12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629 |
- /**
- * \file fmm_pts.txx
- * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
- * \date 3-07-2011
- * \brief This file contains the implementation of the FMM_Pts class.
- */
- #include <stdio.h>
- #include <mpi.h>
- #include <set>
- #include <sstream>
- #include <fft_wrapper.hpp>
- #include <mat_utils.hpp>
- #ifdef PVFMM_HAVE_SYS_STAT_H
- #include <sys/stat.h>
- #endif
- #ifdef __SSE__
- #include <xmmintrin.h>
- #endif
- #ifdef __SSE3__
- #include <pmmintrin.h>
- #endif
- #ifdef __AVX__
- #include <immintrin.h>
- #endif
- #ifdef __INTEL_OFFLOAD
- #include <immintrin.h>
- #endif
- #ifdef __INTEL_OFFLOAD0
- #pragma offload_attribute(push,target(mic))
- #endif
- namespace pvfmm{
- /**
- * \brief Returns the coordinates of points on the surface of a cube.
- * \param[in] p Number of points on an edge of the cube is (n+1)
- * \param[in] c Coordinates to the centre of the cube (3D array).
- * \param[in] alpha Scaling factor for the size of the cube.
- * \param[in] depth Depth of the cube in the octree.
- * \return Vector with coordinates of points on the surface of the cube in the
- * format [x0 y0 z0 x1 y1 z1 .... ].
- */
- template <class Real_t>
- std::vector<Real_t> surface(int p, Real_t* c, Real_t alpha, int depth){
- size_t n_=(6*(p-1)*(p-1)+2); //Total number of points.
- std::vector<Real_t> coord(n_*3);
- coord[0]=coord[1]=coord[2]=-1.0;
- size_t cnt=1;
- for(int i=0;i<p-1;i++)
- for(int j=0;j<p-1;j++){
- coord[cnt*3 ]=-1.0;
- coord[cnt*3+1]=(2.0*(i+1)-p+1)/(p-1);
- coord[cnt*3+2]=(2.0*j-p+1)/(p-1);
- cnt++;
- }
- for(int i=0;i<p-1;i++)
- for(int j=0;j<p-1;j++){
- coord[cnt*3 ]=(2.0*i-p+1)/(p-1);
- coord[cnt*3+1]=-1.0;
- coord[cnt*3+2]=(2.0*(j+1)-p+1)/(p-1);
- cnt++;
- }
- for(int i=0;i<p-1;i++)
- for(int j=0;j<p-1;j++){
- coord[cnt*3 ]=(2.0*(i+1)-p+1)/(p-1);
- coord[cnt*3+1]=(2.0*j-p+1)/(p-1);
- coord[cnt*3+2]=-1.0;
- cnt++;
- }
- for(size_t i=0;i<(n_/2)*3;i++)
- coord[cnt*3+i]=-coord[i];
- Real_t r = 0.5*pow(0.5,depth);
- Real_t b = alpha*r;
- for(size_t i=0;i<n_;i++){
- coord[i*3+0]=(coord[i*3+0]+1.0)*b+c[0];
- coord[i*3+1]=(coord[i*3+1]+1.0)*b+c[1];
- coord[i*3+2]=(coord[i*3+2]+1.0)*b+c[2];
- }
- return coord;
- }
- /**
- * \brief Returns the coordinates of points on the upward check surface of cube.
- * \see surface()
- */
- template <class Real_t>
- std::vector<Real_t> u_check_surf(int p, Real_t* c, int depth){
- Real_t r=0.5*pow(0.5,depth);
- Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
- return surface(p,coord,(Real_t)RAD1,depth);
- }
- /**
- * \brief Returns the coordinates of points on the upward equivalent surface of cube.
- * \see surface()
- */
- template <class Real_t>
- std::vector<Real_t> u_equiv_surf(int p, Real_t* c, int depth){
- Real_t r=0.5*pow(0.5,depth);
- Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
- return surface(p,coord,(Real_t)RAD0,depth);
- }
- /**
- * \brief Returns the coordinates of points on the downward check surface of cube.
- * \see surface()
- */
- template <class Real_t>
- std::vector<Real_t> d_check_surf(int p, Real_t* c, int depth){
- Real_t r=0.5*pow(0.5,depth);
- Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
- return surface(p,coord,(Real_t)RAD0,depth);
- }
- /**
- * \brief Returns the coordinates of points on the downward equivalent surface of cube.
- * \see surface()
- */
- template <class Real_t>
- std::vector<Real_t> d_equiv_surf(int p, Real_t* c, int depth){
- Real_t r=0.5*pow(0.5,depth);
- Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
- return surface(p,coord,(Real_t)RAD1,depth);
- }
- /**
- * \brief Defines the 3D grid for convolution in FFT acceleration of V-list.
- * \see surface()
- */
- template <class Real_t>
- std::vector<Real_t> conv_grid(int p, Real_t* c, int depth){
- Real_t r=pow(0.5,depth);
- Real_t a=r*RAD0;
- Real_t coord[3]={c[0],c[1],c[2]};
- int n1=p*2;
- int n2=(int)pow((Real_t)n1,2);
- int n3=(int)pow((Real_t)n1,3);
- std::vector<Real_t> grid(n3*3);
- for(int i=0;i<n1;i++)
- for(int j=0;j<n1;j++)
- for(int k=0;k<n1;k++){
- grid[(i+n1*j+n2*k)*3+0]=(i-p)*a/(p-1)+coord[0];
- grid[(i+n1*j+n2*k)*3+1]=(j-p)*a/(p-1)+coord[1];
- grid[(i+n1*j+n2*k)*3+2]=(k-p)*a/(p-1)+coord[2];
- }
- return grid;
- }
- #ifdef __INTEL_OFFLOAD0
- #pragma offload_attribute(pop)
- #endif
- template <class Real_t>
- void FMM_Data<Real_t>::Clear(){
- upward_equiv.Resize(0);
- }
- template <class Real_t>
- PackedData FMM_Data<Real_t>::PackMultipole(void* buff_ptr){
- PackedData p0; p0.data=buff_ptr;
- p0.length=upward_equiv.Dim()*sizeof(Real_t);
- if(p0.length==0) return p0;
- if(p0.data==NULL) p0.data=(char*)&upward_equiv[0];
- else mem::memcopy(p0.data,&upward_equiv[0],p0.length);
- return p0;
- }
- template <class Real_t>
- void FMM_Data<Real_t>::AddMultipole(PackedData p0){
- Real_t* data=(Real_t*)p0.data;
- size_t n=p0.length/sizeof(Real_t);
- assert(upward_equiv.Dim()==n);
- Matrix<Real_t> v0(1,n,&upward_equiv[0],false);
- Matrix<Real_t> v1(1,n,data,false);
- v0+=v1;
- }
- template <class Real_t>
- void FMM_Data<Real_t>::InitMultipole(PackedData p0, bool own_data){
- Real_t* data=(Real_t*)p0.data;
- size_t n=p0.length/sizeof(Real_t);
- if(own_data){
- if(n>0) upward_equiv=Vector<Real_t>(n, &data[0], false);
- }else{
- if(n>0) upward_equiv.ReInit(n, &data[0], false);
- }
- }
- template <class FMMNode>
- FMM_Pts<FMMNode>::~FMM_Pts() {
- if(mat!=NULL){
- // int rank;
- // MPI_Comm_rank(comm,&rank);
- // if(rank==0) mat->Save2File("Precomp.data");
- delete mat;
- mat=NULL;
- }
- if(vprecomp_fft_flag) FFTW_t<Real_t>::fft_destroy_plan(vprecomp_fftplan);
- #ifdef __INTEL_OFFLOAD0
- #pragma offload target(mic:0)
- #endif
- {
- if(vlist_fft_flag ) FFTW_t<Real_t>::fft_destroy_plan(vlist_fftplan );
- if(vlist_ifft_flag) FFTW_t<Real_t>::fft_destroy_plan(vlist_ifftplan);
- vlist_fft_flag =false;
- vlist_ifft_flag=false;
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::Initialize(int mult_order, const MPI_Comm& comm_, const Kernel<Real_t>* kernel_, const Kernel<Real_t>* aux_kernel_){
- Profile::Tic("InitFMM_Pts",&comm_,true);{
- multipole_order=mult_order;
- comm=comm_;
- kernel=*kernel_;
- aux_kernel=*(aux_kernel_?aux_kernel_:kernel_);
- assert(kernel.ker_dim[0]==aux_kernel.ker_dim[0]);
- mat=new PrecompMat<Real_t>(Homogen(), MAX_DEPTH+1);
- if(this->mat_fname.size()==0){
- std::stringstream st;
- st<<PVFMM_PRECOMP_DATA_PATH;
- if(!st.str().size()){ // look in PVFMM_DIR
- char* pvfmm_dir = getenv ("PVFMM_DIR");
- if(pvfmm_dir) st<<pvfmm_dir<<'/';
- }
- #ifndef STAT_MACROS_BROKEN
- if(st.str().size()){ // check if the path is a directory
- struct stat stat_buff;
- if(stat(st.str().c_str(), &stat_buff) || !S_ISDIR(stat_buff.st_mode)){
- std::cout<<"error: path not found: "<<st.str()<<'\n';
- exit(0);
- }
- }
- #endif
- st<<"Precomp_"<<kernel.ker_name.c_str()<<"_m"<<mult_order<<(typeid(Real_t)==typeid(float)?"_f":"")<<".data";
- this->mat_fname=st.str();
- }
- this->mat->LoadFile(mat_fname.c_str(), this->comm);
- interac_list.Initialize(COORD_DIM, this->mat);
- Profile::Tic("PrecompUC2UE",&comm,false,4);
- this->PrecompAll(UC2UE_Type);
- Profile::Toc();
- Profile::Tic("PrecompDC2DE",&comm,false,4);
- this->PrecompAll(DC2DE_Type);
- Profile::Toc();
- Profile::Tic("PrecompBC",&comm,false,4);
- { /*
- int type=BC_Type;
- for(int l=0;l<MAX_DEPTH;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount((Mat_Type)type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, (Mat_Type)type, indx);
- M.Resize(0,0);
- } // */
- }
- this->PrecompAll(BC_Type,0);
- Profile::Toc();
- Profile::Tic("PrecompU2U",&comm,false,4);
- this->PrecompAll(U2U_Type);
- Profile::Toc();
- Profile::Tic("PrecompD2D",&comm,false,4);
- this->PrecompAll(D2D_Type);
- Profile::Toc();
- Profile::Tic("PrecompV",&comm,false,4);
- this->PrecompAll(V_Type);
- Profile::Toc();
- Profile::Tic("PrecompV1",&comm,false,4);
- this->PrecompAll(V1_Type);
- Profile::Toc();
- }Profile::Toc();
- }
- template <class FMMNode>
- Permutation<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::PrecompPerm(Mat_Type type, Perm_Type perm_indx){
- //Check if the matrix already exists.
- Permutation<Real_t>& P_ = mat->Perm((Mat_Type)type, perm_indx);
- if(P_.Dim()!=0) return P_;
- Matrix<size_t> swap_xy(10,9);
- Matrix<size_t> swap_xz(10,9);
- {
- for(int i=0;i<9;i++)
- for(int j=0;j<9;j++){
- swap_xy[i][j]=j;
- swap_xz[i][j]=j;
- }
- swap_xy[3][0]=1; swap_xy[3][1]=0; swap_xy[3][2]=2;
- swap_xz[3][0]=2; swap_xz[3][1]=1; swap_xz[3][2]=0;
- swap_xy[6][0]=1; swap_xy[6][1]=0; swap_xy[6][2]=2;
- swap_xy[6][3]=4; swap_xy[6][4]=3; swap_xy[6][5]=5;
- swap_xz[6][0]=2; swap_xz[6][1]=1; swap_xz[6][2]=0;
- swap_xz[6][3]=5; swap_xz[6][4]=4; swap_xz[6][5]=3;
- swap_xy[9][0]=4; swap_xy[9][1]=3; swap_xy[9][2]=5;
- swap_xy[9][3]=1; swap_xy[9][4]=0; swap_xy[9][5]=2;
- swap_xy[9][6]=7; swap_xy[9][7]=6; swap_xy[9][8]=8;
- swap_xz[9][0]=8; swap_xz[9][1]=7; swap_xz[9][2]=6;
- swap_xz[9][3]=5; swap_xz[9][4]=4; swap_xz[9][5]=3;
- swap_xz[9][6]=2; swap_xz[9][7]=1; swap_xz[9][8]=0;
- }
- //Compute the matrix.
- Permutation<Real_t> P;
- switch (type){
- case UC2UE_Type:
- {
- break;
- }
- case DC2DE_Type:
- {
- break;
- }
- case S2U_Type:
- {
- break;
- }
- case U2U_Type:
- {
- break;
- }
- case D2D_Type:
- {
- Real_t eps=1e-10;
- int dof=kernel.ker_dim[0];
- size_t p_indx=perm_indx % C_Perm;
- Real_t c[3]={-0.5,-0.5,-0.5};
- std::vector<Real_t> trg_coord=d_check_surf(this->MultipoleOrder(),c,0);
- int n_trg=trg_coord.size()/3;
- P=Permutation<Real_t>(n_trg*dof);
- if(p_indx==ReflecX || p_indx==ReflecY || p_indx==ReflecZ){
- for(int i=0;i<n_trg;i++)
- for(int j=0;j<n_trg;j++){
- if(fabs(trg_coord[i*3+0]-trg_coord[j*3+0]*(p_indx==ReflecX?-1.0:1.0))<eps)
- if(fabs(trg_coord[i*3+1]-trg_coord[j*3+1]*(p_indx==ReflecY?-1.0:1.0))<eps)
- if(fabs(trg_coord[i*3+2]-trg_coord[j*3+2]*(p_indx==ReflecZ?-1.0:1.0))<eps){
- for(int k=0;k<dof;k++){
- P.perm[j*dof+k]=i*dof+k;
- }
- }
- }
- if(dof==3) //stokes_vel (and like kernels)
- for(int j=0;j<n_trg;j++)
- P.scal[j*dof+(int)p_indx]*=-1.0;
- }else if(p_indx==SwapXY || p_indx==SwapXZ)
- for(int i=0;i<n_trg;i++)
- for(int j=0;j<n_trg;j++){
- if(fabs(trg_coord[i*3+0]-trg_coord[j*3+(p_indx==SwapXY?1:2)])<eps)
- if(fabs(trg_coord[i*3+1]-trg_coord[j*3+(p_indx==SwapXY?0:1)])<eps)
- if(fabs(trg_coord[i*3+2]-trg_coord[j*3+(p_indx==SwapXY?2:0)])<eps){
- for(int k=0;k<dof;k++){
- P.perm[j*dof+k]=i*dof+(p_indx==SwapXY?swap_xy[dof][k]:swap_xz[dof][k]);
- }
- }
- }
- break;
- }
- case D2T_Type:
- {
- break;
- }
- case U0_Type:
- {
- break;
- }
- case U1_Type:
- {
- break;
- }
- case U2_Type:
- {
- break;
- }
- case V_Type:
- {
- break;
- }
- case V1_Type:
- {
- break;
- }
- case W_Type:
- {
- break;
- }
- case X_Type:
- {
- break;
- }
- case BC_Type:
- {
- break;
- }
- default:
- break;
- }
- //Save the matrix for future use.
- #pragma omp critical (PRECOMP_MATRIX_PTS)
- {
- if(P_.Dim()==0) P_=P;
- }
- return P_;
- }
- template <class FMMNode>
- Matrix<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::Precomp(int level, Mat_Type type, size_t mat_indx){
- if(this->Homogen()) level=0;
- //Check if the matrix already exists.
- Matrix<Real_t>& M_ = this->mat->Mat(level, type, mat_indx);
- if(M_.Dim(0)!=0 && M_.Dim(1)!=0) return M_;
- else{ //Compute matrix from symmetry class (if possible).
- size_t class_indx = this->interac_list.InteracClass(type, mat_indx);
- if(class_indx!=mat_indx){
- Matrix<Real_t>& M0 = this->Precomp(level, type, class_indx);
- Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, type, mat_indx);
- Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, type, mat_indx);
- if(Pr.Dim()>0 && Pc.Dim()>0 && M0.Dim(0)>0 && M0.Dim(1)>0) return M_;
- }
- }
- //Compute the matrix.
- Matrix<Real_t> M;
- int* ker_dim=kernel.ker_dim;
- int* aux_ker_dim=aux_kernel.ker_dim;
- //int omp_p=omp_get_max_threads();
- switch (type){
- case UC2UE_Type:
- {
- // Coord of upward check surface
- Real_t c[3]={0,0,0};
- std::vector<Real_t> uc_coord=u_check_surf(MultipoleOrder(),c,level);
- size_t n_uc=uc_coord.size()/3;
- // Coord of upward equivalent surface
- std::vector<Real_t> ue_coord=u_equiv_surf(MultipoleOrder(),c,level);
- size_t n_ue=ue_coord.size()/3;
- // Evaluate potential at check surface due to equivalent surface.
- Matrix<Real_t> M_e2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
- Kernel<Real_t>::Eval(&ue_coord[0], n_ue,
- &uc_coord[0], n_uc, &(M_e2c[0][0]),
- aux_kernel.ker_poten, aux_ker_dim);
- M=M_e2c.pinv(); //check 2 equivalent
- break;
- }
- case DC2DE_Type:
- {
- // Coord of downward check surface
- Real_t c[3]={0,0,0};
- std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
- size_t n_ch=check_surf.size()/3;
- // Coord of downward equivalent surface
- std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
- size_t n_eq=equiv_surf.size()/3;
- // Evaluate potential at check surface due to equivalent surface.
