fmm_pts.txx 207 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445
  1. /**
  2. * \file fmm_pts.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 3-07-2011
  5. * \brief This file contains the implementation of the FMM_Pts class.
  6. */
  7. #include <omp.h>
  8. #include <cmath>
  9. #include <cstdlib>
  10. #include <cassert>
  11. #include <sstream>
  12. #include <iostream>
  13. #include <stdint.h>
  14. #include <set>
  15. #ifdef PVFMM_HAVE_SYS_STAT_H
  16. #include <sys/stat.h>
  17. #endif
  18. #ifdef __SSE__
  19. #include <xmmintrin.h>
  20. #endif
  21. #ifdef __SSE2__
  22. #include <emmintrin.h>
  23. #endif
  24. #ifdef __SSE3__
  25. #include <pmmintrin.h>
  26. #endif
  27. #ifdef __AVX__
  28. #include <immintrin.h>
  29. #endif
  30. #if defined(__MIC__)
  31. #include <immintrin.h>
  32. #endif
  33. #include <profile.hpp>
  34. namespace pvfmm{
  35. /**
  36. * \brief Returns the coordinates of points on the surface of a cube.
  37. * \param[in] p Number of points on an edge of the cube is (n+1)
  38. * \param[in] c Coordinates to the centre of the cube (3D array).
  39. * \param[in] alpha Scaling factor for the size of the cube.
  40. * \param[in] depth Depth of the cube in the octree.
  41. * \return Vector with coordinates of points on the surface of the cube in the
  42. * format [x0 y0 z0 x1 y1 z1 .... ].
  43. */
  44. template <class Real_t>
  45. std::vector<Real_t> surface(int p, Real_t* c, Real_t alpha, int depth){
  46. size_t n_=(6*(p-1)*(p-1)+2); //Total number of points.
  47. std::vector<Real_t> coord(n_*3);
  48. coord[0]=coord[1]=coord[2]=-1.0;
  49. size_t cnt=1;
  50. for(int i=0;i<p-1;i++)
  51. for(int j=0;j<p-1;j++){
  52. coord[cnt*3 ]=-1.0;
  53. coord[cnt*3+1]=(2.0*(i+1)-p+1)/(p-1);
  54. coord[cnt*3+2]=(2.0*j-p+1)/(p-1);
  55. cnt++;
  56. }
  57. for(int i=0;i<p-1;i++)
  58. for(int j=0;j<p-1;j++){
  59. coord[cnt*3 ]=(2.0*i-p+1)/(p-1);
  60. coord[cnt*3+1]=-1.0;
  61. coord[cnt*3+2]=(2.0*(j+1)-p+1)/(p-1);
  62. cnt++;
  63. }
  64. for(int i=0;i<p-1;i++)
  65. for(int j=0;j<p-1;j++){
  66. coord[cnt*3 ]=(2.0*(i+1)-p+1)/(p-1);
  67. coord[cnt*3+1]=(2.0*j-p+1)/(p-1);
  68. coord[cnt*3+2]=-1.0;
  69. cnt++;
  70. }
  71. for(size_t i=0;i<(n_/2)*3;i++)
  72. coord[cnt*3+i]=-coord[i];
  73. Real_t r = 0.5*pvfmm::pow<Real_t>(0.5,depth);
  74. Real_t b = alpha*r;
  75. for(size_t i=0;i<n_;i++){
  76. coord[i*3+0]=(coord[i*3+0]+1.0)*b+c[0];
  77. coord[i*3+1]=(coord[i*3+1]+1.0)*b+c[1];
  78. coord[i*3+2]=(coord[i*3+2]+1.0)*b+c[2];
  79. }
  80. return coord;
  81. }
  82. /**
  83. * \brief Returns the coordinates of points on the upward check surface of cube.
  84. * \see surface()
  85. */
  86. template <class Real_t>
  87. std::vector<Real_t> u_check_surf(int p, Real_t* c, int depth){
  88. Real_t r=0.5*pvfmm::pow<Real_t>(0.5,depth);
  89. Real_t coord[3]={(Real_t)(c[0]-r*(RAD1-1.0)),(Real_t)(c[1]-r*(RAD1-1.0)),(Real_t)(c[2]-r*(RAD1-1.0))};
  90. return surface(p,coord,(Real_t)RAD1,depth);
  91. }
  92. /**
  93. * \brief Returns the coordinates of points on the upward equivalent surface of cube.
  94. * \see surface()
  95. */
  96. template <class Real_t>
  97. std::vector<Real_t> u_equiv_surf(int p, Real_t* c, int depth){
  98. Real_t r=0.5*pvfmm::pow<Real_t>(0.5,depth);
  99. Real_t coord[3]={(Real_t)(c[0]-r*(RAD0-1.0)),(Real_t)(c[1]-r*(RAD0-1.0)),(Real_t)(c[2]-r*(RAD0-1.0))};
  100. return surface(p,coord,(Real_t)RAD0,depth);
  101. }
  102. /**
  103. * \brief Returns the coordinates of points on the downward check surface of cube.
  104. * \see surface()
  105. */
  106. template <class Real_t>
  107. std::vector<Real_t> d_check_surf(int p, Real_t* c, int depth){
  108. Real_t r=0.5*pvfmm::pow<Real_t>(0.5,depth);
  109. Real_t coord[3]={(Real_t)(c[0]-r*(RAD0-1.0)),(Real_t)(c[1]-r*(RAD0-1.0)),(Real_t)(c[2]-r*(RAD0-1.0))};
  110. return surface(p,coord,(Real_t)RAD0,depth);
  111. }
  112. /**
  113. * \brief Returns the coordinates of points on the downward equivalent surface of cube.
  114. * \see surface()
  115. */
  116. template <class Real_t>
  117. std::vector<Real_t> d_equiv_surf(int p, Real_t* c, int depth){
  118. Real_t r=0.5*pvfmm::pow<Real_t>(0.5,depth);
  119. Real_t coord[3]={(Real_t)(c[0]-r*(RAD1-1.0)),(Real_t)(c[1]-r*(RAD1-1.0)),(Real_t)(c[2]-r*(RAD1-1.0))};
  120. return surface(p,coord,(Real_t)RAD1,depth);
  121. }
  122. /**
  123. * \brief Defines the 3D grid for convolution in FFT acceleration of V-list.
  124. * \see surface()
  125. */
  126. template <class Real_t>
  127. std::vector<Real_t> conv_grid(int p, Real_t* c, int depth){
  128. Real_t r=pvfmm::pow<Real_t>(0.5,depth);
  129. Real_t a=r*RAD0;
  130. Real_t coord[3]={c[0],c[1],c[2]};
  131. int n1=p*2;
  132. int n2=pvfmm::pow<int>((Real_t)n1,2);
  133. int n3=pvfmm::pow<int>((Real_t)n1,3);
  134. std::vector<Real_t> grid(n3*3);
  135. for(int i=0;i<n1;i++)
  136. for(int j=0;j<n1;j++)
  137. for(int k=0;k<n1;k++){
  138. grid[(i+n1*j+n2*k)*3+0]=(i-p)*a/(p-1)+coord[0];
  139. grid[(i+n1*j+n2*k)*3+1]=(j-p)*a/(p-1)+coord[1];
  140. grid[(i+n1*j+n2*k)*3+2]=(k-p)*a/(p-1)+coord[2];
  141. }
  142. return grid;
  143. }
  144. template <class Real_t>
  145. void FMM_Data<Real_t>::Clear(){
  146. upward_equiv.Resize(0);
  147. }
  148. template <class Real_t>
  149. PackedData FMM_Data<Real_t>::PackMultipole(void* buff_ptr){
  150. PackedData p0; p0.data=buff_ptr;
  151. p0.length=upward_equiv.Dim()*sizeof(Real_t);
  152. if(p0.length==0) return p0;
  153. if(p0.data==NULL) p0.data=(char*)&upward_equiv[0];
  154. else mem::memcopy(p0.data,&upward_equiv[0],p0.length);
  155. return p0;
  156. }
  157. template <class Real_t>
  158. void FMM_Data<Real_t>::AddMultipole(PackedData p0){
  159. Real_t* data=(Real_t*)p0.data;
  160. size_t n=p0.length/sizeof(Real_t);
  161. assert(upward_equiv.Dim()==n);
  162. Matrix<Real_t> v0(1,n,&upward_equiv[0],false);
  163. Matrix<Real_t> v1(1,n,data,false);
  164. v0+=v1;
  165. }
  166. template <class Real_t>
  167. void FMM_Data<Real_t>::InitMultipole(PackedData p0, bool own_data){
  168. Real_t* data=(Real_t*)p0.data;
  169. size_t n=p0.length/sizeof(Real_t);
  170. if(n==0) return;
  171. if(own_data){
  172. upward_equiv=Vector<Real_t>(n, &data[0], false);
  173. }else{
  174. upward_equiv.ReInit(n, &data[0], false);
  175. }
  176. }
  177. template <class FMMNode>
  178. FMM_Pts<FMMNode>::~FMM_Pts() {
  179. if(mat!=NULL){
  180. // int rank;
  181. // MPI_Comm_rank(comm,&rank);
  182. // if(rank==0) mat->Save2File("Precomp.data");
  183. delete mat;
  184. mat=NULL;
  185. }
  186. if(vprecomp_fft_flag) FFTW_t<Real_t>::fft_destroy_plan(vprecomp_fftplan);
  187. #ifdef __INTEL_OFFLOAD0
  188. #pragma offload target(mic:0)
  189. #endif
  190. {
  191. if(vlist_fft_flag ) FFTW_t<Real_t>::fft_destroy_plan(vlist_fftplan );
  192. if(vlist_ifft_flag) FFTW_t<Real_t>::fft_destroy_plan(vlist_ifftplan);
  193. vlist_fft_flag =false;
  194. vlist_ifft_flag=false;
  195. }
  196. }
  197. template <class FMMNode>
  198. void FMM_Pts<FMMNode>::Initialize(int mult_order, const MPI_Comm& comm_, const Kernel<Real_t>* kernel_){
  199. Profile::Tic("InitFMM_Pts",&comm_,true);{
  200. int rank;
  201. MPI_Comm_rank(comm_,&rank);
  202. bool verbose=false;
  203. #ifndef NDEBUG
  204. #ifdef __VERBOSE__
  205. if(!rank) verbose=true;
  206. #endif
  207. #endif
  208. if(kernel_) kernel_->Initialize(verbose);
  209. multipole_order=mult_order;
  210. comm=comm_;
  211. kernel=kernel_;
  212. assert(kernel!=NULL);
  213. bool save_precomp=false;
  214. mat=new PrecompMat<Real_t>(ScaleInvar());
  215. if(this->mat_fname.size()==0){// && !this->ScaleInvar()){
  216. std::stringstream st;
  217. st<<PVFMM_PRECOMP_DATA_PATH;
  218. if(!st.str().size()){ // look in PVFMM_DIR
  219. char* pvfmm_dir = getenv ("PVFMM_DIR");
  220. if(pvfmm_dir) st<<pvfmm_dir;
  221. }
  222. #ifndef STAT_MACROS_BROKEN
  223. if(st.str().size()){ // check if the path is a directory
  224. struct stat stat_buff;
  225. if(stat(st.str().c_str(), &stat_buff) || !S_ISDIR(stat_buff.st_mode)){
  226. std::cout<<"error: path not found: "<<st.str()<<'\n';
  227. exit(0);
  228. }
  229. }
  230. #endif
  231. if(st.str().size()) st<<'/';
  232. st<<"Precomp_"<<kernel->ker_name.c_str()<<"_m"<<mult_order;
  233. if(sizeof(Real_t)==8) st<<"";
  234. else if(sizeof(Real_t)==4) st<<"_f";
  235. else st<<"_t"<<sizeof(Real_t);
  236. st<<".data";
  237. this->mat_fname=st.str();
  238. save_precomp=true;
  239. }
  240. this->mat->LoadFile(mat_fname.c_str(), this->comm);
  241. interac_list.Initialize(COORD_DIM, this->mat);
  242. Profile::Tic("PrecompUC2UE",&comm,false,4);
  243. this->PrecompAll(UC2UE0_Type);
  244. this->PrecompAll(UC2UE1_Type);
  245. Profile::Toc();
  246. Profile::Tic("PrecompDC2DE",&comm,false,4);
  247. this->PrecompAll(DC2DE0_Type);
  248. this->PrecompAll(DC2DE1_Type);
  249. Profile::Toc();
  250. Profile::Tic("PrecompBC",&comm,false,4);
  251. { /*
  252. int type=BC_Type;
  253. for(int l=0;l<MAX_DEPTH;l++)
  254. for(size_t indx=0;indx<this->interac_list.ListCount((Mat_Type)type);indx++){
  255. Matrix<Real_t>& M=this->mat->Mat(l, (Mat_Type)type, indx);
  256. M.Resize(0,0);
  257. } // */
  258. }
  259. this->PrecompAll(BC_Type,0);
  260. Profile::Toc();
  261. Profile::Tic("PrecompU2U",&comm,false,4);
  262. this->PrecompAll(U2U_Type);
  263. Profile::Toc();
  264. Profile::Tic("PrecompD2D",&comm,false,4);
  265. this->PrecompAll(D2D_Type);
  266. Profile::Toc();
  267. if(save_precomp){
  268. Profile::Tic("Save2File",&this->comm,false,4);
  269. if(!rank){
  270. FILE* f=fopen(this->mat_fname.c_str(),"r");
  271. if(f==NULL) { //File does not exists.
  272. this->mat->Save2File(this->mat_fname.c_str());
  273. }else fclose(f);
  274. }
  275. Profile::Toc();
  276. }
  277. Profile::Tic("PrecompV",&comm,false,4);
  278. this->PrecompAll(V_Type);
  279. Profile::Toc();
  280. Profile::Tic("PrecompV1",&comm,false,4);
  281. this->PrecompAll(V1_Type);
  282. Profile::Toc();
  283. }Profile::Toc();
  284. }
  285. template <class Real_t>
  286. Permutation<Real_t> equiv_surf_perm(size_t m, size_t p_indx, const Permutation<Real_t>& ker_perm, const Vector<Real_t>* scal_exp=NULL){
  287. Real_t eps=1e-10;
  288. int dof=ker_perm.Dim();
  289. Real_t c[3]={-0.5,-0.5,-0.5};
  290. std::vector<Real_t> trg_coord=d_check_surf(m,c,0);
  291. int n_trg=trg_coord.size()/3;
  292. Permutation<Real_t> P=Permutation<Real_t>(n_trg*dof);
  293. if(p_indx==ReflecX || p_indx==ReflecY || p_indx==ReflecZ){ // Set P.perm
  294. for(int i=0;i<n_trg;i++)
  295. for(int j=0;j<n_trg;j++){
  296. if(pvfmm::fabs<Real_t>(trg_coord[i*3+0]-trg_coord[j*3+0]*(p_indx==ReflecX?-1.0:1.0))<eps)
  297. if(pvfmm::fabs<Real_t>(trg_coord[i*3+1]-trg_coord[j*3+1]*(p_indx==ReflecY?-1.0:1.0))<eps)
  298. if(pvfmm::fabs<Real_t>(trg_coord[i*3+2]-trg_coord[j*3+2]*(p_indx==ReflecZ?-1.0:1.0))<eps){
  299. for(int k=0;k<dof;k++){
  300. P.perm[j*dof+k]=i*dof+ker_perm.perm[k];
  301. }
  302. }
  303. }
  304. }else if(p_indx==SwapXY || p_indx==SwapXZ){
  305. for(int i=0;i<n_trg;i++)
  306. for(int j=0;j<n_trg;j++){
  307. if(pvfmm::fabs<Real_t>(trg_coord[i*3+0]-trg_coord[j*3+(p_indx==SwapXY?1:2)])<eps)
  308. if(pvfmm::fabs<Real_t>(trg_coord[i*3+1]-trg_coord[j*3+(p_indx==SwapXY?0:1)])<eps)
  309. if(pvfmm::fabs<Real_t>(trg_coord[i*3+2]-trg_coord[j*3+(p_indx==SwapXY?2:0)])<eps){
  310. for(int k=0;k<dof;k++){
  311. P.perm[j*dof+k]=i*dof+ker_perm.perm[k];
  312. }
  313. }
  314. }
  315. }else{
  316. for(int j=0;j<n_trg;j++){
  317. for(int k=0;k<dof;k++){
  318. P.perm[j*dof+k]=j*dof+ker_perm.perm[k];
  319. }
  320. }
  321. }
  322. if(scal_exp && p_indx==Scaling){ // Set level-by-level scaling
  323. assert(dof==scal_exp->Dim());
  324. Vector<Real_t> scal(scal_exp->Dim());
  325. for(size_t i=0;i<scal.Dim();i++){
  326. scal[i]=pvfmm::pow<Real_t>(2.0,(*scal_exp)[i]);
  327. }
  328. for(int j=0;j<n_trg;j++){
  329. for(int i=0;i<dof;i++){
  330. P.scal[j*dof+i]*=scal[i];
  331. }
  332. }
  333. }
  334. { // Set P.scal
  335. for(int j=0;j<n_trg;j++){
  336. for(int i=0;i<dof;i++){
  337. P.scal[j*dof+i]*=ker_perm.scal[i];
  338. }
  339. }
  340. }
  341. return P;
  342. }
  343. template <class FMMNode>
  344. Permutation<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::PrecompPerm(Mat_Type type, Perm_Type perm_indx){
  345. //Check if the matrix already exists.
  346. Permutation<Real_t>& P_ = mat->Perm((Mat_Type)type, perm_indx);
  347. if(P_.Dim()!=0) return P_;
  348. size_t m=this->MultipoleOrder();
  349. size_t p_indx=perm_indx % C_Perm;
  350. //Compute the matrix.
  351. Permutation<Real_t> P;
  352. switch (type){
  353. case U2U_Type:
  354. {
  355. Vector<Real_t> scal_exp;
  356. Permutation<Real_t> ker_perm;
  357. if(perm_indx<C_Perm){ // Source permutation
  358. ker_perm=kernel->k_m2m->perm_vec[0 +p_indx];
  359. scal_exp=kernel->k_m2m->src_scal;
  360. }else{ // Target permutation
  361. ker_perm=kernel->k_m2m->perm_vec[0 +p_indx];
  362. scal_exp=kernel->k_m2m->src_scal;
  363. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]=-scal_exp[i];
  364. }
  365. P=equiv_surf_perm(m, p_indx, ker_perm, (this->ScaleInvar()?&scal_exp:NULL));
  366. break;
  367. }
  368. case D2D_Type:
  369. {
  370. Vector<Real_t> scal_exp;
  371. Permutation<Real_t> ker_perm;
  372. if(perm_indx<C_Perm){ // Source permutation
  373. ker_perm=kernel->k_l2l->perm_vec[C_Perm+p_indx];
  374. scal_exp=kernel->k_l2l->trg_scal;
  375. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]=-scal_exp[i];
  376. }else{ // Target permutation
  377. ker_perm=kernel->k_l2l->perm_vec[C_Perm+p_indx];
  378. scal_exp=kernel->k_l2l->trg_scal;
  379. }
  380. P=equiv_surf_perm(m, p_indx, ker_perm, (this->ScaleInvar()?&scal_exp:NULL));
  381. break;
  382. }
  383. default:
  384. break;
  385. }
  386. //Save the matrix for future use.
  387. #pragma omp critical (PRECOMP_MATRIX_PTS)
  388. {
  389. if(P_.Dim()==0) P_=P;
  390. }
  391. return P_;
  392. }
  393. template <class FMMNode>
  394. Matrix<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::Precomp(int level, Mat_Type type, size_t mat_indx){
  395. if(this->ScaleInvar()) level=0;
  396. //Check if the matrix already exists.
  397. Matrix<Real_t>& M_ = this->mat->Mat(level, type, mat_indx);
  398. if(M_.Dim(0)!=0 && M_.Dim(1)!=0) return M_;
  399. else{ //Compute matrix from symmetry class (if possible).
  400. size_t class_indx = this->interac_list.InteracClass(type, mat_indx);
  401. if(class_indx!=mat_indx){
  402. Matrix<Real_t>& M0 = this->Precomp(level, type, class_indx);
  403. if(M0.Dim(0)==0 || M0.Dim(1)==0) return M_;
  404. for(size_t i=0;i<Perm_Count;i++) this->PrecompPerm(type, (Perm_Type) i);
  405. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, type, mat_indx);
  406. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, type, mat_indx);
  407. if(Pr.Dim()>0 && Pc.Dim()>0 && M0.Dim(0)>0 && M0.Dim(1)>0) return M_;
  408. }
  409. }
  410. //Compute the matrix.
  411. Matrix<Real_t> M;
  412. //int omp_p=omp_get_max_threads();
  413. switch (type){
  414. case UC2UE0_Type:
  415. {
  416. if(MultipoleOrder()==0) break;
  417. const int* ker_dim=kernel->k_m2m->ker_dim;
  418. // Coord of upward check surface
  419. Real_t c[3]={0,0,0};
  420. std::vector<Real_t> uc_coord=u_check_surf(MultipoleOrder(),c,level);
  421. size_t n_uc=uc_coord.size()/3;
  422. // Coord of upward equivalent surface
  423. std::vector<Real_t> ue_coord=u_equiv_surf(MultipoleOrder(),c,level);
  424. size_t n_ue=ue_coord.size()/3;
  425. // Evaluate potential at check surface due to equivalent surface.
  426. Matrix<Real_t> M_e2c(n_ue*ker_dim[0],n_uc*ker_dim[1]);
  427. kernel->k_m2m->BuildMatrix(&ue_coord[0], n_ue,
  428. &uc_coord[0], n_uc, &(M_e2c[0][0]));
  429. Matrix<Real_t> U,S,V;
  430. M_e2c.SVD(U,S,V);
  431. Real_t eps=1, max_S=0;
  432. while(eps*(Real_t)0.5+(Real_t)1.0>1.0) eps*=0.5;
  433. for(size_t i=0;i<std::min(S.Dim(0),S.Dim(1));i++){
  434. if(pvfmm::fabs<Real_t>(S[i][i])>max_S) max_S=pvfmm::fabs<Real_t>(S[i][i]);
  435. }
  436. for(size_t i=0;i<S.Dim(0);i++) S[i][i]=(S[i][i]>eps*max_S*4?1.0/S[i][i]:0.0);
  437. M=V.Transpose()*S;//*U.Transpose();
  438. break;
  439. }
  440. case UC2UE1_Type:
  441. {
  442. if(MultipoleOrder()==0) break;
  443. const int* ker_dim=kernel->k_m2m->ker_dim;
  444. // Coord of upward check surface
  445. Real_t c[3]={0,0,0};
  446. std::vector<Real_t> uc_coord=u_check_surf(MultipoleOrder(),c,level);
  447. size_t n_uc=uc_coord.size()/3;
  448. // Coord of upward equivalent surface
  449. std::vector<Real_t> ue_coord=u_equiv_surf(MultipoleOrder(),c,level);
  450. size_t n_ue=ue_coord.size()/3;
  451. // Evaluate potential at check surface due to equivalent surface.
  452. Matrix<Real_t> M_e2c(n_ue*ker_dim[0],n_uc*ker_dim[1]);
  453. kernel->k_m2m->BuildMatrix(&ue_coord[0], n_ue,
  454. &uc_coord[0], n_uc, &(M_e2c[0][0]));
  455. Matrix<Real_t> U,S,V;
  456. M_e2c.SVD(U,S,V);
  457. M=U.Transpose();
  458. break;
  459. }
  460. case DC2DE0_Type:
  461. {
  462. if(MultipoleOrder()==0) break;
  463. const int* ker_dim=kernel->k_l2l->ker_dim;
  464. // Coord of downward check surface
  465. Real_t c[3]={0,0,0};
  466. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  467. size_t n_ch=check_surf.size()/3;
  468. // Coord of downward equivalent surface
  469. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  470. size_t n_eq=equiv_surf.size()/3;
  471. // Evaluate potential at check surface due to equivalent surface.
  472. Matrix<Real_t> M_e2c(n_eq*ker_dim[0],n_ch*ker_dim[1]);
  473. kernel->k_l2l->BuildMatrix(&equiv_surf[0], n_eq,
  474. &check_surf[0], n_ch, &(M_e2c[0][0]));
  475. Matrix<Real_t> U,S,V;
  476. M_e2c.SVD(U,S,V);
  477. Real_t eps=1, max_S=0;
  478. while(eps*(Real_t)0.5+(Real_t)1.0>1.0) eps*=0.5;
  479. for(size_t i=0;i<std::min(S.Dim(0),S.Dim(1));i++){
  480. if(pvfmm::fabs<Real_t>(S[i][i])>max_S) max_S=pvfmm::fabs<Real_t>(S[i][i]);
  481. }
  482. for(size_t i=0;i<S.Dim(0);i++) S[i][i]=(S[i][i]>eps*max_S*4?1.0/S[i][i]:0.0);
  483. M=V.Transpose()*S;//*U.Transpose();
  484. break;
  485. }
  486. case DC2DE1_Type:
  487. {
  488. if(MultipoleOrder()==0) break;
  489. const int* ker_dim=kernel->k_l2l->ker_dim;
  490. // Coord of downward check surface
  491. Real_t c[3]={0,0,0};
  492. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  493. size_t n_ch=check_surf.size()/3;
  494. // Coord of downward equivalent surface
  495. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  496. size_t n_eq=equiv_surf.size()/3;
  497. // Evaluate potential at check surface due to equivalent surface.
  498. Matrix<Real_t> M_e2c(n_eq*ker_dim[0],n_ch*ker_dim[1]);
  499. kernel->k_l2l->BuildMatrix(&equiv_surf[0], n_eq,
  500. &check_surf[0], n_ch, &(M_e2c[0][0]));
  501. Matrix<Real_t> U,S,V;
  502. M_e2c.SVD(U,S,V);
  503. M=U.Transpose();
  504. break;
  505. }
  506. case U2U_Type:
  507. {
  508. if(MultipoleOrder()==0) break;
  509. const int* ker_dim=kernel->k_m2m->ker_dim;
  510. // Coord of upward check surface
  511. Real_t c[3]={0,0,0};
  512. std::vector<Real_t> check_surf=u_check_surf(MultipoleOrder(),c,level);
  513. size_t n_uc=check_surf.size()/3;
  514. // Coord of child's upward equivalent surface
  515. Real_t s=pvfmm::pow<Real_t>(0.5,(level+2));
  516. int* coord=interac_list.RelativeCoord(type,mat_indx);
  517. Real_t child_coord[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  518. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),child_coord,level+1);
  519. size_t n_ue=equiv_surf.size()/3;
  520. // Evaluate potential at check surface due to equivalent surface.
