile::Toc();
  2866. std::cout << "EvalListPts, end allocation. " << '\n';
  2867. size_t ptr_single_layer_kernel=(size_t)setup_data.kernel->ker_poten;
  2868. size_t ptr_double_layer_kernel=(size_t)setup_data.kernel->dbl_layer_poten;
  2869. Profile::Tic("DeviceComp",&this->comm,false,20);
  2870. #ifdef __INTEL_OFFLOAD
  2871. int lock_idx=-1;
  2872. int wait_lock_idx=-1;
  2873. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  2874. if(device) lock_idx=MIC_Lock::get_lock();
  2875. if(device) ptr_single_layer_kernel=setup_data.kernel->dev_ker_poten;
  2876. if(device) ptr_double_layer_kernel=setup_data.kernel->dev_dbl_layer_poten;
  2877. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  2878. #endif
  2879. { // Offloaded computation.
  2880. // Set interac_data.
  2881. //size_t data_size;
  2882. //size_t ker_dim0;
  2883. size_t ker_dim1;
  2884. size_t dof, n_out;
  2885. Vector<size_t> trg_interac_cnt;
  2886. Vector<size_t> trg_coord;
  2887. Vector<size_t> trg_value;
  2888. Vector<size_t> trg_cnt;
  2889. Vector<Real_t> scaling;
  2890. Matrix<Real_t> M;
  2891. Vector< Vector<size_t> > src_cnt;
  2892. Vector< Vector<size_t> > src_coord;
  2893. Vector< Vector<size_t> > src_value;
  2894. Vector< Vector<Real_t> > shift_coord;
  2895. { // Set interac_data.
  2896. char* data_ptr=&interac_data[0][0];
  2897. std::cout << "EvalListPts, converting device ptr to char* " << '\n';
  2898. /*data_size=((size_t*)data_ptr)[0];*/ data_ptr+=sizeof(size_t);
  2899. /*ker_dim0=((size_t*)data_ptr)[0];*/ data_ptr+=sizeof(size_t);
  2900. ker_dim1=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2901. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2902. std::cout << "EvalListPts, device ptr evaluation " << '\n';
  2903. trg_interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2904. data_ptr+=sizeof(size_t)+trg_interac_cnt.Dim()*sizeof(size_t);
  2905. n_out=trg_interac_cnt.Dim();
  2906. std::cout << "EvalListPts, 1.st ReInit " << '\n';
  2907. trg_coord.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2908. data_ptr+=sizeof(size_t)+trg_coord.Dim()*sizeof(size_t);
  2909. trg_value.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2910. data_ptr+=sizeof(size_t)+trg_value.Dim()*sizeof(size_t);
  2911. trg_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2912. data_ptr+=sizeof(size_t)+trg_cnt.Dim()*sizeof(size_t);
  2913. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2914. data_ptr+=sizeof(size_t)+scaling.Dim()*sizeof(Real_t);
  2915. M.ReInit(((size_t*)data_ptr)[0],((size_t*)data_ptr)[1],(Real_t*)(data_ptr+2*sizeof(size_t)),false);
  2916. data_ptr+=sizeof(size_t)*2+M.Dim(0)*M.Dim(1)*sizeof(Real_t);
  2917. src_cnt.Resize(n_out);
  2918. src_coord.Resize(n_out);
  2919. src_value.Resize(n_out);
  2920. shift_coord.Resize(n_out);
  2921. for(size_t i=0;i<n_out;i++){
  2922. src_cnt[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2923. data_ptr+=sizeof(size_t)+src_cnt[i].Dim()*sizeof(size_t);
  2924. src_coord[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2925. data_ptr+=sizeof(size_t)+src_coord[i].Dim()*sizeof(size_t);
  2926. src_value[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2927. data_ptr+=sizeof(size_t)+src_value[i].Dim()*sizeof(size_t);
  2928. shift_coord[i].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2929. data_ptr+=sizeof(size_t)+shift_coord[i].Dim()*sizeof(Real_t);
  2930. }
  2931. }
  2932. #ifdef __INTEL_OFFLOAD
  2933. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  2934. #endif
  2935. std::cout << "EvalListPts, end reallocation." << '\n';
  2936. //Compute interaction from point sources.