- Matrix<Real_t> M_e2c(n_eq*aux_ker_dim[0],n_ch*aux_ker_dim[1]);
- Kernel<Real_t>::Eval(&equiv_surf[0], n_eq,
- &check_surf[0], n_ch, &(M_e2c[0][0]),
- aux_kernel.ker_poten,aux_ker_dim);
- M=M_e2c.pinv(); //check 2 equivalent
- break;
- }
- case S2U_Type:
- {
- break;
- }
- case U2U_Type:
- {
- // Coord of upward check surface
- Real_t c[3]={0,0,0};
- std::vector<Real_t> check_surf=u_check_surf(MultipoleOrder(),c,level);
- size_t n_uc=check_surf.size()/3;
- // Coord of child's upward equivalent surface
- Real_t s=pow(0.5,(level+2));
- int* coord=interac_list.RelativeCoord(type,mat_indx);
- Real_t child_coord[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
- std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),child_coord,level+1);
- size_t n_ue=equiv_surf.size()/3;
- // Evaluate potential at check surface due to equivalent surface.
- Matrix<Real_t> M_ce2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
- Kernel<Real_t>::Eval(&equiv_surf[0], n_ue,
- &check_surf[0], n_uc, &(M_ce2c[0][0]),
- aux_kernel.ker_poten, aux_ker_dim);
- Matrix<Real_t>& M_c2e = Precomp(level, UC2UE_Type, 0);
- M=M_ce2c*M_c2e;
- break;
- }
- case D2D_Type:
- {
- // Coord of downward check surface
- Real_t s=pow(0.5,level+1);
- int* coord=interac_list.RelativeCoord(type,mat_indx);
- Real_t c[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
- std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
- size_t n_dc=check_surf.size()/3;
- // Coord of parent's downward equivalent surface
- Real_t parent_coord[3]={0,0,0};
- std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),parent_coord,level-1);
- size_t n_de=equiv_surf.size()/3;
- // Evaluate potential at check surface due to equivalent surface.
- Matrix<Real_t> M_pe2c(n_de*aux_ker_dim[0],n_dc*aux_ker_dim[1]);
- Kernel<Real_t>::Eval(&equiv_surf[0], n_de,
- &check_surf[0], n_dc, &(M_pe2c[0][0]),
- aux_kernel.ker_poten,aux_ker_dim);
- Matrix<Real_t>& M_c2e=Precomp(level,DC2DE_Type,0);
- M=M_pe2c*M_c2e;
- break;
- }
- case D2T_Type:
- {
- std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
- // Coord of target points
- Real_t r=pow(0.5,level);
- size_t n_trg=rel_trg_coord.size()/3;
- std::vector<Real_t> trg_coord(n_trg*3);
- for(size_t i=0;i<n_trg*COORD_DIM;i++) trg_coord[i]=rel_trg_coord[i]*r;
- // Coord of downward equivalent surface
- Real_t c[3]={0,0,0};
- std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
- size_t n_eq=equiv_surf.size()/3;
- // Evaluate potential at target points due to equivalent surface.
- {
- M .Resize(n_eq*ker_dim [0], n_trg*ker_dim [1]);
- kernel.BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
- }
- break;
- }
- case U0_Type:
- {
- break;
- }
- case U1_Type:
- {
- break;
- }
- case U2_Type:
- {
- break;
- }
- case V_Type:
- {
- int n1=MultipoleOrder()*2;
- int n3 =n1*n1*n1;
- int n3_=n1*n1*(n1/2+1);
- //Compute the matrix.
- Real_t s=pow(0.5,level);
- int* coord2=interac_list.RelativeCoord(type,mat_indx);
- Real_t coord_diff[3]={coord2[0]*s,coord2[1]*s,coord2[2]*s};
- //Evaluate potential.
- std::vector<Real_t> r_trg(COORD_DIM,0.0);
- std::vector<Real_t> conv_poten(n3*aux_ker_dim[0]*aux_ker_dim[1]);
- std::vector<Real_t> conv_coord=conv_grid(MultipoleOrder(),coord_diff,level);
- Kernel<Real_t>::Eval(&conv_coord[0],n3,&r_trg[0],1,&conv_poten[0],aux_kernel.ker_poten,aux_ker_dim);
- //Rearrange data.
- Matrix<Real_t> M_conv(n3,aux_ker_dim[0]*aux_ker_dim[1],&conv_poten[0],false);
- M_conv=M_conv.Transpose();
- //Compute FFTW plan.
- int nnn[3]={n1,n1,n1};
- void *fftw_in, *fftw_out;
- fftw_in = fftw_malloc( n3 *aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
- fftw_out = fftw_malloc(2*n3_*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
- #pragma omp critical (FFTW_PLAN)
- {
- if (!vprecomp_fft_flag){
- vprecomp_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM, nnn, aux_ker_dim[0]*aux_ker_dim[1],
- (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*) fftw_out, NULL, 1, n3_, FFTW_ESTIMATE);
- vprecomp_fft_flag=true;
- }
- }
- //Compute FFT.
- mem::memcopy(fftw_in, &conv_poten[0], n3*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
- FFTW_t<Real_t>::fft_execute_dft_r2c(vprecomp_fftplan, (Real_t*)fftw_in, (typename FFTW_t<Real_t>::cplx*)(fftw_out));
- Matrix<Real_t> M_(2*n3_*aux_ker_dim[0]*aux_ker_dim[1],1,(Real_t*)fftw_out,false);
- M=M_;
- //Free memory.
- fftw_free(fftw_in);
- fftw_free(fftw_out);
- break;
- }
- case V1_Type:
- {
- size_t mat_cnt =interac_list.ListCount( V_Type);
- for(size_t k=0;k<mat_cnt;k++) Precomp(level, V_Type, k);
- const size_t chld_cnt=1UL<<COORD_DIM;
- size_t n1=MultipoleOrder()*2;
- size_t M_dim=n1*n1*(n1/2+1);
- size_t n3=n1*n1*n1;
- Vector<Real_t> zero_vec(M_dim*aux_ker_dim[0]*aux_ker_dim[1]*2);
- zero_vec.SetZero();
- Vector<Real_t*> M_ptr(chld_cnt*chld_cnt);
- for(size_t i=0;i<chld_cnt*chld_cnt;i++) M_ptr[i]=&zero_vec[0];
- int* rel_coord_=interac_list.RelativeCoord(V1_Type, mat_indx);
- for(int j1=0;j1<chld_cnt;j1++)
- for(int j2=0;j2<chld_cnt;j2++){
- int rel_coord[3]={rel_coord_[0]*2-(j1/1)%2+(j2/1)%2,
- rel_coord_[1]*2-(j1/2)%2+(j2/2)%2,
- rel_coord_[2]*2-(j1/4)%2+(j2/4)%2};
- for(size_t k=0;k<mat_cnt;k++){
- int* ref_coord=interac_list.RelativeCoord(V_Type, k);
- if(ref_coord[0]==rel_coord[0] &&
- ref_coord[1]==rel_coord[1] &&
- ref_coord[2]==rel_coord[2]){
- Matrix<Real_t>& M = this->mat->Mat(level, V_Type, k);
- M_ptr[j2*chld_cnt+j1]=&M[0][0];
- break;
- }
- }
- }
- // Build matrix aux_ker_dim0 x aux_ker_dim1 x M_dim x 8 x 8
- M.Resize(aux_ker_dim[0]*aux_ker_dim[1]*M_dim, 2*chld_cnt*chld_cnt);
- for(int j=0;j<aux_ker_dim[0]*aux_ker_dim[1]*M_dim;j++){
- for(size_t k=0;k<chld_cnt*chld_cnt;k++){
- M[j][k*2+0]=M_ptr[k][j*2+0]/n3;
- M[j][k*2+1]=M_ptr[k][j*2+1]/n3;
- }
- }
- break;
- }
- case W_Type:
- {
- std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
- // Coord of target points
- Real_t s=pow(0.5,level);
- size_t n_trg=rel_trg_coord.size()/3;
- std::vector<Real_t> trg_coord(n_trg*3);
- for(size_t j=0;j<n_trg*COORD_DIM;j++) trg_coord[j]=rel_trg_coord[j]*s;
- // Coord of downward equivalent surface
- int* coord2=interac_list.RelativeCoord(type,mat_indx);
- Real_t c[3]={(coord2[0]+1)*s*0.25,(coord2[1]+1)*s*0.25,(coord2[2]+1)*s*0.25};
- std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),c,level+1);
- size_t n_eq=equiv_surf.size()/3;
- // Evaluate potential at target points due to equivalent surface.
- {
- M .Resize(n_eq*ker_dim [0],n_trg*ker_dim [1]);
- kernel.BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
- }
- break;
- }
- case X_Type:
- {
- break;
- }
- case BC_Type:
- {
- size_t mat_cnt_m2m=interac_list.ListCount(U2U_Type);
- size_t n_surf=(6*(MultipoleOrder()-1)*(MultipoleOrder()-1)+2); //Total number of points.
- if((M.Dim(0)!=n_surf*aux_ker_dim[0] || M.Dim(1)!=n_surf*aux_ker_dim[1]) && level==0){
- Matrix<Real_t> M_m2m[BC_LEVELS+1];
- Matrix<Real_t> M_m2l[BC_LEVELS+1];
- Matrix<Real_t> M_l2l[BC_LEVELS+1];
- Matrix<Real_t> M_zero_avg(n_surf*aux_ker_dim[0],n_surf*aux_ker_dim[0]);
- { // Set average multipole charge to zero. (improves stability for large BC_LEVELS)
- M_zero_avg.SetZero();
- for(size_t i=0;i<n_surf*aux_ker_dim[0];i++)
- M_zero_avg[i][i]+=1;
- for(size_t i=0;i<n_surf;i++)
- for(size_t j=0;j<n_surf;j++)
- for(size_t k=0;k<aux_ker_dim[0];k++)
- M_zero_avg[i*aux_ker_dim[0]+k][j*aux_ker_dim[0]+k]-=1.0/n_surf;
- }
- for(int level=0; level>-BC_LEVELS; level--){
- M_l2l[-level] = this->Precomp(level, D2D_Type, 0);
- if(M_l2l[-level].Dim(0)==0 || M_l2l[-level].Dim(1)==0){
- Matrix<Real_t>& M0 = interac_list.ClassMat(level, D2D_Type, 0);
- Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, D2D_Type, 0);
- Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, D2D_Type, 0);
- M_l2l[-level] = Pr*M0*Pc;
- }
- M_m2m[-level] = M_zero_avg*this->Precomp(level, U2U_Type, 0);
- for(size_t mat_indx=1; mat_indx<mat_cnt_m2m; mat_indx++)
- M_m2m[-level] += M_zero_avg*this->Precomp(level, U2U_Type, mat_indx);
- }
- for(int level=-BC_LEVELS;level<=0;level++){
- if(!Homogen() || level==-BC_LEVELS){
- Real_t s=(1UL<<(-level));
- Real_t ue_coord[3]={0,0,0};
- Real_t dc_coord[3]={0,0,0};
- std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
- std::vector<Real_t> trg_coord=d_check_surf(MultipoleOrder(), dc_coord, level);
- Matrix<Real_t> M_ue2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
- M_ue2dc.SetZero();
- for(int x0=-2;x0<4;x0++)
- for(int x1=-2;x1<4;x1++)
- for(int x2=-2;x2<4;x2++)
- if(abs(x0)>1 || abs(x1)>1 || abs(x2)>1){
- ue_coord[0]=x0*s; ue_coord[1]=x1*s; ue_coord[2]=x2*s;
- std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
- Matrix<Real_t> M_tmp(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
- Kernel<Real_t>::Eval(&src_coord[0], n_surf,
- &trg_coord[0], n_surf, &(M_tmp[0][0]),
- aux_kernel.ker_poten, aux_ker_dim);
- M_ue2dc+=M_tmp;
- }
- // Shift by constant.
- Real_t scale_adj=(Homogen()?pow(0.5, level*aux_kernel.poten_scale):1);
- for(size_t i=0;i<M_ue2dc.Dim(0);i++){
- std::vector<Real_t> avg(aux_ker_dim[1],0);
- for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
- for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
- for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
- for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
- for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]=(M_ue2dc[i][j+k]-avg[k])*scale_adj;
- }
- Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
- M_m2l[-level]=M_ue2dc*M_dc2de;
- }else M_m2l[-level]=M_m2l[1-level];
- if(level==-BC_LEVELS) M = M_m2l[-level];
- else M = M_m2l[-level] + M_m2m[-level]*M*M_l2l[-level];
- { // Shift by constant. (improves stability for large BC_LEVELS)
- Matrix<Real_t> M_de2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
- { // M_de2dc TODO: For homogeneous kernels, compute only once.
- // Coord of downward check surface
- Real_t c[3]={0,0,0};
- std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,0);
- size_t n_ch=check_surf.size()/3;
- // Coord of downward equivalent surface
- std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
- size_t n_eq=equiv_surf.size()/3;
- // Evaluate potential at check surface due to equivalent surface.
- Kernel<Real_t>::Eval(&equiv_surf[0], n_eq,
- &check_surf[0], n_ch, &(M_de2dc[0][0]),
- aux_kernel.ker_poten,aux_ker_dim);
- }
- Matrix<Real_t> M_ue2dc=M*M_de2dc;
- for(size_t i=0;i<M_ue2dc.Dim(0);i++){
- std::vector<Real_t> avg(aux_ker_dim[1],0);
- for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
- for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
- for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
- for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
- for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]-=avg[k];
- }
- Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
- M=M_ue2dc*M_dc2de;
- }
- }
- { // ax+by+cz+d correction.
- std::vector<Real_t> corner_pts;
- corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(0);
- corner_pts.push_back(1); corner_pts.push_back(0); corner_pts.push_back(0);
- corner_pts.push_back(0); corner_pts.push_back(1); corner_pts.push_back(0);
- corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(1);
- size_t n_corner=corner_pts.size()/3;
- // Coord of downward equivalent surface
- Real_t c[3]={0,0,0};
- std::vector<Real_t> up_equiv_surf=u_equiv_surf(MultipoleOrder(),c,0);
- std::vector<Real_t> dn_equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
- std::vector<Real_t> dn_check_surf=d_check_surf(MultipoleOrder(),c,0);
- Matrix<Real_t> M_err;
- { // Evaluate potential at corner due to upward and dnward equivalent surface.
- { // Error from local expansion.
- Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],n_corner*aux_ker_dim[1]);
- Kernel<Real_t>::Eval(&dn_equiv_surf[0], n_surf,
- &corner_pts[0], n_corner, &(M_e2pt[0][0]),
- aux_kernel.ker_poten,aux_ker_dim);
- M_err=M*M_e2pt;
- }
- for(size_t k=0;k<4;k++){ // Error from colleagues of root.
- for(int j0=-1;j0<=1;j0++)
- for(int j1=-1;j1<=1;j1++)
- for(int j2=-1;j2<=1;j2++){
- Real_t pt_coord[3]={corner_pts[k*COORD_DIM+0]-j0,
- corner_pts[k*COORD_DIM+1]-j1,
- corner_pts[k*COORD_DIM+2]-j2};
- if(fabs(pt_coord[0]-0.5)>1.0 || fabs(pt_coord[1]-0.5)>1.0 || fabs(pt_coord[2]-0.5)>1.0){
- Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],aux_ker_dim[1]);
- Kernel<Real_t>::Eval(&up_equiv_surf[0], n_surf,
- &pt_coord[0], 1, &(M_e2pt[0][0]),
- aux_kernel.ker_poten,aux_ker_dim);
- for(size_t i=0;i<M_e2pt.Dim(0);i++)
- for(size_t j=0;j<M_e2pt.Dim(1);j++)
- M_err[i][k*aux_ker_dim[1]+j]+=M_e2pt[i][j];
- }
- }
- }
- }
- Matrix<Real_t> M_grad(M_err.Dim(0),n_surf*aux_ker_dim[1]);
- for(size_t i=0;i<M_err.Dim(0);i++)
- for(size_t k=0;k<aux_ker_dim[1];k++)
- for(size_t j=0;j<n_surf;j++){
- M_grad[i][j*aux_ker_dim[1]+k]=(M_err[i][0*aux_ker_dim[1]+k] )*1.0 +
- (M_err[i][1*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+0]+
- (M_err[i][2*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+1]+
- (M_err[i][3*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+2];
- }
- Matrix<Real_t>& M_dc2de = Precomp(0, DC2DE_Type, 0);
- M-=M_grad*M_dc2de;
- }
- { // Free memory
- Mat_Type type=D2D_Type;
- for(int l=-BC_LEVELS;l<0;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- type=U2U_Type;
- for(int l=-BC_LEVELS;l<0;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- type=DC2DE_Type;
- for(int l=-BC_LEVELS;l<0;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- type=UC2UE_Type;
- for(int l=-BC_LEVELS;l<0;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- }
- }
- break;
- }
- default:
- break;
- }
- //Save the matrix for future use.
- #pragma omp critical (PRECOMP_MATRIX_PTS)
- if(M_.Dim(0)==0 && M_.Dim(1)==0){
- M_=M;
- /*
- M_.Resize(M.Dim(0),M.Dim(1));
- int dof=aux_ker_dim[0]*aux_ker_dim[1];
- for(int j=0;j<dof;j++){
- size_t a=(M.Dim(0)*M.Dim(1)* j )/dof;
- size_t b=(M.Dim(0)*M.Dim(1)*(j+1))/dof;
- #pragma omp parallel for // NUMA
- for(int tid=0;tid<omp_p;tid++){
- size_t a_=a+((b-a)* tid )/omp_p;
- size_t b_=a+((b-a)*(tid+1))/omp_p;
- mem::memcopy(&M_[0][a_], &M[0][a_], (b_-a_)*sizeof(Real_t));
- }
- }
- */
- }
- return M_;
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::PrecompAll(Mat_Type type, int level){
- int depth=(Homogen()?1:MAX_DEPTH);
- if(level==-1){
- for(int l=0;l<depth;l++){
- std::stringstream level_str;
- level_str<<"level="<<l;
- PrecompAll(type, l);
- }
- return;
- }
- //Compute basic permutations.
- for(size_t i=0;i<Perm_Count;i++)
- this->PrecompPerm(type, (Perm_Type) i);
- {
- //Allocate matrices.