  521. Matrix<Real_t> M_ce2c(n_ue*ker_dim[0],n_uc*ker_dim[1]);
  522. kernel->k_m2m->BuildMatrix(&equiv_surf[0], n_ue,
  523. &check_surf[0], n_uc, &(M_ce2c[0][0]));
  524. Matrix<Real_t>& M_c2e0 = Precomp(level, UC2UE0_Type, 0);
  525. Matrix<Real_t>& M_c2e1 = Precomp(level, UC2UE1_Type, 0);
  526. M=(M_ce2c*M_c2e0)*M_c2e1;
  527. break;
  528. }
  529. case D2D_Type:
  530. {
  531. if(MultipoleOrder()==0) break;
  532. const int* ker_dim=kernel->k_l2l->ker_dim;
  533. // Coord of downward check surface
  534. Real_t s=pvfmm::pow<Real_t>(0.5,level+1);
  535. int* coord=interac_list.RelativeCoord(type,mat_indx);
  536. Real_t c[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  537. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  538. size_t n_dc=check_surf.size()/3;
  539. // Coord of parent's downward equivalent surface
  540. Real_t parent_coord[3]={0,0,0};
  541. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),parent_coord,level-1);
  542. size_t n_de=equiv_surf.size()/3;
  543. // Evaluate potential at check surface due to equivalent surface.
  544. Matrix<Real_t> M_pe2c(n_de*ker_dim[0],n_dc*ker_dim[1]);
  545. kernel->k_l2l->BuildMatrix(&equiv_surf[0], n_de,
  546. &check_surf[0], n_dc, &(M_pe2c[0][0]));
  547. Matrix<Real_t> M_c2e0=Precomp(level-1,DC2DE0_Type,0);
  548. Matrix<Real_t> M_c2e1=Precomp(level-1,DC2DE1_Type,0);
  549. if(ScaleInvar()){ // Scale M_c2e0 for level-1
  550. Permutation<Real_t> ker_perm=this->kernel->k_l2l->perm_vec[C_Perm+Scaling];
  551. Vector<Real_t> scal_exp=this->kernel->k_l2l->trg_scal;
  552. Permutation<Real_t> P=equiv_surf_perm(MultipoleOrder(), Scaling, ker_perm, &scal_exp);
  553. M_c2e0=P*M_c2e0;
  554. }
  555. if(ScaleInvar()){ // Scale M_c2e1 for level-1
  556. Permutation<Real_t> ker_perm=this->kernel->k_l2l->perm_vec[0 +Scaling];
  557. Vector<Real_t> scal_exp=this->kernel->k_l2l->src_scal;
  558. Permutation<Real_t> P=equiv_surf_perm(MultipoleOrder(), Scaling, ker_perm, &scal_exp);
  559. M_c2e1=M_c2e1*P;
  560. }
  561. M=M_c2e0*(M_c2e1*M_pe2c);
  562. break;
  563. }
  564. case D2T_Type:
  565. {
  566. if(MultipoleOrder()==0) break;
  567. const int* ker_dim=kernel->k_l2t->ker_dim;
  568. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  569. // Coord of target points
  570. Real_t r=pvfmm::pow<Real_t>(0.5,level);
  571. size_t n_trg=rel_trg_coord.size()/3;
  572. std::vector<Real_t> trg_coord(n_trg*3);
  573. for(size_t i=0;i<n_trg*COORD_DIM;i++) trg_coord[i]=rel_trg_coord[i]*r;
  574. // Coord of downward equivalent surface
  575. Real_t c[3]={0,0,0};
  576. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  577. size_t n_eq=equiv_surf.size()/3;
  578. // Evaluate potential at target points due to equivalent surface.
  579. {
  580. M .Resize(n_eq*ker_dim [0], n_trg*ker_dim [1]);
  581. kernel->k_l2t->BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  582. }
  583. Matrix<Real_t>& M_c2e0=Precomp(level,DC2DE0_Type,0);
  584. Matrix<Real_t>& M_c2e1=Precomp(level,DC2DE1_Type,0);
  585. M=M_c2e0*(M_c2e1*M);
  586. break;
  587. }
  588. case V_Type:
  589. {
  590. if(MultipoleOrder()==0) break;
  591. const int* ker_dim=kernel->k_m2l->ker_dim;
  592. int n1=MultipoleOrder()*2;
  593. int n3 =n1*n1*n1;
  594. int n3_=n1*n1*(n1/2+1);
  595. //Compute the matrix.
  596. Real_t s=pvfmm::pow<Real_t>(0.5,level);
  597. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  598. Real_t coord_diff[3]={coord2[0]*s,coord2[1]*s,coord2[2]*s};
  599. //Evaluate potential.
  600. std::vector<Real_t> r_trg(COORD_DIM,0.0);
  601. std::vector<Real_t> conv_poten(n3*ker_dim[0]*ker_dim[1]);
  602. std::vector<Real_t> conv_coord=conv_grid(MultipoleOrder(),coord_diff,level);
  603. kernel->k_m2l->BuildMatrix(&conv_coord[0],n3,&r_trg[0],1,&conv_poten[0]);
  604. //Rearrange data.
  605. Matrix<Real_t> M_conv(n3,ker_dim[0]*ker_dim[1],&conv_poten[0],false);
  606. M_conv=M_conv.Transpose();
  607. //Compute FFTW plan.
  608. int nnn[3]={n1,n1,n1};
  609. Real_t *fftw_in, *fftw_out;
  610. fftw_in = mem::aligned_new<Real_t>( n3 *ker_dim[0]*ker_dim[1]*sizeof(Real_t));
  611. fftw_out = mem::aligned_new<Real_t>(2*n3_*ker_dim[0]*ker_dim[1]*sizeof(Real_t));
  612. #pragma omp critical (FFTW_PLAN)
  613. {
  614. if (!vprecomp_fft_flag){
  615. vprecomp_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM, nnn, ker_dim[0]*ker_dim[1],
  616. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*) fftw_out, NULL, 1, n3_);
  617. vprecomp_fft_flag=true;
  618. }
  619. }
  620. //Compute FFT.
  621. mem::memcopy(fftw_in, &conv_poten[0], n3*ker_dim[0]*ker_dim[1]*sizeof(Real_t));
  622. FFTW_t<Real_t>::fft_execute_dft_r2c(vprecomp_fftplan, (Real_t*)fftw_in, (typename FFTW_t<Real_t>::cplx*)(fftw_out));
  623. Matrix<Real_t> M_(2*n3_*ker_dim[0]*ker_dim[1],1,(Real_t*)fftw_out,false);
  624. M=M_;
  625. //Free memory.
  626. mem::aligned_delete<Real_t>(fftw_in);
  627. mem::aligned_delete<Real_t>(fftw_out);
  628. break;
  629. }
  630. case V1_Type:
  631. {
  632. if(MultipoleOrder()==0) break;
  633. const int* ker_dim=kernel->k_m2l->ker_dim;
  634. size_t mat_cnt =interac_list.ListCount( V_Type);
  635. for(size_t k=0;k<mat_cnt;k++) Precomp(level, V_Type, k);
  636. const size_t chld_cnt=1UL<<COORD_DIM;
  637. size_t n1=MultipoleOrder()*2;
  638. size_t M_dim=n1*n1*(n1/2+1);
  639. size_t n3=n1*n1*n1;
  640. Vector<Real_t> zero_vec(M_dim*ker_dim[0]*ker_dim[1]*2);
  641. zero_vec.SetZero();
  642. Vector<Real_t*> M_ptr(chld_cnt*chld_cnt);
  643. for(size_t i=0;i<chld_cnt*chld_cnt;i++) M_ptr[i]=&zero_vec[0];
  644. int* rel_coord_=interac_list.RelativeCoord(V1_Type, mat_indx);
  645. for(int j1=0;j1<chld_cnt;j1++)
  646. for(int j2=0;j2<chld_cnt;j2++){
  647. int rel_coord[3]={rel_coord_[0]*2-(j1/1)%2+(j2/1)%2,
  648. rel_coord_[1]*2-(j1/2)%2+(j2/2)%2,
  649. rel_coord_[2]*2-(j1/4)%2+(j2/4)%2};
  650. for(size_t k=0;k<mat_cnt;k++){
  651. int* ref_coord=interac_list.RelativeCoord(V_Type, k);
  652. if(ref_coord[0]==rel_coord[0] &&
  653. ref_coord[1]==rel_coord[1] &&
  654. ref_coord[2]==rel_coord[2]){
  655. Matrix<Real_t>& M = this->mat->Mat(level, V_Type, k);
  656. M_ptr[j2*chld_cnt+j1]=&M[0][0];
  657. break;
  658. }
  659. }
  660. }
  661. // Build matrix ker_dim0 x ker_dim1 x M_dim x 8 x 8
  662. M.Resize(ker_dim[0]*ker_dim[1]*M_dim, 2*chld_cnt*chld_cnt);
  663. for(int j=0;j<ker_dim[0]*ker_dim[1]*M_dim;j++){
  664. for(size_t k=0;k<chld_cnt*chld_cnt;k++){
  665. M[j][k*2+0]=M_ptr[k][j*2+0]/n3;
  666. M[j][k*2+1]=M_ptr[k][j*2+1]/n3;
  667. }
  668. }
  669. break;
  670. }
  671. case W_Type:
  672. {
  673. if(MultipoleOrder()==0) break;
  674. const int* ker_dim=kernel->k_m2t->ker_dim;
  675. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  676. // Coord of target points
  677. Real_t s=pvfmm::pow<Real_t>(0.5,level);
  678. size_t n_trg=rel_trg_coord.size()/3;
  679. std::vector<Real_t> trg_coord(n_trg*3);
  680. for(size_t j=0;j<n_trg*COORD_DIM;j++) trg_coord[j]=rel_trg_coord[j]*s;
  681. // Coord of downward equivalent surface
  682. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  683. Real_t c[3]={(Real_t)((coord2[0]+1)*s*0.25),(Real_t)((coord2[1]+1)*s*0.25),(Real_t)((coord2[2]+1)*s*0.25)};
  684. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),c,level+1);
  685. size_t n_eq=equiv_surf.size()/3;
  686. // Evaluate potential at target points due to equivalent surface.
  687. {
  688. M .Resize(n_eq*ker_dim [0],n_trg*ker_dim [1]);
  689. kernel->k_m2t->BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  690. }
  691. break;
  692. }
  693. case BC_Type:
  694. {
  695. if(!this->ScaleInvar() || MultipoleOrder()==0) break;
  696. if(kernel->k_m2l->ker_dim[0]!=kernel->k_m2m->ker_dim[0]) break;
  697. if(kernel->k_m2l->ker_dim[1]!=kernel->k_l2l->ker_dim[1]) break;
  698. const int* ker_dim=kernel->k_m2l->ker_dim;
  699. size_t mat_cnt_m2m=interac_list.ListCount(U2U_Type);
  700. size_t n_surf=(6*(MultipoleOrder()-1)*(MultipoleOrder()-1)+2); //Total number of points.
  701. if((M.Dim(0)!=n_surf*ker_dim[0] || M.Dim(1)!=n_surf*ker_dim[1]) && level==0){
  702. Matrix<Real_t> M_m2m[BC_LEVELS+1];
  703. Matrix<Real_t> M_m2l[BC_LEVELS+1];
  704. Matrix<Real_t> M_l2l[BC_LEVELS+1];
  705. Matrix<Real_t> M_equiv_zero_avg(n_surf*ker_dim[0],n_surf*ker_dim[0]);
  706. Matrix<Real_t> M_check_zero_avg(n_surf*ker_dim[1],n_surf*ker_dim[1]);
  707. { // Set average multipole charge to zero. (improves stability for large BC_LEVELS)
  708. M_equiv_zero_avg.SetZero();
  709. for(size_t i=0;i<n_surf*ker_dim[0];i++)
  710. M_equiv_zero_avg[i][i]+=1;
  711. for(size_t i=0;i<n_surf;i++)
  712. for(size_t j=0;j<n_surf;j++)
  713. for(size_t k=0;k<ker_dim[0];k++)
  714. M_equiv_zero_avg[i*ker_dim[0]+k][j*ker_dim[0]+k]-=1.0/n_surf;
  715. }
  716. { // Set average check potential to zero. (improves stability for large BC_LEVELS)
  717. M_check_zero_avg.SetZero();
  718. for(size_t i=0;i<n_surf*ker_dim[1];i++)
  719. M_check_zero_avg[i][i]+=1;
  720. for(size_t i=0;i<n_surf;i++)
  721. for(size_t j=0;j<n_surf;j++)
  722. for(size_t k=0;k<ker_dim[1];k++)
  723. M_check_zero_avg[i*ker_dim[1]+k][j*ker_dim[1]+k]-=1.0/n_surf;
  724. }
  725. for(int level=0; level>=-BC_LEVELS; level--){
  726. { // Compute M_l2l
  727. this->Precomp(level, D2D_Type, 0);
  728. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, D2D_Type, 0);
  729. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, D2D_Type, 0);
  730. M_l2l[-level] = M_check_zero_avg * Pr * this->Precomp(level, D2D_Type, this->interac_list.InteracClass(D2D_Type, 0)) * Pc * M_check_zero_avg;
  731. assert(M_l2l[-level].Dim(0)>0 && M_l2l[-level].Dim(1)>0);
  732. }
  733. // Compute M_m2m
  734. for(size_t mat_indx=0; mat_indx<mat_cnt_m2m; mat_indx++){
  735. this->Precomp(level, U2U_Type, mat_indx);
  736. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, U2U_Type, mat_indx);
  737. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, U2U_Type, mat_indx);
  738. Matrix<Real_t> M = Pr * this->Precomp(level, U2U_Type, this->interac_list.InteracClass(U2U_Type, mat_indx)) * Pc;
  739. assert(M.Dim(0)>0 && M.Dim(1)>0);
  740. if(mat_indx==0) M_m2m[-level] = M_equiv_zero_avg*M*M_equiv_zero_avg;
  741. else M_m2m[-level] += M_equiv_zero_avg*M*M_equiv_zero_avg;
  742. }
  743. // Compute M_m2l
  744. if(!ScaleInvar() || level==0){
  745. Real_t s=(1UL<<(-level));
  746. Real_t dc_coord[3]={0,0,0};
  747. std::vector<Real_t> trg_coord=d_check_surf(MultipoleOrder(), dc_coord, level);
  748. Matrix<Real_t> M_ue2dc(n_surf*ker_dim[0], n_surf*ker_dim[1]); M_ue2dc.SetZero();
  749. for(int x0=-2;x0<4;x0++)
  750. for(int x1=-2;x1<4;x1++)
  751. for(int x2=-2;x2<4;x2++)
  752. if(abs(x0)>1 || abs(x1)>1 || abs(x2)>1){
  753. Real_t ue_coord[3]={x0*s, x1*s, x2*s};
  754. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  755. Matrix<Real_t> M_tmp(n_surf*ker_dim[0], n_surf*ker_dim[1]);
  756. kernel->k_m2l->BuildMatrix(&src_coord[0], n_surf,
  757. &trg_coord[0], n_surf, &(M_tmp[0][0]));
  758. M_ue2dc+=M_tmp;
  759. }
  760. M_m2l[-level]=M_equiv_zero_avg*M_ue2dc * M_check_zero_avg;
  761. }else{
  762. M_m2l[-level]=M_equiv_zero_avg * M_m2l[-level-1] * M_check_zero_avg;
  763. if(ScaleInvar()){ // Scale M_m2l
  764. Permutation<Real_t> ker_perm=this->kernel->k_m2l->perm_vec[0 +Scaling];
  765. Vector<Real_t> scal_exp=this->kernel->k_m2l->src_scal;
  766. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]=-scal_exp[i];
  767. Permutation<Real_t> P=equiv_surf_perm(MultipoleOrder(), Scaling, ker_perm, &scal_exp);
  768. M_m2l[-level]=P*M_m2l[-level];
  769. }
  770. if(ScaleInvar()){ // Scale M_m2l
  771. Permutation<Real_t> ker_perm=this->kernel->k_m2l->perm_vec[C_Perm+Scaling];
  772. Vector<Real_t> scal_exp=this->kernel->k_m2l->trg_scal;
  773. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]=-scal_exp[i];
  774. Permutation<Real_t> P=equiv_surf_perm(MultipoleOrder(), Scaling, ker_perm, &scal_exp);
  775. M_m2l[-level]=M_m2l[-level]*P;
  776. }
  777. }
  778. }
  779. for(int level=-BC_LEVELS;level<=0;level++){
  780. if(level==-BC_LEVELS) M = M_m2l[-level];
  781. else M = M_equiv_zero_avg * (M_m2l[-level] + M_m2m[-level]*M*M_l2l[-level]) * M_check_zero_avg;
  782. }
  783. { // ax+by+cz+d correction.
  784. std::vector<Real_t> corner_pts;
  785. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(0);
  786. corner_pts.push_back(1); corner_pts.push_back(0); corner_pts.push_back(0);
  787. corner_pts.push_back(0); corner_pts.push_back(1); corner_pts.push_back(0);
  788. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(1);
  789. size_t n_corner=corner_pts.size()/COORD_DIM;
  790. // Coord of downward equivalent surface
  791. Real_t c[3]={0,0,0};
  792. std::vector<Real_t> up_equiv_surf=u_equiv_surf(MultipoleOrder(),c,0);
  793. std::vector<Real_t> dn_equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  794. std::vector<Real_t> dn_check_surf=d_check_surf(MultipoleOrder(),c,0);
  795. Matrix<Real_t> M_err;
  796. { // Evaluate potential at corner due to upward and dnward equivalent surface.
  797. { // Error from local expansion.
  798. Matrix<Real_t> M_e2pt(n_surf*kernel->k_l2l->ker_dim[0],n_corner*kernel->k_l2l->ker_dim[1]);
  799. kernel->k_l2l->BuildMatrix(&dn_equiv_surf[0], n_surf,
  800. &corner_pts[0], n_corner, &(M_e2pt[0][0]));
  801. Matrix<Real_t>& M_dc2de0 = Precomp(0, DC2DE0_Type, 0);
  802. Matrix<Real_t>& M_dc2de1 = Precomp(0, DC2DE1_Type, 0);
  803. M_err=(M*M_dc2de0)*(M_dc2de1*M_e2pt);
  804. }
  805. for(size_t k=0;k<4;k++){ // Error from colleagues of root.
  806. for(int j0=-1;j0<=1;j0++)
  807. for(int j1=-1;j1<=1;j1++)
  808. for(int j2=-1;j2<=1;j2++){
  809. Real_t pt_coord[3]={corner_pts[k*COORD_DIM+0]-j0,
  810. corner_pts[k*COORD_DIM+1]-j1,
  811. corner_pts[k*COORD_DIM+2]-j2};
  812. if(pvfmm::fabs<Real_t>(pt_coord[0]-0.5)>1.0 || pvfmm::fabs<Real_t>(pt_coord[1]-0.5)>1.0 || pvfmm::fabs<Real_t>(pt_coord[2]-0.5)>1.0){
  813. Matrix<Real_t> M_e2pt(n_surf*ker_dim[0],ker_dim[1]);
  814. kernel->k_m2l->BuildMatrix(&up_equiv_surf[0], n_surf,
  815. &pt_coord[0], 1, &(M_e2pt[0][0]));
  816. for(size_t i=0;i<M_e2pt.Dim(0);i++)
  817. for(size_t j=0;j<M_e2pt.Dim(1);j++)
  818. M_err[i][k*ker_dim[1]+j]+=M_e2pt[i][j];
  819. }
  820. }
  821. }
  822. }
  823. Matrix<Real_t> M_grad(M_err.Dim(0),n_surf*ker_dim[1]);
  824. for(size_t i=0;i<M_err.Dim(0);i++)
  825. for(size_t k=0;k<ker_dim[1];k++)
  826. for(size_t j=0;j<n_surf;j++){
  827. M_grad[i][j*ker_dim[1]+k]=(M_err[i][0*ker_dim[1]+k] )*1.0 +
  828. (M_err[i][1*ker_dim[1]+k]-M_err[i][0*ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+0]+
  829. (M_err[i][2*ker_dim[1]+k]-M_err[i][0*ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+1]+
  830. (M_err[i][3*ker_dim[1]+k]-M_err[i][0*ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+2];
  831. }
  832. M-=M_grad;
  833. }
  834. if(!this->ScaleInvar()){ // Free memory
  835. Mat_Type type=D2D_Type;
  836. for(int l=-BC_LEVELS;l<0;l++)
  837. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  838. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  839. M.Resize(0,0);
  840. }
  841. type=U2U_Type;
  842. for(int l=-BC_LEVELS;l<0;l++)
  843. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  844. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  845. M.Resize(0,0);
  846. }
  847. type=DC2DE0_Type;
  848. for(int l=-BC_LEVELS;l<0;l++)
  849. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  850. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  851. M.Resize(0,0);
  852. }
  853. type=DC2DE1_Type;
  854. for(int l=-BC_LEVELS;l<0;l++)
  855. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  856. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  857. M.Resize(0,0);
  858. }
  859. type=UC2UE0_Type;
  860. for(int l=-BC_LEVELS;l<0;l++)
  861. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  862. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  863. M.Resize(0,0);
  864. }
  865. type=UC2UE1_Type;
  866. for(int l=-BC_LEVELS;l<0;l++)
  867. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  868. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  869. M.Resize(0,0);
  870. }
  871. }
  872. }
  873. break;
  874. }
  875. default:
  876. break;
  877. }
  878. //Save the matrix for future use.
  879. #pragma omp critical (PRECOMP_MATRIX_PTS)
  880. if(M_.Dim(0)==0 && M_.Dim(1)==0){
  881. M_=M;
  882. /*
  883. M_.Resize(M.Dim(0),M.Dim(1));
  884. int dof=ker_dim[0]*ker_dim[1];
  885. for(int j=0;j<dof;j++){
  886. size_t a=(M.Dim(0)*M.Dim(1)* j )/dof;
  887. size_t b=(M.Dim(0)*M.Dim(1)*(j+1))/dof;
  888. #pragma omp parallel for // NUMA
  889. for(int tid=0;tid<omp_p;tid++){
  890. size_t a_=a+((b-a)* tid )/omp_p;
  891. size_t b_=a+((b-a)*(tid+1))/omp_p;
  892. mem::memcopy(&M_[0][a_], &M[0][a_], (b_-a_)*sizeof(Real_t));
  893. }
  894. }
  895. */
  896. }
  897. return M_;
  898. }
  899. template <class FMMNode>
  900. void FMM_Pts<FMMNode>::PrecompAll(Mat_Type type, int level){
  901. if(level==-1){
  902. for(int l=0;l<MAX_DEPTH;l++){
  903. PrecompAll(type, l);
  904. }
  905. return;
  906. }
  907. //Compute basic permutations.
  908. for(size_t i=0;i<Perm_Count;i++)
  909. this->PrecompPerm(type, (Perm_Type) i);
  910. {
  911. //Allocate matrices.
  912. size_t mat_cnt=interac_list.ListCount((Mat_Type)type);
  913. mat->Mat(level, (Mat_Type)type, mat_cnt-1);
  914. { // Compute InteracClass matrices.
  915. std::vector<size_t> indx_lst;
  916. for(size_t i=0; i<mat_cnt; i++){
  917. if(interac_list.InteracClass((Mat_Type)type,i)==i)
  918. indx_lst.push_back(i);
  919. }
  920. //Compute Transformations.