  2937. { // interactions
  2938. typename Kernel<Real_t>::Ker_t single_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_single_layer_kernel;
  2939. typename Kernel<Real_t>::Ker_t double_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_double_layer_kernel;
  2940. int omp_p=omp_get_max_threads();
  2941. Vector<Real_t*> thread_buff(omp_p);
  2942. size_t thread_buff_size=buff.dim/sizeof(Real_t)/omp_p;
  2943. for(int i=0;i<omp_p;i++) thread_buff[i]=(Real_t*)&buff[i*thread_buff_size*sizeof(Real_t)];
  2944. #pragma omp parallel for
  2945. for(size_t i=0;i<n_out;i++)
  2946. if(trg_interac_cnt[i]>0 && trg_cnt[i]>0){
  2947. int thread_id=omp_get_thread_num();
  2948. Real_t* s_coord=thread_buff[thread_id];
  2949. Real_t* t_value=output_data[0]+trg_value[i];
  2950. if(M.Dim(0)>0 && M.Dim(1)>0){
  2951. s_coord+=dof*M.Dim(0);
  2952. t_value=thread_buff[thread_id];
  2953. for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]=0;
  2954. }
  2955. size_t interac_cnt=0;
  2956. for(size_t j=0;j<trg_interac_cnt[i];j++){
  2957. if(ptr_single_layer_kernel!=(size_t)NULL){// Single layer kernel
  2958. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+0];
  2959. assert(thread_buff_size>=dof*M.Dim(0)+src_cnt[i][2*j+0]*COORD_DIM);
  2960. for(size_t k1=0;k1<src_cnt[i][2*j+0];k1++){ // Compute shifted source coordinates.
  2961. for(size_t k0=0;k0<COORD_DIM;k0++){
  2962. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  2963. }
  2964. }
  2965. single_layer_kernel( s_coord , src_cnt[i][2*j+0], input_data[0]+src_value[i][2*j+0], dof,
  2966. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value);
  2967. interac_cnt+=src_cnt[i][2*j+0]*trg_cnt[i];
  2968. }
  2969. if(ptr_double_layer_kernel!=(size_t)NULL){// Double layer kernel
  2970. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+1];
  2971. assert(thread_buff_size>=dof*M.Dim(0)+src_cnt[i][2*j+1]*COORD_DIM);
  2972. for(size_t k1=0;k1<src_cnt[i][2*j+1];k1++){ // Compute shifted source coordinates.
  2973. for(size_t k0=0;k0<COORD_DIM;k0++){
  2974. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  2975. }
  2976. }
  2977. double_layer_kernel( s_coord , src_cnt[i][2*j+1], input_data[0]+src_value[i][2*j+1], dof,
  2978. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value);
  2979. interac_cnt+=src_cnt[i][2*j+1]*trg_cnt[i];
  2980. }
  2981. }
  2982. if(M.Dim(0)>0 && M.Dim(1)>0 && interac_cnt>0){
  2983. assert(trg_cnt[i]*ker_dim1==M.Dim(0)); UNUSED(ker_dim1);
  2984. for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]*=scaling[i];
  2985. Matrix<Real_t> in_vec(dof, M.Dim(0), t_value , false);
  2986. Matrix<Real_t> out_vec(dof, M.Dim(1), output_data[0]+trg_value[i], false);
  2987. Matrix<Real_t>::DGEMM(out_vec, in_vec, M, 1.0);
  2988. }
  2989. }
  2990. }
  2991. #ifdef __INTEL_OFFLOAD
  2992. if(device) MIC_Lock::release_lock(lock_idx);
  2993. #endif
  2994. }
  2995. #ifndef __MIC_ASYNCH__
  2996. #ifdef __INTEL_OFFLOAD
  2997. #pragma offload if(device) target(mic:0)
  2998. {if(device) MIC_Lock::wait_lock(lock_idx);}
  2999. #endif
  3000. #endif
  3001. Profile::Toc();
  3002. }
  3003. template <class FMMNode>
  3004. void FMM_Pts<FMMNode>::X_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3005. { // Set setup_data
  3006. setup_data.level=level;
  3007. setup_data.kernel=&aux_kernel;
  3008. setup_data.interac_type.resize(1);
  3009. setup_data.interac_type[0]=X_Type;
  3010. setup_data. input_data=&buff[4];
  3011. setup_data.output_data=&buff[1];
  3012. setup_data. coord_data=&buff[6];
  3013. Vector<FMMNode_t*>& nodes_in =n_list[4];
  3014. Vector<FMMNode_t*>& nodes_out=n_list[1];
  3015. setup_data.nodes_in .clear();
  3016. setup_data.nodes_out.clear();
  3017. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3018. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3019. }
  3020. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3021. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3022. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3023. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3024. for(size_t i=0;i<nodes_in .size();i++){
  3025. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  3026. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  3027. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  3028. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  3029. }
  3030. for(size_t i=0;i<nodes_out.size();i++){
  3031. output_vector.push_back(&dnwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
  3032. output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  3033. }
  3034. //Downward check to downward equivalent matrix.
  3035. Matrix<Real_t>& M_dc2de = this->mat->Mat(level, DC2DE_Type, 0);
  3036. this->SetupInteracPts(setup_data, false, true, &M_dc2de,device);
  3037. { // Resize device buffer
  3038. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3039. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3040. }
  3041. }
  3042. template <class FMMNode>
  3043. void FMM_Pts<FMMNode>::X_List (SetupData<Real_t>& setup_data, bool device){
  3044. //Add X_List contribution.