- size_t mat_cnt=interac_list.ListCount((Mat_Type)type);
- mat->Mat(level, (Mat_Type)type, mat_cnt-1);
- { // Compute InteracClass matrices.
- std::vector<size_t> indx_lst;
- for(size_t i=0; i<mat_cnt; i++){
- if(interac_list.InteracClass((Mat_Type)type,i)==i)
- indx_lst.push_back(i);
- }
- //Compute Transformations.
- //#pragma omp parallel for //lets use fine grained parallelism
- for(size_t i=0; i<indx_lst.size(); i++){
- Precomp(level, (Mat_Type)type, indx_lst[i]);
- }
- }
- //#pragma omp parallel for //lets use fine grained parallelism
- for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
- Matrix<Real_t>& M0=interac_list.ClassMat(level,(Mat_Type)type,mat_indx);
- assert(M0.Dim(0)>0 && M0.Dim(1)>0);
- Permutation<Real_t>& pr=interac_list.Perm_R(level, (Mat_Type)type, mat_indx);
- Permutation<Real_t>& pc=interac_list.Perm_C(level, (Mat_Type)type, mat_indx);
- if(pr.Dim()!=M0.Dim(0) || pc.Dim()!=M0.Dim(1)) Precomp(level, (Mat_Type)type, mat_indx);
- }
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::CollectNodeData(std::vector<FMMNode*>& node, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, std::vector<size_t> extra_size){
- if( buff.size()<7) buff.resize(7);
- if( n_list.size()<7) n_list.resize(7);
- if(node.size()==0) return;
- {// 0. upward_equiv
- int indx=0;
- Matrix<Real_t>& M_uc2ue = this->interac_list.ClassMat(0, UC2UE_Type, 0);
- size_t vec_sz=M_uc2ue.Dim(1);
- std::vector< FMMNode* > node_lst;
- {
- std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
- FMMNode_t* r_node=NULL;
- for(size_t i=0;i<node.size();i++){
- if(!node[i]->IsLeaf())
- node_lst_[node[i]->Depth()].push_back(node[i]);
- if(node[i]->Depth()==0) r_node=node[i];
- }
- size_t chld_cnt=1UL<<COORD_DIM;
- for(int i=0;i<=MAX_DEPTH;i++)
- for(size_t j=0;j<node_lst_[i].size();j++)
- for(size_t k=0;k<chld_cnt;k++)
- node_lst.push_back((FMMNode_t*)node_lst_[i][j]->Child(k));
- if(r_node!=NULL) node_lst.push_back(r_node);
- }
- n_list[indx]=node_lst;
- size_t buff_size=node_lst.size()*vec_sz;
- buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
- buff[indx].Resize(1,buff_size);
- #pragma omp parallel for
- for(size_t i=0;i<node_lst.size();i++){
- Vector<Real_t>& upward_equiv=node_lst[i]->FMMData()->upward_equiv;
- upward_equiv.ReInit(vec_sz, buff[indx][0]+i*vec_sz, false);
- upward_equiv.SetZero();
- }
- buff[indx].AllocDevice(true);
- }
- {// 1. dnward_equiv
- int indx=1;
- Matrix<Real_t>& M_dc2de = this->interac_list.ClassMat(0, DC2DE_Type, 0);
- size_t vec_sz=M_dc2de.Dim(1);
- std::vector< FMMNode* > node_lst;
- {
- std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
- FMMNode_t* r_node=NULL;
- for(size_t i=0;i<node.size();i++){
- if(!node[i]->IsLeaf() && !node[i]->IsGhost())
- node_lst_[node[i]->Depth()].push_back(node[i]);
- if(node[i]->Depth()==0) r_node=node[i];
- }
- size_t chld_cnt=1UL<<COORD_DIM;
- for(int i=0;i<=MAX_DEPTH;i++)
- for(size_t j=0;j<node_lst_[i].size();j++)
- for(size_t k=0;k<chld_cnt;k++)
- node_lst.push_back((FMMNode_t*)node_lst_[i][j]->Child(k));
- if(r_node!=NULL) node_lst.push_back(r_node);
- }
- n_list[indx]=node_lst;
- size_t buff_size=node_lst.size()*vec_sz;
- buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
- buff[indx].Resize(1,buff_size);
- #pragma omp parallel for
- for(size_t i=0;i<node_lst.size();i++){
- Vector<Real_t>& dnward_equiv=node_lst[i]->FMMData()->dnward_equiv;
- dnward_equiv.ReInit(vec_sz, buff[indx][0]+i*vec_sz, false);
- dnward_equiv.SetZero();
- }
- buff[indx].AllocDevice(true);
- }
- {// 2. upward_equiv_fft
- int indx=2;
- std::vector< FMMNode* > node_lst;
- {
- std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
- for(size_t i=0;i<node.size();i++)
- if(!node[i]->IsLeaf())
- node_lst_[node[i]->Depth()].push_back(node[i]);
- for(int i=0;i<=MAX_DEPTH;i++)
- for(size_t j=0;j<node_lst_[i].size();j++)
- node_lst.push_back(node_lst_[i][j]);
- }
- n_list[indx]=node_lst;
- buff[indx].AllocDevice(true);
- }
- {// 3. dnward_check_fft
- int indx=3;
- std::vector< FMMNode* > node_lst;
- {
- std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
- for(size_t i=0;i<node.size();i++)
- if(!node[i]->IsLeaf() && !node[i]->IsGhost())
- node_lst_[node[i]->Depth()].push_back(node[i]);
- for(int i=0;i<=MAX_DEPTH;i++)
- for(size_t j=0;j<node_lst_[i].size();j++)
- node_lst.push_back(node_lst_[i][j]);
- }
- n_list[indx]=node_lst;
- buff[indx].AllocDevice(true);
- }
- {// 4. src_val
- int indx=4;
- int src_dof=kernel.ker_dim[0];
- int surf_dof=COORD_DIM+src_dof;
- std::vector< FMMNode* > node_lst;
- size_t buff_size=0;
- for(size_t i=0;i<node.size();i++)
- if(node[i]->IsLeaf()){
- node_lst.push_back(node[i]);
- buff_size+=(node[i]->src_coord.Dim()/COORD_DIM)*src_dof;
- buff_size+=(node[i]->surf_coord.Dim()/COORD_DIM)*surf_dof;
- }
- n_list[indx]=node_lst;
- #pragma omp parallel for
- for(size_t i=0;i<node_lst.size();i++){ // Move data before resizing buff[indx]
- { // src_value
- Vector<Real_t>& src_value=node_lst[i]->src_value;
- Vector<Real_t> new_buff=src_value;
- src_value.ReInit(new_buff.Dim(), &new_buff[0]);
- }
- { // surf_value
- Vector<Real_t>& surf_value=node_lst[i]->surf_value;
- Vector<Real_t> new_buff=surf_value;
- surf_value.ReInit(new_buff.Dim(), &new_buff[0]);
- }
- }
- buff[indx].Resize(1,buff_size+(extra_size.size()>indx?extra_size[indx]:0));
- Real_t* buff_ptr=&buff[indx][0][0];
- for(size_t i=0;i<node_lst.size();i++){
- FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
- { // src_value
- Vector<Real_t>& src_value=node_lst[i]->src_value;
- mem::memcopy(buff_ptr,&src_value[0],src_value.Dim()*sizeof(Real_t));
- src_value.ReInit((node_lst[i]->src_coord.Dim()/COORD_DIM)*src_dof, buff_ptr, false);
- buff_ptr+=(node_lst[i]->src_coord.Dim()/COORD_DIM)*src_dof;
- }
- { // surf_value
- Vector<Real_t>& surf_value=node_lst[i]->surf_value;
- mem::memcopy(buff_ptr,&surf_value[0],surf_value.Dim()*sizeof(Real_t));
- surf_value.ReInit((node_lst[i]->surf_coord.Dim()/COORD_DIM)*surf_dof, buff_ptr, false);
- buff_ptr+=(node_lst[i]->surf_coord.Dim()/COORD_DIM)*surf_dof;
- }
- }
- buff[indx].AllocDevice(true);
- }
- {// 5. trg_val
- int indx=5;
- int trg_dof=kernel.ker_dim[1];
- std::vector< FMMNode* > node_lst;
- size_t buff_size=0;
- for(size_t i=0;i<node.size();i++)
- if(node[i]->IsLeaf() && !node[i]->IsGhost()){
- node_lst.push_back(node[i]);
- FMMData* fmm_data=((FMMData*)node[i]->FMMData());
- buff_size+=(node[i]->trg_coord.Dim()/COORD_DIM)*trg_dof;
- }
- n_list[indx]=node_lst;
- buff[indx].Resize(1,buff_size+(extra_size.size()>indx?extra_size[indx]:0));
- Real_t* buff_ptr=&buff[indx][0][0];
- for(size_t i=0;i<node_lst.size();i++){
- FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
- { // trg_value
- Vector<Real_t>& trg_value=node_lst[i]->trg_value;
- trg_value.ReInit((node_lst[i]->trg_coord.Dim()/COORD_DIM)*trg_dof, buff_ptr, false);
- buff_ptr+=(node_lst[i]->trg_coord.Dim()/COORD_DIM)*trg_dof;
- }
- }
- #pragma omp parallel for
- for(size_t i=0;i<node_lst.size();i++){
- FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
- Vector<Real_t>& trg_value=node_lst[i]->trg_value;
- trg_value.SetZero();
- }
- buff[indx].AllocDevice(true);
- }
- {// 6. pts_coord
- int indx=6;
- size_t m=MultipoleOrder();
- std::vector< FMMNode* > node_lst;
- size_t buff_size=0;
- for(size_t i=0;i<node.size();i++)
- if(node[i]->IsLeaf()){
- node_lst.push_back(node[i]);
- FMMData* fmm_data=((FMMData*)node[i]->FMMData());
- buff_size+=node[i]->src_coord.Dim();
- buff_size+=node[i]->surf_coord.Dim();
- buff_size+=node[i]->trg_coord.Dim();
- }
- n_list[indx]=node_lst;
- #pragma omp parallel for
- for(size_t i=0;i<node_lst.size();i++){ // Move data before resizing buff[indx]
- FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
- { // src_coord
- Vector<Real_t>& src_coord=node_lst[i]->src_coord;
- Vector<Real_t> new_buff=src_coord;
- src_coord.ReInit(new_buff.Dim(), &new_buff[0]);
- }
- { // surf_coord
- Vector<Real_t>& surf_coord=node_lst[i]->surf_coord;
- Vector<Real_t> new_buff=surf_coord;
- surf_coord.ReInit(new_buff.Dim(), &new_buff[0]);
- }
- { // trg_coord
- Vector<Real_t>& trg_coord=node_lst[i]->trg_coord;
- Vector<Real_t> new_buff=trg_coord;
- trg_coord.ReInit(new_buff.Dim(), &new_buff[0]);
- }
- }
- buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
- buff_size+=4*MAX_DEPTH*(6*(m-1)*(m-1)+2)*COORD_DIM;
- buff[indx].Resize(1,buff_size);
- Real_t* buff_ptr=&buff[indx][0][0];
- for(size_t i=0;i<node_lst.size();i++){
- FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
- { // src_coord
- Vector<Real_t>& src_coord=node_lst[i]->src_coord;
- mem::memcopy(buff_ptr,&src_coord[0],src_coord.Dim()*sizeof(Real_t));
- src_coord.ReInit(node_lst[i]->src_coord.Dim(), buff_ptr, false);
- buff_ptr+=node_lst[i]->src_coord.Dim();
- }
- { // surf_coord
- Vector<Real_t>& surf_coord=node_lst[i]->surf_coord;
- mem::memcopy(buff_ptr,&surf_coord[0],surf_coord.Dim()*sizeof(Real_t));
- surf_coord.ReInit(node_lst[i]->surf_coord.Dim(), buff_ptr, false);
- buff_ptr+=node_lst[i]->surf_coord.Dim();
- }
- { // trg_coord
- Vector<Real_t>& trg_coord=node_lst[i]->trg_coord;
- mem::memcopy(buff_ptr,&trg_coord[0],trg_coord.Dim()*sizeof(Real_t));
- trg_coord.ReInit(node_lst[i]->trg_coord.Dim(), buff_ptr, false);
- buff_ptr+=node_lst[i]->trg_coord.Dim();
- }
- }
- { // check and equiv surfaces.
- upwd_check_surf.resize(MAX_DEPTH);
- upwd_equiv_surf.resize(MAX_DEPTH);
- dnwd_check_surf.resize(MAX_DEPTH);
- dnwd_equiv_surf.resize(MAX_DEPTH);
- for(size_t depth=0;depth<MAX_DEPTH;depth++){
- Real_t c[3]={0.0,0.0,0.0};
- upwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
- upwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
- dnwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
- dnwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
- upwd_check_surf[depth]=u_check_surf(m,c,depth);
- upwd_equiv_surf[depth]=u_equiv_surf(m,c,depth);
- dnwd_check_surf[depth]=d_check_surf(m,c,depth);
- dnwd_equiv_surf[depth]=d_equiv_surf(m,c,depth);
- }
- }
- buff[indx].AllocDevice(true);
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::SetupPrecomp(SetupData<Real_t>& setup_data, bool device){
- if(setup_data.precomp_data==NULL) return;
- Profile::Tic("SetupPrecomp",&this->comm,true,25);
- { // Build precomp_data
- size_t precomp_offset=0;
- int level=setup_data.level;
- Matrix<char>& precomp_data=*setup_data.precomp_data;
- std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
- for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
- Mat_Type& interac_type=interac_type_lst[type_indx];
- this->PrecompAll(interac_type, level); // Compute matrices.
- precomp_offset=this->mat->CompactData(level, interac_type, precomp_data, precomp_offset);
- }
- }
- Profile::Toc();
- if(device){ // Host2Device
- Profile::Tic("Host2Device",&this->comm,false,25);
- setup_data.precomp_data->AllocDevice(true);
- Profile::Toc();
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::SetupInterac(SetupData<Real_t>& setup_data, bool device){
- int level=setup_data.level;
- std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- Matrix<Real_t>& input_data=*setup_data. input_data;
- Matrix<Real_t>& output_data=*setup_data.output_data;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
- size_t n_in =nodes_in .size();
- size_t n_out=nodes_out.size();
- // Setup precomputed data.
- SetupPrecomp(setup_data,device);
- // Build interac_data
- Profile::Tic("Interac-Data",&this->comm,true,25);
- Matrix<char>& interac_data=setup_data.interac_data;
- if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
- std::vector<size_t> interac_mat;
- std::vector<size_t> interac_cnt;
- std::vector<size_t> interac_blk;
- std::vector<size_t> input_perm;
- std::vector<size_t> output_perm;
- std::vector<Real_t> scaling;
- size_t dof=0, M_dim0=0, M_dim1=0;
- size_t precomp_offset=0;
- size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
- for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
- Mat_Type& interac_type=interac_type_lst[type_indx];
- size_t mat_cnt=this->interac_list.ListCount(interac_type);
- Vector<size_t> precomp_data_offset;
- { // Load precomp_data for interac_type.
- Matrix<char>& precomp_data=*setup_data.precomp_data;
- char* indx_ptr=precomp_data[0]+precomp_offset;
- size_t total_size=((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
- /*size_t mat_cnt_ =((size_t*)indx_ptr)[0];*/ indx_ptr+=sizeof(size_t);
- precomp_data_offset.ReInit((1+2+2)*mat_cnt, (size_t*)indx_ptr, false);
- precomp_offset+=total_size;
- }
- Matrix<FMMNode*> src_interac_list(n_in ,mat_cnt); src_interac_list.SetZero();
- Matrix<FMMNode*> trg_interac_list(n_out,mat_cnt); trg_interac_list.SetZero();
- { // Build trg_interac_list
- for(size_t i=0;i<n_out;i++){
- if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
- std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
- mem::memcopy(&trg_interac_list[i][0], &lst[0], lst.size()*sizeof(FMMNode*));
- assert(lst.size()==mat_cnt);
- }
- }
- }
- { // Build src_interac_list
- for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
- for(size_t i=0;i<n_out;i++){
- for(size_t j=0;j<mat_cnt;j++)
- if(trg_interac_list[i][j]!=NULL){
- src_interac_list[trg_interac_list[i][j]->node_id][j]=(FMMNode*)nodes_out[i];
- }
- }
- }
- Matrix<size_t> interac_dsp(n_out,mat_cnt);
- std::vector<size_t> interac_blk_dsp(1,0);
- { // Determine dof, M_dim0, M_dim1
- dof=1;
- Matrix<Real_t>& M0 = this->interac_list.ClassMat(level, interac_type_lst[0], 0);
- M_dim0=M0.Dim(0); M_dim1=M0.Dim(1);
- }
- { // Determine interaction blocks which fit in memory.
- size_t vec_size=(M_dim0+M_dim1)*sizeof(Real_t)*dof;
- for(size_t j=0;j<mat_cnt;j++){// Determine minimum buff_size
- size_t vec_cnt=0;
- for(size_t i=0;i<n_out;i++){
- if(trg_interac_list[i][j]!=NULL) vec_cnt++;
- }
- if(buff_size<vec_cnt*vec_size)
- buff_size=vec_cnt*vec_size;
- }
- size_t interac_dsp_=0;
- for(size_t j=0;j<mat_cnt;j++){
- for(size_t i=0;i<n_out;i++){
- interac_dsp[i][j]=interac_dsp_;
- if(trg_interac_list[i][j]!=NULL) interac_dsp_++;
- }
- if(interac_dsp_*vec_size>buff_size){
- interac_blk.push_back(j-interac_blk_dsp.back());
- interac_blk_dsp.push_back(j);
- size_t offset=interac_dsp[0][j];
- for(size_t i=0;i<n_out;i++) interac_dsp[i][j]-=offset;
- interac_dsp_-=offset;
- assert(interac_dsp_*vec_size<=buff_size); // Problem too big for buff_size.