  921. //#pragma omp parallel for //lets use fine grained parallelism
  922. for(size_t i=0; i<indx_lst.size(); i++){
  923. Precomp(level, (Mat_Type)type, indx_lst[i]);
  924. }
  925. }
  926. //#pragma omp parallel for //lets use fine grained parallelism
  927. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
  928. Matrix<Real_t>& M0=interac_list.ClassMat(level,(Mat_Type)type,mat_indx);
  929. Permutation<Real_t>& pr=interac_list.Perm_R(level, (Mat_Type)type, mat_indx);
  930. Permutation<Real_t>& pc=interac_list.Perm_C(level, (Mat_Type)type, mat_indx);
  931. if(pr.Dim()!=M0.Dim(0) || pc.Dim()!=M0.Dim(1)) Precomp(level, (Mat_Type)type, mat_indx);
  932. }
  933. }
  934. }
  935. template <class FMMNode>
  936. void FMM_Pts<FMMNode>::CollectNodeData(FMMTree_t* tree, std::vector<FMMNode*>& node, std::vector<Matrix<Real_t> >& buff_list, std::vector<Vector<FMMNode_t*> >& n_list, std::vector<std::vector<Vector<Real_t>* > > vec_list){
  937. if(buff_list.size()<7) buff_list.resize(7);
  938. if( n_list.size()<7) n_list.resize(7);
  939. if( vec_list.size()<7) vec_list.resize(7);
  940. int omp_p=omp_get_max_threads();
  941. if(node.size()==0) return;
  942. {// 0. upward_equiv
  943. int indx=0;
  944. size_t vec_sz;
  945. { // Set vec_sz
  946. Matrix<Real_t>& M_uc2ue = this->interac_list.ClassMat(0, UC2UE1_Type, 0);
  947. vec_sz=M_uc2ue.Dim(1);
  948. }
  949. std::vector< FMMNode* > node_lst;
  950. {// Construct node_lst
  951. node_lst.clear();
  952. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  953. FMMNode_t* r_node=NULL;
  954. for(size_t i=0;i<node.size();i++){
  955. if(!node[i]->IsLeaf()){
  956. node_lst_[node[i]->Depth()].push_back(node[i]);
  957. }else{
  958. node[i]->pt_cnt[0]+=node[i]-> src_coord.Dim()/COORD_DIM;
  959. node[i]->pt_cnt[0]+=node[i]->surf_coord.Dim()/COORD_DIM;
  960. if(node[i]->IsGhost()) node[i]->pt_cnt[0]++; // TODO: temporary fix, pt_cnt not known for ghost nodes
  961. }
  962. if(node[i]->Depth()==0) r_node=node[i];
  963. }
  964. size_t chld_cnt=1UL<<COORD_DIM;
  965. for(int i=MAX_DEPTH;i>=0;i--){
  966. for(size_t j=0;j<node_lst_[i].size();j++){
  967. for(size_t k=0;k<chld_cnt;k++){
  968. FMMNode_t* node=(FMMNode_t*)node_lst_[i][j]->Child(k);
  969. node_lst_[i][j]->pt_cnt[0]+=node->pt_cnt[0];
  970. }
  971. }
  972. }
  973. for(int i=0;i<=MAX_DEPTH;i++){
  974. for(size_t j=0;j<node_lst_[i].size();j++){
  975. if(node_lst_[i][j]->pt_cnt[0])
  976. for(size_t k=0;k<chld_cnt;k++){
  977. FMMNode_t* node=(FMMNode_t*)node_lst_[i][j]->Child(k);
  978. node_lst.push_back(node);
  979. }
  980. }
  981. }
  982. if(r_node!=NULL) node_lst.push_back(r_node);
  983. n_list[indx]=node_lst;
  984. }
  985. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  986. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  987. FMMNode_t* node=node_lst[i];
  988. Vector<Real_t>& data_vec=node->FMMData()->upward_equiv;
  989. data_vec.ReInit(vec_sz,NULL,false);
  990. vec_lst.push_back(&data_vec);
  991. }
  992. }
  993. {// 1. dnward_equiv
  994. int indx=1;
  995. size_t vec_sz;
  996. { // Set vec_sz
  997. Matrix<Real_t>& M_dc2de0 = this->interac_list.ClassMat(0, DC2DE0_Type, 0);
  998. vec_sz=M_dc2de0.Dim(0);
  999. }
  1000. std::vector< FMMNode* > node_lst;
  1001. {// Construct node_lst
  1002. node_lst.clear();
  1003. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  1004. FMMNode_t* r_node=NULL;
  1005. for(size_t i=0;i<node.size();i++){
  1006. if(!node[i]->IsLeaf()){
  1007. node_lst_[node[i]->Depth()].push_back(node[i]);
  1008. }else{
  1009. node[i]->pt_cnt[1]+=node[i]->trg_coord.Dim()/COORD_DIM;
  1010. }
  1011. if(node[i]->Depth()==0) r_node=node[i];
  1012. }
  1013. size_t chld_cnt=1UL<<COORD_DIM;
  1014. for(int i=MAX_DEPTH;i>=0;i--){
  1015. for(size_t j=0;j<node_lst_[i].size();j++){
  1016. for(size_t k=0;k<chld_cnt;k++){
  1017. FMMNode_t* node=(FMMNode_t*)node_lst_[i][j]->Child(k);
  1018. node_lst_[i][j]->pt_cnt[1]+=node->pt_cnt[1];
  1019. }
  1020. }
  1021. }
  1022. for(int i=0;i<=MAX_DEPTH;i++){
  1023. for(size_t j=0;j<node_lst_[i].size();j++){
  1024. if(node_lst_[i][j]->pt_cnt[1])
  1025. for(size_t k=0;k<chld_cnt;k++){
  1026. FMMNode_t* node=(FMMNode_t*)node_lst_[i][j]->Child(k);
  1027. node_lst.push_back(node);
  1028. }
  1029. }
  1030. }
  1031. if(r_node!=NULL) node_lst.push_back(r_node);
  1032. n_list[indx]=node_lst;
  1033. }
  1034. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  1035. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  1036. FMMNode_t* node=node_lst[i];
  1037. Vector<Real_t>& data_vec=node->FMMData()->dnward_equiv;
  1038. data_vec.ReInit(vec_sz,NULL,false);
  1039. vec_lst.push_back(&data_vec);
  1040. }
  1041. }
  1042. {// 2. upward_equiv_fft
  1043. int indx=2;
  1044. std::vector< FMMNode* > node_lst;
  1045. {
  1046. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  1047. for(size_t i=0;i<node.size();i++)
  1048. if(!node[i]->IsLeaf())
  1049. node_lst_[node[i]->Depth()].push_back(node[i]);
  1050. for(int i=0;i<=MAX_DEPTH;i++)
  1051. for(size_t j=0;j<node_lst_[i].size();j++)
  1052. node_lst.push_back(node_lst_[i][j]);
  1053. }
  1054. n_list[indx]=node_lst;
  1055. }
  1056. {// 3. dnward_check_fft
  1057. int indx=3;
  1058. std::vector< FMMNode* > node_lst;
  1059. {
  1060. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  1061. for(size_t i=0;i<node.size();i++)
  1062. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  1063. node_lst_[node[i]->Depth()].push_back(node[i]);
  1064. for(int i=0;i<=MAX_DEPTH;i++)
  1065. for(size_t j=0;j<node_lst_[i].size();j++)
  1066. node_lst.push_back(node_lst_[i][j]);
  1067. }
  1068. n_list[indx]=node_lst;
  1069. }
  1070. {// 4. src_val
  1071. int indx=4;
  1072. int src_dof=kernel->ker_dim[0];
  1073. int surf_dof=COORD_DIM+src_dof;
  1074. std::vector< FMMNode* > node_lst;
  1075. for(size_t i=0;i<node.size();i++){// Construct node_lst
  1076. if(node[i]->IsLeaf()){
  1077. node_lst.push_back(node[i]);
  1078. }else{
  1079. node[i]->src_value.ReInit(0);
  1080. node[i]->surf_value.ReInit(0);
  1081. }
  1082. }
  1083. n_list[indx]=node_lst;
  1084. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  1085. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  1086. FMMNode_t* node=node_lst[i];
  1087. { // src_value
  1088. Vector<Real_t>& data_vec=node->src_value;
  1089. size_t vec_sz=(node->src_coord.Dim()/COORD_DIM)*src_dof;
  1090. if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz,NULL,false);
  1091. vec_lst.push_back(&data_vec);
  1092. }
  1093. { // surf_value
  1094. Vector<Real_t>& data_vec=node->surf_value;
  1095. size_t vec_sz=(node->surf_coord.Dim()/COORD_DIM)*surf_dof;
  1096. if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz,NULL,false);
  1097. vec_lst.push_back(&data_vec);
  1098. }
  1099. }
  1100. }
  1101. {// 5. trg_val
  1102. int indx=5;
  1103. int trg_dof=kernel->ker_dim[1];
  1104. std::vector< FMMNode* > node_lst;
  1105. for(size_t i=0;i<node.size();i++){// Construct node_lst
  1106. if(node[i]->IsLeaf() && !node[i]->IsGhost()){
  1107. node_lst.push_back(node[i]);
  1108. }else{
  1109. node[i]->trg_value.ReInit(0);
  1110. }
  1111. }
  1112. n_list[indx]=node_lst;
  1113. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  1114. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  1115. FMMNode_t* node=node_lst[i];
  1116. { // trg_value
  1117. Vector<Real_t>& data_vec=node->trg_value;
  1118. size_t vec_sz=(node->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1119. data_vec.ReInit(vec_sz,NULL,false);
  1120. vec_lst.push_back(&data_vec);
  1121. }
  1122. }
  1123. }
  1124. {// 6. pts_coord
  1125. int indx=6;
  1126. std::vector< FMMNode* > node_lst;
  1127. for(size_t i=0;i<node.size();i++){// Construct node_lst
  1128. if(node[i]->IsLeaf()){
  1129. node_lst.push_back(node[i]);
  1130. }else{
  1131. node[i]->src_coord.ReInit(0);
  1132. node[i]->surf_coord.ReInit(0);
  1133. node[i]->trg_coord.ReInit(0);
  1134. }
  1135. }
  1136. n_list[indx]=node_lst;
  1137. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  1138. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  1139. FMMNode_t* node=node_lst[i];
  1140. { // src_coord
  1141. Vector<Real_t>& data_vec=node->src_coord;
  1142. vec_lst.push_back(&data_vec);
  1143. }
  1144. { // surf_coord
  1145. Vector<Real_t>& data_vec=node->surf_coord;
  1146. vec_lst.push_back(&data_vec);
  1147. }
  1148. { // trg_coord
  1149. Vector<Real_t>& data_vec=node->trg_coord;
  1150. vec_lst.push_back(&data_vec);
  1151. }
  1152. }
  1153. { // check and equiv surfaces.
  1154. if(tree->upwd_check_surf.size()==0){
  1155. size_t m=MultipoleOrder();
  1156. tree->upwd_check_surf.resize(MAX_DEPTH);
  1157. tree->upwd_equiv_surf.resize(MAX_DEPTH);
  1158. tree->dnwd_check_surf.resize(MAX_DEPTH);
  1159. tree->dnwd_equiv_surf.resize(MAX_DEPTH);
  1160. for(size_t depth=0;depth<MAX_DEPTH;depth++){
  1161. Real_t c[3]={0.0,0.0,0.0};
  1162. tree->upwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
  1163. tree->upwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
  1164. tree->dnwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
  1165. tree->dnwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
  1166. tree->upwd_check_surf[depth]=u_check_surf(m,c,depth);
  1167. tree->upwd_equiv_surf[depth]=u_equiv_surf(m,c,depth);
  1168. tree->dnwd_check_surf[depth]=d_check_surf(m,c,depth);
  1169. tree->dnwd_equiv_surf[depth]=d_equiv_surf(m,c,depth);
  1170. }
  1171. }
  1172. for(size_t depth=0;depth<MAX_DEPTH;depth++){
  1173. vec_lst.push_back(&tree->upwd_check_surf[depth]);
  1174. vec_lst.push_back(&tree->upwd_equiv_surf[depth]);
  1175. vec_lst.push_back(&tree->dnwd_check_surf[depth]);
  1176. vec_lst.push_back(&tree->dnwd_equiv_surf[depth]);
  1177. }
  1178. }
  1179. }
  1180. // Create extra auxiliary buffer.
  1181. if(buff_list.size()<=vec_list.size()) buff_list.resize(vec_list.size()+1);
  1182. for(size_t indx=0;indx<vec_list.size();indx++){ // Resize buffer
  1183. Matrix<Real_t>& buff=buff_list[indx];
  1184. std::vector<Vector<Real_t>*>& vec_lst= vec_list[indx];
  1185. bool keep_data=(indx==4 || indx==6);
  1186. size_t n_vec=vec_lst.size();
  1187. { // Continue if nothing to be done.
  1188. if(!n_vec) continue;
  1189. if(buff.Dim(0)*buff.Dim(1)>0){
  1190. bool init_buff=false;
  1191. Real_t* buff_start=&buff[0][0];
  1192. Real_t* buff_end=&buff[0][0]+buff.Dim(0)*buff.Dim(1);
  1193. #pragma omp parallel for reduction(||:init_buff)
  1194. for(size_t i=0;i<n_vec;i++){
  1195. if(vec_lst[i]->Dim() && (&(*vec_lst[i])[0]<buff_start || &(*vec_lst[i])[0]>=buff_end)){
  1196. init_buff=true;
  1197. }
  1198. }
  1199. if(!init_buff) continue;
  1200. }
  1201. }
  1202. std::vector<size_t> vec_size(n_vec);
  1203. std::vector<size_t> vec_disp(n_vec);
  1204. if(n_vec){ // Set vec_size and vec_disp
  1205. #pragma omp parallel for
  1206. for(size_t i=0;i<n_vec;i++){ // Set vec_size
  1207. vec_size[i]=vec_lst[i]->Dim();
  1208. }
  1209. vec_disp[0]=0;
  1210. omp_par::scan(&vec_size[0],&vec_disp[0],n_vec);
  1211. }
  1212. size_t buff_size=vec_size[n_vec-1]+vec_disp[n_vec-1];
  1213. if(!buff_size) continue;
  1214. if(keep_data){ // Copy to dev_buffer
  1215. if(dev_buffer.Dim()<buff_size*sizeof(Real_t)){ // Resize dev_buffer
  1216. dev_buffer.ReInit(buff_size*sizeof(Real_t)*1.05);
  1217. }
  1218. #pragma omp parallel for
  1219. for(size_t i=0;i<n_vec;i++){
  1220. if(&(*vec_lst[i])[0]){
  1221. mem::memcopy(((Real_t*)&dev_buffer[0])+vec_disp[i],&(*vec_lst[i])[0],vec_size[i]*sizeof(Real_t));
  1222. }
  1223. }
  1224. }
  1225. if(buff.Dim(0)*buff.Dim(1)<buff_size){ // Resize buff
  1226. buff.ReInit(1,buff_size*1.05);
  1227. }
  1228. if(keep_data){ // Copy to buff (from dev_buffer)
  1229. #pragma omp parallel for
  1230. for(size_t tid=0;tid<omp_p;tid++){
  1231. size_t a=(buff_size*(tid+0))/omp_p;
  1232. size_t b=(buff_size*(tid+1))/omp_p;
  1233. mem::memcopy(&buff[0][0]+a,((Real_t*)&dev_buffer[0])+a,(b-a)*sizeof(Real_t));
  1234. }
  1235. }
  1236. #pragma omp parallel for
  1237. for(size_t i=0;i<n_vec;i++){ // ReInit vectors
  1238. vec_lst[i]->ReInit(vec_size[i],&buff[0][0]+vec_disp[i],false);
  1239. }
  1240. }
  1241. }
  1242. template <class FMMNode>
  1243. void FMM_Pts<FMMNode>::SetupPrecomp(SetupData<Real_t>& setup_data, bool device){
  1244. if(setup_data.precomp_data==NULL || setup_data.level>MAX_DEPTH) return;
  1245. Profile::Tic("SetupPrecomp",&this->comm,true,25);
  1246. { // Build precomp_data
  1247. size_t precomp_offset=0;
  1248. int level=setup_data.level;
  1249. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1250. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1251. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1252. Mat_Type& interac_type=interac_type_lst[type_indx];
  1253. this->PrecompAll(interac_type, level); // Compute matrices.
  1254. precomp_offset=this->mat->CompactData(level, interac_type, precomp_data, precomp_offset);
  1255. }
  1256. }
  1257. Profile::Toc();
  1258. if(device){ // Host2Device
  1259. Profile::Tic("Host2Device",&this->comm,false,25);
  1260. setup_data.precomp_data->AllocDevice(true);
  1261. Profile::Toc();
  1262. }
  1263. }
  1264. template <class FMMNode>
  1265. void FMM_Pts<FMMNode>::SetupInterac(SetupData<Real_t>& setup_data, bool device){
  1266. int level=setup_data.level;
  1267. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1268. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1269. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1270. Matrix<Real_t>& input_data=*setup_data. input_data;
  1271. Matrix<Real_t>& output_data=*setup_data.output_data;
  1272. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  1273. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  1274. size_t n_in =nodes_in .size();
  1275. size_t n_out=nodes_out.size();
  1276. // Setup precomputed data.
  1277. if(setup_data.precomp_data->Dim(0)*setup_data.precomp_data->Dim(1)==0) SetupPrecomp(setup_data,device);
  1278. // Build interac_data
  1279. Profile::Tic("Interac-Data",&this->comm,true,25);
  1280. Matrix<char>& interac_data=setup_data.interac_data;
  1281. { // Build precomp_data, interac_data
  1282. std::vector<size_t> interac_mat;
  1283. std::vector<size_t> interac_cnt;
  1284. std::vector<size_t> interac_blk;
  1285. std::vector<size_t> input_perm;
  1286. std::vector<size_t> output_perm;
  1287. size_t dof=0, M_dim0=0, M_dim1=0;
  1288. size_t precomp_offset=0;
  1289. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  1290. if(n_out && n_in) for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1291. Mat_Type& interac_type=interac_type_lst[type_indx];
  1292. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  1293. Matrix<size_t> precomp_data_offset;
  1294. { // Load precomp_data for interac_type.
  1295. struct HeaderData{
  1296. size_t total_size;
  1297. size_t level;
  1298. size_t mat_cnt ;
  1299. size_t max_depth;
  1300. };
  1301. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1302. char* indx_ptr=precomp_data[0]+precomp_offset;
  1303. HeaderData& header=*(HeaderData*)indx_ptr;indx_ptr+=sizeof(HeaderData);
  1304. precomp_data_offset.ReInit(header.mat_cnt,(1+(2+2)*header.max_depth), (size_t*)indx_ptr, false);
  1305. precomp_offset+=header.total_size;
  1306. }
  1307. Matrix<FMMNode*> src_interac_list(n_in ,mat_cnt); src_interac_list.SetZero();
  1308. Matrix<FMMNode*> trg_interac_list(n_out,mat_cnt); trg_interac_list.SetZero();
  1309. { // Build trg_interac_list
  1310. #pragma omp parallel for
  1311. for(size_t i=0;i<n_out;i++){
  1312. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  1313. Vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  1314. mem::memcopy(&trg_interac_list[i][0], &lst[0], lst.Dim()*sizeof(FMMNode*));
  1315. assert(lst.Dim()==mat_cnt);
  1316. }
  1317. }
  1318. }
  1319. { // Build src_interac_list
  1320. #pragma omp parallel for
  1321. for(size_t i=0;i<n_out;i++){
  1322. for(size_t j=0;j<mat_cnt;j++)
  1323. if(trg_interac_list[i][j]!=NULL){
  1324. trg_interac_list[i][j]->node_id=n_in;
  1325. }
  1326. }
  1327. #pragma omp parallel for
  1328. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  1329. #pragma omp parallel for
  1330. for(size_t i=0;i<n_out;i++){
  1331. for(size_t j=0;j<mat_cnt;j++){
  1332. if(trg_interac_list[i][j]!=NULL){
  1333. if(trg_interac_list[i][j]->node_id==n_in){
  1334. trg_interac_list[i][j]=NULL;
  1335. }else{
  1336. src_interac_list[trg_interac_list[i][j]->node_id][j]=(FMMNode*)nodes_out[i];
  1337. }
  1338. }
  1339. }
  1340. }
  1341. }
  1342. Matrix<size_t> interac_dsp(n_out,mat_cnt);
  1343. std::vector<size_t> interac_blk_dsp(1,0);
  1344. { // Determine dof, M_dim0, M_dim1
  1345. dof=1;
  1346. Matrix<Real_t>& M0 = this->interac_list.ClassMat(level, interac_type_lst[0], 0);
  1347. M_dim0=M0.Dim(0); M_dim1=M0.Dim(1);
  1348. }
  1349. { // Determine interaction blocks which fit in memory.
  1350. size_t vec_size=(M_dim0+M_dim1)*sizeof(Real_t)*dof;
  1351. for(size_t j=0;j<mat_cnt;j++){// Determine minimum buff_size
  1352. size_t vec_cnt=0;
  1353. for(size_t i=0;i<n_out;i++){
  1354. if(trg_interac_list[i][j]!=NULL) vec_cnt++;
  1355. }
  1356. if(buff_size<vec_cnt*vec_size)
  1357. buff_size=vec_cnt*vec_size;
  1358. }
  1359. size_t interac_dsp_=0;
  1360. for(size_t j=0;j<mat_cnt;j++){
  1361. for(size_t i=0;i<n_out;i++){
  1362. interac_dsp[i][j]=interac_dsp_;
  1363. if(trg_interac_list[i][j]!=NULL) interac_dsp_++;
  1364. }
  1365. if(interac_dsp_*vec_size>buff_size) // Comment to disable symmetries.
  1366. {
  1367. interac_blk.push_back(j-interac_blk_dsp.back());
  1368. interac_blk_dsp.push_back(j);
  1369. size_t offset=interac_dsp[0][j];
  1370. for(size_t i=0;i<n_out;i++) interac_dsp[i][j]-=offset;
  1371. interac_dsp_-=offset;
  1372. assert(interac_dsp_*vec_size<=buff_size); // Problem too big for buff_size.
  1373. }
  1374. interac_mat.push_back(precomp_data_offset[this->interac_list.InteracClass(interac_type,j)][0]);
  1375. interac_cnt.push_back(interac_dsp_-interac_dsp[0][j]);
  1376. }
  1377. interac_blk.push_back(mat_cnt-interac_blk_dsp.back());
  1378. interac_blk_dsp.push_back(mat_cnt);
  1379. }
  1380. { // Determine input_perm.
  1381. size_t vec_size=M_dim0*dof;
  1382. for(size_t i=0;i<n_out;i++) ((FMMNode*)nodes_out[i])->node_id=i;
  1383. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1384. for(size_t i=0;i<n_in ;i++){
  1385. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1386. FMMNode_t* trg_node=src_interac_list[i][j];
  1387. if(trg_node!=NULL && trg_node->node_id<n_out){
  1388. size_t depth=(this->ScaleInvar()?trg_node->Depth():0);
  1389. input_perm .push_back(precomp_data_offset[j][1+4*depth+0]); // prem
  1390. input_perm .push_back(precomp_data_offset[j][1+4*depth+1]); // scal
  1391. input_perm .push_back(interac_dsp[trg_node->node_id][j]*vec_size*sizeof(Real_t)); // trg_ptr
  1392. input_perm .push_back((size_t)(& input_vector[i][0][0]- input_data[0])); // src_ptr
  1393. assert(input_vector[i]->Dim()==vec_size);
  1394. }
  1395. }
  1396. }
  1397. }
  1398. }
  1399. { // Determine output_perm
  1400. size_t vec_size=M_dim1*dof;
  1401. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1402. for(size_t i=0;i<n_out;i++){
  1403. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1404. if(trg_interac_list[i][j]!=NULL){
  1405. size_t depth=(this->ScaleInvar()?((FMMNode*)nodes_out[i])->Depth():0);
  1406. output_perm.push_back(precomp_data_offset[j][1+4*depth+2]); // prem
  1407. output_perm.push_back(precomp_data_offset[j][1+4*depth+3]); // scal
  1408. output_perm.push_back(interac_dsp[ i ][j]*vec_size*sizeof(Real_t)); // src_ptr
  1409. output_perm.push_back((size_t)(&output_vector[i][0][0]-output_data[0])); // trg_ptr
  1410. assert(output_vector[i]->Dim()==vec_size);
  1411. }
  1412. }
  1413. }
  1414. }
  1415. }
  1416. }
  1417. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.ReInit(buff_size);
  1418. { // Set interac_data.
  1419. size_t data_size=sizeof(size_t)*4;
  1420. data_size+=sizeof(size_t)+interac_blk.size()*sizeof(size_t);
  1421. data_size+=sizeof(size_t)+interac_cnt.size()*sizeof(size_t);
  1422. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  1423. data_size+=sizeof(size_t)+ input_perm.size()*sizeof(size_t);
  1424. data_size+=sizeof(size_t)+output_perm.size()*sizeof(size_t);
  1425. if(interac_data.Dim(0)*interac_data.Dim(1)<sizeof(size_t)){
  1426. data_size+=sizeof(size_t);
  1427. interac_data.ReInit(1,data_size);
  1428. ((size_t*)&interac_data[0][0])[0]=sizeof(size_t);
  1429. }else{
  1430. size_t pts_data_size=*((size_t*)&interac_data[0][0]);
  1431. assert(interac_data.Dim(0)*interac_data.Dim(1)>=pts_data_size);
  1432. data_size+=pts_data_size;
  1433. if(data_size>interac_data.Dim(0)*interac_data.Dim(1)){ //Resize and copy interac_data.
  1434. Matrix< char> pts_interac_data=interac_data;
  1435. interac_data.ReInit(1,data_size);
  1436. mem::memcopy(&interac_data[0][0],&pts_interac_data[0][0],pts_data_size);
  1437. }
  1438. }
  1439. char* data_ptr=&interac_data[0][0];
  1440. data_ptr+=((size_t*)data_ptr)[0];
  1441. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  1442. ((size_t*)data_ptr)[0]= M_dim0; data_ptr+=sizeof(size_t);
  1443. ((size_t*)data_ptr)[0]= M_dim1; data_ptr+=sizeof(size_t);
  1444. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  1445. ((size_t*)data_ptr)[0]=interac_blk.size(); data_ptr+=sizeof(size_t);
  1446. mem::memcopy(data_ptr, &interac_blk[0], interac_blk.size()*sizeof(size_t));
  1447. data_ptr+=interac_blk.size()*sizeof(size_t);
  1448. ((size_t*)data_ptr)[0]=interac_cnt.size(); data_ptr+=sizeof(size_t);
  1449. mem::memcopy(data_ptr, &interac_cnt[0], interac_cnt.size()*sizeof(size_t));
  1450. data_ptr+=interac_cnt.size()*sizeof(size_t);
  1451. ((size_t*)data_ptr)[0]=interac_mat.size(); data_ptr+=sizeof(size_t);
  1452. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  1453. data_ptr+=interac_mat.size()*sizeof(size_t);
  1454. ((size_t*)data_ptr)[0]= input_perm.size(); data_ptr+=sizeof(size_t);
  1455. mem::memcopy(data_ptr, & input_perm[0], input_perm.size()*sizeof(size_t));
  1456. data_ptr+= input_perm.size()*sizeof(size_t);
  1457. ((size_t*)data_ptr)[0]=output_perm.size(); data_ptr+=sizeof(size_t);
  1458. mem::memcopy(data_ptr, &output_perm[0], output_perm.size()*sizeof(size_t));
  1459. data_ptr+=output_perm.size()*sizeof(size_t);
  1460. }
  1461. }
  1462. Profile::Toc();
  1463. if(device){ // Host2Device
  1464. Profile::Tic("Host2Device",&this->comm,false,25);
  1465. setup_data.interac_data .AllocDevice(true);
  1466. if(staging_buffer.Dim()<sizeof(Real_t)*output_data.Dim(0)*output_data.Dim(1)){
  1467. staging_buffer.ReInit(sizeof(Real_t)*output_data.Dim(0)*output_data.Dim(1));
  1468. staging_buffer.SetZero();
  1469. staging_buffer.AllocDevice(true);
  1470. }
  1471. Profile::Toc();
  1472. }
  1473. }
  1474. #if defined(PVFMM_HAVE_CUDA)
  1475. #include <fmm_pts_gpu.hpp>
  1476. template <class Real_t, int SYNC>
  1477. void EvalListGPU(SetupData<Real_t>& setup_data, Vector<char>& dev_buffer, MPI_Comm& comm) {
  1478. cudaStream_t* stream = pvfmm::CUDA_Lock::acquire_stream();
  1479. Profile::Tic("Host2Device",&comm,false,25);
  1480. typename Matrix<char>::Device interac_data;
  1481. typename Vector<char>::Device buff;
  1482. typename Matrix<char>::Device precomp_data_d;
  1483. typename Matrix<char>::Device interac_data_d;
  1484. typename Matrix<Real_t>::Device input_data_d;
  1485. typename Matrix<Real_t>::Device output_data_d;
  1486. interac_data = setup_data.interac_data;
  1487. buff = dev_buffer. AllocDevice(false);
  1488. precomp_data_d= setup_data.precomp_data->AllocDevice(false);
  1489. interac_data_d= setup_data.interac_data. AllocDevice(false);
  1490. input_data_d = setup_data. input_data->AllocDevice(false);
  1491. output_data_d = setup_data. output_data->AllocDevice(false);
  1492. Profile::Toc();
  1493. Profile::Tic("DeviceComp",&comm,false,20);
  1494. { // Offloaded computation.
  1495. size_t data_size, M_dim0, M_dim1, dof;
  1496. Vector<size_t> interac_blk;
  1497. Vector<size_t> interac_cnt;
  1498. Vector<size_t> interac_mat;
  1499. Vector<size_t> input_perm_d;
  1500. Vector<size_t> output_perm_d;
  1501. { // Set interac_data.