  3045. //this->EvalListPts(setup_data, device);
  3046. }
  3047. template <class FMMNode>
  3048. void FMM_Pts<FMMNode>::W_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3049. { // Set setup_data
  3050. setup_data.level=level;
  3051. setup_data.kernel=&kernel;
  3052. setup_data.interac_type.resize(1);
  3053. setup_data.interac_type[0]=W_Type;
  3054. setup_data. input_data=&buff[0];
  3055. setup_data.output_data=&buff[5];
  3056. setup_data. coord_data=&buff[6];
  3057. Vector<FMMNode_t*>& nodes_in =n_list[0];
  3058. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3059. setup_data.nodes_in .clear();
  3060. setup_data.nodes_out.clear();
  3061. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3062. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3063. }
  3064. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3065. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3066. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3067. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3068. for(size_t i=0;i<nodes_in .size();i++){
  3069. input_vector .push_back(&upwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  3070. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  3071. input_vector .push_back(NULL);
  3072. input_vector .push_back(NULL);
  3073. }
  3074. for(size_t i=0;i<nodes_out.size();i++){
  3075. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3076. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3077. }
  3078. this->SetupInteracPts(setup_data, true, false, NULL, device);
  3079. { // Resize device buffer
  3080. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3081. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3082. }
  3083. }
  3084. template <class FMMNode>
  3085. void FMM_Pts<FMMNode>::W_List (SetupData<Real_t>& setup_data, bool device){
  3086. //Add W_List contribution.
  3087. //this->EvalListPts(setup_data, device);
  3088. }
  3089. template <class FMMNode>
  3090. void FMM_Pts<FMMNode>::U_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3091. { // Set setup_data
  3092. setup_data.level=level;
  3093. setup_data.kernel=&kernel;
  3094. setup_data.interac_type.resize(3);
  3095. setup_data.interac_type[0]=U0_Type;
  3096. setup_data.interac_type[1]=U1_Type;
  3097. setup_data.interac_type[2]=U2_Type;
  3098. setup_data. input_data=&buff[4];
  3099. setup_data.output_data=&buff[5];
  3100. setup_data. coord_data=&buff[6];
  3101. Vector<FMMNode_t*>& nodes_in =n_list[4];
  3102. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3103. setup_data.nodes_in .clear();
  3104. setup_data.nodes_out.clear();
  3105. for(size_t i=0;i<nodes_in .Dim();i++) if((level-1<=nodes_in [i]->Depth() && nodes_in [i]->Depth()<=level+1) || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3106. for(size_t i=0;i<nodes_out.Dim();i++) if(( nodes_out[i]->Depth()==level ) || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3107. }
  3108. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3109. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3110. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3111. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3112. for(size_t i=0;i<nodes_in .size();i++){
  3113. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  3114. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  3115. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  3116. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  3117. }
  3118. for(size_t i=0;i<nodes_out.size();i++){
  3119. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3120. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3121. }
  3122. this->SetupInteracPts(setup_data, false, false, NULL, device);
  3123. { // Resize device buffer
  3124. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3125. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3126. }
  3127. }
  3128. template <class FMMNode>
  3129. void FMM_Pts<FMMNode>::U_List (SetupData<Real_t>& setup_data, bool device){
  3130. //Add U_List contribution.
  3131. //this->EvalListPts(setup_data, device);
  3132. }
  3133. template <class FMMNode>
  3134. void FMM_Pts<FMMNode>::Down2TargetSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3135. { // Set setup_data
  3136. setup_data.level=level;
  3137. setup_data.kernel=&kernel;
  3138. setup_data.interac_type.resize(1);
  3139. setup_data.interac_type[0]=D2T_Type;
  3140. setup_data. input_data=&buff[1];
  3141. setup_data.output_data=&buff[5];
  3142. setup_data. coord_data=&buff[6];
  3143. Vector<FMMNode_t*>& nodes_in =n_list[1];
  3144. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3145. setup_data.nodes_in .clear();
  3146. setup_data.nodes_out.clear();
  3147. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3148. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3149. }
  3150. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3151. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3152. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3153. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3154. for(size_t i=0;i<nodes_in .size();i++){
  3155. input_vector .push_back(&dnwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  3156. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  3157. input_vector .push_back(NULL);
  3158. input_vector .push_back(NULL);
  3159. }
  3160. for(size_t i=0;i<nodes_out.size();i++){
  3161. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3162. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3163. }
  3164. this->SetupInteracPts(setup_data, true, false, NULL, device);
  3165. { // Resize device buffer
  3166. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3167. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3168. }
  3169. }
  3170. template <class FMMNode>
  3171. void FMM_Pts<FMMNode>::Down2Target(SetupData<Real_t>& setup_data, bool device){
  3172. //Add Down2Target contribution.
  3173. //this->EvalListPts(setup_data, device);
  3174. }
  3175. template <class FMMNode>
  3176. void FMM_Pts<FMMNode>::PostProcessing(std::vector<FMMNode_t*>& nodes){
  3177. }
  3178. template <class FMMNode>
  3179. void FMM_Pts<FMMNode>::CopyOutput(FMMNode** nodes, size_t n){
  3180. // for(size_t i=0;i<n;i++){
  3181. // FMMData* fmm_data=((FMMData*)nodes[i]->FMMData());
  3182. // }
  3183. }
  3184. }//end namespace