- }
- interac_mat.push_back(precomp_data_offset[5*this->interac_list.InteracClass(interac_type,j)+0]);
- interac_cnt.push_back(interac_dsp_-interac_dsp[0][j]);
- }
- interac_blk.push_back(mat_cnt-interac_blk_dsp.back());
- interac_blk_dsp.push_back(mat_cnt);
- }
- { // Determine input_perm.
- size_t vec_size=M_dim0*dof;
- for(size_t i=0;i<n_out;i++) ((FMMNode*)nodes_out[i])->node_id=i;
- for(size_t k=1;k<interac_blk_dsp.size();k++){
- for(size_t i=0;i<n_in ;i++){
- for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
- FMMNode_t* trg_node=src_interac_list[i][j];
- if(trg_node!=NULL){
- input_perm .push_back(precomp_data_offset[5*j+1]); // prem
- input_perm .push_back(precomp_data_offset[5*j+2]); // scal
- input_perm .push_back(interac_dsp[trg_node->node_id][j]*vec_size*sizeof(Real_t)); // trg_ptr
- input_perm .push_back((size_t)(& input_vector[i][0][0]- input_data[0])); // src_ptr
- assert(input_vector[i]->Dim()==vec_size);
- }
- }
- }
- }
- }
- { // Determine scaling and output_perm
- size_t vec_size=M_dim1*dof;
- for(size_t k=1;k<interac_blk_dsp.size();k++){
- for(size_t i=0;i<n_out;i++){
- Real_t scaling_=0.0;
- if(!this->Homogen()) scaling_=1.0;
- else if(interac_type==D2D_Type) scaling_=1.0;
- else if(interac_type==D2T_Type) scaling_=pow(0.5, -setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
- else if(interac_type== U0_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
- else if(interac_type== U1_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
- else if(interac_type== U2_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
- else if(interac_type== W_Type) scaling_=pow(0.5, -setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
- else if(interac_type== X_Type) scaling_=pow(0.5, COORD_DIM *((FMMNode*)nodes_out[i])->Depth());
- for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
- if(trg_interac_list[i][j]!=NULL){
- scaling.push_back(scaling_); // scaling
- output_perm.push_back(precomp_data_offset[5*j+3]); // prem
- output_perm.push_back(precomp_data_offset[5*j+4]); // scal
- output_perm.push_back(interac_dsp[ i ][j]*vec_size*sizeof(Real_t)); // src_ptr
- output_perm.push_back((size_t)(&output_vector[i][0][0]-output_data[0])); // trg_ptr
- assert(output_vector[i]->Dim()==vec_size);
- }
- }
- }
- }
- }
- }
- if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
- if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
- { // Set interac_data.
- size_t data_size=sizeof(size_t)*4;
- data_size+=sizeof(size_t)+interac_blk.size()*sizeof(size_t);
- data_size+=sizeof(size_t)+interac_cnt.size()*sizeof(size_t);
- data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
- data_size+=sizeof(size_t)+ input_perm.size()*sizeof(size_t);
- data_size+=sizeof(size_t)+output_perm.size()*sizeof(size_t);
- data_size+=sizeof(size_t)+scaling.size()*sizeof(Real_t);
- if(interac_data.Dim(0)*interac_data.Dim(1)<sizeof(size_t)){
- data_size+=sizeof(size_t);
- interac_data.Resize(1,data_size);
- ((size_t*)&interac_data[0][0])[0]=sizeof(size_t);
- }else{
- size_t pts_data_size=*((size_t*)&interac_data[0][0]);
- assert(interac_data.Dim(0)*interac_data.Dim(1)>=pts_data_size);
- data_size+=pts_data_size;
- if(data_size>interac_data.Dim(0)*interac_data.Dim(1)){ //Resize and copy interac_data.
- Matrix< char> pts_interac_data=interac_data;
- interac_data.Resize(1,data_size);
- mem::memcopy(&interac_data[0][0],&pts_interac_data[0][0],pts_data_size);
- }
- }
- char* data_ptr=&interac_data[0][0];
- data_ptr+=((size_t*)data_ptr)[0];
- ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= M_dim0; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= M_dim1; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]=interac_blk.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &interac_blk[0], interac_blk.size()*sizeof(size_t));
- data_ptr+=interac_blk.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=interac_cnt.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &interac_cnt[0], interac_cnt.size()*sizeof(size_t));
- data_ptr+=interac_cnt.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=interac_mat.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
- data_ptr+=interac_mat.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]= input_perm.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, & input_perm[0], input_perm.size()*sizeof(size_t));
- data_ptr+= input_perm.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=output_perm.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &output_perm[0], output_perm.size()*sizeof(size_t));
- data_ptr+=output_perm.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=scaling.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &scaling[0], scaling.size()*sizeof(Real_t));
- data_ptr+=scaling.size()*sizeof(Real_t);
- }
- }
- Profile::Toc();
- if(device){ // Host2Device
- Profile::Tic("Host2Device",&this->comm,false,25);
- setup_data.interac_data .AllocDevice(true);
- Profile::Toc();
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::EvalList_cuda(SetupData<Real_t>& setup_data) {
- Vector<char> dummy(1);
- dummy.AllocDevice(true);
- typename Vector<char>::Device buff;
- typename Vector<char>::Device buff_d;
- typename Matrix<char>::Device precomp_data;
- typename Matrix<char>::Device precomp_data_d;
- typename Matrix<char>::Device interac_data;
- typename Matrix<char>::Device interac_data_d;
- typename Matrix<Real_t>::Device input_data;
- typename Matrix<Real_t>::Device input_data_d;
- typename Matrix<Real_t>::Device output_data;
- typename Matrix<Real_t>::Device output_data_d;
- /* Take CPU pointer first. */
- {
- buff = this-> cpu_buffer;
- precomp_data=*setup_data.precomp_data;
- interac_data= setup_data.interac_data;
- input_data =*setup_data. input_data;
- output_data =*setup_data. output_data;
- }
- /* Take GPU pointer now. */
- {
- buff_d = this->dev_buffer.AllocDevice(false);
- precomp_data_d = setup_data.precomp_data->AllocDevice(false);
- interac_data_d = setup_data.interac_data.AllocDevice(false);
- input_data_d = setup_data.input_data->AllocDevice(false);
- output_data_d = setup_data.output_data->AllocDevice(false);
- }
- {
- size_t data_size, M_dim0, M_dim1, dof;
- /* CPU pointers */
- Vector<size_t> interac_blk;
- Vector<size_t> interac_cnt;
- Vector<size_t> interac_mat;
- Vector<size_t> input_perm;
- Vector<size_t> output_perm;
- Vector<Real_t> scaling;
- /* GPU pointers */
- char *input_perm_d, *output_perm_d, *scaling_d;
- {
- char* data_ptr=&interac_data[0][0];
- char *dev_ptr;
- /* Take GPU initial pointer for later computation. */
- dev_ptr = (char *) interac_data_d.dev_ptr;
- data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size; dev_ptr += data_size;
- data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
- M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
- M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
- dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
- /* Update CPU and GPU pointers at the same time. */
- /* CPU pointer */
- interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
- dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
- //len_interac_cnt = ((size_t*)data_ptr)[0];
- /* CPU pointer */
- interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
- dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
- //len_interac_mat = ((size_t *) data_ptr)[0];
- /* CPU pointer */
- interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
- dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
- input_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- /* GPU pointer */
- input_perm_d = dev_ptr + sizeof(size_t);
- data_ptr += sizeof(size_t) + sizeof(size_t)*input_perm.Dim();
- dev_ptr += sizeof(size_t) + sizeof(size_t)*input_perm.Dim();
- output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- /* GPU pointer */
- output_perm_d = dev_ptr + sizeof(size_t);
- data_ptr += sizeof(size_t) + sizeof(size_t)*output_perm.Dim();
- dev_ptr += sizeof(size_t) + sizeof(size_t)*output_perm.Dim();
- scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
- /* GPU pointer */
- scaling_d = dev_ptr + sizeof(size_t);
- data_ptr += sizeof(size_t) + sizeof(size_t)*scaling.Dim();
- dev_ptr += sizeof(size_t) + sizeof(size_t)*scaling.Dim();
- }
- /* Call synchronization here to make sure all data has been copied. */
- //CUDA_Lock::wait(0);
- {
- size_t interac_indx = 0;
- size_t interac_blk_dsp = 0;
- cudaError_t error;
- //std::cout << "Before Loop. " << '\n';
- for (size_t k = 0; k < interac_blk.Dim(); k++) {
- size_t vec_cnt = 0;
- //std::cout << "interac_blk[0] : " << interac_blk[k] << '\n';
- for (size_t j = interac_blk_dsp; j < interac_blk_dsp + interac_blk[k]; j++)
- vec_cnt += interac_cnt[j];
- /* CPU Version */
- char* buff_in =&buff[0];
- char* buff_out=&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
- for(int i = 0; i < vec_cnt; i++) {
- const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+input_perm[(interac_indx+i)*4+0]);
- const Real_t* scal=( Real_t*)(precomp_data[0]+input_perm[(interac_indx+i)*4+1]);
- const Real_t* v_in =( Real_t*)( input_data[0]+input_perm[(interac_indx+i)*4+3]);
- Real_t* v_out=( Real_t*)( buff_in +input_perm[(interac_indx+i)*4+2]);
- if (i == 1) std::cout << "cpu input_perm[0, 1, 2] : "
- << input_perm[(interac_indx + i - 1)*4 + 2]
- << input_perm[(interac_indx + i )*4 + 2]
- << input_perm[(interac_indx + i + 1)*4 + 2]
- << '\n';
- for(size_t j = 0; j < M_dim0; j++) {
- //v_out[j] = v_in[perm[j]]*scal[j];
- }
- }
- /* GPU Kernel call */
- char *buff_in_d = (char *) buff_d.dev_ptr;
- char *buff_out_d = (char *) (buff_d.dev_ptr + vec_cnt*dof*M_dim0*sizeof(Real_t));
- cuda_func<Real_t>::in_perm_h ((char *)precomp_data_d.dev_ptr, input_perm_d,
- (char *) input_data_d.dev_ptr, buff_in_d, interac_indx, M_dim0, vec_cnt);
- //CUDA_Lock::wait(0);
- error = cudaGetLastError();
- if (error != cudaSuccess)
- std::cout << "in_perm_h(): " << cudaGetErrorString(error) << '\n';
- size_t vec_cnt0 = 0;
- for (size_t j = interac_blk_dsp; j < interac_blk_dsp + interac_blk[k];) {
- size_t vec_cnt1 = 0;
- size_t interac_mat0 = interac_mat[j];
- for (; j < interac_blk_dsp + interac_blk[k] && interac_mat[j] == interac_mat0; j++)
- vec_cnt1 += interac_cnt[j];
- /* Compare buff_in */
- std::cout << M_dim0*vec_cnt0*dof*sizeof(Real_t) << '\n';
- /*
- cuda_func<Real_t>::compare_h(
- (Real_t *) (buff_in + M_dim0*vec_cnt0*dof*sizeof(Real_t)),
- (Real_t *) (buff_in_d + M_dim0*vec_cnt0*dof*sizeof(Real_t)),
- dof*vec_cnt1*M_dim0);
- */
- /* GPU Gemm */
- Matrix<Real_t> M_d(M_dim0, M_dim1, (Real_t*)(precomp_data_d.dev_ptr + interac_mat0), false);
- Matrix<Real_t> Ms_d(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in_d + M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
- Matrix<Real_t> Mt_d(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out_d + M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
- Matrix<Real_t>::CUBLASXGEMM(Mt_d, Ms_d, M_d);
- /* CPU Gemm */
- /*
- Matrix<Real_t> M(M_dim0, M_dim1, (Real_t*)(precomp_data[0]+interac_mat0), false);
- Matrix<Real_t> Ms(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
- Matrix<Real_t> Mt(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
- Matrix<Real_t>::DGEMM(Mt,Ms,M);
- */
- //if (dof*vec_cnt1) std::cout << "cublasxgemm(" << dof*vec_cnt1 << ", " << M_dim1 << ")" << '\n';
-
- /*
- cuda_func<Real_t>::compare_h(
- (Real_t *) (buff_out + M_dim1*vec_cnt0*dof*sizeof(Real_t)),
- (Real_t *) (buff_out_d + M_dim1*vec_cnt0*dof*sizeof(Real_t)),
- dof*vec_cnt1*M_dim1);
- */
- std::cout << '\n';
- vec_cnt0 += vec_cnt1;
- }
- //CUDA_Lock::wait(0);
- error = cudaGetLastError();
- if (error != cudaSuccess)
- std::cout << "cublasXgemm(): " << cudaGetErrorString(error) << '\n';
- for(int i = 0; i < vec_cnt; i++) {
- Real_t scaling_factor=scaling[interac_indx+i];
- const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+output_perm[(interac_indx+i)*4+0]);
- const Real_t* scal=( Real_t*)(precomp_data[0]+output_perm[(interac_indx+i)*4+1]);
- const Real_t* v_in =( Real_t*)( buff_out +output_perm[(interac_indx+i)*4+2]);
- Real_t* v_out=( Real_t*)( output_data[0]+output_perm[(interac_indx+i)*4+3]);
- for(size_t j=0;j<M_dim1;j++ ){
- //v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
- }
- }
- cuda_func<Real_t>::out_perm_h (scaling_d, (char *) precomp_data_d.dev_ptr, output_perm_d,
- (char *) output_data_d.dev_ptr, buff_out_d, interac_indx, M_dim1, vec_cnt);
- //CUDA_Lock::wait(0);
- error = cudaGetLastError();
- if (error != cudaSuccess)
- std::cout << "out_perm_h(): " << cudaGetErrorString(error) << '\n';
- interac_indx += vec_cnt;
- interac_blk_dsp += interac_blk[k];
- }
- }
- }
- dummy.Device2Host();
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::EvalList(SetupData<Real_t>& setup_data, bool device){
- if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
- Profile::Tic("Host2Device",&this->comm,false,25);
- Profile::Toc();
- Profile::Tic("DeviceComp",&this->comm,false,20);
- Profile::Toc();
- return;
- }
- #if defined(PVFMM_HAVE_CUDA)
- if (device) {
- EvalList_cuda(setup_data);
- return;
- }
- #endif
- Profile::Tic("Host2Device",&this->comm,false,25);
- typename Vector<char>::Device buff;
- typename Matrix<char>::Device precomp_data;
- typename Matrix<char>::Device interac_data;
- typename Matrix<Real_t>::Device input_data;
- typename Matrix<Real_t>::Device output_data;
- if(device){
- buff = this-> dev_buffer. AllocDevice(false);
- precomp_data= setup_data.precomp_data->AllocDevice(false);
- interac_data= setup_data.interac_data. AllocDevice(false);
- input_data = setup_data. input_data->AllocDevice(false);
- output_data = setup_data. output_data->AllocDevice(false);
- }else{
- buff = this-> cpu_buffer;
- precomp_data=*setup_data.precomp_data;
- interac_data= setup_data.interac_data;
- input_data =*setup_data. input_data;
- output_data =*setup_data. output_data;
- }
- Profile::Toc();
- Profile::Tic("DeviceComp",&this->comm,false,20);
- #ifdef __INTEL_OFFLOAD
- int lock_idx=-1;
- int wait_lock_idx=-1;
- if(device) wait_lock_idx=MIC_Lock::curr_lock();
- if(device) lock_idx=MIC_Lock::get_lock();
- #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
- #endif
- { // Offloaded computation.
- // Set interac_data.
- size_t data_size, M_dim0, M_dim1, dof;
- Vector<size_t> interac_blk;
- Vector<size_t> interac_cnt;
- Vector<size_t> interac_mat;
- Vector<size_t> input_perm;
- Vector<size_t> output_perm;
- Vector<Real_t> scaling;
- { // Set interac_data.
- char* data_ptr=&interac_data[0][0];
- data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size;
- data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+interac_blk.Dim()*sizeof(size_t);
- interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+interac_cnt.Dim()*sizeof(size_t);
- interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
- input_perm .ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+ input_perm.Dim()*sizeof(size_t);
- output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+output_perm.Dim()*sizeof(size_t);
- scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+scaling.Dim()*sizeof(Real_t);
- }
- #ifdef __INTEL_OFFLOAD
- if(device) MIC_Lock::wait_lock(wait_lock_idx);
- #endif
- //Compute interaction from Chebyshev source density.