  1502. char* data_ptr=&interac_data [0][0];
  1503. char* dev_ptr=&interac_data_d[0][0];
  1504. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size; dev_ptr += data_size;
  1505. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1506. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1507. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1508. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1509. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1510. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
  1511. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
  1512. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1513. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
  1514. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
  1515. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1516. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
  1517. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
  1518. input_perm_d.ReInit(((size_t*)data_ptr)[0],(size_t*)(dev_ptr+sizeof(size_t)),false);
  1519. data_ptr += sizeof(size_t) + sizeof(size_t)*input_perm_d.Dim();
  1520. dev_ptr += sizeof(size_t) + sizeof(size_t)*input_perm_d.Dim();
  1521. output_perm_d.ReInit(((size_t*)data_ptr)[0],(size_t*)(dev_ptr+sizeof(size_t)),false);
  1522. data_ptr += sizeof(size_t) + sizeof(size_t)*output_perm_d.Dim();
  1523. dev_ptr += sizeof(size_t) + sizeof(size_t)*output_perm_d.Dim();
  1524. }
  1525. { // interactions
  1526. size_t interac_indx = 0;
  1527. size_t interac_blk_dsp = 0;
  1528. cudaError_t error;
  1529. for (size_t k = 0; k < interac_blk.Dim(); k++) {
  1530. size_t vec_cnt=0;
  1531. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
  1532. if(vec_cnt==0){
  1533. //interac_indx += vec_cnt;
  1534. interac_blk_dsp += interac_blk[k];
  1535. continue;
  1536. }
  1537. char *buff_in_d =&buff[0];
  1538. char *buff_out_d =&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1539. { // Input permutation.
  1540. in_perm_gpu<Real_t>(&precomp_data_d[0][0], &input_data_d[0][0], buff_in_d,
  1541. &input_perm_d[interac_indx*4], vec_cnt, M_dim0, stream);
  1542. }
  1543. size_t vec_cnt0 = 0;
  1544. for (size_t j = interac_blk_dsp; j < interac_blk_dsp + interac_blk[k];) {
  1545. size_t vec_cnt1 = 0;
  1546. size_t interac_mat0 = interac_mat[j];
  1547. for (; j < interac_blk_dsp + interac_blk[k] && interac_mat[j] == interac_mat0; j++) vec_cnt1 += interac_cnt[j];
  1548. Matrix<Real_t> M_d(M_dim0, M_dim1, (Real_t*)(precomp_data_d.dev_ptr + interac_mat0), false);
  1549. Matrix<Real_t> Ms_d(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in_d + M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1550. Matrix<Real_t> Mt_d(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out_d + M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1551. Matrix<Real_t>::CUBLASGEMM(Mt_d, Ms_d, M_d);
  1552. vec_cnt0 += vec_cnt1;
  1553. }
  1554. { // Output permutation.
  1555. out_perm_gpu<Real_t>(&precomp_data_d[0][0], &output_data_d[0][0], buff_out_d,
  1556. &output_perm_d[interac_indx*4], vec_cnt, M_dim1, stream);
  1557. }
  1558. interac_indx += vec_cnt;
  1559. interac_blk_dsp += interac_blk[k];
  1560. }
  1561. }
  1562. }
  1563. Profile::Toc();
  1564. if(SYNC) CUDA_Lock::wait();
  1565. }
  1566. #endif
  1567. template <class FMMNode>
  1568. template <int SYNC>
  1569. void FMM_Pts<FMMNode>::EvalList(SetupData<Real_t>& setup_data, bool device){
  1570. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  1571. Profile::Tic("Host2Device",&this->comm,false,25);
  1572. Profile::Toc();
  1573. Profile::Tic("DeviceComp",&this->comm,false,20);
  1574. Profile::Toc();
  1575. return;
  1576. }
  1577. #if defined(PVFMM_HAVE_CUDA)
  1578. if (device) {
  1579. EvalListGPU<Real_t, SYNC>(setup_data, this->dev_buffer, this->comm);
  1580. return;
  1581. }
  1582. #endif
  1583. Profile::Tic("Host2Device",&this->comm,false,25);
  1584. typename Vector<char>::Device buff;
  1585. typename Matrix<char>::Device precomp_data;
  1586. typename Matrix<char>::Device interac_data;
  1587. typename Matrix<Real_t>::Device input_data;
  1588. typename Matrix<Real_t>::Device output_data;
  1589. if(device){
  1590. buff = this-> dev_buffer. AllocDevice(false);
  1591. precomp_data= setup_data.precomp_data->AllocDevice(false);
  1592. interac_data= setup_data.interac_data. AllocDevice(false);
  1593. input_data = setup_data. input_data->AllocDevice(false);
  1594. output_data = setup_data. output_data->AllocDevice(false);
  1595. }else{
  1596. buff = this-> dev_buffer;
  1597. precomp_data=*setup_data.precomp_data;
  1598. interac_data= setup_data.interac_data;
  1599. input_data =*setup_data. input_data;
  1600. output_data =*setup_data. output_data;
  1601. }
  1602. Profile::Toc();
  1603. Profile::Tic("DeviceComp",&this->comm,false,20);
  1604. int lock_idx=-1;
  1605. int wait_lock_idx=-1;
  1606. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  1607. if(device) lock_idx=MIC_Lock::get_lock();
  1608. #ifdef __INTEL_OFFLOAD
  1609. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  1610. #endif
  1611. { // Offloaded computation.
  1612. // Set interac_data.
  1613. size_t data_size, M_dim0, M_dim1, dof;
  1614. Vector<size_t> interac_blk;
  1615. Vector<size_t> interac_cnt;
  1616. Vector<size_t> interac_mat;
  1617. Vector<size_t> input_perm;
  1618. Vector<size_t> output_perm;
  1619. { // Set interac_data.
  1620. char* data_ptr=&interac_data[0][0];
  1621. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size;
  1622. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1623. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1624. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1625. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1626. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1627. data_ptr+=sizeof(size_t)+interac_blk.Dim()*sizeof(size_t);
  1628. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1629. data_ptr+=sizeof(size_t)+interac_cnt.Dim()*sizeof(size_t);
  1630. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1631. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  1632. input_perm .ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1633. data_ptr+=sizeof(size_t)+ input_perm.Dim()*sizeof(size_t);
  1634. output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1635. data_ptr+=sizeof(size_t)+output_perm.Dim()*sizeof(size_t);
  1636. }
  1637. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  1638. //Compute interaction from Chebyshev source density.
  1639. { // interactions
  1640. int omp_p=omp_get_max_threads();
  1641. size_t interac_indx=0;
  1642. size_t interac_blk_dsp=0;
  1643. for(size_t k=0;k<interac_blk.Dim();k++){
  1644. size_t vec_cnt=0;
  1645. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
  1646. if(vec_cnt==0){
  1647. //interac_indx += vec_cnt;
  1648. interac_blk_dsp += interac_blk[k];
  1649. continue;
  1650. }
  1651. char* buff_in =&buff[0];
  1652. char* buff_out=&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1653. // Input permutation.
  1654. #pragma omp parallel for
  1655. for(int tid=0;tid<omp_p;tid++){
  1656. size_t a=( tid *vec_cnt)/omp_p;
  1657. size_t b=((tid+1)*vec_cnt)/omp_p;
  1658. for(size_t i=a;i<b;i++){
  1659. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+input_perm[(interac_indx+i)*4+0]);
  1660. const Real_t* scal=( Real_t*)(precomp_data[0]+input_perm[(interac_indx+i)*4+1]);
  1661. const Real_t* v_in =( Real_t*)( input_data[0]+input_perm[(interac_indx+i)*4+3]);
  1662. Real_t* v_out=( Real_t*)( buff_in +input_perm[(interac_indx+i)*4+2]);
  1663. // TODO: Fix for dof>1
  1664. #ifdef __MIC__
  1665. {
  1666. __m512d v8;
  1667. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1668. size_t j_end =(((uintptr_t)(v_out+M_dim0) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1669. j_start/=sizeof(Real_t);
  1670. j_end /=sizeof(Real_t);
  1671. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1672. assert(((uintptr_t)(v_out+j_start))%64==0);
  1673. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1674. size_t j=0;
  1675. for(;j<j_start;j++ ){
  1676. v_out[j]=v_in[perm[j]]*scal[j];
  1677. }
  1678. for(;j<j_end ;j+=8){
  1679. v8=_mm512_setr_pd(
  1680. v_in[perm[j+0]]*scal[j+0],
  1681. v_in[perm[j+1]]*scal[j+1],
  1682. v_in[perm[j+2]]*scal[j+2],
  1683. v_in[perm[j+3]]*scal[j+3],
  1684. v_in[perm[j+4]]*scal[j+4],
  1685. v_in[perm[j+5]]*scal[j+5],
  1686. v_in[perm[j+6]]*scal[j+6],
  1687. v_in[perm[j+7]]*scal[j+7]);
  1688. _mm512_storenrngo_pd(v_out+j,v8);
  1689. }
  1690. for(;j<M_dim0 ;j++ ){
  1691. v_out[j]=v_in[perm[j]]*scal[j];
  1692. }
  1693. }
  1694. #else
  1695. for(size_t j=0;j<M_dim0;j++ ){
  1696. v_out[j]=v_in[perm[j]]*scal[j];
  1697. }
  1698. #endif
  1699. }
  1700. }
  1701. size_t vec_cnt0=0;
  1702. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];){
  1703. size_t vec_cnt1=0;
  1704. size_t interac_mat0=interac_mat[j];
  1705. for(;j<interac_blk_dsp+interac_blk[k] && interac_mat[j]==interac_mat0;j++) vec_cnt1+=interac_cnt[j];
  1706. Matrix<Real_t> M(M_dim0, M_dim1, (Real_t*)(precomp_data[0]+interac_mat0), false);
  1707. #ifdef __MIC__
  1708. {
  1709. Matrix<Real_t> Ms(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1710. Matrix<Real_t> Mt(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1711. Matrix<Real_t>::GEMM(Mt,Ms,M);
  1712. }
  1713. #else
  1714. #pragma omp parallel for
  1715. for(int tid=0;tid<omp_p;tid++){
  1716. size_t a=(dof*vec_cnt1*(tid ))/omp_p;
  1717. size_t b=(dof*vec_cnt1*(tid+1))/omp_p;
  1718. Matrix<Real_t> Ms(b-a, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t))+M_dim0*a, false);
  1719. Matrix<Real_t> Mt(b-a, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t))+M_dim1*a, false);
  1720. Matrix<Real_t>::GEMM(Mt,Ms,M);
  1721. }
  1722. #endif
  1723. vec_cnt0+=vec_cnt1;
  1724. }
  1725. // Output permutation.
  1726. #pragma omp parallel for
  1727. for(int tid=0;tid<omp_p;tid++){
  1728. size_t a=( tid *vec_cnt)/omp_p;
  1729. size_t b=((tid+1)*vec_cnt)/omp_p;
  1730. if(tid> 0 && a<vec_cnt){ // Find 'a' independent of other threads.
  1731. size_t out_ptr=output_perm[(interac_indx+a)*4+3];
  1732. if(tid> 0) while(a<vec_cnt && out_ptr==output_perm[(interac_indx+a)*4+3]) a++;
  1733. }
  1734. if(tid<omp_p-1 && b<vec_cnt){ // Find 'b' independent of other threads.
  1735. size_t out_ptr=output_perm[(interac_indx+b)*4+3];
  1736. if(tid<omp_p-1) while(b<vec_cnt && out_ptr==output_perm[(interac_indx+b)*4+3]) b++;
  1737. }
  1738. for(size_t i=a;i<b;i++){ // Compute permutations.
  1739. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+output_perm[(interac_indx+i)*4+0]);
  1740. const Real_t* scal=( Real_t*)(precomp_data[0]+output_perm[(interac_indx+i)*4+1]);
  1741. const Real_t* v_in =( Real_t*)( buff_out +output_perm[(interac_indx+i)*4+2]);
  1742. Real_t* v_out=( Real_t*)( output_data[0]+output_perm[(interac_indx+i)*4+3]);
  1743. // TODO: Fix for dof>1
  1744. #ifdef __MIC__
  1745. {
  1746. __m512d v8;
  1747. __m512d v_old;
  1748. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1749. size_t j_end =(((uintptr_t)(v_out+M_dim1) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1750. j_start/=sizeof(Real_t);
  1751. j_end /=sizeof(Real_t);
  1752. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1753. assert(((uintptr_t)(v_out+j_start))%64==0);
  1754. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1755. size_t j=0;
  1756. for(;j<j_start;j++ ){
  1757. v_out[j]+=v_in[perm[j]]*scal[j];
  1758. }
  1759. for(;j<j_end ;j+=8){
  1760. v_old=_mm512_load_pd(v_out+j);
  1761. v8=_mm512_setr_pd(
  1762. v_in[perm[j+0]]*scal[j+0],
  1763. v_in[perm[j+1]]*scal[j+1],
  1764. v_in[perm[j+2]]*scal[j+2],
  1765. v_in[perm[j+3]]*scal[j+3],
  1766. v_in[perm[j+4]]*scal[j+4],
  1767. v_in[perm[j+5]]*scal[j+5],
  1768. v_in[perm[j+6]]*scal[j+6],
  1769. v_in[perm[j+7]]*scal[j+7]);
  1770. v_old=_mm512_add_pd(v_old, v8);
  1771. _mm512_storenrngo_pd(v_out+j,v_old);
  1772. }
  1773. for(;j<M_dim1 ;j++ ){
  1774. v_out[j]+=v_in[perm[j]]*scal[j];
  1775. }
  1776. }
  1777. #else
  1778. for(size_t j=0;j<M_dim1;j++ ){
  1779. v_out[j]+=v_in[perm[j]]*scal[j];
  1780. }
  1781. #endif
  1782. }
  1783. }
  1784. interac_indx+=vec_cnt;
  1785. interac_blk_dsp+=interac_blk[k];
  1786. }
  1787. }
  1788. if(device) MIC_Lock::release_lock(lock_idx);
  1789. }
  1790. #ifdef __INTEL_OFFLOAD
  1791. if(SYNC){
  1792. #pragma offload if(device) target(mic:0)
  1793. {if(device) MIC_Lock::wait_lock(lock_idx);}
  1794. }
  1795. #endif
  1796. Profile::Toc();
  1797. }
  1798. template <class FMMNode>
  1799. void FMM_Pts<FMMNode>::Source2UpSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  1800. if(!this->MultipoleOrder()) return;
  1801. { // Set setup_data
  1802. setup_data. level=level;
  1803. setup_data.kernel=kernel->k_s2m;
  1804. setup_data. input_data=&buff[4];
  1805. setup_data.output_data=&buff[0];
  1806. setup_data. coord_data=&buff[6];
  1807. Vector<FMMNode_t*>& nodes_in =n_list[4];
  1808. Vector<FMMNode_t*>& nodes_out=n_list[0];
  1809. setup_data.nodes_in .clear();
  1810. setup_data.nodes_out.clear();
  1811. for(size_t i=0;i<nodes_in .Dim();i++) if((nodes_in [i]->Depth()==level || level==-1) && (nodes_in [i]->src_coord.Dim() || nodes_in [i]->surf_coord.Dim()) && nodes_in [i]->IsLeaf() && !nodes_in [i]->IsGhost()) setup_data.nodes_in .push_back(nodes_in [i]);
  1812. for(size_t i=0;i<nodes_out.Dim();i++) if((nodes_out[i]->Depth()==level || level==-1) && (nodes_out[i]->src_coord.Dim() || nodes_out[i]->surf_coord.Dim()) && nodes_out[i]->IsLeaf() && !nodes_out[i]->IsGhost()) setup_data.nodes_out.push_back(nodes_out[i]);
  1813. }
  1814. struct PackedData{
  1815. size_t len;
  1816. Matrix<Real_t>* ptr;
  1817. Vector<size_t> cnt;
  1818. Vector<size_t> dsp;
  1819. };
  1820. struct InteracData{
  1821. Vector<size_t> in_node;
  1822. Vector<size_t> scal_idx;
  1823. Vector<Real_t> coord_shift;
  1824. Vector<size_t> interac_cnt;
  1825. Vector<size_t> interac_dsp;
  1826. Vector<size_t> interac_cst;
  1827. Vector<Real_t> scal[4*MAX_DEPTH];
  1828. Matrix<Real_t> M[4];
  1829. };
  1830. struct ptSetupData{
  1831. int level;
  1832. const Kernel<Real_t>* kernel;
  1833. PackedData src_coord; // Src coord
  1834. PackedData src_value; // Src density
  1835. PackedData srf_coord; // Srf coord
  1836. PackedData srf_value; // Srf density
  1837. PackedData trg_coord; // Trg coord
  1838. PackedData trg_value; // Trg potential
  1839. InteracData interac_data;
  1840. };
  1841. ptSetupData data;
  1842. data. level=setup_data. level;
  1843. data.kernel=setup_data.kernel;
  1844. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1845. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1846. { // Set src data
  1847. std::vector<void*>& nodes=nodes_in;
  1848. PackedData& coord=data.src_coord;
  1849. PackedData& value=data.src_value;
  1850. coord.ptr=setup_data. coord_data;
  1851. value.ptr=setup_data. input_data;
  1852. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  1853. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  1854. coord.cnt.ReInit(nodes.size());
  1855. coord.dsp.ReInit(nodes.size());
  1856. value.cnt.ReInit(nodes.size());
  1857. value.dsp.ReInit(nodes.size());
  1858. #pragma omp parallel for
  1859. for(size_t i=0;i<nodes.size();i++){
  1860. ((FMMNode_t*)nodes[i])->node_id=i;
  1861. Vector<Real_t>& coord_vec=((FMMNode*)nodes[i])->src_coord;
  1862. Vector<Real_t>& value_vec=((FMMNode*)nodes[i])->src_value;
  1863. if(coord_vec.Dim()){
  1864. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  1865. assert(coord.dsp[i]<coord.len);
  1866. coord.cnt[i]=coord_vec.Dim();
  1867. }else{
  1868. coord.dsp[i]=0;
  1869. coord.cnt[i]=0;
  1870. }
  1871. if(value_vec.Dim()){
  1872. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  1873. assert(value.dsp[i]<value.len);
  1874. value.cnt[i]=value_vec.Dim();
  1875. }else{
  1876. value.dsp[i]=0;
  1877. value.cnt[i]=0;
  1878. }
  1879. }
  1880. }
  1881. { // Set srf data
  1882. std::vector<void*>& nodes=nodes_in;
  1883. PackedData& coord=data.srf_coord;
  1884. PackedData& value=data.srf_value;
  1885. coord.ptr=setup_data. coord_data;
  1886. value.ptr=setup_data. input_data;
  1887. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  1888. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  1889. coord.cnt.ReInit(nodes.size());
  1890. coord.dsp.ReInit(nodes.size());
  1891. value.cnt.ReInit(nodes.size());
  1892. value.dsp.ReInit(nodes.size());
  1893. #pragma omp parallel for
  1894. for(size_t i=0;i<nodes.size();i++){
  1895. Vector<Real_t>& coord_vec=((FMMNode*)nodes[i])->surf_coord;
  1896. Vector<Real_t>& value_vec=((FMMNode*)nodes[i])->surf_value;
  1897. if(coord_vec.Dim()){
  1898. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  1899. assert(coord.dsp[i]<coord.len);
  1900. coord.cnt[i]=coord_vec.Dim();
  1901. }else{
  1902. coord.dsp[i]=0;
  1903. coord.cnt[i]=0;
  1904. }
  1905. if(value_vec.Dim()){
  1906. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  1907. assert(value.dsp[i]<value.len);
  1908. value.cnt[i]=value_vec.Dim();
  1909. }else{
  1910. value.dsp[i]=0;
  1911. value.cnt[i]=0;
  1912. }
  1913. }
  1914. }
  1915. { // Set trg data
  1916. std::vector<void*>& nodes=nodes_out;
  1917. PackedData& coord=data.trg_coord;
  1918. PackedData& value=data.trg_value;
  1919. coord.ptr=setup_data. coord_data;
  1920. value.ptr=setup_data.output_data;
  1921. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  1922. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  1923. coord.cnt.ReInit(nodes.size());
  1924. coord.dsp.ReInit(nodes.size());
  1925. value.cnt.ReInit(nodes.size());
  1926. value.dsp.ReInit(nodes.size());
  1927. #pragma omp parallel for
  1928. for(size_t i=0;i<nodes.size();i++){
  1929. Vector<Real_t>& coord_vec=tree->upwd_check_surf[((FMMNode*)nodes[i])->Depth()];
  1930. Vector<Real_t>& value_vec=((FMMData*)((FMMNode*)nodes[i])->FMMData())->upward_equiv;
  1931. if(coord_vec.Dim()){
  1932. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  1933. assert(coord.dsp[i]<coord.len);
  1934. coord.cnt[i]=coord_vec.Dim();
  1935. }else{
  1936. coord.dsp[i]=0;
  1937. coord.cnt[i]=0;
  1938. }
  1939. if(value_vec.Dim()){
  1940. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  1941. assert(value.dsp[i]<value.len);
  1942. value.cnt[i]=value_vec.Dim();
  1943. }else{
  1944. value.dsp[i]=0;
  1945. value.cnt[i]=0;
  1946. }
  1947. }
  1948. }
  1949. { // Set interac_data
  1950. int omp_p=omp_get_max_threads();
  1951. std::vector<std::vector<size_t> > in_node_(omp_p);
  1952. std::vector<std::vector<size_t> > scal_idx_(omp_p);
  1953. std::vector<std::vector<Real_t> > coord_shift_(omp_p);
  1954. std::vector<std::vector<size_t> > interac_cnt_(omp_p);
  1955. if(this->ScaleInvar()){ // Set scal
  1956. const Kernel<Real_t>* ker=kernel->k_m2m;
  1957. for(size_t l=0;l<MAX_DEPTH;l++){ // scal[l*4+2]
  1958. Vector<Real_t>& scal=data.interac_data.scal[l*4+2];
  1959. Vector<Real_t>& scal_exp=ker->trg_scal;
  1960. scal.ReInit(scal_exp.Dim());
  1961. for(size_t i=0;i<scal.Dim();i++){
  1962. scal[i]=pvfmm::pow<Real_t>(2.0,-scal_exp[i]*l);
  1963. }
  1964. }
  1965. for(size_t l=0;l<MAX_DEPTH;l++){ // scal[l*4+3]
  1966. Vector<Real_t>& scal=data.interac_data.scal[l*4+3];
  1967. Vector<Real_t>& scal_exp=ker->src_scal;
  1968. scal.ReInit(scal_exp.Dim());
  1969. for(size_t i=0;i<scal.Dim();i++){
  1970. scal[i]=pvfmm::pow<Real_t>(2.0,-scal_exp[i]*l);
  1971. }
  1972. }
  1973. }
  1974. #pragma omp parallel for
  1975. for(size_t tid=0;tid<omp_p;tid++){
  1976. std::vector<size_t>& in_node =in_node_[tid] ;
  1977. std::vector<size_t>& scal_idx =scal_idx_[tid] ;
  1978. std::vector<Real_t>& coord_shift=coord_shift_[tid];
  1979. std::vector<size_t>& interac_cnt=interac_cnt_[tid];
  1980. size_t a=(nodes_out.size()*(tid+0))/omp_p;
  1981. size_t b=(nodes_out.size()*(tid+1))/omp_p;
  1982. for(size_t i=a;i<b;i++){
  1983. FMMNode_t* tnode=(FMMNode_t*)nodes_out[i];
  1984. Real_t s=pvfmm::pow<Real_t>(0.5,tnode->Depth());
  1985. size_t interac_cnt_=0;
  1986. { // S2U_Type
  1987. Mat_Type type=S2U_Type;
  1988. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  1989. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  1990. FMMNode_t* snode=intlst[j];
  1991. size_t snode_id=snode->node_id;
  1992. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  1993. in_node.push_back(snode_id);
  1994. scal_idx.push_back(snode->Depth());
  1995. { // set coord_shift
  1996. const int* rel_coord=interac_list.RelativeCoord(type,j);
  1997. const Real_t* scoord=snode->Coord();
  1998. const Real_t* tcoord=tnode->Coord();
  1999. Real_t shift[COORD_DIM];
  2000. shift[0]=rel_coord[0]*0.5*s-(scoord[0]+0.5*s)+(0+0.5*s);
  2001. shift[1]=rel_coord[1]*0.5*s-(scoord[1]+0.5*s)+(0+0.5*s);
  2002. shift[2]=rel_coord[2]*0.5*s-(scoord[2]+0.5*s)+(0+0.5*s);
  2003. coord_shift.push_back(shift[0]);
  2004. coord_shift.push_back(shift[1]);
  2005. coord_shift.push_back(shift[2]);
  2006. }
  2007. interac_cnt_++;
  2008. }
  2009. }
  2010. interac_cnt.push_back(interac_cnt_);
  2011. }
  2012. }
  2013. { // Combine interac data
  2014. InteracData& interac_data=data.interac_data;
  2015. { // in_node
  2016. typedef size_t ElemType;
  2017. std::vector<std::vector<ElemType> >& vec_=in_node_;
  2018. pvfmm::Vector<ElemType>& vec=interac_data.in_node;
  2019. std::vector<size_t> vec_dsp(omp_p+1,0);
  2020. for(size_t tid=0;tid<omp_p;tid++){
  2021. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  2022. }
  2023. vec.ReInit(vec_dsp[omp_p]);
  2024. #pragma omp parallel for
  2025. for(size_t tid=0;tid<omp_p;tid++){
  2026. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  2027. }
  2028. }
  2029. { // scal_idx
  2030. typedef size_t ElemType;
  2031. std::vector<std::vector<ElemType> >& vec_=scal_idx_;
  2032. pvfmm::Vector<ElemType>& vec=interac_data.scal_idx;
  2033. std::vector<size_t> vec_dsp(omp_p+1,0);
  2034. for(size_t tid=0;tid<omp_p;tid++){
  2035. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  2036. }
  2037. vec.ReInit(vec_dsp[omp_p]);
  2038. #pragma omp parallel for
  2039. for(size_t tid=0;tid<omp_p;tid++){
  2040. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  2041. }
  2042. }
  2043. { // coord_shift
  2044. typedef Real_t ElemType;
  2045. std::vector<std::vector<ElemType> >& vec_=coord_shift_;
  2046. pvfmm::Vector<ElemType>& vec=interac_data.coord_shift;
  2047. std::vector<size_t> vec_dsp(omp_p+1,0);
  2048. for(size_t tid=0;tid<omp_p;tid++){
  2049. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  2050. }
  2051. vec.ReInit(vec_dsp[omp_p]);
  2052. #pragma omp parallel for
  2053. for(size_t tid=0;tid<omp_p;tid++){
  2054. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  2055. }
  2056. }
  2057. { // interac_cnt
  2058. typedef size_t ElemType;
  2059. std::vector<std::vector<ElemType> >& vec_=interac_cnt_;
  2060. pvfmm::Vector<ElemType>& vec=interac_data.interac_cnt;
  2061. std::vector<size_t> vec_dsp(omp_p+1,0);
  2062. for(size_t tid=0;tid<omp_p;tid++){
  2063. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  2064. }
  2065. vec.ReInit(vec_dsp[omp_p]);
  2066. #pragma omp parallel for
  2067. for(size_t tid=0;tid<omp_p;tid++){
  2068. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  2069. }
  2070. }
  2071. { // interac_dsp
  2072. pvfmm::Vector<size_t>& cnt=interac_data.interac_cnt;
  2073. pvfmm::Vector<size_t>& dsp=interac_data.interac_dsp;
  2074. dsp.ReInit(cnt.Dim()); if(dsp.Dim()) dsp[0]=0;
  2075. omp_par::scan(&cnt[0],&dsp[0],dsp.Dim());
  2076. }
  2077. }
  2078. { // Set M[2], M[3]
  2079. InteracData& interac_data=data.interac_data;
  2080. pvfmm::Vector<size_t>& cnt=interac_data.interac_cnt;
  2081. pvfmm::Vector<size_t>& dsp=interac_data.interac_dsp;
  2082. if(cnt.Dim() && cnt[cnt.Dim()-1]+dsp[dsp.Dim()-1]){
  2083. data.interac_data.M[2]=this->mat->Mat(level, UC2UE0_Type, 0);
  2084. data.interac_data.M[3]=this->mat->Mat(level, UC2UE1_Type, 0);
  2085. }else{
  2086. data.interac_data.M[2].ReInit(0,0);
  2087. data.interac_data.M[3].ReInit(0,0);
  2088. }
  2089. }
  2090. }
  2091. PtSetup(setup_data, &data);
  2092. }
  2093. template <class FMMNode>
  2094. void FMM_Pts<FMMNode>::Source2Up(SetupData<Real_t>& setup_data, bool device){
  2095. if(!this->MultipoleOrder()) return;
  2096. //Add Source2Up contribution.