- { // interactions
- int omp_p=omp_get_max_threads();
- size_t interac_indx=0;
- size_t interac_blk_dsp=0;
- for(size_t k=0;k<interac_blk.Dim();k++){
- size_t vec_cnt=0;
- for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
- char* buff_in =&buff[0];
- char* buff_out=&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
- #pragma omp parallel for
- for(int tid=0;tid<omp_p;tid++){
- size_t a=( tid *vec_cnt)/omp_p;
- size_t b=((tid+1)*vec_cnt)/omp_p;
- for(size_t i=a;i<b;i++){
- const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+input_perm[(interac_indx+i)*4+0]);
- const Real_t* scal=( Real_t*)(precomp_data[0]+input_perm[(interac_indx+i)*4+1]);
- const Real_t* v_in =( Real_t*)( input_data[0]+input_perm[(interac_indx+i)*4+3]);
- Real_t* v_out=( Real_t*)( buff_in +input_perm[(interac_indx+i)*4+2]);
- // TODO: Fix for dof>1
- #ifdef __MIC__
- {
- __m512d v8;
- size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
- size_t j_end =(((uintptr_t)(v_out+M_dim0) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
- j_start/=sizeof(Real_t);
- j_end /=sizeof(Real_t);
- assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
- assert(((uintptr_t)(v_out+j_start))%64==0);
- assert(((uintptr_t)(v_out+j_end ))%64==0);
- size_t j=0;
- for(;j<j_start;j++ ){
- v_out[j]=v_in[perm[j]]*scal[j];
- }
- for(;j<j_end ;j+=8){
- v8=_mm512_setr_pd(
- v_in[perm[j+0]]*scal[j+0],
- v_in[perm[j+1]]*scal[j+1],
- v_in[perm[j+2]]*scal[j+2],
- v_in[perm[j+3]]*scal[j+3],
- v_in[perm[j+4]]*scal[j+4],
- v_in[perm[j+5]]*scal[j+5],
- v_in[perm[j+6]]*scal[j+6],
- v_in[perm[j+7]]*scal[j+7]);
- _mm512_storenrngo_pd(v_out+j,v8);
- }
- for(;j<M_dim0 ;j++ ){
- v_out[j]=v_in[perm[j]]*scal[j];
- }
- }
- #else
- for(size_t j=0;j<M_dim0;j++ ){
- v_out[j]=v_in[perm[j]]*scal[j];
- }
- #endif
- }
- }
- size_t vec_cnt0=0;
- for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];){
- size_t vec_cnt1=0;
- size_t interac_mat0=interac_mat[j];
- for(;j<interac_blk_dsp+interac_blk[k] && interac_mat[j]==interac_mat0;j++) vec_cnt1+=interac_cnt[j];
- Matrix<Real_t> M(M_dim0, M_dim1, (Real_t*)(precomp_data[0]+interac_mat0), false);
- #ifdef __MIC__
- {
- Matrix<Real_t> Ms(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
- Matrix<Real_t> Mt(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
- Matrix<Real_t>::DGEMM(Mt,Ms,M);
- }
- #else
- #pragma omp parallel for
- for(int tid=0;tid<omp_p;tid++){
- size_t a=(dof*vec_cnt1*(tid ))/omp_p;
- size_t b=(dof*vec_cnt1*(tid+1))/omp_p;
- Matrix<Real_t> Ms(b-a, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t))+M_dim0*a, false);
- Matrix<Real_t> Mt(b-a, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t))+M_dim1*a, false);
- Matrix<Real_t>::DGEMM(Mt,Ms,M);
- }
- #endif
- vec_cnt0+=vec_cnt1;
- }
- #pragma omp parallel for
- for(int tid=0;tid<omp_p;tid++){
- size_t a=( tid *vec_cnt)/omp_p;
- size_t b=((tid+1)*vec_cnt)/omp_p;
- if(tid> 0 && a<vec_cnt){ // Find 'a' independent of other threads.
- size_t out_ptr=output_perm[(interac_indx+a)*4+3];
- if(tid> 0) while(a<vec_cnt && out_ptr==output_perm[(interac_indx+a)*4+3]) a++;
- }
- if(tid<omp_p-1 && b<vec_cnt){ // Find 'b' independent of other threads.
- size_t out_ptr=output_perm[(interac_indx+b)*4+3];
- if(tid<omp_p-1) while(b<vec_cnt && out_ptr==output_perm[(interac_indx+b)*4+3]) b++;
- }
- for(size_t i=a;i<b;i++){ // Compute permutations.
- Real_t scaling_factor=scaling[interac_indx+i];
- const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+output_perm[(interac_indx+i)*4+0]);
- const Real_t* scal=( Real_t*)(precomp_data[0]+output_perm[(interac_indx+i)*4+1]);
- const Real_t* v_in =( Real_t*)( buff_out +output_perm[(interac_indx+i)*4+2]);
- Real_t* v_out=( Real_t*)( output_data[0]+output_perm[(interac_indx+i)*4+3]);
- // TODO: Fix for dof>1
- #ifdef __MIC__
- {
- __m512d v8;
- __m512d v_old;
- size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
- size_t j_end =(((uintptr_t)(v_out+M_dim1) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
- j_start/=sizeof(Real_t);
- j_end /=sizeof(Real_t);
- assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
- assert(((uintptr_t)(v_out+j_start))%64==0);
- assert(((uintptr_t)(v_out+j_end ))%64==0);
- size_t j=0;
- for(;j<j_start;j++ ){
- v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
- }
- for(;j<j_end ;j+=8){
- v_old=_mm512_load_pd(v_out+j);
- v8=_mm512_setr_pd(
- v_in[perm[j+0]]*scal[j+0]*scaling_factor,
- v_in[perm[j+1]]*scal[j+1]*scaling_factor,
- v_in[perm[j+2]]*scal[j+2]*scaling_factor,
- v_in[perm[j+3]]*scal[j+3]*scaling_factor,
- v_in[perm[j+4]]*scal[j+4]*scaling_factor,
- v_in[perm[j+5]]*scal[j+5]*scaling_factor,
- v_in[perm[j+6]]*scal[j+6]*scaling_factor,
- v_in[perm[j+7]]*scal[j+7]*scaling_factor);
- v_old=_mm512_add_pd(v_old, v8);
- _mm512_storenrngo_pd(v_out+j,v_old);
- }
- for(;j<M_dim1 ;j++ ){
- v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
- }
- }
- #else
- for(size_t j=0;j<M_dim1;j++ ){
- v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
- }
- #endif
- }
- }
- interac_indx+=vec_cnt;
- interac_blk_dsp+=interac_blk[k];
- }
- }
- #ifdef __INTEL_OFFLOAD
- if(device) MIC_Lock::release_lock(lock_idx);
- #endif
- }
- #ifndef __MIC_ASYNCH__
- #ifdef __INTEL_OFFLOAD
- #pragma offload if(device) target(mic:0)
- {if(device) MIC_Lock::wait_lock(lock_idx);}
- #endif
- #endif
- Profile::Toc();
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::InitMultipole(FMMNode** node, size_t n, int level){
- if(n==0) return;
- int dof=1;
- //Get the upward-check surface.
- std::vector<Real_t> uc_coord[MAX_DEPTH+1];
- size_t uc_cnt;
- {
- Real_t c[3]={0,0,0};
- for(int i=0;i<=MAX_DEPTH;i++)
- uc_coord[i]=u_check_surf(MultipoleOrder(),c,i);
- uc_cnt=uc_coord[0].size()/COORD_DIM;
- }
- //Read matrices.
- Matrix<Real_t>& M_uc2ue = this->mat->Mat(level, UC2UE_Type, 0);
- //Compute multipole expansion.
- #pragma omp parallel
- {
- int omp_p=omp_get_num_threads();
- int pid = omp_get_thread_num();
- size_t a=(pid*n)/omp_p;
- size_t b=((pid+1)*n)/omp_p;
- Matrix<Real_t> u_check(dof, M_uc2ue.Dim(0));
- for (size_t j=a;j<b;j++){
- Vector<Real_t>& upward_equiv=node[j]->FMMData()->upward_equiv;
- assert(upward_equiv.Dim()==M_uc2ue.Dim(1)*dof);
- Matrix<Real_t> u_equiv(dof,M_uc2ue.Dim(1),&upward_equiv[0],false);
- u_equiv.SetZero(); // TODO: Do in setup
- //Compute multipole expansion form point sources.
- size_t pt_cnt=node[j]->src_coord.Dim()/COORD_DIM;
- size_t surf_pt_cnt=node[j]->surf_coord.Dim()/COORD_DIM;
- if(pt_cnt+surf_pt_cnt>0){
- //Relative coord of upward check surf.
- Real_t* c=node[j]->Coord();
- std::vector<Real_t> uc_coord1(uc_cnt*COORD_DIM);
- for(size_t i=0;i<uc_cnt;i++) for(int k=0;k<COORD_DIM;k++)
- uc_coord1[i*COORD_DIM+k]=uc_coord[node[j]->Depth()][i*COORD_DIM+k]+c[k];
- Profile::Add_FLOP((long long)uc_cnt*(long long)COORD_DIM);
- //Compute upward check potential.
- u_check.SetZero();
- if(pt_cnt>0)
- aux_kernel.ker_poten(&node[j]->src_coord[0], pt_cnt,
- &node[j]->src_value[0], dof,
- &uc_coord1[0], uc_cnt, u_check[0]);
- if(surf_pt_cnt>0)
- aux_kernel.dbl_layer_poten(&node[j]->surf_coord[0], surf_pt_cnt,
- &node[j]->surf_value[0], dof,
- &uc_coord1[0], uc_cnt, u_check[0]);
- //Rearrange data.
- {
- Matrix<Real_t> M_tmp(M_uc2ue.Dim(0)/aux_kernel.ker_dim[1],aux_kernel.ker_dim[1]*dof, &u_check[0][0], false);
- M_tmp=M_tmp.Transpose();
- for(int i=0;i<dof;i++){
- Matrix<Real_t> M_tmp1(aux_kernel.ker_dim[1], M_uc2ue.Dim(0)/aux_kernel.ker_dim[1], &u_check[i][0], false);
- M_tmp1=M_tmp1.Transpose();
- }
- }
- //Compute UC2UE (vector-matrix multiply).
- Matrix<Real_t>::DGEMM(u_equiv,u_check,M_uc2ue,1.0);
- }
- //Adjusting for scale.
- if(Homogen()){
- Real_t scale_factor=pow(0.5, node[j]->Depth()*aux_kernel.poten_scale);
- for(size_t i=0;i<upward_equiv.Dim();i++)
- upward_equiv[i]*=scale_factor;
- }
- }
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::Up2Up(FMMNode** nodes, size_t n, int level){
- if(n==0) return;
- int dof=1;
- size_t n_eq=this->interac_list.ClassMat(level,U2U_Type,0).Dim(1);
- size_t mat_cnt=interac_list.ListCount(U2U_Type);
- //For all non-leaf, non-ghost nodes.
- #pragma omp parallel
- {
- int omp_p=omp_get_num_threads();
- int pid = omp_get_thread_num();
- size_t a=(pid*n)/omp_p;
- size_t b=((pid+1)*n)/omp_p;
- size_t cnt;
- //Initialize this node's upward equivalent data
- for(size_t i=a;i<b;i++){
- Vector<Real_t>& upward_equiv=nodes[i]->FMMData()->upward_equiv;
- assert(upward_equiv.Dim()==dof*n_eq);
- upward_equiv.SetZero(); // TODO: Do in setup
- UNUSED(upward_equiv);
- UNUSED(n_eq);
- }
- for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
- Matrix<Real_t>& M = this->mat->Mat(level, U2U_Type, mat_indx);
- if(M.Dim(0)!=0 && M.Dim(1)!=0){
- cnt=0;
- for(size_t i=a;i<b;i++)
- if(/*!nodes[i]->IsGhost() && */!nodes[i]->IsLeaf()) if(((FMMNode*)nodes[i]->Child(mat_indx))->FMMData()->upward_equiv.Dim()>0) cnt++;
- Matrix<Real_t> src_vec(cnt*dof,M.Dim(0));
- Matrix<Real_t> trg_vec(cnt*dof,M.Dim(1));
- //Get child's multipole expansion.
- cnt=0;
- for(size_t i=a;i<b;i++)
- if(/*!nodes[i]->IsGhost() && */!nodes[i]->IsLeaf()) if(((FMMNode*)nodes[i]->Child(mat_indx))->FMMData()->upward_equiv.Dim()>0){
- Vector<Real_t>& child_equiv=static_cast<FMMNode*>(nodes[i]->Child(mat_indx))->FMMData()->upward_equiv;
- mem::memcopy(&(src_vec[cnt*dof][0]), &(child_equiv[0]), dof*M.Dim(0)*sizeof(Real_t));
- cnt++;
- }
- Matrix<Real_t>::DGEMM(trg_vec,src_vec,M);
- cnt=0;
- size_t vec_len=M.Dim(1)*dof;
- for(size_t i=a;i<b;i++)
- if(/*!nodes[i]->IsGhost() && */!nodes[i]->IsLeaf()) if(((FMMNode*)nodes[i]->Child(mat_indx))->FMMData()->upward_equiv.Dim()>0){
- Vector<Real_t>& upward_equiv=nodes[i]->FMMData()->upward_equiv;
- assert(upward_equiv.Dim()==vec_len);
- Matrix<Real_t> equiv (1,vec_len,&upward_equiv[0],false);
- Matrix<Real_t> equiv_ (1,vec_len,trg_vec[cnt*dof],false);
- equiv+=equiv_;
- cnt++;
- }
- }
- }
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::PeriodicBC(FMMNode* node){
- Matrix<Real_t>& M = Precomp(0, BC_Type, 0);
- assert(node->FMMData()->upward_equiv.Dim()>0);
- int dof=1;
- Vector<Real_t>& upward_equiv=node->FMMData()->upward_equiv;
- Vector<Real_t>& dnward_equiv=node->FMMData()->dnward_equiv;
- assert(upward_equiv.Dim()==M.Dim(0)*dof);
- assert(dnward_equiv.Dim()==M.Dim(1)*dof);
- Matrix<Real_t> d_equiv(dof,M.Dim(0),&dnward_equiv[0],false);
- Matrix<Real_t> u_equiv(dof,M.Dim(1),&upward_equiv[0],false);
- Matrix<Real_t>::DGEMM(d_equiv,u_equiv,M);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::FFT_UpEquiv(size_t dof, size_t m, size_t ker_dim0, Vector<size_t>& fft_vec,
- Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_){
- size_t n1=m*2;
- size_t n2=n1*n1;
- size_t n3=n1*n2;
- size_t n3_=n2*(n1/2+1);
- size_t chld_cnt=1UL<<COORD_DIM;
- size_t fftsize_in =2*n3_*chld_cnt*ker_dim0*dof;
- int omp_p=omp_get_max_threads();
- //Load permutation map.
- size_t n=6*(m-1)*(m-1)+2;
- static Vector<size_t> map;
- { // Build map to reorder upward_equiv
- size_t n_old=map.Dim();
- if(n_old!=n){
- Real_t c[3]={0,0,0};
- Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
- map.Resize(surf.Dim()/COORD_DIM);
- for(size_t i=0;i<map.Dim();i++)
- map[i]=((size_t)(m-1-surf[i*3]+0.5))+((size_t)(m-1-surf[i*3+1]+0.5))*n1+((size_t)(m-1-surf[i*3+2]+0.5))*n2;
- }
- }
- { // Build FFTW plan.
- if(!vlist_fft_flag){
- int nnn[3]={(int)n1,(int)n1,(int)n1};
- void *fftw_in, *fftw_out;
- fftw_in = mem::aligned_malloc<Real_t>( n3 *ker_dim0*chld_cnt);
- fftw_out = mem::aligned_malloc<Real_t>(2*n3_*ker_dim0*chld_cnt);
- vlist_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM,nnn,ker_dim0*chld_cnt,
- (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*)(fftw_out),NULL, 1, n3_, FFTW_ESTIMATE);
- mem::aligned_free<Real_t>((Real_t*)fftw_in );
- mem::aligned_free<Real_t>((Real_t*)fftw_out);
- vlist_fft_flag=true;
- }
- }
- { // Offload section
- size_t n_in = fft_vec.Dim();
- #pragma omp parallel for
- for(int pid=0; pid<omp_p; pid++){
- size_t node_start=(n_in*(pid ))/omp_p;
- size_t node_end =(n_in*(pid+1))/omp_p;
- Vector<Real_t> buffer(fftsize_in, &buffer_[fftsize_in*pid], false);
- for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
- Vector<Real_t*> upward_equiv(chld_cnt);
- for(size_t i=0;i<chld_cnt;i++) upward_equiv[i]=&input_data[0] + fft_vec[node_idx] + n*ker_dim0*dof*i;
- Vector<Real_t> upward_equiv_fft(fftsize_in, &output_data[fftsize_in *node_idx], false);
- upward_equiv_fft.SetZero();
- // Rearrange upward equivalent data.
- for(size_t k=0;k<n;k++){
- size_t idx=map[k];
- for(int j1=0;j1<dof;j1++)
- for(int j0=0;j0<(int)chld_cnt;j0++)
- for(int i=0;i<ker_dim0;i++)
- upward_equiv_fft[idx+(j0+(i+j1*ker_dim0)*chld_cnt)*n3]=upward_equiv[j0][ker_dim0*(n*j1+k)+i];
- }
- // Compute FFT.
- for(int i=0;i<dof;i++)
- FFTW_t<Real_t>::fft_execute_dft_r2c(vlist_fftplan, (Real_t*)&upward_equiv_fft[i* n3 *ker_dim0*chld_cnt],
- (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim0*chld_cnt]);
- //Compute flops.
- #ifndef FFTW3_MKL
- double add, mul, fma;
- fftw_flops(vlist_fftplan, &add, &mul, &fma);
- #ifndef __INTEL_OFFLOAD0
- Profile::Add_FLOP((long long)(add+mul+2*fma));
- #endif
- #endif
- for(int i=0;i<ker_dim0*dof;i++)
- for(size_t j=0;j<n3_;j++)
- for(size_t k=0;k<chld_cnt;k++){
- upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+0]=buffer[2*(n3_*(chld_cnt*i+k)+j)+0];
- upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+1]=buffer[2*(n3_*(chld_cnt*i+k)+j)+1];
- }
- }
- }
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::FFT_Check2Equiv(size_t dof, size_t m, size_t ker_dim1, Vector<size_t>& ifft_vec,
- Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_, Matrix<Real_t>& M){
- size_t n1=m*2;
- size_t n2=n1*n1;
- size_t n3=n1*n2;
- size_t n3_=n2*(n1/2+1);
- size_t chld_cnt=1UL<<COORD_DIM;
- size_t fftsize_out=2*n3_*dof*ker_dim1*chld_cnt;
- int omp_p=omp_get_max_threads();
- //Load permutation map.
- size_t n=6*(m-1)*(m-1)+2;
- static Vector<size_t> map;
- { // Build map to reorder dnward_check
- size_t n_old=map.Dim();
- if(n_old!=n){
- Real_t c[3]={0,0,0};
- Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
- map.Resize(surf.Dim()/COORD_DIM);
- for(size_t i=0;i<map.Dim();i++)
- map[i]=((size_t)(m*2-0.5-surf[i*3]))+((size_t)(m*2-0.5-surf[i*3+1]))*n1+((size_t)(m*2-0.5-surf[i*3+2]))*n2;
- //map;//.AllocDevice(true);
- }
- }
- { // Build FFTW plan.
- if(!vlist_ifft_flag){
- //Build FFTW plan.
- int nnn[3]={(int)n1,(int)n1,(int)n1};
- void *fftw_in, *fftw_out;
- fftw_in = fftw_malloc(2*n3_*ker_dim1*sizeof(Real_t)*chld_cnt);
- fftw_out = fftw_malloc( n3 *ker_dim1*sizeof(Real_t)*chld_cnt);
- vlist_ifftplan = FFTW_t<Real_t>::fft_plan_many_dft_c2r(COORD_DIM,nnn,ker_dim1*chld_cnt,
- (typename FFTW_t<Real_t>::cplx*)fftw_in, NULL, 1, n3_, (Real_t*)(fftw_out),NULL, 1, n3, FFTW_ESTIMATE);
- fftw_free(fftw_in);
- fftw_free(fftw_out);
- vlist_ifft_flag=true;
- }
- }
- { // Offload section
- size_t n_out=ifft_vec.Dim();
- #pragma omp parallel for
- for(int pid=0; pid<omp_p; pid++){
- size_t node_start=(n_out*(pid ))/omp_p;
- size_t node_end =(n_out*(pid+1))/omp_p;
- Vector<Real_t> buffer(fftsize_out, &buffer_[fftsize_out*pid], false);
- for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
- Vector<Real_t> dnward_check_fft(fftsize_out, &input_data[fftsize_out*node_idx], false);
- //De-interleave data.
- for(int i=0;i<ker_dim1*dof;i++)
- for(size_t j=0;j<n3_;j++)
- for(size_t k=0;k<chld_cnt;k++){
- buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+0]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+0];
- buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+1]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+1];
- }
- // Compute FFT.
- for(int i=0;i<dof;i++)
- FFTW_t<Real_t>::fft_execute_dft_c2r(vlist_ifftplan, (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim1*chld_cnt],
- (Real_t*)&dnward_check_fft[i* n3 *ker_dim1*chld_cnt]);
- //Compute flops.
- #ifndef FFTW3_MKL
- double add, mul, fma;
- fftw_flops(vlist_ifftplan, &add, &mul, &fma);
- #ifndef __INTEL_OFFLOAD0
- Profile::Add_FLOP((long long)(add+mul+2*fma));
- #endif
- #endif
- // Rearrange downward check data.
- for(size_t k=0;k<n;k++){
- size_t idx=map[k];
- for(int j1=0;j1<dof;j1++)
- for(int j0=0;j0<(int)chld_cnt;j0++)
- for(int i=0;i<ker_dim1;i++)
- buffer[ker_dim1*(n*(dof*j0+j1)+k)+i]=dnward_check_fft[idx+(j1+(i+j0*ker_dim1)*dof)*n3];
- }
- // Compute check to equiv.
- for(size_t j=0;j<chld_cnt;j++){
- Matrix<Real_t> d_check(dof,M.Dim(0),&buffer[n*ker_dim1*dof*j],false);
- Matrix<Real_t> d_equiv(dof,M.Dim(1),&output_data[0] + ifft_vec[node_idx] + M.Dim(1)*dof*j,false);
- Matrix<Real_t>::DGEMM(d_equiv,d_check,M,1.0);
- }
- }
- }
- }
- }
- template <class Real_t>
- void VListHadamard(size_t dof, size_t M_dim, size_t ker_dim0, size_t ker_dim1, Vector<size_t>& interac_dsp,
- Vector<size_t>& interac_vec, Vector<Real_t*>& precomp_mat, Vector<Real_t>& fft_in, Vector<Real_t>& fft_out){
- size_t chld_cnt=1UL<<COORD_DIM;
- size_t fftsize_in =M_dim*ker_dim0*chld_cnt*2;
- size_t fftsize_out=M_dim*ker_dim1*chld_cnt*2;
- Real_t* zero_vec0=mem::aligned_malloc<Real_t>(fftsize_in );
- Real_t* zero_vec1=mem::aligned_malloc<Real_t>(fftsize_out);
- size_t n_out=fft_out.Dim()/fftsize_out;
- // Set buff_out to zero.
- #pragma omp parallel for
- for(size_t k=0;k<n_out;k++){
- Vector<Real_t> dnward_check_fft(fftsize_out, &fft_out[k*fftsize_out], false);
- dnward_check_fft.SetZero();
- }
- // Build list of interaction pairs (in, out vectors).
- size_t mat_cnt=precomp_mat.Dim();
- size_t blk1_cnt=interac_dsp.Dim()/mat_cnt;
- Real_t** IN_ =new Real_t*[2*V_BLK_SIZE*blk1_cnt*mat_cnt];
- Real_t** OUT_=new Real_t*[2*V_BLK_SIZE*blk1_cnt*mat_cnt];
- #pragma omp parallel for
- for(size_t interac_blk1=0; interac_blk1<blk1_cnt*mat_cnt; interac_blk1++){
- size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
- size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
- size_t interac_cnt = interac_dsp1-interac_dsp0;
- for(size_t j=0;j<interac_cnt;j++){
- IN_ [2*V_BLK_SIZE*interac_blk1 +j]=&fft_in [interac_vec[(interac_dsp0+j)*2+0]];
- OUT_[2*V_BLK_SIZE*interac_blk1 +j]=&fft_out[interac_vec[(interac_dsp0+j)*2+1]];
- }
- IN_ [2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec0;
- OUT_[2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec1;
- }
- int omp_p=omp_get_max_threads();
- #pragma omp parallel for
- for(int pid=0; pid<omp_p; pid++){
- size_t a=( pid *M_dim)/omp_p;
- size_t b=((pid+1)*M_dim)/omp_p;
- for(size_t blk1=0; blk1<blk1_cnt; blk1++)
- for(size_t k=a; k< b; k++)
- for(size_t mat_indx=0; mat_indx< mat_cnt;mat_indx++){
- size_t interac_blk1 = blk1*mat_cnt+mat_indx;
- size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
- size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
- size_t interac_cnt = interac_dsp1-interac_dsp0;
- Real_t** IN = IN_ + 2*V_BLK_SIZE*interac_blk1;
- Real_t** OUT= OUT_+ 2*V_BLK_SIZE*interac_blk1;
- Real_t* M = precomp_mat[mat_indx] + k*chld_cnt*chld_cnt*2;
- #ifdef __SSE__
- if (mat_indx +1 < mat_cnt){ // Prefetch
- _mm_prefetch(((char *)(precomp_mat[mat_indx+1] + k*chld_cnt*chld_cnt*2)), _MM_HINT_T0);
- _mm_prefetch(((char *)(precomp_mat[mat_indx+1] + k*chld_cnt*chld_cnt*2) + 64), _MM_HINT_T0);
- }
- #endif
- for(int in_dim=0;in_dim<ker_dim0;in_dim++)
- for(int ot_dim=0;ot_dim<ker_dim1;ot_dim++){
- for(size_t j=0;j<interac_cnt;j+=2){
- Real_t* M_ = M;
- Real_t* IN0 = IN [j+0] + (in_dim*M_dim+k)*chld_cnt*2;
- Real_t* IN1 = IN [j+1] + (in_dim*M_dim+k)*chld_cnt*2;
- Real_t* OUT0 = OUT[j+0] + (ot_dim*M_dim+k)*chld_cnt*2;
- Real_t* OUT1 = OUT[j+1] + (ot_dim*M_dim+k)*chld_cnt*2;
- #ifdef __SSE__
- if (j+2 < interac_cnt) { // Prefetch
- _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
- _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
- _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
- _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
- _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
- _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
- _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
- _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
- }
- #endif
- #ifdef __AVX__ //AVX code.
- __m256d out00,out01,out10,out11;
- __m256d out20,out21,out30,out31;
- double* in0__ = IN0;
- double* in1__ = IN1;
- out00 = _mm256_load_pd(OUT0);
- out01 = _mm256_load_pd(OUT1);
- out10 = _mm256_load_pd(OUT0+4);
- out11 = _mm256_load_pd(OUT1+4);
- out20 = _mm256_load_pd(OUT0+8);
- out21 = _mm256_load_pd(OUT1+8);
- out30 = _mm256_load_pd(OUT0+12);
- out31 = _mm256_load_pd(OUT1+12);
- for(int i2=0;i2<8;i2+=2){
- __m256d m00;
- __m256d ot00;
- __m256d mt0,mtt0;
- __m256d in00,in00_r,in01,in01_r;
- in00 = _mm256_broadcast_pd((const __m128d*)in0__);
- in00_r = _mm256_permute_pd(in00,5);
- in01 = _mm256_broadcast_pd((const __m128d*)in1__);
- in01_r = _mm256_permute_pd(in01,5);
- m00 = _mm256_load_pd(M_);
- mt0 = _mm256_unpacklo_pd(m00,m00);
- ot00 = _mm256_mul_pd(mt0,in00);
- mtt0 = _mm256_unpackhi_pd(m00,m00);
- out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
- ot00 = _mm256_mul_pd(mt0,in01);
- out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
- m00 = _mm256_load_pd(M_+4);
- mt0 = _mm256_unpacklo_pd(m00,m00);
- ot00 = _mm256_mul_pd(mt0,in00);
- mtt0 = _mm256_unpackhi_pd(m00,m00);
- out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
- ot00 = _mm256_mul_pd(mt0,in01);
- out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
- m00 = _mm256_load_pd(M_+8);
- mt0 = _mm256_unpacklo_pd(m00,m00);
- ot00 = _mm256_mul_pd(mt0,in00);
- mtt0 = _mm256_unpackhi_pd(m00,m00);
- out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
- ot00 = _mm256_mul_pd(mt0,in01);
- out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
- m00 = _mm256_load_pd(M_+12);
- mt0 = _mm256_unpacklo_pd(m00,m00);
- ot00 = _mm256_mul_pd(mt0,in00);
- mtt0 = _mm256_unpackhi_pd(m00,m00);
- out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
- ot00 = _mm256_mul_pd(mt0,in01);
- out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
- in00 = _mm256_broadcast_pd((const __m128d*) (in0__+2));
- in00_r = _mm256_permute_pd(in00,5);
- in01 = _mm256_broadcast_pd((const __m128d*) (in1__+2));
- in01_r = _mm256_permute_pd(in01,5);
- m00 = _mm256_load_pd(M_+16);
- mt0 = _mm256_unpacklo_pd(m00,m00);
- ot00 = _mm256_mul_pd(mt0,in00);
- mtt0 = _mm256_unpackhi_pd(m00,m00);
- out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
- ot00 = _mm256_mul_pd(mt0,in01);
- out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
- m00 = _mm256_load_pd(M_+20);
- mt0 = _mm256_unpacklo_pd(m00,m00);
- ot00 = _mm256_mul_pd(mt0,in00);
- mtt0 = _mm256_unpackhi_pd(m00,m00);
- out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
- ot00 = _mm256_mul_pd(mt0,in01);
- out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
- m00 = _mm256_load_pd(M_+24);
- mt0 = _mm256_unpacklo_pd(m00,m00);
- ot00 = _mm256_mul_pd(mt0,in00);
- mtt0 = _mm256_unpackhi_pd(m00,m00);
- out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
- ot00 = _mm256_mul_pd(mt0,in01);
- out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
- m00 = _mm256_load_pd(M_+28);
- mt0 = _mm256_unpacklo_pd(m00,m00);
- ot00 = _mm256_mul_pd(mt0,in00);
- mtt0 = _mm256_unpackhi_pd(m00,m00);
- out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
- ot00 = _mm256_mul_pd(mt0,in01);
- out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
- M_ += 32;
- in0__ += 4;
- in1__ += 4;
- }
- _mm256_store_pd(OUT0,out00);
- _mm256_store_pd(OUT1,out01);
- _mm256_store_pd(OUT0+4,out10);
- _mm256_store_pd(OUT1+4,out11);
- _mm256_store_pd(OUT0+8,out20);
- _mm256_store_pd(OUT1+8,out21);
- _mm256_store_pd(OUT0+12,out30);
- _mm256_store_pd(OUT1+12,out31);
- #elif defined __SSE3__ // SSE code.
- __m128d out00, out01, out10, out11;
- __m128d in00, in01, in10, in11;
- __m128d m00, m01, m10, m11;
- //#pragma unroll
- for(int i1=0;i1<8;i1+=2){
- double* IN0_=IN0;
- double* IN1_=IN1;
- out00 =_mm_load_pd (OUT0 );
- out10 =_mm_load_pd (OUT0+2);
- out01 =_mm_load_pd (OUT1 );
- out11 =_mm_load_pd (OUT1+2);
- //#pragma unroll
- for(int i2=0;i2<8;i2+=2){
- m00 =_mm_load1_pd (M_ );
- m10 =_mm_load1_pd (M_+ 2);
- m01 =_mm_load1_pd (M_+16);
- m11 =_mm_load1_pd (M_+18);
- in00 =_mm_load_pd (IN0_ );
- in10 =_mm_load_pd (IN0_+2);
- in01 =_mm_load_pd (IN1_ );
- in11 =_mm_load_pd (IN1_+2);
- out00 = _mm_add_pd (out00, _mm_mul_pd(m00 , in00 ));
- out00 = _mm_add_pd (out00, _mm_mul_pd(m01 , in10 ));
- out01 = _mm_add_pd (out01, _mm_mul_pd(m00 , in01 ));
- out01 = _mm_add_pd (out01, _mm_mul_pd(m01 , in11 ));
- out10 = _mm_add_pd (out10, _mm_mul_pd(m10 , in00 ));
- out10 = _mm_add_pd (out10, _mm_mul_pd(m11 , in10 ));
- out11 = _mm_add_pd (out11, _mm_mul_pd(m10 , in01 ));
- out11 = _mm_add_pd (out11, _mm_mul_pd(m11 , in11 ));
- m00 =_mm_load1_pd (M_+ 1);
- m10 =_mm_load1_pd (M_+ 2+1);
- m01 =_mm_load1_pd (M_+16+1);
- m11 =_mm_load1_pd (M_+18+1);
- in00 =_mm_shuffle_pd (in00,in00,_MM_SHUFFLE2(0,1));
- in01 =_mm_shuffle_pd (in01,in01,_MM_SHUFFLE2(0,1));
- in10 =_mm_shuffle_pd (in10,in10,_MM_SHUFFLE2(0,1));
- in11 =_mm_shuffle_pd (in11,in11,_MM_SHUFFLE2(0,1));
- out00 = _mm_addsub_pd(out00, _mm_mul_pd(m00, in00));
- out00 = _mm_addsub_pd(out00, _mm_mul_pd(m01, in10));
- out01 = _mm_addsub_pd(out01, _mm_mul_pd(m00, in01));
- out01 = _mm_addsub_pd(out01, _mm_mul_pd(m01, in11));
- out10 = _mm_addsub_pd(out10, _mm_mul_pd(m10, in00));
- out10 = _mm_addsub_pd(out10, _mm_mul_pd(m11, in10));
- out11 = _mm_addsub_pd(out11, _mm_mul_pd(m10, in01));
- out11 = _mm_addsub_pd(out11, _mm_mul_pd(m11, in11));
- M_+=32; // Jump to (column+2).
- IN0_+=4;
- IN1_+=4;
- }
- _mm_store_pd (OUT0 ,out00);
- _mm_store_pd (OUT0+2,out10);
- _mm_store_pd (OUT1 ,out01);
- _mm_store_pd (OUT1+2,out11);
- M_+=4-64*2; // Jump back to first column (row+2).
- OUT0+=4;
- OUT1+=4;
- }
- #else // Generic code.
- Real_t out_reg000, out_reg001, out_reg010, out_reg011;
- Real_t out_reg100, out_reg101, out_reg110, out_reg111;
- Real_t in_reg000, in_reg001, in_reg010, in_reg011;
- Real_t in_reg100, in_reg101, in_reg110, in_reg111;
- Real_t m_reg000, m_reg001, m_reg010, m_reg011;
- Real_t m_reg100, m_reg101, m_reg110, m_reg111;
- //#pragma unroll
- for(int i1=0;i1<8;i1+=2){
- Real_t* IN0_=IN0;
- Real_t* IN1_=IN1;
- out_reg000=OUT0[ 0]; out_reg001=OUT0[ 1];
- out_reg010=OUT0[ 2]; out_reg011=OUT0[ 3];
- out_reg100=OUT1[ 0]; out_reg101=OUT1[ 1];
- out_reg110=OUT1[ 2]; out_reg111=OUT1[ 3];
- //#pragma unroll
- for(int i2=0;i2<8;i2+=2){
- m_reg000=M_[ 0]; m_reg001=M_[ 1];
- m_reg010=M_[ 2]; m_reg011=M_[ 3];
- m_reg100=M_[16]; m_reg101=M_[17];
- m_reg110=M_[18]; m_reg111=M_[19];
- in_reg000=IN0_[0]; in_reg001=IN0_[1];
- in_reg010=IN0_[2]; in_reg011=IN0_[3];
- in_reg100=IN1_[0]; in_reg101=IN1_[1];
- in_reg110=IN1_[2]; in_reg111=IN1_[3];
- out_reg000 += m_reg000*in_reg000 - m_reg001*in_reg001;
- out_reg001 += m_reg000*in_reg001 + m_reg001*in_reg000;
- out_reg010 += m_reg010*in_reg000 - m_reg011*in_reg001;
- out_reg011 += m_reg010*in_reg001 + m_reg011*in_reg000;
- out_reg000 += m_reg100*in_reg010 - m_reg101*in_reg011;
- out_reg001 += m_reg100*in_reg011 + m_reg101*in_reg010;
- out_reg010 += m_reg110*in_reg010 - m_reg111*in_reg011;
- out_reg011 += m_reg110*in_reg011 + m_reg111*in_reg010;
- out_reg100 += m_reg000*in_reg100 - m_reg001*in_reg101;
- out_reg101 += m_reg000*in_reg101 + m_reg001*in_reg100;
- out_reg110 += m_reg010*in_reg100 - m_reg011*in_reg101;
- out_reg111 += m_reg010*in_reg101 + m_reg011*in_reg100;
- out_reg100 += m_reg100*in_reg110 - m_reg101*in_reg111;
- out_reg101 += m_reg100*in_reg111 + m_reg101*in_reg110;
- out_reg110 += m_reg110*in_reg110 - m_reg111*in_reg111;
- out_reg111 += m_reg110*in_reg111 + m_reg111*in_reg110;
- M_+=32; // Jump to (column+2).