  2097. this->EvalListPts(setup_data, device);
  2098. }
  2099. template <class FMMNode>
  2100. void FMM_Pts<FMMNode>::Up2UpSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2101. if(!this->MultipoleOrder()) return;
  2102. { // Set setup_data
  2103. setup_data.level=level;
  2104. setup_data.kernel=kernel->k_m2m;
  2105. setup_data.interac_type.resize(1);
  2106. setup_data.interac_type[0]=U2U_Type;
  2107. setup_data. input_data=&buff[0];
  2108. setup_data.output_data=&buff[0];
  2109. Vector<FMMNode_t*>& nodes_in =n_list[0];
  2110. Vector<FMMNode_t*>& nodes_out=n_list[0];
  2111. setup_data.nodes_in .clear();
  2112. setup_data.nodes_out.clear();
  2113. for(size_t i=0;i<nodes_in .Dim();i++) if((nodes_in [i]->Depth()==level+1) && nodes_in [i]->pt_cnt[0]) setup_data.nodes_in .push_back(nodes_in [i]);
  2114. for(size_t i=0;i<nodes_out.Dim();i++) if((nodes_out[i]->Depth()==level ) && nodes_out[i]->pt_cnt[0]) setup_data.nodes_out.push_back(nodes_out[i]);
  2115. }
  2116. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2117. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2118. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2119. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2120. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  2121. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
  2122. SetupInterac(setup_data,device);
  2123. }
  2124. template <class FMMNode>
  2125. void FMM_Pts<FMMNode>::Up2Up (SetupData<Real_t>& setup_data, bool device){
  2126. if(!this->MultipoleOrder()) return;
  2127. //Add Up2Up contribution.
  2128. EvalList(setup_data, device);
  2129. }
  2130. template <class FMMNode>
  2131. void FMM_Pts<FMMNode>::PeriodicBC(FMMNode* node){
  2132. if(!this->ScaleInvar() || this->MultipoleOrder()==0) return;
  2133. Matrix<Real_t>& M = Precomp(0, BC_Type, 0);
  2134. assert(node->FMMData()->upward_equiv.Dim()>0);
  2135. int dof=1;
  2136. Vector<Real_t>& upward_equiv=node->FMMData()->upward_equiv;
  2137. Vector<Real_t>& dnward_equiv=node->FMMData()->dnward_equiv;
  2138. assert(upward_equiv.Dim()==M.Dim(0)*dof);
  2139. assert(dnward_equiv.Dim()==M.Dim(1)*dof);
  2140. Matrix<Real_t> d_equiv(dof,M.Dim(0),&dnward_equiv[0],false);
  2141. Matrix<Real_t> u_equiv(dof,M.Dim(1),&upward_equiv[0],false);
  2142. Matrix<Real_t>::GEMM(d_equiv,u_equiv,M);
  2143. }
  2144. template <class FMMNode>
  2145. void FMM_Pts<FMMNode>::FFT_UpEquiv(size_t dof, size_t m, size_t ker_dim0, Vector<size_t>& fft_vec, Vector<Real_t>& fft_scal,
  2146. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_){
  2147. size_t n1=m*2;
  2148. size_t n2=n1*n1;
  2149. size_t n3=n1*n2;
  2150. size_t n3_=n2*(n1/2+1);
  2151. size_t chld_cnt=1UL<<COORD_DIM;
  2152. size_t fftsize_in =2*n3_*chld_cnt*ker_dim0*dof;
  2153. int omp_p=omp_get_max_threads();
  2154. //Load permutation map.
  2155. size_t n=6*(m-1)*(m-1)+2;
  2156. static Vector<size_t> map;
  2157. { // Build map to reorder upward_equiv
  2158. size_t n_old=map.Dim();
  2159. if(n_old!=n){
  2160. Real_t c[3]={0,0,0};
  2161. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  2162. map.Resize(surf.Dim()/COORD_DIM);
  2163. for(size_t i=0;i<map.Dim();i++)
  2164. map[i]=((size_t)(m-1-surf[i*3]+0.5))+((size_t)(m-1-surf[i*3+1]+0.5))*n1+((size_t)(m-1-surf[i*3+2]+0.5))*n2;
  2165. }
  2166. }
  2167. { // Build FFTW plan.
  2168. if(!vlist_fft_flag){
  2169. int nnn[3]={(int)n1,(int)n1,(int)n1};
  2170. void *fftw_in, *fftw_out;
  2171. fftw_in = mem::aligned_new<Real_t>( n3 *ker_dim0*chld_cnt);
  2172. fftw_out = mem::aligned_new<Real_t>(2*n3_*ker_dim0*chld_cnt);
  2173. vlist_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM,nnn,ker_dim0*chld_cnt,
  2174. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*)(fftw_out),NULL, 1, n3_);
  2175. mem::aligned_delete<Real_t>((Real_t*)fftw_in );
  2176. mem::aligned_delete<Real_t>((Real_t*)fftw_out);
  2177. vlist_fft_flag=true;
  2178. }
  2179. }
  2180. { // Offload section
  2181. size_t n_in = fft_vec.Dim();
  2182. #pragma omp parallel for
  2183. for(int pid=0; pid<omp_p; pid++){
  2184. size_t node_start=(n_in*(pid ))/omp_p;
  2185. size_t node_end =(n_in*(pid+1))/omp_p;
  2186. Vector<Real_t> buffer(fftsize_in, &buffer_[fftsize_in*pid], false);
  2187. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  2188. Matrix<Real_t> upward_equiv(chld_cnt,n*ker_dim0*dof,&input_data[0] + fft_vec[node_idx],false);
  2189. Vector<Real_t> upward_equiv_fft(fftsize_in, &output_data[fftsize_in *node_idx], false);
  2190. upward_equiv_fft.SetZero();
  2191. // Rearrange upward equivalent data.
  2192. for(size_t k=0;k<n;k++){
  2193. size_t idx=map[k];
  2194. for(int j1=0;j1<dof;j1++)
  2195. for(int j0=0;j0<(int)chld_cnt;j0++)
  2196. for(int i=0;i<ker_dim0;i++)
  2197. upward_equiv_fft[idx+(j0+(i+j1*ker_dim0)*chld_cnt)*n3]=upward_equiv[j0][ker_dim0*(n*j1+k)+i]*fft_scal[ker_dim0*node_idx+i];
  2198. }
  2199. // Compute FFT.
  2200. for(int i=0;i<dof;i++)
  2201. FFTW_t<Real_t>::fft_execute_dft_r2c(vlist_fftplan, (Real_t*)&upward_equiv_fft[i* n3 *ker_dim0*chld_cnt],
  2202. (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim0*chld_cnt]);
  2203. //Compute flops.
  2204. #ifndef FFTW3_MKL
  2205. double add, mul, fma;
  2206. FFTW_t<Real_t>::fftw_flops(vlist_fftplan, &add, &mul, &fma);
  2207. #ifndef __INTEL_OFFLOAD0
  2208. Profile::Add_FLOP((long long)(add+mul+2*fma));
  2209. #endif
  2210. #endif
  2211. for(int i=0;i<ker_dim0*dof;i++)
  2212. for(size_t j=0;j<n3_;j++)
  2213. for(size_t k=0;k<chld_cnt;k++){
  2214. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+0]=buffer[2*(n3_*(chld_cnt*i+k)+j)+0];
  2215. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+1]=buffer[2*(n3_*(chld_cnt*i+k)+j)+1];
  2216. }
  2217. }
  2218. }
  2219. }
  2220. }
  2221. template <class FMMNode>
  2222. void FMM_Pts<FMMNode>::FFT_Check2Equiv(size_t dof, size_t m, size_t ker_dim1, Vector<size_t>& ifft_vec, Vector<Real_t>& ifft_scal,
  2223. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_){
  2224. size_t n1=m*2;
  2225. size_t n2=n1*n1;
  2226. size_t n3=n1*n2;
  2227. size_t n3_=n2*(n1/2+1);
  2228. size_t chld_cnt=1UL<<COORD_DIM;
  2229. size_t fftsize_out=2*n3_*dof*ker_dim1*chld_cnt;
  2230. int omp_p=omp_get_max_threads();
  2231. //Load permutation map.
  2232. size_t n=6*(m-1)*(m-1)+2;
  2233. static Vector<size_t> map;
  2234. { // Build map to reorder dnward_check
  2235. size_t n_old=map.Dim();
  2236. if(n_old!=n){
  2237. Real_t c[3]={0,0,0};
  2238. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  2239. map.Resize(surf.Dim()/COORD_DIM);
  2240. for(size_t i=0;i<map.Dim();i++)
  2241. map[i]=((size_t)(m*2-0.5-surf[i*3]))+((size_t)(m*2-0.5-surf[i*3+1]))*n1+((size_t)(m*2-0.5-surf[i*3+2]))*n2;
  2242. //map;//.AllocDevice(true);
  2243. }
  2244. }
  2245. { // Build FFTW plan.
  2246. if(!vlist_ifft_flag){
  2247. //Build FFTW plan.
  2248. int nnn[3]={(int)n1,(int)n1,(int)n1};
  2249. Real_t *fftw_in, *fftw_out;
  2250. fftw_in = mem::aligned_new<Real_t>(2*n3_*ker_dim1*chld_cnt);
  2251. fftw_out = mem::aligned_new<Real_t>( n3 *ker_dim1*chld_cnt);
  2252. vlist_ifftplan = FFTW_t<Real_t>::fft_plan_many_dft_c2r(COORD_DIM,nnn,ker_dim1*chld_cnt,
  2253. (typename FFTW_t<Real_t>::cplx*)fftw_in, NULL, 1, n3_, (Real_t*)(fftw_out),NULL, 1, n3);
  2254. mem::aligned_delete<Real_t>(fftw_in);
  2255. mem::aligned_delete<Real_t>(fftw_out);
  2256. vlist_ifft_flag=true;
  2257. }
  2258. }
  2259. { // Offload section
  2260. assert(buffer_.Dim()>=2*fftsize_out*omp_p);
  2261. size_t n_out=ifft_vec.Dim();
  2262. #pragma omp parallel for
  2263. for(int pid=0; pid<omp_p; pid++){
  2264. size_t node_start=(n_out*(pid ))/omp_p;
  2265. size_t node_end =(n_out*(pid+1))/omp_p;
  2266. Vector<Real_t> buffer0(fftsize_out, &buffer_[fftsize_out*(2*pid+0)], false);
  2267. Vector<Real_t> buffer1(fftsize_out, &buffer_[fftsize_out*(2*pid+1)], false);
  2268. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  2269. Vector<Real_t> dnward_check_fft(fftsize_out, &input_data[fftsize_out*node_idx], false);
  2270. Vector<Real_t> dnward_equiv(ker_dim1*n*dof*chld_cnt,&output_data[0] + ifft_vec[node_idx],false);
  2271. //De-interleave data.
  2272. for(int i=0;i<ker_dim1*dof;i++)
  2273. for(size_t j=0;j<n3_;j++)
  2274. for(size_t k=0;k<chld_cnt;k++){
  2275. buffer0[2*(n3_*(ker_dim1*dof*k+i)+j)+0]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+0];
  2276. buffer0[2*(n3_*(ker_dim1*dof*k+i)+j)+1]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+1];
  2277. }
  2278. // Compute FFT.
  2279. for(int i=0;i<dof;i++)
  2280. FFTW_t<Real_t>::fft_execute_dft_c2r(vlist_ifftplan, (typename FFTW_t<Real_t>::cplx*)&buffer0[i*2*n3_*ker_dim1*chld_cnt],
  2281. (Real_t*)&buffer1[i* n3 *ker_dim1*chld_cnt]);
  2282. //Compute flops.
  2283. #ifndef FFTW3_MKL
  2284. double add, mul, fma;
  2285. FFTW_t<Real_t>::fftw_flops(vlist_ifftplan, &add, &mul, &fma);
  2286. #ifndef __INTEL_OFFLOAD0
  2287. Profile::Add_FLOP((long long)(add+mul+2*fma)*dof);
  2288. #endif
  2289. #endif
  2290. // Rearrange downward check data.
  2291. for(size_t k=0;k<n;k++){
  2292. size_t idx=map[k];
  2293. for(int j1=0;j1<dof;j1++)
  2294. for(int j0=0;j0<(int)chld_cnt;j0++)
  2295. for(int i=0;i<ker_dim1;i++)
  2296. dnward_equiv[ker_dim1*(n*(dof*j0+j1)+k)+i]+=buffer1[idx+(i+(j1+j0*dof)*ker_dim1)*n3]*ifft_scal[ker_dim1*node_idx+i];
  2297. }
  2298. }
  2299. }
  2300. }
  2301. }
  2302. template<class Real_t>
  2303. inline void matmult_8x8x2(Real_t*& M_, Real_t*& IN0, Real_t*& IN1, Real_t*& OUT0, Real_t*& OUT1){
  2304. // Generic code.
  2305. Real_t out_reg000, out_reg001, out_reg010, out_reg011;
  2306. Real_t out_reg100, out_reg101, out_reg110, out_reg111;
  2307. Real_t in_reg000, in_reg001, in_reg010, in_reg011;
  2308. Real_t in_reg100, in_reg101, in_reg110, in_reg111;
  2309. Real_t m_reg000, m_reg001, m_reg010, m_reg011;
  2310. Real_t m_reg100, m_reg101, m_reg110, m_reg111;
  2311. //#pragma unroll
  2312. for(int i1=0;i1<8;i1+=2){
  2313. Real_t* IN0_=IN0;
  2314. Real_t* IN1_=IN1;
  2315. out_reg000=OUT0[ 0]; out_reg001=OUT0[ 1];
  2316. out_reg010=OUT0[ 2]; out_reg011=OUT0[ 3];
  2317. out_reg100=OUT1[ 0]; out_reg101=OUT1[ 1];
  2318. out_reg110=OUT1[ 2]; out_reg111=OUT1[ 3];
  2319. //#pragma unroll
  2320. for(int i2=0;i2<8;i2+=2){
  2321. m_reg000=M_[ 0]; m_reg001=M_[ 1];
  2322. m_reg010=M_[ 2]; m_reg011=M_[ 3];
  2323. m_reg100=M_[16]; m_reg101=M_[17];
  2324. m_reg110=M_[18]; m_reg111=M_[19];
  2325. in_reg000=IN0_[0]; in_reg001=IN0_[1];
  2326. in_reg010=IN0_[2]; in_reg011=IN0_[3];
  2327. in_reg100=IN1_[0]; in_reg101=IN1_[1];
  2328. in_reg110=IN1_[2]; in_reg111=IN1_[3];
  2329. out_reg000 += m_reg000*in_reg000 - m_reg001*in_reg001;
  2330. out_reg001 += m_reg000*in_reg001 + m_reg001*in_reg000;
  2331. out_reg010 += m_reg010*in_reg000 - m_reg011*in_reg001;
  2332. out_reg011 += m_reg010*in_reg001 + m_reg011*in_reg000;
  2333. out_reg000 += m_reg100*in_reg010 - m_reg101*in_reg011;
  2334. out_reg001 += m_reg100*in_reg011 + m_reg101*in_reg010;
  2335. out_reg010 += m_reg110*in_reg010 - m_reg111*in_reg011;
  2336. out_reg011 += m_reg110*in_reg011 + m_reg111*in_reg010;
  2337. out_reg100 += m_reg000*in_reg100 - m_reg001*in_reg101;
  2338. out_reg101 += m_reg000*in_reg101 + m_reg001*in_reg100;
  2339. out_reg110 += m_reg010*in_reg100 - m_reg011*in_reg101;
  2340. out_reg111 += m_reg010*in_reg101 + m_reg011*in_reg100;
  2341. out_reg100 += m_reg100*in_reg110 - m_reg101*in_reg111;
  2342. out_reg101 += m_reg100*in_reg111 + m_reg101*in_reg110;
  2343. out_reg110 += m_reg110*in_reg110 - m_reg111*in_reg111;
  2344. out_reg111 += m_reg110*in_reg111 + m_reg111*in_reg110;
  2345. M_+=32; // Jump to (column+2).
  2346. IN0_+=4;
  2347. IN1_+=4;
  2348. }
  2349. OUT0[ 0]=out_reg000; OUT0[ 1]=out_reg001;
  2350. OUT0[ 2]=out_reg010; OUT0[ 3]=out_reg011;
  2351. OUT1[ 0]=out_reg100; OUT1[ 1]=out_reg101;
  2352. OUT1[ 2]=out_reg110; OUT1[ 3]=out_reg111;
  2353. M_+=4-64*2; // Jump back to first column (row+2).
  2354. OUT0+=4;
  2355. OUT1+=4;
  2356. }
  2357. }
  2358. #if defined(__AVX__) || defined(__SSE3__)
  2359. template<>
  2360. inline void matmult_8x8x2<double>(double*& M_, double*& IN0, double*& IN1, double*& OUT0, double*& OUT1){
  2361. #ifdef __AVX__ //AVX code.
  2362. __m256d out00,out01,out10,out11;
  2363. __m256d out20,out21,out30,out31;
  2364. double* in0__ = IN0;
  2365. double* in1__ = IN1;
  2366. out00 = _mm256_load_pd(OUT0);
  2367. out01 = _mm256_load_pd(OUT1);
  2368. out10 = _mm256_load_pd(OUT0+4);
  2369. out11 = _mm256_load_pd(OUT1+4);
  2370. out20 = _mm256_load_pd(OUT0+8);
  2371. out21 = _mm256_load_pd(OUT1+8);
  2372. out30 = _mm256_load_pd(OUT0+12);
  2373. out31 = _mm256_load_pd(OUT1+12);
  2374. for(int i2=0;i2<8;i2+=2){
  2375. __m256d m00;
  2376. __m256d ot00;
  2377. __m256d mt0,mtt0;
  2378. __m256d in00,in00_r,in01,in01_r;
  2379. in00 = _mm256_broadcast_pd((const __m128d*)in0__);
  2380. in00_r = _mm256_permute_pd(in00,5);
  2381. in01 = _mm256_broadcast_pd((const __m128d*)in1__);
  2382. in01_r = _mm256_permute_pd(in01,5);
  2383. m00 = _mm256_load_pd(M_);
  2384. mt0 = _mm256_unpacklo_pd(m00,m00);
  2385. ot00 = _mm256_mul_pd(mt0,in00);
  2386. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2387. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2388. ot00 = _mm256_mul_pd(mt0,in01);
  2389. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2390. m00 = _mm256_load_pd(M_+4);
  2391. mt0 = _mm256_unpacklo_pd(m00,m00);
  2392. ot00 = _mm256_mul_pd(mt0,in00);
  2393. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2394. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2395. ot00 = _mm256_mul_pd(mt0,in01);
  2396. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2397. m00 = _mm256_load_pd(M_+8);
  2398. mt0 = _mm256_unpacklo_pd(m00,m00);
  2399. ot00 = _mm256_mul_pd(mt0,in00);
  2400. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2401. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2402. ot00 = _mm256_mul_pd(mt0,in01);
  2403. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2404. m00 = _mm256_load_pd(M_+12);
  2405. mt0 = _mm256_unpacklo_pd(m00,m00);
  2406. ot00 = _mm256_mul_pd(mt0,in00);
  2407. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2408. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2409. ot00 = _mm256_mul_pd(mt0,in01);
  2410. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2411. in00 = _mm256_broadcast_pd((const __m128d*) (in0__+2));
  2412. in00_r = _mm256_permute_pd(in00,5);
  2413. in01 = _mm256_broadcast_pd((const __m128d*) (in1__+2));
  2414. in01_r = _mm256_permute_pd(in01,5);
  2415. m00 = _mm256_load_pd(M_+16);
  2416. mt0 = _mm256_unpacklo_pd(m00,m00);
  2417. ot00 = _mm256_mul_pd(mt0,in00);
  2418. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2419. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2420. ot00 = _mm256_mul_pd(mt0,in01);
  2421. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2422. m00 = _mm256_load_pd(M_+20);
  2423. mt0 = _mm256_unpacklo_pd(m00,m00);
  2424. ot00 = _mm256_mul_pd(mt0,in00);
  2425. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2426. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2427. ot00 = _mm256_mul_pd(mt0,in01);
  2428. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2429. m00 = _mm256_load_pd(M_+24);
  2430. mt0 = _mm256_unpacklo_pd(m00,m00);
  2431. ot00 = _mm256_mul_pd(mt0,in00);
  2432. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2433. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2434. ot00 = _mm256_mul_pd(mt0,in01);
  2435. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2436. m00 = _mm256_load_pd(M_+28);
  2437. mt0 = _mm256_unpacklo_pd(m00,m00);
  2438. ot00 = _mm256_mul_pd(mt0,in00);
  2439. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2440. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2441. ot00 = _mm256_mul_pd(mt0,in01);
  2442. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2443. M_ += 32;
  2444. in0__ += 4;
  2445. in1__ += 4;
  2446. }
  2447. _mm256_store_pd(OUT0,out00);
  2448. _mm256_store_pd(OUT1,out01);
  2449. _mm256_store_pd(OUT0+4,out10);
  2450. _mm256_store_pd(OUT1+4,out11);
  2451. _mm256_store_pd(OUT0+8,out20);
  2452. _mm256_store_pd(OUT1+8,out21);
  2453. _mm256_store_pd(OUT0+12,out30);
  2454. _mm256_store_pd(OUT1+12,out31);
  2455. #elif defined __SSE3__ // SSE code.
  2456. __m128d out00, out01, out10, out11;
  2457. __m128d in00, in01, in10, in11;
  2458. __m128d m00, m01, m10, m11;
  2459. //#pragma unroll
  2460. for(int i1=0;i1<8;i1+=2){
  2461. double* IN0_=IN0;
  2462. double* IN1_=IN1;
  2463. out00 =_mm_load_pd (OUT0 );
  2464. out10 =_mm_load_pd (OUT0+2);
  2465. out01 =_mm_load_pd (OUT1 );
  2466. out11 =_mm_load_pd (OUT1+2);
  2467. //#pragma unroll
  2468. for(int i2=0;i2<8;i2+=2){
  2469. m00 =_mm_load1_pd (M_ );
  2470. m10 =_mm_load1_pd (M_+ 2);
  2471. m01 =_mm_load1_pd (M_+16);
  2472. m11 =_mm_load1_pd (M_+18);
  2473. in00 =_mm_load_pd (IN0_ );
  2474. in10 =_mm_load_pd (IN0_+2);
  2475. in01 =_mm_load_pd (IN1_ );
  2476. in11 =_mm_load_pd (IN1_+2);
  2477. out00 = _mm_add_pd (out00, _mm_mul_pd(m00 , in00 ));
  2478. out00 = _mm_add_pd (out00, _mm_mul_pd(m01 , in10 ));
  2479. out01 = _mm_add_pd (out01, _mm_mul_pd(m00 , in01 ));
  2480. out01 = _mm_add_pd (out01, _mm_mul_pd(m01 , in11 ));
  2481. out10 = _mm_add_pd (out10, _mm_mul_pd(m10 , in00 ));
  2482. out10 = _mm_add_pd (out10, _mm_mul_pd(m11 , in10 ));
  2483. out11 = _mm_add_pd (out11, _mm_mul_pd(m10 , in01 ));
  2484. out11 = _mm_add_pd (out11, _mm_mul_pd(m11 , in11 ));
  2485. m00 =_mm_load1_pd (M_+ 1);
  2486. m10 =_mm_load1_pd (M_+ 2+1);
  2487. m01 =_mm_load1_pd (M_+16+1);
  2488. m11 =_mm_load1_pd (M_+18+1);
  2489. in00 =_mm_shuffle_pd (in00,in00,_MM_SHUFFLE2(0,1));
  2490. in01 =_mm_shuffle_pd (in01,in01,_MM_SHUFFLE2(0,1));
  2491. in10 =_mm_shuffle_pd (in10,in10,_MM_SHUFFLE2(0,1));
  2492. in11 =_mm_shuffle_pd (in11,in11,_MM_SHUFFLE2(0,1));
  2493. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m00, in00));
  2494. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m01, in10));
  2495. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m00, in01));
  2496. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m01, in11));
  2497. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m10, in00));
  2498. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m11, in10));
  2499. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m10, in01));
  2500. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m11, in11));
  2501. M_+=32; // Jump to (column+2).
  2502. IN0_+=4;
  2503. IN1_+=4;
  2504. }
  2505. _mm_store_pd (OUT0 ,out00);
  2506. _mm_store_pd (OUT0+2,out10);
  2507. _mm_store_pd (OUT1 ,out01);
  2508. _mm_store_pd (OUT1+2,out11);
  2509. M_+=4-64*2; // Jump back to first column (row+2).
  2510. OUT0+=4;
  2511. OUT1+=4;
  2512. }
  2513. #endif
  2514. }
  2515. #endif
  2516. #if defined(__SSE3__)
  2517. template<>
  2518. inline void matmult_8x8x2<float>(float*& M_, float*& IN0, float*& IN1, float*& OUT0, float*& OUT1){
  2519. #if defined __SSE3__ // SSE code.
  2520. __m128 out00,out01,out10,out11;
  2521. __m128 out20,out21,out30,out31;
  2522. float* in0__ = IN0;
  2523. float* in1__ = IN1;
  2524. out00 = _mm_load_ps(OUT0);
  2525. out01 = _mm_load_ps(OUT1);
  2526. out10 = _mm_load_ps(OUT0+4);
  2527. out11 = _mm_load_ps(OUT1+4);
  2528. out20 = _mm_load_ps(OUT0+8);
  2529. out21 = _mm_load_ps(OUT1+8);
  2530. out30 = _mm_load_ps(OUT0+12);
  2531. out31 = _mm_load_ps(OUT1+12);
  2532. for(int i2=0;i2<8;i2+=2){
  2533. __m128 m00;
  2534. __m128 mt0,mtt0;
  2535. __m128 in00,in00_r,in01,in01_r;
  2536. in00 = _mm_castpd_ps(_mm_load_pd1((const double*)in0__));
  2537. in00_r = _mm_shuffle_ps(in00,in00,_MM_SHUFFLE(2,3,0,1));
  2538. in01 = _mm_castpd_ps(_mm_load_pd1((const double*)in1__));
  2539. in01_r = _mm_shuffle_ps(in01,in01,_MM_SHUFFLE(2,3,0,1));
  2540. m00 = _mm_load_ps(M_);
  2541. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2542. out00= _mm_add_ps (out00,_mm_mul_ps( mt0,in00 ));
  2543. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2544. out00= _mm_addsub_ps(out00,_mm_mul_ps(mtt0,in00_r));
  2545. out01 = _mm_add_ps (out01,_mm_mul_ps( mt0,in01 ));
  2546. out01 = _mm_addsub_ps(out01,_mm_mul_ps(mtt0,in01_r));
  2547. m00 = _mm_load_ps(M_+4);
  2548. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2549. out10= _mm_add_ps (out10,_mm_mul_ps( mt0,in00 ));
  2550. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2551. out10= _mm_addsub_ps(out10,_mm_mul_ps(mtt0,in00_r));
  2552. out11 = _mm_add_ps (out11,_mm_mul_ps( mt0,in01 ));
  2553. out11 = _mm_addsub_ps(out11,_mm_mul_ps(mtt0,in01_r));
  2554. m00 = _mm_load_ps(M_+8);
  2555. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2556. out20= _mm_add_ps (out20,_mm_mul_ps( mt0,in00 ));
  2557. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2558. out20= _mm_addsub_ps(out20,_mm_mul_ps(mtt0,in00_r));
  2559. out21 = _mm_add_ps (out21,_mm_mul_ps( mt0,in01 ));
  2560. out21 = _mm_addsub_ps(out21,_mm_mul_ps(mtt0,in01_r));
  2561. m00 = _mm_load_ps(M_+12);
  2562. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2563. out30= _mm_add_ps (out30,_mm_mul_ps( mt0, in00));
  2564. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2565. out30= _mm_addsub_ps(out30,_mm_mul_ps(mtt0,in00_r));
  2566. out31 = _mm_add_ps (out31,_mm_mul_ps( mt0,in01 ));
  2567. out31 = _mm_addsub_ps(out31,_mm_mul_ps(mtt0,in01_r));
  2568. in00 = _mm_castpd_ps(_mm_load_pd1((const double*) (in0__+2)));
  2569. in00_r = _mm_shuffle_ps(in00,in00,_MM_SHUFFLE(2,3,0,1));
  2570. in01 = _mm_castpd_ps(_mm_load_pd1((const double*) (in1__+2)));
  2571. in01_r = _mm_shuffle_ps(in01,in01,_MM_SHUFFLE(2,3,0,1));
  2572. m00 = _mm_load_ps(M_+16);
  2573. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2574. out00= _mm_add_ps (out00,_mm_mul_ps( mt0,in00 ));
  2575. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2576. out00= _mm_addsub_ps(out00,_mm_mul_ps(mtt0,in00_r));
  2577. out01 = _mm_add_ps (out01,_mm_mul_ps( mt0,in01 ));
  2578. out01 = _mm_addsub_ps(out01,_mm_mul_ps(mtt0,in01_r));
  2579. m00 = _mm_load_ps(M_+20);
  2580. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2581. out10= _mm_add_ps (out10,_mm_mul_ps( mt0,in00 ));
  2582. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2583. out10= _mm_addsub_ps(out10,_mm_mul_ps(mtt0,in00_r));
  2584. out11 = _mm_add_ps (out11,_mm_mul_ps( mt0,in01 ));
  2585. out11 = _mm_addsub_ps(out11,_mm_mul_ps(mtt0,in01_r));
  2586. m00 = _mm_load_ps(M_+24);
  2587. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2588. out20= _mm_add_ps (out20,_mm_mul_ps( mt0,in00 ));
  2589. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2590. out20= _mm_addsub_ps(out20,_mm_mul_ps(mtt0,in00_r));
  2591. out21 = _mm_add_ps (out21,_mm_mul_ps( mt0,in01 ));
  2592. out21 = _mm_addsub_ps(out21,_mm_mul_ps(mtt0,in01_r));
  2593. m00 = _mm_load_ps(M_+28);
  2594. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2595. out30= _mm_add_ps (out30,_mm_mul_ps( mt0,in00 ));
  2596. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2597. out30= _mm_addsub_ps(out30,_mm_mul_ps(mtt0,in00_r));
  2598. out31 = _mm_add_ps (out31,_mm_mul_ps( mt0,in01 ));
  2599. out31 = _mm_addsub_ps(out31,_mm_mul_ps(mtt0,in01_r));
  2600. M_ += 32;
  2601. in0__ += 4;
  2602. in1__ += 4;
  2603. }
  2604. _mm_store_ps(OUT0,out00);
  2605. _mm_store_ps(OUT1,out01);
  2606. _mm_store_ps(OUT0+4,out10);
  2607. _mm_store_ps(OUT1+4,out11);
  2608. _mm_store_ps(OUT0+8,out20);
  2609. _mm_store_ps(OUT1+8,out21);
  2610. _mm_store_ps(OUT0+12,out30);
  2611. _mm_store_ps(OUT1+12,out31);
  2612. #endif
  2613. }
  2614. #endif
  2615. template <class Real_t>
  2616. void VListHadamard(size_t dof, size_t M_dim, size_t ker_dim0, size_t ker_dim1, Vector<size_t>& interac_dsp,
  2617. Vector<size_t>& interac_vec, Vector<Real_t*>& precomp_mat, Vector<Real_t>& fft_in, Vector<Real_t>& fft_out){
  2618. size_t chld_cnt=1UL<<COORD_DIM;
  2619. size_t fftsize_in =M_dim*ker_dim0*chld_cnt*2;
  2620. size_t fftsize_out=M_dim*ker_dim1*chld_cnt*2;
  2621. Real_t* zero_vec0=mem::aligned_new<Real_t>(fftsize_in );
  2622. Real_t* zero_vec1=mem::aligned_new<Real_t>(fftsize_out);
  2623. size_t n_out=fft_out.Dim()/fftsize_out;
  2624. // Set buff_out to zero.
  2625. #pragma omp parallel for
  2626. for(size_t k=0;k<n_out;k++){
  2627. Vector<Real_t> dnward_check_fft(fftsize_out, &fft_out[k*fftsize_out], false);
  2628. dnward_check_fft.SetZero();
  2629. }
  2630. // Build list of interaction pairs (in, out vectors).
  2631. size_t mat_cnt=precomp_mat.Dim();
  2632. size_t blk1_cnt=interac_dsp.Dim()/mat_cnt;
  2633. const size_t V_BLK_SIZE=V_BLK_CACHE*64/sizeof(Real_t);
  2634. Real_t** IN_ =mem::aligned_new<Real_t*>(2*V_BLK_SIZE*blk1_cnt*mat_cnt);
  2635. Real_t** OUT_=mem::aligned_new<Real_t*>(2*V_BLK_SIZE*blk1_cnt*mat_cnt);
  2636. #pragma omp parallel for
  2637. for(size_t interac_blk1=0; interac_blk1<blk1_cnt*mat_cnt; interac_blk1++){
  2638. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2639. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2640. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2641. for(size_t j=0;j<interac_cnt;j++){
  2642. IN_ [2*V_BLK_SIZE*interac_blk1 +j]=&fft_in [interac_vec[(interac_dsp0+j)*2+0]];
  2643. OUT_[2*V_BLK_SIZE*interac_blk1 +j]=&fft_out[interac_vec[(interac_dsp0+j)*2+1]];
  2644. }
  2645. IN_ [2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec0;
  2646. OUT_[2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec1;
  2647. }
  2648. int omp_p=omp_get_max_threads();
  2649. #pragma omp parallel for
  2650. for(int pid=0; pid<omp_p; pid++){
  2651. size_t a=( pid *M_dim)/omp_p;
  2652. size_t b=((pid+1)*M_dim)/omp_p;
  2653. for(int in_dim=0;in_dim<ker_dim0;in_dim++)
  2654. for(int ot_dim=0;ot_dim<ker_dim1;ot_dim++)
  2655. for(size_t blk1=0; blk1<blk1_cnt; blk1++)
  2656. for(size_t k=a; k< b; k++)
  2657. for(size_t mat_indx=0; mat_indx< mat_cnt;mat_indx++){
  2658. size_t interac_blk1 = blk1*mat_cnt+mat_indx;
  2659. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2660. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2661. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2662. Real_t** IN = IN_ + 2*V_BLK_SIZE*interac_blk1;
  2663. Real_t** OUT= OUT_+ 2*V_BLK_SIZE*interac_blk1;
  2664. Real_t* M = precomp_mat[mat_indx] + k*chld_cnt*chld_cnt*2 + (ot_dim+in_dim*ker_dim1)*M_dim*128;
  2665. {
  2666. for(size_t j=0;j<interac_cnt;j+=2){
  2667. Real_t* M_ = M;
  2668. Real_t* IN0 = IN [j+0] + (in_dim*M_dim+k)*chld_cnt*2;
  2669. Real_t* IN1 = IN [j+1] + (in_dim*M_dim+k)*chld_cnt*2;
  2670. Real_t* OUT0 = OUT[j+0] + (ot_dim*M_dim+k)*chld_cnt*2;
  2671. Real_t* OUT1 = OUT[j+1] + (ot_dim*M_dim+k)*chld_cnt*2;
  2672. #ifdef __SSE__
  2673. if (j+2 < interac_cnt) { // Prefetch
  2674. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2675. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2676. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2677. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2678. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2679. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2680. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2681. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2682. }
  2683. #endif
  2684. matmult_8x8x2(M_, IN0, IN1, OUT0, OUT1);
  2685. }
  2686. }
  2687. }
  2688. }
  2689. // Compute flops.
  2690. {
  2691. Profile::Add_FLOP(8*8*8*(interac_vec.Dim()/2)*M_dim*ker_dim0*ker_dim1*dof);
  2692. }
  2693. // Free memory
  2694. mem::aligned_delete<Real_t*>(IN_ );
  2695. mem::aligned_delete<Real_t*>(OUT_);
  2696. mem::aligned_delete<Real_t>(zero_vec0);
  2697. mem::aligned_delete<Real_t>(zero_vec1);
  2698. }
  2699. template <class FMMNode>
  2700. void FMM_Pts<FMMNode>::V_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2701. if(!this->MultipoleOrder()) return;
  2702. if(level==0) return;
  2703. { // Set setup_data
  2704. setup_data.level=level;
  2705. setup_data.kernel=kernel->k_m2l;
  2706. setup_data.interac_type.resize(1);
  2707. setup_data.interac_type[0]=V1_Type;
  2708. setup_data. input_data=&buff[0];
  2709. setup_data.output_data=&buff[1];
  2710. Vector<FMMNode_t*>& nodes_in =n_list[2];
  2711. Vector<FMMNode_t*>& nodes_out=n_list[3];
  2712. setup_data.nodes_in .clear();
  2713. setup_data.nodes_out.clear();
  2714. for(size_t i=0;i<nodes_in .Dim();i++) if((nodes_in [i]->Depth()==level-1 || level==-1) && nodes_in [i]->pt_cnt[0]) setup_data.nodes_in .push_back(nodes_in [i]);
  2715. for(size_t i=0;i<nodes_out.Dim();i++) if((nodes_out[i]->Depth()==level-1 || level==-1) && nodes_out[i]->pt_cnt[1]) setup_data.nodes_out.push_back(nodes_out[i]);
  2716. }
  2717. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2718. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2719. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2720. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2721. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_in [i])->Child(0))->FMMData())->upward_equiv);
  2722. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_out[i])->Child(0))->FMMData())->dnward_equiv);
  2723. /////////////////////////////////////////////////////////////////////////////
  2724. Real_t eps=1e-10;
  2725. size_t n_in =nodes_in .size();
  2726. size_t n_out=nodes_out.size();
  2727. // Setup precomputed data.
  2728. //if(setup_data.precomp_data->Dim(0)*setup_data.precomp_data->Dim(1)==0) SetupPrecomp(setup_data,device);
  2729. // Build interac_data
  2730. Profile::Tic("Interac-Data",&this->comm,true,25);
  2731. Matrix<char>& interac_data=setup_data.interac_data;
  2732. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  2733. size_t precomp_offset=0;
  2734. Mat_Type& interac_type=setup_data.interac_type[0];
  2735. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2736. Matrix<size_t> precomp_data_offset;
  2737. std::vector<size_t> interac_mat;
  2738. std::vector<Real_t*> interac_mat_ptr;
  2739. #if 0 // Since we skip SetupPrecomp for V-list
  2740. { // Load precomp_data for interac_type.
  2741. struct HeaderData{
  2742. size_t total_size;
  2743. size_t level;
  2744. size_t mat_cnt ;
  2745. size_t max_depth;
  2746. };
  2747. Matrix<char>& precomp_data=*setup_data.precomp_data;
  2748. char* indx_ptr=precomp_data[0]+precomp_offset;
  2749. HeaderData& header=*(HeaderData*)indx_ptr;indx_ptr+=sizeof(HeaderData);
  2750. precomp_data_offset.ReInit(header.mat_cnt,1+(2+2)*header.max_depth, (size_t*)indx_ptr, false);
  2751. precomp_offset+=header.total_size;
  2752. for(size_t mat_id=0;mat_id<mat_cnt;mat_id++){
  2753. Matrix<Real_t>& M0 = this->mat->Mat(level, interac_type, mat_id);
  2754. assert(M0.Dim(0)>0 && M0.Dim(1)>0); UNUSED(M0);
  2755. interac_mat.push_back(precomp_data_offset[mat_id][0]);
  2756. }
  2757. }
  2758. #else
  2759. {
  2760. for(size_t mat_id=0;mat_id<mat_cnt;mat_id++){
  2761. Matrix<Real_t>& M = this->mat->Mat(level, interac_type, mat_id);
  2762. interac_mat_ptr.push_back(&M[0][0]);
  2763. }
  2764. }
  2765. #endif
  2766. size_t dof;
  2767. size_t m=MultipoleOrder();
  2768. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2769. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2770. size_t fftsize;
  2771. {
  2772. size_t n1=m*2;
  2773. size_t n2=n1*n1;
  2774. size_t n3_=n2*(n1/2+1);
  2775. size_t chld_cnt=1UL<<COORD_DIM;
  2776. fftsize=2*n3_*chld_cnt;
  2777. dof=1;
  2778. }
  2779. int omp_p=omp_get_max_threads();
  2780. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2781. size_t n_blk0=2*fftsize*dof*(ker_dim0*n_in +ker_dim1*n_out)*sizeof(Real_t)/buff_size;
  2782. if(n_blk0==0) n_blk0=1;
  2783. std::vector<std::vector<size_t> > fft_vec(n_blk0);
  2784. std::vector<std::vector<size_t> > ifft_vec(n_blk0);
  2785. std::vector<std::vector<Real_t> > fft_scl(n_blk0);
  2786. std::vector<std::vector<Real_t> > ifft_scl(n_blk0);
  2787. std::vector<std::vector<size_t> > interac_vec(n_blk0);
  2788. std::vector<std::vector<size_t> > interac_dsp(n_blk0);
  2789. {
  2790. Matrix<Real_t>& input_data=*setup_data. input_data;
  2791. Matrix<Real_t>& output_data=*setup_data.output_data;
  2792. std::vector<std::vector<FMMNode*> > nodes_blk_in (n_blk0);
  2793. std::vector<std::vector<FMMNode*> > nodes_blk_out(n_blk0);
  2794. Vector<Real_t> src_scal=this->kernel->k_m2l->src_scal;
  2795. Vector<Real_t> trg_scal=this->kernel->k_m2l->trg_scal;
  2796. for(size_t i=0;i<n_in;i++) ((FMMNode*)nodes_in[i])->node_id=i;
  2797. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2798. size_t blk0_start=(n_out* blk0 )/n_blk0;
  2799. size_t blk0_end =(n_out*(blk0+1))/n_blk0;
  2800. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2801. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2802. { // Build node list for blk0.
  2803. std::set<void*> nodes_in;
  2804. for(size_t i=blk0_start;i<blk0_end;i++){
  2805. nodes_out_.push_back((FMMNode*)nodes_out[i]);
  2806. Vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2807. for(size_t k=0;k<mat_cnt;k++) if(lst[k]!=NULL && lst[k]->pt_cnt[0]) nodes_in.insert(lst[k]);
  2808. }
  2809. for(std::set<void*>::iterator node=nodes_in.begin(); node != nodes_in.end(); node++){
  2810. nodes_in_.push_back((FMMNode*)*node);
  2811. }
  2812. size_t input_dim=nodes_in_ .size()*ker_dim0*dof*fftsize;
  2813. size_t output_dim=nodes_out_.size()*ker_dim1*dof*fftsize;
  2814. size_t buffer_dim=2*(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2815. if(buff_size<(input_dim + output_dim + buffer_dim)*sizeof(Real_t))
  2816. buff_size=(input_dim + output_dim + buffer_dim)*sizeof(Real_t);
  2817. }
  2818. { // Set fft vectors.
  2819. for(size_t i=0;i<nodes_in_ .size();i++) fft_vec[blk0].push_back((size_t)(& input_vector[nodes_in_[i]->node_id][0][0]- input_data[0]));
  2820. for(size_t i=0;i<nodes_out_.size();i++)ifft_vec[blk0].push_back((size_t)(&output_vector[blk0_start + i ][0][0]-output_data[0]));
  2821. size_t scal_dim0=src_scal.Dim();
  2822. size_t scal_dim1=trg_scal.Dim();
  2823. fft_scl [blk0].resize(nodes_in_ .size()*scal_dim0);
  2824. ifft_scl[blk0].resize(nodes_out_.size()*scal_dim1);
  2825. for(size_t i=0;i<nodes_in_ .size();i++){
  2826. size_t depth=nodes_in_[i]->Depth()+1;
  2827. for(size_t j=0;j<scal_dim0;j++){
  2828. fft_scl[blk0][i*scal_dim0+j]=pvfmm::pow<Real_t>(2.0, src_scal[j]*depth);
  2829. }
  2830. }
  2831. for(size_t i=0;i<nodes_out_.size();i++){
  2832. size_t depth=nodes_out_[i]->Depth()+1;
  2833. for(size_t j=0;j<scal_dim1;j++){
  2834. ifft_scl[blk0][i*scal_dim1+j]=pvfmm::pow<Real_t>(2.0, trg_scal[j]*depth);
  2835. }
  2836. }
  2837. }
  2838. }
  2839. for(size_t blk0=0;blk0<n_blk0;blk0++){ // Hadamard interactions.
  2840. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2841. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2842. for(size_t i=0;i<nodes_in_.size();i++) nodes_in_[i]->node_id=i;
  2843. { // Next blocking level.
  2844. size_t n_blk1=nodes_out_.size()*(2)*sizeof(Real_t)/(64*V_BLK_CACHE);
  2845. if(n_blk1==0) n_blk1=1;
  2846. size_t interac_dsp_=0;
  2847. for(size_t blk1=0;blk1<n_blk1;blk1++){
  2848. size_t blk1_start=(nodes_out_.size()* blk1 )/n_blk1;
  2849. size_t blk1_end =(nodes_out_.size()*(blk1+1))/n_blk1;
  2850. for(size_t k=0;k<mat_cnt;k++){
  2851. for(size_t i=blk1_start;i<blk1_end;i++){
  2852. Vector<FMMNode*>& lst=((FMMNode*)nodes_out_[i])->interac_list[interac_type];
  2853. if(lst[k]!=NULL && lst[k]->pt_cnt[0]){
  2854. interac_vec[blk0].push_back(lst[k]->node_id*fftsize*ker_dim0*dof);
  2855. interac_vec[blk0].push_back( i *fftsize*ker_dim1*dof);
  2856. interac_dsp_++;
  2857. }
  2858. }
  2859. interac_dsp[blk0].push_back(interac_dsp_);
  2860. }
  2861. }
  2862. }
  2863. }
  2864. }
  2865. { // Set interac_data.
  2866. size_t data_size=sizeof(size_t)*6; // buff_size, m, dof, ker_dim0, ker_dim1, n_blk0
  2867. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2868. data_size+=sizeof(size_t)+ fft_vec[blk0].size()*sizeof(size_t);
  2869. data_size+=sizeof(size_t)+ ifft_vec[blk0].size()*sizeof(size_t);
  2870. data_size+=sizeof(size_t)+ fft_scl[blk0].size()*sizeof(Real_t);
  2871. data_size+=sizeof(size_t)+ ifft_scl[blk0].size()*sizeof(Real_t);
  2872. data_size+=sizeof(size_t)+interac_vec[blk0].size()*sizeof(size_t);
  2873. data_size+=sizeof(size_t)+interac_dsp[blk0].size()*sizeof(size_t);
  2874. }
  2875. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  2876. data_size+=sizeof(size_t)+interac_mat_ptr.size()*sizeof(Real_t*);
  2877. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2878. interac_data.ReInit(1,data_size);
  2879. char* data_ptr=&interac_data[0][0];
  2880. ((size_t*)data_ptr)[0]=buff_size; data_ptr+=sizeof(size_t);
  2881. ((size_t*)data_ptr)[0]= m; data_ptr+=sizeof(size_t);
  2882. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2883. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2884. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2885. ((size_t*)data_ptr)[0]= n_blk0; data_ptr+=sizeof(size_t);
  2886. ((size_t*)data_ptr)[0]= interac_mat.size(); data_ptr+=sizeof(size_t);
  2887. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  2888. data_ptr+=interac_mat.size()*sizeof(size_t);
  2889. ((size_t*)data_ptr)[0]= interac_mat_ptr.size(); data_ptr+=sizeof(size_t);
  2890. mem::memcopy(data_ptr, &interac_mat_ptr[0], interac_mat_ptr.size()*sizeof(Real_t*));
  2891. data_ptr+=interac_mat_ptr.size()*sizeof(Real_t*);
  2892. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2893. ((size_t*)data_ptr)[0]= fft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2894. mem::memcopy(data_ptr, & fft_vec[blk0][0], fft_vec[blk0].size()*sizeof(size_t));
  2895. data_ptr+= fft_vec[blk0].size()*sizeof(size_t);
  2896. ((size_t*)data_ptr)[0]=ifft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2897. mem::memcopy(data_ptr, &ifft_vec[blk0][0], ifft_vec[blk0].size()*sizeof(size_t));
  2898. data_ptr+=ifft_vec[blk0].size()*sizeof(size_t);
  2899. ((size_t*)data_ptr)[0]= fft_scl[blk0].size(); data_ptr+=sizeof(size_t);
  2900. mem::memcopy(data_ptr, & fft_scl[blk0][0], fft_scl[blk0].size()*sizeof(Real_t));
  2901. data_ptr+= fft_scl[blk0].size()*sizeof(Real_t);
  2902. ((size_t*)data_ptr)[0]=ifft_scl[blk0].size(); data_ptr+=sizeof(size_t);
  2903. mem::memcopy(data_ptr, &ifft_scl[blk0][0], ifft_scl[blk0].size()*sizeof(Real_t));
  2904. data_ptr+=ifft_scl[blk0].size()*sizeof(Real_t);
  2905. ((size_t*)data_ptr)[0]=interac_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2906. mem::memcopy(data_ptr, &interac_vec[blk0][0], interac_vec[blk0].size()*sizeof(size_t));
  2907. data_ptr+=interac_vec[blk0].size()*sizeof(size_t);
  2908. ((size_t*)data_ptr)[0]=interac_dsp[blk0].size(); data_ptr+=sizeof(size_t);
  2909. mem::memcopy(data_ptr, &interac_dsp[blk0][0], interac_dsp[blk0].size()*sizeof(size_t));
  2910. data_ptr+=interac_dsp[blk0].size()*sizeof(size_t);
  2911. }
  2912. }
  2913. }
  2914. Profile::Toc();
  2915. if(device){ // Host2Device
  2916. Profile::Tic("Host2Device",&this->comm,false,25);
  2917. setup_data.interac_data. AllocDevice(true);
  2918. Profile::Toc();
  2919. }
  2920. }
  2921. template <class FMMNode>
  2922. void FMM_Pts<FMMNode>::V_List (SetupData<Real_t>& setup_data, bool device){
  2923. if(!this->MultipoleOrder()) return;
  2924. assert(!device); //Can not run on accelerator yet.
  2925. int np;
  2926. MPI_Comm_size(comm,&np);
  2927. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2928. if(np>1) Profile::Tic("Host2Device",&this->comm,false,25);
  2929. if(np>1) Profile::Toc();
  2930. return;
  2931. }
  2932. Profile::Tic("Host2Device",&this->comm,false,25);
  2933. int level=setup_data.level;
  2934. size_t buff_size=*((size_t*)&setup_data.interac_data[0][0]);
  2935. typename Vector<char>::Device buff;
  2936. //typename Matrix<char>::Device precomp_data;
  2937. typename Matrix<char>::Device interac_data;
  2938. typename Matrix<Real_t>::Device input_data;
  2939. typename Matrix<Real_t>::Device output_data;
  2940. if(device){
  2941. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.ReInit(buff_size);
  2942. buff = this-> dev_buffer. AllocDevice(false);
  2943. //precomp_data= setup_data.precomp_data->AllocDevice(false);
  2944. interac_data= setup_data.interac_data. AllocDevice(false);
  2945. input_data = setup_data. input_data->AllocDevice(false);
  2946. output_data = setup_data. output_data->AllocDevice(false);
  2947. }else{
  2948. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.ReInit(buff_size);
  2949. buff = this-> dev_buffer;
  2950. //precomp_data=*setup_data.precomp_data;
  2951. interac_data= setup_data.interac_data;
  2952. input_data =*setup_data. input_data;
  2953. output_data =*setup_data. output_data;
  2954. }
  2955. Profile::Toc();
  2956. { // Offloaded computation.
  2957. // Set interac_data.