- IN0_+=4;
- IN1_+=4;
- }
- OUT0[ 0]=out_reg000; OUT0[ 1]=out_reg001;
- OUT0[ 2]=out_reg010; OUT0[ 3]=out_reg011;
- OUT1[ 0]=out_reg100; OUT1[ 1]=out_reg101;
- OUT1[ 2]=out_reg110; OUT1[ 3]=out_reg111;
- M_+=4-64*2; // Jump back to first column (row+2).
- OUT0+=4;
- OUT1+=4;
- }
- #endif
- }
- M += M_dim*128;
- }
- }
- }
- // Compute flops.
- {
- Profile::Add_FLOP(8*8*8*(interac_vec.Dim()/2)*M_dim*ker_dim0*ker_dim1*dof);
- }
- // Free memory
- delete[] IN_ ;
- delete[] OUT_;
- mem::aligned_free<Real_t>(zero_vec0);
- mem::aligned_free<Real_t>(zero_vec1);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::V_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- if(level==0) return;
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=&aux_kernel;
- setup_data.interac_type.resize(1);
- setup_data.interac_type[0]=V1_Type;
- setup_data. input_data=&buff[0];
- setup_data.output_data=&buff[1];
- Vector<FMMNode_t*>& nodes_in =n_list[2];
- Vector<FMMNode_t*>& nodes_out=n_list[3];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level-1 || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_in [i])->Child(0))->FMMData())->upward_equiv);
- for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_out[i])->Child(0))->FMMData())->dnward_equiv);
- /////////////////////////////////////////////////////////////////////////////
- size_t n_in =nodes_in .size();
- size_t n_out=nodes_out.size();
- // Setup precomputed data.
- SetupPrecomp(setup_data,device);
- // Build interac_data
- Profile::Tic("Interac-Data",&this->comm,true,25);
- Matrix<char>& interac_data=setup_data.interac_data;
- if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
- size_t precomp_offset=0;
- Mat_Type& interac_type=setup_data.interac_type[0];
- size_t mat_cnt=this->interac_list.ListCount(interac_type);
- Vector<size_t> precomp_data_offset;
- std::vector<size_t> interac_mat;
- { // Load precomp_data for interac_type.
- Matrix<char>& precomp_data=*setup_data.precomp_data;
- char* indx_ptr=precomp_data[0]+precomp_offset;
- size_t total_size=((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
- /*size_t mat_cnt_ =((size_t*)indx_ptr)[0];*/ indx_ptr+=sizeof(size_t);
- precomp_data_offset.ReInit((1+2+2)*mat_cnt, (size_t*)indx_ptr, false);
- precomp_offset+=total_size;
- for(size_t mat_id=0;mat_id<mat_cnt;mat_id++){
- Matrix<Real_t>& M0 = this->mat->Mat(level, interac_type, mat_id);
- assert(M0.Dim(0)>0 && M0.Dim(1)>0); UNUSED(M0);
- interac_mat.push_back(precomp_data_offset[5*mat_id]);
- }
- }
- size_t dof;
- size_t m=MultipoleOrder();
- size_t ker_dim0=setup_data.kernel->ker_dim[0];
- size_t ker_dim1=setup_data.kernel->ker_dim[1];
- size_t fftsize;
- {
- size_t n1=m*2;
- size_t n2=n1*n1;
- size_t n3_=n2*(n1/2+1);
- size_t chld_cnt=1UL<<COORD_DIM;
- fftsize=2*n3_*chld_cnt;
- dof=1;
- }
- int omp_p=omp_get_max_threads();
- size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
- size_t n_blk0=2*fftsize*dof*(ker_dim0*n_in +ker_dim1*n_out)*sizeof(Real_t)/buff_size;
- if(n_blk0==0) n_blk0=1;
- std::vector<std::vector<size_t> > fft_vec(n_blk0);
- std::vector<std::vector<size_t> > ifft_vec(n_blk0);
- std::vector<std::vector<size_t> > interac_vec(n_blk0);
- std::vector<std::vector<size_t> > interac_dsp(n_blk0);
- {
- Matrix<Real_t>& input_data=*setup_data. input_data;
- Matrix<Real_t>& output_data=*setup_data.output_data;
- std::vector<std::vector<FMMNode*> > nodes_blk_in (n_blk0);
- std::vector<std::vector<FMMNode*> > nodes_blk_out(n_blk0);
- for(size_t i=0;i<n_in;i++) ((FMMNode*)nodes_in[i])->node_id=i;
- for(size_t blk0=0;blk0<n_blk0;blk0++){
- size_t blk0_start=(n_out* blk0 )/n_blk0;
- size_t blk0_end =(n_out*(blk0+1))/n_blk0;
- std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
- std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
- { // Build node list for blk0.
- std::set<void*> nodes_in;
- for(size_t i=blk0_start;i<blk0_end;i++){
- nodes_out_.push_back((FMMNode*)nodes_out[i]);
- std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
- for(size_t k=0;k<mat_cnt;k++) if(lst[k]!=NULL) nodes_in.insert(lst[k]);
- }
- for(std::set<void*>::iterator node=nodes_in.begin(); node != nodes_in.end(); node++){
- nodes_in_.push_back((FMMNode*)*node);
- }
- size_t input_dim=nodes_in_ .size()*ker_dim0*dof*fftsize;
- size_t output_dim=nodes_out_.size()*ker_dim1*dof*fftsize;
- size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
- if(buff_size<(input_dim + output_dim + buffer_dim)*sizeof(Real_t))
- buff_size=(input_dim + output_dim + buffer_dim)*sizeof(Real_t);
- }
- { // Set fft vectors.
- for(size_t i=0;i<nodes_in_ .size();i++) fft_vec[blk0].push_back((size_t)(& input_vector[nodes_in_[i]->node_id][0][0]- input_data[0]));
- for(size_t i=0;i<nodes_out_.size();i++)ifft_vec[blk0].push_back((size_t)(&output_vector[blk0_start + i ][0][0]-output_data[0]));
- }
- }
- for(size_t blk0=0;blk0<n_blk0;blk0++){ // Hadamard interactions.
- std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
- std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
- for(size_t i=0;i<nodes_in_.size();i++) nodes_in_[i]->node_id=i;
- { // Next blocking level.
- size_t n_blk1=nodes_out_.size()*(ker_dim0+ker_dim1)/V_BLK_SIZE; //64 vectors should fit in L1.
- if(n_blk1==0) n_blk1=1;
- size_t interac_dsp_=0;
- for(size_t blk1=0;blk1<n_blk1;blk1++){
- size_t blk1_start=(nodes_out_.size()* blk1 )/n_blk1;
- size_t blk1_end =(nodes_out_.size()*(blk1+1))/n_blk1;
- for(size_t k=0;k<mat_cnt;k++){
- for(size_t i=blk1_start;i<blk1_end;i++){
- std::vector<FMMNode*>& lst=((FMMNode*)nodes_out_[i])->interac_list[interac_type];
- if(lst[k]!=NULL){
- interac_vec[blk0].push_back(lst[k]->node_id*fftsize*ker_dim0*dof);
- interac_vec[blk0].push_back( i *fftsize*ker_dim1*dof);
- interac_dsp_++;
- }
- }
- interac_dsp[blk0].push_back(interac_dsp_);
- }
- }
- }
- }
- }
- { // Set interac_data.
- size_t data_size=sizeof(size_t)*5; // m, dof, ker_dim0, ker_dim1, n_blk0
- for(size_t blk0=0;blk0<n_blk0;blk0++){
- data_size+=sizeof(size_t)+ fft_vec[blk0].size()*sizeof(size_t);
- data_size+=sizeof(size_t)+ ifft_vec[blk0].size()*sizeof(size_t);
- data_size+=sizeof(size_t)+interac_vec[blk0].size()*sizeof(size_t);
- data_size+=sizeof(size_t)+interac_dsp[blk0].size()*sizeof(size_t);
- }
- data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
- if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
- interac_data.Resize(1,data_size);
- char* data_ptr=&interac_data[0][0];
- ((size_t*)data_ptr)[0]=buff_size; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= m; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= n_blk0; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= interac_mat.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
- data_ptr+=interac_mat.size()*sizeof(size_t);
- for(size_t blk0=0;blk0<n_blk0;blk0++){
- ((size_t*)data_ptr)[0]= fft_vec[blk0].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, & fft_vec[blk0][0], fft_vec[blk0].size()*sizeof(size_t));
- data_ptr+= fft_vec[blk0].size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=ifft_vec[blk0].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &ifft_vec[blk0][0], ifft_vec[blk0].size()*sizeof(size_t));
- data_ptr+=ifft_vec[blk0].size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=interac_vec[blk0].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &interac_vec[blk0][0], interac_vec[blk0].size()*sizeof(size_t));
- data_ptr+=interac_vec[blk0].size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=interac_dsp[blk0].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &interac_dsp[blk0][0], interac_dsp[blk0].size()*sizeof(size_t));
- data_ptr+=interac_dsp[blk0].size()*sizeof(size_t);
- }
- }
- }
- Profile::Toc();
- Profile::Tic("Host2Device",&this->comm,false,25);
- if(device){ // Host2Device
- setup_data.interac_data. AllocDevice(true);
- }
- Profile::Toc();
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::V_List (SetupData<Real_t>& setup_data, bool device){
- assert(!device); //Can not run on accelerator yet.
- if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
- Profile::Tic("Host2Device",&this->comm,false,25);
- Profile::Toc();
- Profile::Tic("FFT",&comm,false,100);
- Profile::Toc();
- Profile::Tic("HadamardProduct",&comm,false,100);
- Profile::Toc();
- Profile::Tic("IFFT",&comm,false,100);
- Profile::Toc();
- return;
- }
- Profile::Tic("Host2Device",&this->comm,false,25);
- int level=setup_data.level;
- size_t buff_size=*((size_t*)&setup_data.interac_data[0][0]);
- typename Matrix<Real_t>::Device M_d;
- typename Vector<char>::Device buff;
- typename Matrix<char>::Device precomp_data;
- typename Matrix<char>::Device interac_data;
- typename Matrix<Real_t>::Device input_data;
- typename Matrix<Real_t>::Device output_data;
- Matrix<Real_t>& M = this->mat->Mat(level, DC2DE_Type, 0);
- if(device){
- if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
- M_d = M. AllocDevice(false);
- buff = this-> dev_buffer. AllocDevice(false);
- precomp_data= setup_data.precomp_data->AllocDevice(false);
- interac_data= setup_data.interac_data. AllocDevice(false);
- input_data = setup_data. input_data->AllocDevice(false);
- output_data = setup_data. output_data->AllocDevice(false);
- }else{
- if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
- M_d = M;
- buff = this-> cpu_buffer;
- precomp_data=*setup_data.precomp_data;
- interac_data= setup_data.interac_data;
- input_data =*setup_data. input_data;
- output_data =*setup_data. output_data;
- }
- Profile::Toc();
- { // Offloaded computation.
- // Set interac_data.
- size_t m, dof, ker_dim0, ker_dim1, n_blk0;
- std::vector<Vector<size_t> > fft_vec;
- std::vector<Vector<size_t> > ifft_vec;
- std::vector<Vector<size_t> > interac_vec;
- std::vector<Vector<size_t> > interac_dsp;
- Vector<Real_t*> precomp_mat;
- { // Set interac_data.
- char* data_ptr=&interac_data[0][0];
- buff_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- m =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- ker_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- ker_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- n_blk0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- fft_vec .resize(n_blk0);
- ifft_vec.resize(n_blk0);
- interac_vec.resize(n_blk0);
- interac_dsp.resize(n_blk0);
- Vector<size_t> interac_mat;
- interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
- precomp_mat.Resize(interac_mat.Dim());
- for(size_t i=0;i<interac_mat.Dim();i++){
- precomp_mat[i]=(Real_t*)(precomp_data[0]+interac_mat[i]);
- }
- for(size_t blk0=0;blk0<n_blk0;blk0++){
- fft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+fft_vec[blk0].Dim()*sizeof(size_t);
- ifft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+ifft_vec[blk0].Dim()*sizeof(size_t);
- interac_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+interac_vec[blk0].Dim()*sizeof(size_t);
- interac_dsp[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+interac_dsp[blk0].Dim()*sizeof(size_t);
- }
- }
- int omp_p=omp_get_max_threads();
- size_t M_dim, fftsize;
- {
- size_t n1=m*2;
- size_t n2=n1*n1;
- size_t n3_=n2*(n1/2+1);
- size_t chld_cnt=1UL<<COORD_DIM;
- fftsize=2*n3_*chld_cnt;
- M_dim=n3_;
- }
- for(size_t blk0=0;blk0<n_blk0;blk0++){ // interactions
- size_t n_in = fft_vec[blk0].Dim();
- size_t n_out=ifft_vec[blk0].Dim();
- size_t input_dim=n_in *ker_dim0*dof*fftsize;
- size_t output_dim=n_out*ker_dim1*dof*fftsize;
- size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
- Vector<Real_t> fft_in ( input_dim, (Real_t*)&buff[ 0 ],false);
- Vector<Real_t> fft_out(output_dim, (Real_t*)&buff[ input_dim *sizeof(Real_t)],false);
- Vector<Real_t> buffer(buffer_dim, (Real_t*)&buff[(input_dim+output_dim)*sizeof(Real_t)],false);
- { // FFT
- Profile::Tic("FFT",&comm,false,100);
- Vector<Real_t> input_data_( input_data.dim[0]* input_data.dim[1], input_data[0], false);
- FFT_UpEquiv(dof, m, ker_dim0, fft_vec[blk0], input_data_, fft_in, buffer);
- Profile::Toc();
- }
- { // Hadamard
- #ifdef PVFMM_HAVE_PAPI
- #ifdef __VERBOSE__
- std::cout << "Starting counters new\n";
- if (PAPI_start(EventSet) != PAPI_OK) std::cout << "handle_error3" << std::endl;
- #endif
- #endif
- Profile::Tic("HadamardProduct",&comm,false,100);
- VListHadamard<Real_t>(dof, M_dim, ker_dim0, ker_dim1, interac_dsp[blk0], interac_vec[blk0], precomp_mat, fft_in, fft_out);
- Profile::Toc();
- #ifdef PVFMM_HAVE_PAPI
- #ifdef __VERBOSE__
- if (PAPI_stop(EventSet, values) != PAPI_OK) std::cout << "handle_error4" << std::endl;
- std::cout << "Stopping counters\n";
- #endif
- #endif
- }
- { // IFFT
- Profile::Tic("IFFT",&comm,false,100);
- Matrix<Real_t> M(M_d.dim[0],M_d.dim[1],M_d[0],false);
- Vector<Real_t> output_data_(output_data.dim[0]*output_data.dim[1], output_data[0], false);
- FFT_Check2Equiv(dof, m, ker_dim1, ifft_vec[blk0], fft_out, output_data_, buffer, M);
- Profile::Toc();
- }
- }
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::Down2DownSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=&aux_kernel;
- setup_data.interac_type.resize(1);
- setup_data.interac_type[0]=D2D_Type;
- setup_data. input_data=&buff[1];
- setup_data.output_data=&buff[1];
- Vector<FMMNode_t*>& nodes_in =n_list[1];
- Vector<FMMNode_t*>& nodes_out=n_list[1];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
- for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
- SetupInterac(setup_data,device);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::Down2Down (SetupData<Real_t>& setup_data, bool device){
- //Add Down2Down contribution.
- EvalList(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::SetupInteracPts(SetupData<Real_t>& setup_data, bool shift_src, bool shift_trg, Matrix<Real_t>* M, bool device){
- int level=setup_data.level;
- std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- Matrix<Real_t>& output_data=*setup_data.output_data;
- Matrix<Real_t>& input_data=*setup_data. input_data;
- Matrix<Real_t>& coord_data=*setup_data. coord_data;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
- size_t n_in =nodes_in .size();
- size_t n_out=nodes_out.size();
- //setup_data.precomp_data=NULL;
- // Build interac_data
- Profile::Tic("Interac-Data",&this->comm,true,25);
- Matrix<char>& interac_data=setup_data.interac_data;
- if(n_out>0 && n_in >0){
- size_t ker_dim0=setup_data.kernel->ker_dim[0];
- size_t ker_dim1=setup_data.kernel->ker_dim[1];
- size_t dof=1;
- for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
- std::vector<size_t> trg_interac_cnt(n_out,0);
- std::vector<size_t> trg_coord(n_out);
- std::vector<size_t> trg_value(n_out);
- std::vector<size_t> trg_cnt(n_out);
- std::vector<Real_t> scaling(n_out,0);
- { // Set trg data
- Mat_Type& interac_type=interac_type_lst[0];
- for(size_t i=0;i<n_out;i++){
- if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
- trg_cnt [i]=output_vector[i*2+0]->Dim()/COORD_DIM;
- trg_coord[i]=(size_t)(&output_vector[i*2+0][0][0]- coord_data[0]);
- trg_value[i]=(size_t)(&output_vector[i*2+1][0][0]-output_data[0]);
- if(!this->Homogen()) scaling[i]=1.0;
- else if(interac_type==X_Type) scaling[i]=pow(0.5, setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
- }
- }
- }
- std::vector<std::vector<size_t> > src_cnt(n_out);
- std::vector<std::vector<size_t> > src_coord(n_out);
- std::vector<std::vector<size_t> > src_value(n_out);
- std::vector<std::vector<Real_t> > shift_coord(n_out);
- for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
- Mat_Type& interac_type=interac_type_lst[type_indx];
- size_t mat_cnt=this->interac_list.ListCount(interac_type);
- for(size_t i=0;i<n_out;i++){ // For each target node.