  2958. size_t m, dof, ker_dim0, ker_dim1, n_blk0;
  2959. std::vector<Vector<size_t> > fft_vec;
  2960. std::vector<Vector<size_t> > ifft_vec;
  2961. std::vector<Vector<Real_t> > fft_scl;
  2962. std::vector<Vector<Real_t> > ifft_scl;
  2963. std::vector<Vector<size_t> > interac_vec;
  2964. std::vector<Vector<size_t> > interac_dsp;
  2965. Vector<Real_t*> precomp_mat;
  2966. { // Set interac_data.
  2967. char* data_ptr=&interac_data[0][0];
  2968. buff_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2969. m =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2970. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2971. ker_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2972. ker_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2973. n_blk0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2974. fft_vec .resize(n_blk0);
  2975. ifft_vec.resize(n_blk0);
  2976. fft_scl .resize(n_blk0);
  2977. ifft_scl.resize(n_blk0);
  2978. interac_vec.resize(n_blk0);
  2979. interac_dsp.resize(n_blk0);
  2980. Vector<size_t> interac_mat;
  2981. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2982. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  2983. Vector<Real_t*> interac_mat_ptr;
  2984. interac_mat_ptr.ReInit(((size_t*)data_ptr)[0],(Real_t**)(data_ptr+sizeof(size_t)),false);
  2985. data_ptr+=sizeof(size_t)+interac_mat_ptr.Dim()*sizeof(Real_t*);
  2986. #if 0 // Since we skip SetupPrecomp for V-list
  2987. precomp_mat.Resize(interac_mat.Dim());
  2988. for(size_t i=0;i<interac_mat.Dim();i++){
  2989. precomp_mat[i]=(Real_t*)(precomp_data[0]+interac_mat[i]);
  2990. }
  2991. #else
  2992. precomp_mat.Resize(interac_mat_ptr.Dim());
  2993. for(size_t i=0;i<interac_mat_ptr.Dim();i++){
  2994. precomp_mat[i]=interac_mat_ptr[i];
  2995. }
  2996. #endif
  2997. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2998. fft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2999. data_ptr+=sizeof(size_t)+fft_vec[blk0].Dim()*sizeof(size_t);
  3000. ifft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  3001. data_ptr+=sizeof(size_t)+ifft_vec[blk0].Dim()*sizeof(size_t);
  3002. fft_scl[blk0].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  3003. data_ptr+=sizeof(size_t)+fft_scl[blk0].Dim()*sizeof(Real_t);
  3004. ifft_scl[blk0].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  3005. data_ptr+=sizeof(size_t)+ifft_scl[blk0].Dim()*sizeof(Real_t);
  3006. interac_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  3007. data_ptr+=sizeof(size_t)+interac_vec[blk0].Dim()*sizeof(size_t);
  3008. interac_dsp[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  3009. data_ptr+=sizeof(size_t)+interac_dsp[blk0].Dim()*sizeof(size_t);
  3010. }
  3011. }
  3012. int omp_p=omp_get_max_threads();
  3013. size_t M_dim, fftsize;
  3014. {
  3015. size_t n1=m*2;
  3016. size_t n2=n1*n1;
  3017. size_t n3_=n2*(n1/2+1);
  3018. size_t chld_cnt=1UL<<COORD_DIM;
  3019. fftsize=2*n3_*chld_cnt;
  3020. M_dim=n3_;
  3021. }
  3022. for(size_t blk0=0;blk0<n_blk0;blk0++){ // interactions
  3023. size_t n_in = fft_vec[blk0].Dim();
  3024. size_t n_out=ifft_vec[blk0].Dim();
  3025. size_t input_dim=n_in *ker_dim0*dof*fftsize;
  3026. size_t output_dim=n_out*ker_dim1*dof*fftsize;
  3027. size_t buffer_dim=2*(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  3028. Vector<Real_t> fft_in ( input_dim, (Real_t*)&buff[ 0 ],false);
  3029. Vector<Real_t> fft_out(output_dim, (Real_t*)&buff[ input_dim *sizeof(Real_t)],false);
  3030. Vector<Real_t> buffer(buffer_dim, (Real_t*)&buff[(input_dim+output_dim)*sizeof(Real_t)],false);
  3031. { // FFT
  3032. if(np==1) Profile::Tic("FFT",&comm,false,100);
  3033. Vector<Real_t> input_data_( input_data.dim[0]* input_data.dim[1], input_data[0], false);
  3034. FFT_UpEquiv(dof, m, ker_dim0, fft_vec[blk0], fft_scl[blk0], input_data_, fft_in, buffer);
  3035. if(np==1) Profile::Toc();
  3036. }
  3037. { // Hadamard
  3038. #ifdef PVFMM_HAVE_PAPI
  3039. #ifdef __VERBOSE__
  3040. std::cout << "Starting counters new\n";
  3041. if (PAPI_start(EventSet) != PAPI_OK) std::cout << "handle_error3" << std::endl;
  3042. #endif
  3043. #endif
  3044. if(np==1) Profile::Tic("HadamardProduct",&comm,false,100);
  3045. VListHadamard<Real_t>(dof, M_dim, ker_dim0, ker_dim1, interac_dsp[blk0], interac_vec[blk0], precomp_mat, fft_in, fft_out);
  3046. if(np==1) Profile::Toc();
  3047. #ifdef PVFMM_HAVE_PAPI
  3048. #ifdef __VERBOSE__
  3049. if (PAPI_stop(EventSet, values) != PAPI_OK) std::cout << "handle_error4" << std::endl;
  3050. std::cout << "Stopping counters\n";
  3051. #endif
  3052. #endif
  3053. }
  3054. { // IFFT
  3055. if(np==1) Profile::Tic("IFFT",&comm,false,100);
  3056. Vector<Real_t> output_data_(output_data.dim[0]*output_data.dim[1], output_data[0], false);
  3057. FFT_Check2Equiv(dof, m, ker_dim1, ifft_vec[blk0], ifft_scl[blk0], fft_out, output_data_, buffer);
  3058. if(np==1) Profile::Toc();
  3059. }
  3060. }
  3061. }
  3062. }
  3063. template <class FMMNode>
  3064. void FMM_Pts<FMMNode>::Down2DownSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3065. if(!this->MultipoleOrder()) return;
  3066. { // Set setup_data
  3067. setup_data.level=level;
  3068. setup_data.kernel=kernel->k_l2l;
  3069. setup_data.interac_type.resize(1);
  3070. setup_data.interac_type[0]=D2D_Type;
  3071. setup_data. input_data=&buff[1];
  3072. setup_data.output_data=&buff[1];
  3073. Vector<FMMNode_t*>& nodes_in =n_list[1];
  3074. Vector<FMMNode_t*>& nodes_out=n_list[1];
  3075. setup_data.nodes_in .clear();
  3076. setup_data.nodes_out.clear();
  3077. for(size_t i=0;i<nodes_in .Dim();i++) if((nodes_in [i]->Depth()==level-1) && nodes_in [i]->pt_cnt[1]) setup_data.nodes_in .push_back(nodes_in [i]);
  3078. for(size_t i=0;i<nodes_out.Dim();i++) if((nodes_out[i]->Depth()==level ) && nodes_out[i]->pt_cnt[1]) setup_data.nodes_out.push_back(nodes_out[i]);
  3079. }
  3080. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3081. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3082. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3083. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3084. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  3085. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  3086. SetupInterac(setup_data,device);
  3087. }
  3088. template <class FMMNode>
  3089. void FMM_Pts<FMMNode>::Down2Down (SetupData<Real_t>& setup_data, bool device){
  3090. if(!this->MultipoleOrder()) return;
  3091. //Add Down2Down contribution.
  3092. EvalList(setup_data, device);
  3093. }
  3094. template <class FMMNode>
  3095. void FMM_Pts<FMMNode>::PtSetup(SetupData<Real_t>& setup_data, void* data_){
  3096. struct PackedData{
  3097. size_t len;
  3098. Matrix<Real_t>* ptr;
  3099. Vector<size_t> cnt;
  3100. Vector<size_t> dsp;
  3101. };
  3102. struct InteracData{
  3103. Vector<size_t> in_node;
  3104. Vector<size_t> scal_idx;
  3105. Vector<Real_t> coord_shift;
  3106. Vector<size_t> interac_cnt;
  3107. Vector<size_t> interac_dsp;
  3108. Vector<size_t> interac_cst;
  3109. Vector<Real_t> scal[4*MAX_DEPTH];
  3110. Matrix<Real_t> M[4];
  3111. };
  3112. struct ptSetupData{
  3113. int level;
  3114. const Kernel<Real_t>* kernel;
  3115. PackedData src_coord; // Src coord
  3116. PackedData src_value; // Src density
  3117. PackedData srf_coord; // Srf coord
  3118. PackedData srf_value; // Srf density
  3119. PackedData trg_coord; // Trg coord
  3120. PackedData trg_value; // Trg potential
  3121. InteracData interac_data;
  3122. };
  3123. ptSetupData& data=*(ptSetupData*)data_;
  3124. if(data.interac_data.interac_cnt.Dim()){ // Set data.interac_data.interac_cst
  3125. InteracData& intdata=data.interac_data;
  3126. Vector<size_t> cnt;
  3127. Vector<size_t>& dsp=intdata.interac_cst;
  3128. cnt.ReInit(intdata.interac_cnt.Dim());
  3129. dsp.ReInit(intdata.interac_dsp.Dim());
  3130. #pragma omp parallel for
  3131. for(size_t trg=0;trg<cnt.Dim();trg++){
  3132. size_t trg_cnt=data.trg_coord.cnt[trg];
  3133. cnt[trg]=0;
  3134. for(size_t i=0;i<intdata.interac_cnt[trg];i++){
  3135. size_t int_id=intdata.interac_dsp[trg]+i;
  3136. size_t src=intdata.in_node[int_id];
  3137. size_t src_cnt=data.src_coord.cnt[src];
  3138. size_t srf_cnt=data.srf_coord.cnt[src];
  3139. cnt[trg]+=(src_cnt+srf_cnt)*trg_cnt;
  3140. }
  3141. }
  3142. dsp[0]=cnt[0];
  3143. omp_par::scan(&cnt[0],&dsp[0],dsp.Dim());
  3144. }
  3145. { // pack data
  3146. struct PackedSetupData{
  3147. size_t size;
  3148. int level;
  3149. const Kernel<Real_t>* kernel;
  3150. Matrix<Real_t>* src_coord; // Src coord
  3151. Matrix<Real_t>* src_value; // Src density
  3152. Matrix<Real_t>* srf_coord; // Srf coord
  3153. Matrix<Real_t>* srf_value; // Srf density
  3154. Matrix<Real_t>* trg_coord; // Trg coord
  3155. Matrix<Real_t>* trg_value; // Trg potential
  3156. size_t src_coord_cnt_size; size_t src_coord_cnt_offset;
  3157. size_t src_coord_dsp_size; size_t src_coord_dsp_offset;
  3158. size_t src_value_cnt_size; size_t src_value_cnt_offset;
  3159. size_t src_value_dsp_size; size_t src_value_dsp_offset;
  3160. size_t srf_coord_cnt_size; size_t srf_coord_cnt_offset;
  3161. size_t srf_coord_dsp_size; size_t srf_coord_dsp_offset;
  3162. size_t srf_value_cnt_size; size_t srf_value_cnt_offset;
  3163. size_t srf_value_dsp_size; size_t srf_value_dsp_offset;
  3164. size_t trg_coord_cnt_size; size_t trg_coord_cnt_offset;
  3165. size_t trg_coord_dsp_size; size_t trg_coord_dsp_offset;
  3166. size_t trg_value_cnt_size; size_t trg_value_cnt_offset;
  3167. size_t trg_value_dsp_size; size_t trg_value_dsp_offset;
  3168. // interac_data
  3169. size_t in_node_size; size_t in_node_offset;
  3170. size_t scal_idx_size; size_t scal_idx_offset;
  3171. size_t coord_shift_size; size_t coord_shift_offset;
  3172. size_t interac_cnt_size; size_t interac_cnt_offset;
  3173. size_t interac_dsp_size; size_t interac_dsp_offset;
  3174. size_t interac_cst_size; size_t interac_cst_offset;
  3175. size_t scal_dim[4*MAX_DEPTH]; size_t scal_offset[4*MAX_DEPTH];
  3176. size_t Mdim[4][2]; size_t M_offset[4];
  3177. };
  3178. PackedSetupData pkd_data;
  3179. { // Set pkd_data
  3180. size_t offset=mem::align_ptr(sizeof(PackedSetupData));
  3181. pkd_data. level=data. level;
  3182. pkd_data.kernel=data.kernel;
  3183. pkd_data.src_coord=data.src_coord.ptr;
  3184. pkd_data.src_value=data.src_value.ptr;
  3185. pkd_data.srf_coord=data.srf_coord.ptr;
  3186. pkd_data.srf_value=data.srf_value.ptr;
  3187. pkd_data.trg_coord=data.trg_coord.ptr;
  3188. pkd_data.trg_value=data.trg_value.ptr;
  3189. pkd_data.src_coord_cnt_offset=offset; pkd_data.src_coord_cnt_size=data.src_coord.cnt.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.src_coord_cnt_size);
  3190. pkd_data.src_coord_dsp_offset=offset; pkd_data.src_coord_dsp_size=data.src_coord.dsp.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.src_coord_dsp_size);
  3191. pkd_data.src_value_cnt_offset=offset; pkd_data.src_value_cnt_size=data.src_value.cnt.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.src_value_cnt_size);
  3192. pkd_data.src_value_dsp_offset=offset; pkd_data.src_value_dsp_size=data.src_value.dsp.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.src_value_dsp_size);
  3193. pkd_data.srf_coord_cnt_offset=offset; pkd_data.srf_coord_cnt_size=data.srf_coord.cnt.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.srf_coord_cnt_size);
  3194. pkd_data.srf_coord_dsp_offset=offset; pkd_data.srf_coord_dsp_size=data.srf_coord.dsp.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.srf_coord_dsp_size);
  3195. pkd_data.srf_value_cnt_offset=offset; pkd_data.srf_value_cnt_size=data.srf_value.cnt.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.srf_value_cnt_size);
  3196. pkd_data.srf_value_dsp_offset=offset; pkd_data.srf_value_dsp_size=data.srf_value.dsp.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.srf_value_dsp_size);
  3197. pkd_data.trg_coord_cnt_offset=offset; pkd_data.trg_coord_cnt_size=data.trg_coord.cnt.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.trg_coord_cnt_size);
  3198. pkd_data.trg_coord_dsp_offset=offset; pkd_data.trg_coord_dsp_size=data.trg_coord.dsp.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.trg_coord_dsp_size);
  3199. pkd_data.trg_value_cnt_offset=offset; pkd_data.trg_value_cnt_size=data.trg_value.cnt.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.trg_value_cnt_size);
  3200. pkd_data.trg_value_dsp_offset=offset; pkd_data.trg_value_dsp_size=data.trg_value.dsp.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.trg_value_dsp_size);
  3201. InteracData& intdata=data.interac_data;
  3202. pkd_data. in_node_offset=offset; pkd_data. in_node_size=intdata. in_node.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data. in_node_size);
  3203. pkd_data. scal_idx_offset=offset; pkd_data. scal_idx_size=intdata. scal_idx.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data. scal_idx_size);
  3204. pkd_data.coord_shift_offset=offset; pkd_data.coord_shift_size=intdata.coord_shift.Dim(); offset+=mem::align_ptr(sizeof(Real_t)*pkd_data.coord_shift_size);
  3205. pkd_data.interac_cnt_offset=offset; pkd_data.interac_cnt_size=intdata.interac_cnt.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.interac_cnt_size);
  3206. pkd_data.interac_dsp_offset=offset; pkd_data.interac_dsp_size=intdata.interac_dsp.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.interac_dsp_size);
  3207. pkd_data.interac_cst_offset=offset; pkd_data.interac_cst_size=intdata.interac_cst.Dim(); offset+=mem::align_ptr(sizeof(size_t)*pkd_data.interac_cst_size);
  3208. for(size_t i=0;i<4*MAX_DEPTH;i++){
  3209. pkd_data.scal_offset[i]=offset; pkd_data.scal_dim[i]=intdata.scal[i].Dim(); offset+=mem::align_ptr(sizeof(Real_t)*pkd_data.scal_dim[i]);
  3210. }
  3211. for(size_t i=0;i<4;i++){
  3212. size_t& Mdim0=pkd_data.Mdim[i][0];
  3213. size_t& Mdim1=pkd_data.Mdim[i][1];
  3214. pkd_data.M_offset[i]=offset; Mdim0=intdata.M[i].Dim(0); Mdim1=intdata.M[i].Dim(1); offset+=mem::align_ptr(sizeof(Real_t)*Mdim0*Mdim1);
  3215. }
  3216. pkd_data.size=offset;
  3217. }
  3218. { // Set setup_data.interac_data
  3219. Matrix<char>& buff=setup_data.interac_data;
  3220. if(pkd_data.size>buff.Dim(0)*buff.Dim(1)){
  3221. buff.ReInit(1,pkd_data.size);
  3222. }
  3223. ((PackedSetupData*)buff[0])[0]=pkd_data;
  3224. if(pkd_data.src_coord_cnt_size) memcpy(&buff[0][pkd_data.src_coord_cnt_offset], &data.src_coord.cnt[0], pkd_data.src_coord_cnt_size*sizeof(size_t));
  3225. if(pkd_data.src_coord_dsp_size) memcpy(&buff[0][pkd_data.src_coord_dsp_offset], &data.src_coord.dsp[0], pkd_data.src_coord_dsp_size*sizeof(size_t));
  3226. if(pkd_data.src_value_cnt_size) memcpy(&buff[0][pkd_data.src_value_cnt_offset], &data.src_value.cnt[0], pkd_data.src_value_cnt_size*sizeof(size_t));
  3227. if(pkd_data.src_value_dsp_size) memcpy(&buff[0][pkd_data.src_value_dsp_offset], &data.src_value.dsp[0], pkd_data.src_value_dsp_size*sizeof(size_t));
  3228. if(pkd_data.srf_coord_cnt_size) memcpy(&buff[0][pkd_data.srf_coord_cnt_offset], &data.srf_coord.cnt[0], pkd_data.srf_coord_cnt_size*sizeof(size_t));
  3229. if(pkd_data.srf_coord_dsp_size) memcpy(&buff[0][pkd_data.srf_coord_dsp_offset], &data.srf_coord.dsp[0], pkd_data.srf_coord_dsp_size*sizeof(size_t));
  3230. if(pkd_data.srf_value_cnt_size) memcpy(&buff[0][pkd_data.srf_value_cnt_offset], &data.srf_value.cnt[0], pkd_data.srf_value_cnt_size*sizeof(size_t));
  3231. if(pkd_data.srf_value_dsp_size) memcpy(&buff[0][pkd_data.srf_value_dsp_offset], &data.srf_value.dsp[0], pkd_data.srf_value_dsp_size*sizeof(size_t));
  3232. if(pkd_data.trg_coord_cnt_size) memcpy(&buff[0][pkd_data.trg_coord_cnt_offset], &data.trg_coord.cnt[0], pkd_data.trg_coord_cnt_size*sizeof(size_t));
  3233. if(pkd_data.trg_coord_dsp_size) memcpy(&buff[0][pkd_data.trg_coord_dsp_offset], &data.trg_coord.dsp[0], pkd_data.trg_coord_dsp_size*sizeof(size_t));
  3234. if(pkd_data.trg_value_cnt_size) memcpy(&buff[0][pkd_data.trg_value_cnt_offset], &data.trg_value.cnt[0], pkd_data.trg_value_cnt_size*sizeof(size_t));
  3235. if(pkd_data.trg_value_dsp_size) memcpy(&buff[0][pkd_data.trg_value_dsp_offset], &data.trg_value.dsp[0], pkd_data.trg_value_dsp_size*sizeof(size_t));
  3236. InteracData& intdata=data.interac_data;
  3237. if(pkd_data. in_node_size) memcpy(&buff[0][pkd_data. in_node_offset], &intdata. in_node[0], pkd_data. in_node_size*sizeof(size_t));
  3238. if(pkd_data. scal_idx_size) memcpy(&buff[0][pkd_data. scal_idx_offset], &intdata. scal_idx[0], pkd_data. scal_idx_size*sizeof(size_t));
  3239. if(pkd_data.coord_shift_size) memcpy(&buff[0][pkd_data.coord_shift_offset], &intdata.coord_shift[0], pkd_data.coord_shift_size*sizeof(Real_t));
  3240. if(pkd_data.interac_cnt_size) memcpy(&buff[0][pkd_data.interac_cnt_offset], &intdata.interac_cnt[0], pkd_data.interac_cnt_size*sizeof(size_t));
  3241. if(pkd_data.interac_dsp_size) memcpy(&buff[0][pkd_data.interac_dsp_offset], &intdata.interac_dsp[0], pkd_data.interac_dsp_size*sizeof(size_t));
  3242. if(pkd_data.interac_cst_size) memcpy(&buff[0][pkd_data.interac_cst_offset], &intdata.interac_cst[0], pkd_data.interac_cst_size*sizeof(size_t));
  3243. for(size_t i=0;i<4*MAX_DEPTH;i++){
  3244. if(intdata.scal[i].Dim()) memcpy(&buff[0][pkd_data.scal_offset[i]], &intdata.scal[i][0], intdata.scal[i].Dim()*sizeof(Real_t));
  3245. }
  3246. for(size_t i=0;i<4;i++){
  3247. if(intdata.M[i].Dim(0)*intdata.M[i].Dim(1)) memcpy(&buff[0][pkd_data.M_offset[i]], &intdata.M[i][0][0], intdata.M[i].Dim(0)*intdata.M[i].Dim(1)*sizeof(Real_t));
  3248. }
  3249. }
  3250. }
  3251. { // Resize device buffer
  3252. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3253. if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
  3254. }
  3255. }
  3256. template <class FMMNode>
  3257. template <int SYNC>
  3258. void FMM_Pts<FMMNode>::EvalListPts(SetupData<Real_t>& setup_data, bool device){
  3259. if(setup_data.kernel->ker_dim[0]*setup_data.kernel->ker_dim[1]==0) return;
  3260. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  3261. Profile::Tic("Host2Device",&this->comm,false,25);
  3262. Profile::Toc();
  3263. Profile::Tic("DeviceComp",&this->comm,false,20);
  3264. Profile::Toc();
  3265. return;
  3266. }
  3267. bool have_gpu=false;
  3268. #if defined(PVFMM_HAVE_CUDA)
  3269. have_gpu=true;
  3270. #endif
  3271. Profile::Tic("Host2Device",&this->comm,false,25);
  3272. typename Vector<char>::Device dev_buff;
  3273. typename Matrix<char>::Device interac_data;
  3274. typename Matrix<Real_t>::Device coord_data;
  3275. typename Matrix<Real_t>::Device input_data;
  3276. typename Matrix<Real_t>::Device output_data;
  3277. size_t ptr_single_layer_kernel=(size_t)NULL;
  3278. size_t ptr_double_layer_kernel=(size_t)NULL;
  3279. if(device && !have_gpu){
  3280. dev_buff = this-> dev_buffer. AllocDevice(false);
  3281. interac_data= setup_data.interac_data. AllocDevice(false);
  3282. if(setup_data. coord_data!=NULL) coord_data = setup_data. coord_data->AllocDevice(false);
  3283. if(setup_data. input_data!=NULL) input_data = setup_data. input_data->AllocDevice(false);
  3284. if(setup_data. output_data!=NULL) output_data = setup_data. output_data->AllocDevice(false);
  3285. ptr_single_layer_kernel=setup_data.kernel->dev_ker_poten;
  3286. ptr_double_layer_kernel=setup_data.kernel->dev_dbl_layer_poten;
  3287. }else{
  3288. dev_buff = this-> dev_buffer;
  3289. interac_data= setup_data.interac_data;
  3290. if(setup_data. coord_data!=NULL) coord_data =*setup_data. coord_data;
  3291. if(setup_data. input_data!=NULL) input_data =*setup_data. input_data;
  3292. if(setup_data. output_data!=NULL) output_data =*setup_data. output_data;
  3293. ptr_single_layer_kernel=(size_t)setup_data.kernel->ker_poten;
  3294. ptr_double_layer_kernel=(size_t)setup_data.kernel->dbl_layer_poten;
  3295. }
  3296. Profile::Toc();
  3297. Profile::Tic("DeviceComp",&this->comm,false,20);
  3298. int lock_idx=-1;
  3299. int wait_lock_idx=-1;
  3300. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  3301. if(device) lock_idx=MIC_Lock::get_lock();
  3302. #ifdef __INTEL_OFFLOAD
  3303. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  3304. #endif
  3305. { // Offloaded computation.