- if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
- std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
- for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++) if(lst[mat_indx]!=NULL){ // For each direction.
- size_t j=lst[mat_indx]->node_id;
- if(input_vector[j*4+0]->Dim()>0 || input_vector[j*4+2]->Dim()>0){
- trg_interac_cnt[i]++;
- { // Determine shift for periodic boundary condition
- Real_t* sc=lst[mat_indx]->Coord();
- Real_t* tc=((FMMNode*)nodes_out[i])->Coord();
- int* rel_coord=this->interac_list.RelativeCoord(interac_type, mat_indx);
- shift_coord[i].push_back((tc[0]>sc[0] && rel_coord[0]>0? 1.0:
- (tc[0]<sc[0] && rel_coord[0]<0?-1.0:0.0)) +
- (shift_src?sc[0]:0) - (shift_trg?tc[0]:0) );
- shift_coord[i].push_back((tc[1]>sc[1] && rel_coord[1]>0? 1.0:
- (tc[1]<sc[1] && rel_coord[1]<0?-1.0:0.0)) +
- (shift_src?sc[1]:0) - (shift_trg?tc[1]:0) );
- shift_coord[i].push_back((tc[2]>sc[2] && rel_coord[2]>0? 1.0:
- (tc[2]<sc[2] && rel_coord[2]<0?-1.0:0.0)) +
- (shift_src?sc[2]:0) - (shift_trg?tc[2]:0) );
- }
- { // Set src data
- if(input_vector[j*4+0]!=NULL){
- src_cnt [i].push_back(input_vector[j*4+0]->Dim()/COORD_DIM);
- src_coord[i].push_back((size_t)(& input_vector[j*4+0][0][0]- coord_data[0]));
- src_value[i].push_back((size_t)(& input_vector[j*4+1][0][0]- input_data[0]));
- }else{
- src_cnt [i].push_back(0);
- src_coord[i].push_back(0);
- src_value[i].push_back(0);
- }
- if(input_vector[j*4+2]!=NULL){
- src_cnt [i].push_back(input_vector[j*4+2]->Dim()/COORD_DIM);
- src_coord[i].push_back((size_t)(& input_vector[j*4+2][0][0]- coord_data[0]));
- src_value[i].push_back((size_t)(& input_vector[j*4+3][0][0]- input_data[0]));
- }else{
- src_cnt [i].push_back(0);
- src_coord[i].push_back(0);
- src_value[i].push_back(0);
- }
- }
- }
- }
- }
- }
- }
- { // Set interac_data.
- size_t data_size=sizeof(size_t)*4;
- data_size+=sizeof(size_t)+trg_interac_cnt.size()*sizeof(size_t);
- data_size+=sizeof(size_t)+trg_coord.size()*sizeof(size_t);
- data_size+=sizeof(size_t)+trg_value.size()*sizeof(size_t);
- data_size+=sizeof(size_t)+trg_cnt .size()*sizeof(size_t);
- data_size+=sizeof(size_t)+scaling .size()*sizeof(Real_t);
- data_size+=sizeof(size_t)*2+(M!=NULL?M->Dim(0)*M->Dim(1)*sizeof(Real_t):0);
- for(size_t i=0;i<n_out;i++){
- data_size+=sizeof(size_t)+src_cnt [i].size()*sizeof(size_t);
- data_size+=sizeof(size_t)+src_coord[i].size()*sizeof(size_t);
- data_size+=sizeof(size_t)+src_value[i].size()*sizeof(size_t);
- data_size+=sizeof(size_t)+shift_coord[i].size()*sizeof(Real_t);
- }
- if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
- interac_data.Resize(1,data_size);
- char* data_ptr=&interac_data[0][0];
- ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]=trg_interac_cnt.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &trg_interac_cnt[0], trg_interac_cnt.size()*sizeof(size_t));
- data_ptr+=trg_interac_cnt.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=trg_coord.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &trg_coord[0], trg_coord.size()*sizeof(size_t));
- data_ptr+=trg_coord.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=trg_value.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &trg_value[0], trg_value.size()*sizeof(size_t));
- data_ptr+=trg_value.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=trg_cnt.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &trg_cnt[0], trg_cnt.size()*sizeof(size_t));
- data_ptr+=trg_cnt.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=scaling.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &scaling[0], scaling.size()*sizeof(Real_t));
- data_ptr+=scaling.size()*sizeof(Real_t);
- if(M!=NULL){
- ((size_t*)data_ptr)[0]=M->Dim(0); data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]=M->Dim(1); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, M[0][0], M->Dim(0)*M->Dim(1)*sizeof(Real_t));
- data_ptr+=M->Dim(0)*M->Dim(1)*sizeof(Real_t);
- }else{
- ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
- }
- for(size_t i=0;i<n_out;i++){
- ((size_t*)data_ptr)[0]=src_cnt[i].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &src_cnt[i][0], src_cnt[i].size()*sizeof(size_t));
- data_ptr+=src_cnt[i].size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=src_coord[i].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &src_coord[i][0], src_coord[i].size()*sizeof(size_t));
- data_ptr+=src_coord[i].size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=src_value[i].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &src_value[i][0], src_value[i].size()*sizeof(size_t));
- data_ptr+=src_value[i].size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=shift_coord[i].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &shift_coord[i][0], shift_coord[i].size()*sizeof(Real_t));
- data_ptr+=shift_coord[i].size()*sizeof(Real_t);
- }
- }
- size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
- if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
- if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
- }
- Profile::Toc();
- Profile::Tic("Host2Device",&this->comm,false,25);
- if(device){ // Host2Device
- setup_data.interac_data .AllocDevice(true);
- }
- Profile::Toc();
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::EvalListPts(SetupData<Real_t>& setup_data, bool device){
- if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
- Profile::Tic("Host2Device",&this->comm,false,25);
- Profile::Toc();
- Profile::Tic("DeviceComp",&this->comm,false,20);
- Profile::Toc();
- return;
- }
- std::cout << "EvalListPts, device = " << device << '\n';
- Profile::Tic("Host2Device",&this->comm,false,25);
- typename Vector<char>::Device buff;
- //typename Matrix<char>::Device precomp_data;
- typename Matrix<char>::Device interac_data;
- typename Matrix<Real_t>::Device coord_data;
- typename Matrix<Real_t>::Device input_data;
- typename Matrix<Real_t>::Device output_data;
- if(device){
- buff = this-> dev_buffer. AllocDevice(false);
- interac_data= setup_data.interac_data. AllocDevice(false);
- //if(setup_data.precomp_data!=NULL) precomp_data= setup_data.precomp_data->AllocDevice(false);
- if(setup_data. coord_data!=NULL) coord_data = setup_data. coord_data->AllocDevice(false);
- if(setup_data. input_data!=NULL) input_data = setup_data. input_data->AllocDevice(false);
- if(setup_data. output_data!=NULL) output_data = setup_data. output_data->AllocDevice(false);
- }else{
- buff = this-> cpu_buffer;
- interac_data= setup_data.interac_data;
- //if(setup_data.precomp_data!=NULL) precomp_data=*setup_data.precomp_data;
- if(setup_data. coord_data!=NULL) coord_data =*setup_data. coord_data;
- if(setup_data. input_data!=NULL) input_data =*setup_data. input_data;
- if(setup_data. output_data!=NULL) output_data =*setup_data. output_data;
- }
- Profile::Toc();
- std::cout << "EvalListPts, end allocation. " << '\n';
- size_t ptr_single_layer_kernel=(size_t)setup_data.kernel->ker_poten;
- size_t ptr_double_layer_kernel=(size_t)setup_data.kernel->dbl_layer_poten;
- Profile::Tic("DeviceComp",&this->comm,false,20);
- #ifdef __INTEL_OFFLOAD
- int lock_idx=-1;
- int wait_lock_idx=-1;
- if(device) wait_lock_idx=MIC_Lock::curr_lock();
- if(device) lock_idx=MIC_Lock::get_lock();
- if(device) ptr_single_layer_kernel=setup_data.kernel->dev_ker_poten;
- if(device) ptr_double_layer_kernel=setup_data.kernel->dev_dbl_layer_poten;
- #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
- #endif
- { // Offloaded computation.
- // Set interac_data.
- //size_t data_size;
- //size_t ker_dim0;
- size_t ker_dim1;
- size_t dof, n_out;
- Vector<size_t> trg_interac_cnt;
- Vector<size_t> trg_coord;
- Vector<size_t> trg_value;
- Vector<size_t> trg_cnt;
- Vector<Real_t> scaling;
- Matrix<Real_t> M;
- Vector< Vector<size_t> > src_cnt;
- Vector< Vector<size_t> > src_coord;
- Vector< Vector<size_t> > src_value;
- Vector< Vector<Real_t> > shift_coord;
- { // Set interac_data.
- char* data_ptr=&interac_data[0][0];
-
- std::cout << "EvalListPts, converting device ptr to char* " << '\n';
- /*data_size=((size_t*)data_ptr)[0];*/ data_ptr+=sizeof(size_t);
- /*ker_dim0=((size_t*)data_ptr)[0];*/ data_ptr+=sizeof(size_t);
- ker_dim1=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- std::cout << "EvalListPts, device ptr evaluation " << '\n';
- trg_interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+trg_interac_cnt.Dim()*sizeof(size_t);
- n_out=trg_interac_cnt.Dim();
- std::cout << "EvalListPts, 1.st ReInit " << '\n';
- trg_coord.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+trg_coord.Dim()*sizeof(size_t);
- trg_value.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+trg_value.Dim()*sizeof(size_t);
- trg_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+trg_cnt.Dim()*sizeof(size_t);
- scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+scaling.Dim()*sizeof(Real_t);
- M.ReInit(((size_t*)data_ptr)[0],((size_t*)data_ptr)[1],(Real_t*)(data_ptr+2*sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)*2+M.Dim(0)*M.Dim(1)*sizeof(Real_t);
- src_cnt.Resize(n_out);
- src_coord.Resize(n_out);
- src_value.Resize(n_out);
- shift_coord.Resize(n_out);
- for(size_t i=0;i<n_out;i++){
- src_cnt[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+src_cnt[i].Dim()*sizeof(size_t);
- src_coord[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+src_coord[i].Dim()*sizeof(size_t);
- src_value[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+src_value[i].Dim()*sizeof(size_t);
- shift_coord[i].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+shift_coord[i].Dim()*sizeof(Real_t);
- }
- }
- #ifdef __INTEL_OFFLOAD
- if(device) MIC_Lock::wait_lock(wait_lock_idx);
- #endif
-
- std::cout << "EvalListPts, end reallocation." << '\n';
- //Compute interaction from point sources.
- { // interactions
- typename Kernel<Real_t>::Ker_t single_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_single_layer_kernel;
- typename Kernel<Real_t>::Ker_t double_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_double_layer_kernel;
- int omp_p=omp_get_max_threads();
- Vector<Real_t*> thread_buff(omp_p);
- size_t thread_buff_size=buff.dim/sizeof(Real_t)/omp_p;
- for(int i=0;i<omp_p;i++) thread_buff[i]=(Real_t*)&buff[i*thread_buff_size*sizeof(Real_t)];
- #pragma omp parallel for
- for(size_t i=0;i<n_out;i++)
- if(trg_interac_cnt[i]>0 && trg_cnt[i]>0){
- int thread_id=omp_get_thread_num();
- Real_t* s_coord=thread_buff[thread_id];
- Real_t* t_value=output_data[0]+trg_value[i];
- if(M.Dim(0)>0 && M.Dim(1)>0){
- s_coord+=dof*M.Dim(0);
- t_value=thread_buff[thread_id];
- for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]=0;
- }
- size_t interac_cnt=0;
- for(size_t j=0;j<trg_interac_cnt[i];j++){
- if(ptr_single_layer_kernel!=(size_t)NULL){// Single layer kernel
- Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+0];
- assert(thread_buff_size>=dof*M.Dim(0)+src_cnt[i][2*j+0]*COORD_DIM);
- for(size_t k1=0;k1<src_cnt[i][2*j+0];k1++){ // Compute shifted source coordinates.
- for(size_t k0=0;k0<COORD_DIM;k0++){
- s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
- }
- }
- single_layer_kernel( s_coord , src_cnt[i][2*j+0], input_data[0]+src_value[i][2*j+0], dof,
- coord_data[0]+trg_coord[i], trg_cnt[i] , t_value);
- interac_cnt+=src_cnt[i][2*j+0]*trg_cnt[i];
- }
- if(ptr_double_layer_kernel!=(size_t)NULL){// Double layer kernel
- Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+1];
- assert(thread_buff_size>=dof*M.Dim(0)+src_cnt[i][2*j+1]*COORD_DIM);
- for(size_t k1=0;k1<src_cnt[i][2*j+1];k1++){ // Compute shifted source coordinates.
- for(size_t k0=0;k0<COORD_DIM;k0++){
- s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
- }
- }
- double_layer_kernel( s_coord , src_cnt[i][2*j+1], input_data[0]+src_value[i][2*j+1], dof,
- coord_data[0]+trg_coord[i], trg_cnt[i] , t_value);
- interac_cnt+=src_cnt[i][2*j+1]*trg_cnt[i];
- }
- }
- if(M.Dim(0)>0 && M.Dim(1)>0 && interac_cnt>0){
- assert(trg_cnt[i]*ker_dim1==M.Dim(0)); UNUSED(ker_dim1);
- for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]*=scaling[i];
- Matrix<Real_t> in_vec(dof, M.Dim(0), t_value , false);
- Matrix<Real_t> out_vec(dof, M.Dim(1), output_data[0]+trg_value[i], false);
- Matrix<Real_t>::DGEMM(out_vec, in_vec, M, 1.0);
- }
- }
- }
- #ifdef __INTEL_OFFLOAD
- if(device) MIC_Lock::release_lock(lock_idx);
- #endif
- }
- #ifndef __MIC_ASYNCH__
- #ifdef __INTEL_OFFLOAD
- #pragma offload if(device) target(mic:0)
- {if(device) MIC_Lock::wait_lock(lock_idx);}
- #endif
- #endif
- Profile::Toc();
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::X_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=&aux_kernel;
- setup_data.interac_type.resize(1);
- setup_data.interac_type[0]=X_Type;
- setup_data. input_data=&buff[4];
- setup_data.output_data=&buff[1];
- setup_data. coord_data=&buff[6];
- Vector<FMMNode_t*>& nodes_in =n_list[4];
- Vector<FMMNode_t*>& nodes_out=n_list[1];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++){
- input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
- input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
- input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
- input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
- }
- for(size_t i=0;i<nodes_out.size();i++){
- output_vector.push_back(&dnwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
- output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
- }
- //Downward check to downward equivalent matrix.
- Matrix<Real_t>& M_dc2de = this->mat->Mat(level, DC2DE_Type, 0);
- this->SetupInteracPts(setup_data, false, true, &M_dc2de,device);
- { // Resize device buffer
- size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
- if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::X_List (SetupData<Real_t>& setup_data, bool device){
- //Add X_List contribution.
- //this->EvalListPts(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::W_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=&kernel;
- setup_data.interac_type.resize(1);
- setup_data.interac_type[0]=W_Type;
- setup_data. input_data=&buff[0];
- setup_data.output_data=&buff[5];
- setup_data. coord_data=&buff[6];
- Vector<FMMNode_t*>& nodes_in =n_list[0];
- Vector<FMMNode_t*>& nodes_out=n_list[5];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++){
- input_vector .push_back(&upwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
- input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
- input_vector .push_back(NULL);
- input_vector .push_back(NULL);
- }
- for(size_t i=0;i<nodes_out.size();i++){
- output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
- output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
- }
- this->SetupInteracPts(setup_data, true, false, NULL, device);
- { // Resize device buffer
- size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
- if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::W_List (SetupData<Real_t>& setup_data, bool device){
- //Add W_List contribution.
- //this->EvalListPts(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::U_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=&kernel;
- setup_data.interac_type.resize(3);
- setup_data.interac_type[0]=U0_Type;
- setup_data.interac_type[1]=U1_Type;
- setup_data.interac_type[2]=U2_Type;
- setup_data. input_data=&buff[4];
- setup_data.output_data=&buff[5];
- setup_data. coord_data=&buff[6];
- Vector<FMMNode_t*>& nodes_in =n_list[4];
- Vector<FMMNode_t*>& nodes_out=n_list[5];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if((level-1<=nodes_in [i]->Depth() && nodes_in [i]->Depth()<=level+1) || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(( nodes_out[i]->Depth()==level ) || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++){
- input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
- input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
- input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
- input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
- }
- for(size_t i=0;i<nodes_out.size();i++){
- output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
- output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
- }
- this->SetupInteracPts(setup_data, false, false, NULL, device);
- { // Resize device buffer
- size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
- if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::U_List (SetupData<Real_t>& setup_data, bool device){
- //Add U_List contribution.
- //this->EvalListPts(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::Down2TargetSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=&kernel;
- setup_data.interac_type.resize(1);
- setup_data.interac_type[0]=D2T_Type;
- setup_data. input_data=&buff[1];
- setup_data.output_data=&buff[5];
- setup_data. coord_data=&buff[6];
- Vector<FMMNode_t*>& nodes_in =n_list[1];
- Vector<FMMNode_t*>& nodes_out=n_list[5];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++){
- input_vector .push_back(&dnwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
- input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
- input_vector .push_back(NULL);
- input_vector .push_back(NULL);
- }
- for(size_t i=0;i<nodes_out.size();i++){
- output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
- output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
- }
- this->SetupInteracPts(setup_data, true, false, NULL, device);
- { // Resize device buffer
- size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
- if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::Down2Target(SetupData<Real_t>& setup_data, bool device){
- //Add Down2Target contribution.
- //this->EvalListPts(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::PostProcessing(std::vector<FMMNode_t*>& nodes){
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::CopyOutput(FMMNode** nodes, size_t n){
- // for(size_t i=0;i<n;i++){
- // FMMData* fmm_data=((FMMData*)nodes[i]->FMMData());
- // }
- }
- }//end namespace
|