  3306. struct PackedData{
  3307. size_t len;
  3308. Matrix<Real_t>* ptr;
  3309. Vector<size_t> cnt;
  3310. Vector<size_t> dsp;
  3311. };
  3312. struct InteracData{
  3313. Vector<size_t> in_node;
  3314. Vector<size_t> scal_idx;
  3315. Vector<Real_t> coord_shift;
  3316. Vector<size_t> interac_cnt;
  3317. Vector<size_t> interac_dsp;
  3318. Vector<size_t> interac_cst;
  3319. Vector<Real_t> scal[4*MAX_DEPTH];
  3320. Matrix<Real_t> M[4];
  3321. };
  3322. struct ptSetupData{
  3323. int level;
  3324. const Kernel<Real_t>* kernel;
  3325. PackedData src_coord; // Src coord
  3326. PackedData src_value; // Src density
  3327. PackedData srf_coord; // Srf coord
  3328. PackedData srf_value; // Srf density
  3329. PackedData trg_coord; // Trg coord
  3330. PackedData trg_value; // Trg potential
  3331. InteracData interac_data;
  3332. };
  3333. ptSetupData data;
  3334. { // Initialize data
  3335. struct PackedSetupData{
  3336. size_t size;
  3337. int level;
  3338. const Kernel<Real_t>* kernel;
  3339. Matrix<Real_t>* src_coord; // Src coord
  3340. Matrix<Real_t>* src_value; // Src density
  3341. Matrix<Real_t>* srf_coord; // Srf coord
  3342. Matrix<Real_t>* srf_value; // Srf density
  3343. Matrix<Real_t>* trg_coord; // Trg coord
  3344. Matrix<Real_t>* trg_value; // Trg potential
  3345. size_t src_coord_cnt_size; size_t src_coord_cnt_offset;
  3346. size_t src_coord_dsp_size; size_t src_coord_dsp_offset;
  3347. size_t src_value_cnt_size; size_t src_value_cnt_offset;
  3348. size_t src_value_dsp_size; size_t src_value_dsp_offset;
  3349. size_t srf_coord_cnt_size; size_t srf_coord_cnt_offset;
  3350. size_t srf_coord_dsp_size; size_t srf_coord_dsp_offset;
  3351. size_t srf_value_cnt_size; size_t srf_value_cnt_offset;
  3352. size_t srf_value_dsp_size; size_t srf_value_dsp_offset;
  3353. size_t trg_coord_cnt_size; size_t trg_coord_cnt_offset;
  3354. size_t trg_coord_dsp_size; size_t trg_coord_dsp_offset;
  3355. size_t trg_value_cnt_size; size_t trg_value_cnt_offset;
  3356. size_t trg_value_dsp_size; size_t trg_value_dsp_offset;
  3357. // interac_data
  3358. size_t in_node_size; size_t in_node_offset;
  3359. size_t scal_idx_size; size_t scal_idx_offset;
  3360. size_t coord_shift_size; size_t coord_shift_offset;
  3361. size_t interac_cnt_size; size_t interac_cnt_offset;
  3362. size_t interac_dsp_size; size_t interac_dsp_offset;
  3363. size_t interac_cst_size; size_t interac_cst_offset;
  3364. size_t scal_dim[4*MAX_DEPTH]; size_t scal_offset[4*MAX_DEPTH];
  3365. size_t Mdim[4][2]; size_t M_offset[4];
  3366. };
  3367. typename Matrix<char>::Device& setupdata=interac_data;
  3368. PackedSetupData& pkd_data=*((PackedSetupData*)setupdata[0]);
  3369. data. level=pkd_data. level;
  3370. data.kernel=pkd_data.kernel;
  3371. data.src_coord.ptr=pkd_data.src_coord;
  3372. data.src_value.ptr=pkd_data.src_value;
  3373. data.srf_coord.ptr=pkd_data.srf_coord;
  3374. data.srf_value.ptr=pkd_data.srf_value;
  3375. data.trg_coord.ptr=pkd_data.trg_coord;
  3376. data.trg_value.ptr=pkd_data.trg_value;
  3377. data.src_coord.cnt.ReInit(pkd_data.src_coord_cnt_size, (size_t*)&setupdata[0][pkd_data.src_coord_cnt_offset], false);
  3378. data.src_coord.dsp.ReInit(pkd_data.src_coord_dsp_size, (size_t*)&setupdata[0][pkd_data.src_coord_dsp_offset], false);
  3379. data.src_value.cnt.ReInit(pkd_data.src_value_cnt_size, (size_t*)&setupdata[0][pkd_data.src_value_cnt_offset], false);
  3380. data.src_value.dsp.ReInit(pkd_data.src_value_dsp_size, (size_t*)&setupdata[0][pkd_data.src_value_dsp_offset], false);
  3381. data.srf_coord.cnt.ReInit(pkd_data.srf_coord_cnt_size, (size_t*)&setupdata[0][pkd_data.srf_coord_cnt_offset], false);
  3382. data.srf_coord.dsp.ReInit(pkd_data.srf_coord_dsp_size, (size_t*)&setupdata[0][pkd_data.srf_coord_dsp_offset], false);
  3383. data.srf_value.cnt.ReInit(pkd_data.srf_value_cnt_size, (size_t*)&setupdata[0][pkd_data.srf_value_cnt_offset], false);
  3384. data.srf_value.dsp.ReInit(pkd_data.srf_value_dsp_size, (size_t*)&setupdata[0][pkd_data.srf_value_dsp_offset], false);
  3385. data.trg_coord.cnt.ReInit(pkd_data.trg_coord_cnt_size, (size_t*)&setupdata[0][pkd_data.trg_coord_cnt_offset], false);
  3386. data.trg_coord.dsp.ReInit(pkd_data.trg_coord_dsp_size, (size_t*)&setupdata[0][pkd_data.trg_coord_dsp_offset], false);
  3387. data.trg_value.cnt.ReInit(pkd_data.trg_value_cnt_size, (size_t*)&setupdata[0][pkd_data.trg_value_cnt_offset], false);
  3388. data.trg_value.dsp.ReInit(pkd_data.trg_value_dsp_size, (size_t*)&setupdata[0][pkd_data.trg_value_dsp_offset], false);
  3389. InteracData& intdata=data.interac_data;
  3390. intdata. in_node.ReInit(pkd_data. in_node_size, (size_t*)&setupdata[0][pkd_data. in_node_offset],false);
  3391. intdata. scal_idx.ReInit(pkd_data. scal_idx_size, (size_t*)&setupdata[0][pkd_data. scal_idx_offset],false);
  3392. intdata.coord_shift.ReInit(pkd_data.coord_shift_size, (Real_t*)&setupdata[0][pkd_data.coord_shift_offset],false);
  3393. intdata.interac_cnt.ReInit(pkd_data.interac_cnt_size, (size_t*)&setupdata[0][pkd_data.interac_cnt_offset],false);
  3394. intdata.interac_dsp.ReInit(pkd_data.interac_dsp_size, (size_t*)&setupdata[0][pkd_data.interac_dsp_offset],false);
  3395. intdata.interac_cst.ReInit(pkd_data.interac_cst_size, (size_t*)&setupdata[0][pkd_data.interac_cst_offset],false);
  3396. for(size_t i=0;i<4*MAX_DEPTH;i++){
  3397. intdata.scal[i].ReInit(pkd_data.scal_dim[i], (Real_t*)&setupdata[0][pkd_data.scal_offset[i]],false);
  3398. }
  3399. for(size_t i=0;i<4;i++){
  3400. intdata.M[i].ReInit(pkd_data.Mdim[i][0], pkd_data.Mdim[i][1], (Real_t*)&setupdata[0][pkd_data.M_offset[i]],false);
  3401. }
  3402. }
  3403. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  3404. { // Compute interactions
  3405. InteracData& intdata=data.interac_data;
  3406. typename Kernel<Real_t>::Ker_t single_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_single_layer_kernel;
  3407. typename Kernel<Real_t>::Ker_t double_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_double_layer_kernel;
  3408. int omp_p=omp_get_max_threads();
  3409. #pragma omp parallel for
  3410. for(size_t tid=0;tid<omp_p;tid++){
  3411. Matrix<Real_t> src_coord, src_value;
  3412. Matrix<Real_t> srf_coord, srf_value;
  3413. Matrix<Real_t> trg_coord, trg_value;
  3414. Vector<Real_t> buff;
  3415. { // init buff
  3416. size_t thread_buff_size=dev_buff.dim/sizeof(Real_t)/omp_p;
  3417. buff.ReInit(thread_buff_size, (Real_t*)&dev_buff[tid*thread_buff_size*sizeof(Real_t)], false);
  3418. }
  3419. size_t vcnt=0;
  3420. std::vector<Matrix<Real_t> > vbuff(6);
  3421. { // init vbuff[0:5]
  3422. size_t vdim_=0, vdim[6];
  3423. for(size_t indx=0;indx<6;indx++){
  3424. vdim[indx]=0;
  3425. switch(indx){
  3426. case 0:
  3427. vdim[indx]=intdata.M[0].Dim(0); break;
  3428. case 1:
  3429. assert(intdata.M[0].Dim(1)==intdata.M[1].Dim(0));
  3430. vdim[indx]=intdata.M[0].Dim(1); break;
  3431. case 2:
  3432. vdim[indx]=intdata.M[1].Dim(1); break;
  3433. case 3:
  3434. vdim[indx]=intdata.M[2].Dim(0); break;
  3435. case 4:
  3436. assert(intdata.M[2].Dim(1)==intdata.M[3].Dim(0));
  3437. vdim[indx]=intdata.M[2].Dim(1); break;
  3438. case 5:
  3439. vdim[indx]=intdata.M[3].Dim(1); break;
  3440. default:
  3441. vdim[indx]=0; break;
  3442. }
  3443. vdim_+=vdim[indx];
  3444. }
  3445. if(vdim_){
  3446. vcnt=buff.Dim()/vdim_/2;
  3447. assert(vcnt>0); // Thread buffer is too small
  3448. }
  3449. for(size_t indx=0;indx<6;indx++){ // init vbuff[0:5]
  3450. vbuff[indx].ReInit(vcnt,vdim[indx],&buff[0],false);
  3451. buff.ReInit(buff.Dim()-vdim[indx]*vcnt, &buff[vdim[indx]*vcnt], false);
  3452. }
  3453. }
  3454. size_t trg_a=0, trg_b=0;
  3455. if(intdata.interac_cst.Dim()){ // Determine trg_a, trg_b
  3456. //trg_a=((tid+0)*intdata.interac_cnt.Dim())/omp_p;
  3457. //trg_b=((tid+1)*intdata.interac_cnt.Dim())/omp_p;
  3458. Vector<size_t>& interac_cst=intdata.interac_cst;
  3459. size_t cost=interac_cst[interac_cst.Dim()-1];
  3460. trg_a=std::lower_bound(&interac_cst[0],&interac_cst[interac_cst.Dim()-1],(cost*(tid+0))/omp_p)-&interac_cst[0]+1;
  3461. trg_b=std::lower_bound(&interac_cst[0],&interac_cst[interac_cst.Dim()-1],(cost*(tid+1))/omp_p)-&interac_cst[0]+1;
  3462. if(tid==omp_p-1) trg_b=interac_cst.Dim();
  3463. if(tid==0) trg_a=0;
  3464. }
  3465. for(size_t trg0=trg_a;trg0<trg_b;){
  3466. size_t trg1_max=1;
  3467. if(vcnt){ // Find trg1_max
  3468. size_t interac_cnt=intdata.interac_cnt[trg0];
  3469. while(trg0+trg1_max<trg_b){
  3470. interac_cnt+=intdata.interac_cnt[trg0+trg1_max];
  3471. if(interac_cnt>vcnt){
  3472. interac_cnt-=intdata.interac_cnt[trg0+trg1_max];
  3473. break;
  3474. }
  3475. trg1_max++;
  3476. }
  3477. assert(interac_cnt<=vcnt);
  3478. for(size_t k=0;k<6;k++){
  3479. if(vbuff[k].Dim(0)*vbuff[k].Dim(1)){
  3480. vbuff[k].ReInit(interac_cnt,vbuff[k].Dim(1),vbuff[k][0],false);
  3481. }
  3482. }
  3483. }else{
  3484. trg1_max=trg_b-trg0;
  3485. }
  3486. if(intdata.M[0].Dim(0) && intdata.M[0].Dim(1) && intdata.M[1].Dim(0) && intdata.M[1].Dim(1)){ // src mat-vec
  3487. size_t interac_idx=0;
  3488. for(size_t trg1=0;trg1<trg1_max;trg1++){ // Copy src_value to vbuff[0]
  3489. size_t trg=trg0+trg1;
  3490. for(size_t i=0;i<intdata.interac_cnt[trg];i++){
  3491. size_t int_id=intdata.interac_dsp[trg]+i;
  3492. size_t src=intdata.in_node[int_id];
  3493. src_value.ReInit(1, data.src_value.cnt[src], &data.src_value.ptr[0][0][data.src_value.dsp[src]], false);
  3494. { // Copy src_value to vbuff[0]
  3495. size_t vdim=vbuff[0].Dim(1);
  3496. assert(src_value.Dim(1)==vdim);
  3497. for(size_t j=0;j<vdim;j++) vbuff[0][interac_idx][j]=src_value[0][j];
  3498. }
  3499. size_t scal_idx=intdata.scal_idx[int_id];
  3500. { // scaling
  3501. Matrix<Real_t>& vec=vbuff[0];
  3502. Vector<Real_t>& scal=intdata.scal[scal_idx*4+0];
  3503. size_t scal_dim=scal.Dim();
  3504. if(scal_dim){
  3505. size_t vdim=vec.Dim(1);
  3506. for(size_t j=0;j<vdim;j+=scal_dim){
  3507. for(size_t k=0;k<scal_dim;k++){
  3508. vec[interac_idx][j+k]*=scal[k];
  3509. }
  3510. }
  3511. }
  3512. }
  3513. interac_idx++;
  3514. }
  3515. }
  3516. Matrix<Real_t>::GEMM(vbuff[1],vbuff[0],intdata.M[0]);
  3517. Matrix<Real_t>::GEMM(vbuff[2],vbuff[1],intdata.M[1]);
  3518. interac_idx=0;
  3519. for(size_t trg1=0;trg1<trg1_max;trg1++){
  3520. size_t trg=trg0+trg1;
  3521. for(size_t i=0;i<intdata.interac_cnt[trg];i++){
  3522. size_t int_id=intdata.interac_dsp[trg]+i;
  3523. size_t scal_idx=intdata.scal_idx[int_id];
  3524. { // scaling
  3525. Matrix<Real_t>& vec=vbuff[2];
  3526. Vector<Real_t>& scal=intdata.scal[scal_idx*4+1];
  3527. size_t scal_dim=scal.Dim();
  3528. if(scal_dim){
  3529. size_t vdim=vec.Dim(1);
  3530. for(size_t j=0;j<vdim;j+=scal_dim){
  3531. for(size_t k=0;k<scal_dim;k++){
  3532. vec[interac_idx][j+k]*=scal[k];
  3533. }
  3534. }
  3535. }
  3536. }
  3537. interac_idx++;
  3538. }
  3539. }
  3540. }
  3541. if(intdata.M[2].Dim(0) && intdata.M[2].Dim(1) && intdata.M[3].Dim(0) && intdata.M[3].Dim(1)){ // init vbuff[3]
  3542. size_t vdim=vbuff[3].Dim(0)*vbuff[3].Dim(1);
  3543. for(size_t i=0;i<vdim;i++) vbuff[3][0][i]=0;
  3544. }
  3545. { // Evaluate kernel functions
  3546. size_t interac_idx=0;
  3547. for(size_t trg1=0;trg1<trg1_max;trg1++){
  3548. size_t trg=trg0+trg1;
  3549. trg_coord.ReInit(1, data.trg_coord.cnt[trg], &data.trg_coord.ptr[0][0][data.trg_coord.dsp[trg]], false);
  3550. trg_value.ReInit(1, data.trg_value.cnt[trg], &data.trg_value.ptr[0][0][data.trg_value.dsp[trg]], false);
  3551. for(size_t i=0;i<intdata.interac_cnt[trg];i++){
  3552. size_t int_id=intdata.interac_dsp[trg]+i;
  3553. size_t src=intdata.in_node[int_id];
  3554. src_coord.ReInit(1, data.src_coord.cnt[src], &data.src_coord.ptr[0][0][data.src_coord.dsp[src]], false);
  3555. src_value.ReInit(1, data.src_value.cnt[src], &data.src_value.ptr[0][0][data.src_value.dsp[src]], false);
  3556. srf_coord.ReInit(1, data.srf_coord.cnt[src], &data.srf_coord.ptr[0][0][data.srf_coord.dsp[src]], false);
  3557. srf_value.ReInit(1, data.srf_value.cnt[src], &data.srf_value.ptr[0][0][data.srf_value.dsp[src]], false);
  3558. Real_t* vbuff2_ptr=(vbuff[2].Dim(0)*vbuff[2].Dim(1)?vbuff[2][interac_idx]:src_value[0]);
  3559. Real_t* vbuff3_ptr=(vbuff[3].Dim(0)*vbuff[3].Dim(1)?vbuff[3][interac_idx]:trg_value[0]);
  3560. if(src_coord.Dim(1)){
  3561. { // coord_shift
  3562. Real_t* shift=&intdata.coord_shift[int_id*COORD_DIM];
  3563. if(shift[0]!=0 || shift[1]!=0 || shift[2]!=0){
  3564. size_t vdim=src_coord.Dim(1);
  3565. Vector<Real_t> new_coord(vdim, &buff[0], false);
  3566. assert(buff.Dim()>=vdim); // Thread buffer is too small
  3567. //buff.ReInit(buff.Dim()-vdim, &buff[vdim], false);
  3568. for(size_t j=0;j<vdim;j+=COORD_DIM){
  3569. for(size_t k=0;k<COORD_DIM;k++){
  3570. new_coord[j+k]=src_coord[0][j+k]+shift[k];
  3571. }
  3572. }
  3573. src_coord.ReInit(1, vdim, &new_coord[0], false);
  3574. }
  3575. }
  3576. assert(ptr_single_layer_kernel); // assert(Single-layer kernel is implemented)
  3577. single_layer_kernel(src_coord[0], src_coord.Dim(1)/COORD_DIM, vbuff2_ptr, 1,
  3578. trg_coord[0], trg_coord.Dim(1)/COORD_DIM, vbuff3_ptr, NULL);
  3579. }
  3580. if(srf_coord.Dim(1)){
  3581. { // coord_shift
  3582. Real_t* shift=&intdata.coord_shift[int_id*COORD_DIM];
  3583. if(shift[0]!=0 || shift[1]!=0 || shift[2]!=0){
  3584. size_t vdim=srf_coord.Dim(1);
  3585. Vector<Real_t> new_coord(vdim, &buff[0], false);
  3586. assert(buff.Dim()>=vdim); // Thread buffer is too small
  3587. //buff.ReInit(buff.Dim()-vdim, &buff[vdim], false);
  3588. for(size_t j=0;j<vdim;j+=COORD_DIM){
  3589. for(size_t k=0;k<COORD_DIM;k++){
  3590. new_coord[j+k]=srf_coord[0][j+k]+shift[k];
  3591. }
  3592. }
  3593. srf_coord.ReInit(1, vdim, &new_coord[0], false);
  3594. }
  3595. }
  3596. assert(ptr_double_layer_kernel); // assert(Double-layer kernel is implemented)
  3597. double_layer_kernel(srf_coord[0], srf_coord.Dim(1)/COORD_DIM, srf_value[0], 1,
  3598. trg_coord[0], trg_coord.Dim(1)/COORD_DIM, vbuff3_ptr, NULL);
  3599. }
  3600. interac_idx++;
  3601. }
  3602. }
  3603. }
  3604. if(intdata.M[2].Dim(0) && intdata.M[2].Dim(1) && intdata.M[3].Dim(0) && intdata.M[3].Dim(1)){ // trg mat-vec
  3605. size_t interac_idx=0;
  3606. for(size_t trg1=0;trg1<trg1_max;trg1++){
  3607. size_t trg=trg0+trg1;
  3608. for(size_t i=0;i<intdata.interac_cnt[trg];i++){
  3609. size_t int_id=intdata.interac_dsp[trg]+i;
  3610. size_t scal_idx=intdata.scal_idx[int_id];
  3611. { // scaling
  3612. Matrix<Real_t>& vec=vbuff[3];
  3613. Vector<Real_t>& scal=intdata.scal[scal_idx*4+2];
  3614. size_t scal_dim=scal.Dim();
  3615. if(scal_dim){
  3616. size_t vdim=vec.Dim(1);
  3617. for(size_t j=0;j<vdim;j+=scal_dim){
  3618. for(size_t k=0;k<scal_dim;k++){
  3619. vec[interac_idx][j+k]*=scal[k];
  3620. }
  3621. }
  3622. }
  3623. }
  3624. interac_idx++;
  3625. }
  3626. }
  3627. Matrix<Real_t>::GEMM(vbuff[4],vbuff[3],intdata.M[2]);
  3628. Matrix<Real_t>::GEMM(vbuff[5],vbuff[4],intdata.M[3]);
  3629. interac_idx=0;
  3630. for(size_t trg1=0;trg1<trg1_max;trg1++){
  3631. size_t trg=trg0+trg1;
  3632. trg_value.ReInit(1, data.trg_value.cnt[trg], &data.trg_value.ptr[0][0][data.trg_value.dsp[trg]], false);
  3633. for(size_t i=0;i<intdata.interac_cnt[trg];i++){
  3634. size_t int_id=intdata.interac_dsp[trg]+i;
  3635. size_t scal_idx=intdata.scal_idx[int_id];
  3636. { // scaling
  3637. Matrix<Real_t>& vec=vbuff[5];
  3638. Vector<Real_t>& scal=intdata.scal[scal_idx*4+3];
  3639. size_t scal_dim=scal.Dim();
  3640. if(scal_dim){
  3641. size_t vdim=vec.Dim(1);
  3642. for(size_t j=0;j<vdim;j+=scal_dim){
  3643. for(size_t k=0;k<scal_dim;k++){
  3644. vec[interac_idx][j+k]*=scal[k];
  3645. }
  3646. }
  3647. }
  3648. }
  3649. { // Add vbuff[5] to trg_value
  3650. size_t vdim=vbuff[5].Dim(1);
  3651. assert(trg_value.Dim(1)==vdim);
  3652. for(size_t i=0;i<vdim;i++) trg_value[0][i]+=vbuff[5][interac_idx][i];
  3653. }
  3654. interac_idx++;
  3655. }
  3656. }
  3657. }
  3658. trg0+=trg1_max;
  3659. }
  3660. }
  3661. }
  3662. if(device) MIC_Lock::release_lock(lock_idx);
  3663. }
  3664. #ifdef __INTEL_OFFLOAD
  3665. if(SYNC){
  3666. #pragma offload if(device) target(mic:0)
  3667. {if(device) MIC_Lock::wait_lock(lock_idx);}
  3668. }
  3669. #endif
  3670. Profile::Toc();
  3671. }
  3672. template <class FMMNode>
  3673. void FMM_Pts<FMMNode>::X_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3674. if(!this->MultipoleOrder()) return;
  3675. { // Set setup_data
  3676. setup_data. level=level;
  3677. setup_data.kernel=kernel->k_s2l;
  3678. setup_data. input_data=&buff[4];
  3679. setup_data.output_data=&buff[1];
  3680. setup_data. coord_data=&buff[6];
  3681. Vector<FMMNode_t*>& nodes_in =n_list[4];
  3682. Vector<FMMNode_t*>& nodes_out=n_list[1];
  3683. setup_data.nodes_in .clear();
  3684. setup_data.nodes_out.clear();
  3685. for(size_t i=0;i<nodes_in .Dim();i++) if((level==0 || level==-1) && (nodes_in [i]->src_coord.Dim() || nodes_in [i]->surf_coord.Dim()) && nodes_in [i]->IsLeaf ()) setup_data.nodes_in .push_back(nodes_in [i]);
  3686. for(size_t i=0;i<nodes_out.Dim();i++) if((level==0 || level==-1) && nodes_out[i]->pt_cnt[1] && !nodes_out[i]->IsGhost()) setup_data.nodes_out.push_back(nodes_out[i]);
  3687. }
  3688. struct PackedData{
  3689. size_t len;
  3690. Matrix<Real_t>* ptr;
  3691. Vector<size_t> cnt;
  3692. Vector<size_t> dsp;
  3693. };
  3694. struct InteracData{
  3695. Vector<size_t> in_node;
  3696. Vector<size_t> scal_idx;
  3697. Vector<Real_t> coord_shift;
  3698. Vector<size_t> interac_cnt;
  3699. Vector<size_t> interac_dsp;
  3700. Vector<size_t> interac_cst;
  3701. Vector<Real_t> scal[4*MAX_DEPTH];
  3702. Matrix<Real_t> M[4];
  3703. };
  3704. struct ptSetupData{
  3705. int level;
  3706. const Kernel<Real_t>* kernel;
  3707. PackedData src_coord; // Src coord
  3708. PackedData src_value; // Src density
  3709. PackedData srf_coord; // Srf coord
  3710. PackedData srf_value; // Srf density
  3711. PackedData trg_coord; // Trg coord
  3712. PackedData trg_value; // Trg potential
  3713. InteracData interac_data;
  3714. };
  3715. ptSetupData data;
  3716. data. level=setup_data. level;
  3717. data.kernel=setup_data.kernel;
  3718. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3719. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3720. { // Set src data
  3721. std::vector<void*>& nodes=nodes_in;
  3722. PackedData& coord=data.src_coord;
  3723. PackedData& value=data.src_value;
  3724. coord.ptr=setup_data. coord_data;
  3725. value.ptr=setup_data. input_data;
  3726. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  3727. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  3728. coord.cnt.ReInit(nodes.size());
  3729. coord.dsp.ReInit(nodes.size());
  3730. value.cnt.ReInit(nodes.size());
  3731. value.dsp.ReInit(nodes.size());
  3732. #pragma omp parallel for
  3733. for(size_t i=0;i<nodes.size();i++){
  3734. ((FMMNode_t*)nodes[i])->node_id=i;
  3735. Vector<Real_t>& coord_vec=((FMMNode_t*)nodes[i])->src_coord;
  3736. Vector<Real_t>& value_vec=((FMMNode_t*)nodes[i])->src_value;
  3737. if(coord_vec.Dim()){
  3738. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  3739. assert(coord.dsp[i]<coord.len);
  3740. coord.cnt[i]=coord_vec.Dim();
  3741. }else{
  3742. coord.dsp[i]=0;
  3743. coord.cnt[i]=0;
  3744. }
  3745. if(value_vec.Dim()){
  3746. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  3747. assert(value.dsp[i]<value.len);
  3748. value.cnt[i]=value_vec.Dim();
  3749. }else{
  3750. value.dsp[i]=0;
  3751. value.cnt[i]=0;
  3752. }
  3753. }
  3754. }
  3755. { // Set srf data
  3756. std::vector<void*>& nodes=nodes_in;
  3757. PackedData& coord=data.srf_coord;
  3758. PackedData& value=data.srf_value;
  3759. coord.ptr=setup_data. coord_data;
  3760. value.ptr=setup_data. input_data;
  3761. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  3762. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  3763. coord.cnt.ReInit(nodes.size());
  3764. coord.dsp.ReInit(nodes.size());
  3765. value.cnt.ReInit(nodes.size());
  3766. value.dsp.ReInit(nodes.size());
  3767. #pragma omp parallel for
  3768. for(size_t i=0;i<nodes.size();i++){
  3769. Vector<Real_t>& coord_vec=((FMMNode_t*)nodes[i])->surf_coord;
  3770. Vector<Real_t>& value_vec=((FMMNode_t*)nodes[i])->surf_value;
  3771. if(coord_vec.Dim()){
  3772. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  3773. assert(coord.dsp[i]<coord.len);
  3774. coord.cnt[i]=coord_vec.Dim();
  3775. }else{
  3776. coord.dsp[i]=0;
  3777. coord.cnt[i]=0;
  3778. }
  3779. if(value_vec.Dim()){
  3780. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  3781. assert(value.dsp[i]<value.len);
  3782. value.cnt[i]=value_vec.Dim();
  3783. }else{
  3784. value.dsp[i]=0;
  3785. value.cnt[i]=0;
  3786. }
  3787. }
  3788. }
  3789. { // Set trg data
  3790. std::vector<void*>& nodes=nodes_out;
  3791. PackedData& coord=data.trg_coord;
  3792. PackedData& value=data.trg_value;
  3793. coord.ptr=setup_data. coord_data;
  3794. value.ptr=setup_data.output_data;
  3795. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  3796. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  3797. coord.cnt.ReInit(nodes.size());
  3798. coord.dsp.ReInit(nodes.size());
  3799. value.cnt.ReInit(nodes.size());
  3800. value.dsp.ReInit(nodes.size());
  3801. #pragma omp parallel for
  3802. for(size_t i=0;i<nodes.size();i++){
  3803. Vector<Real_t>& coord_vec=tree->dnwd_check_surf[((FMMNode*)nodes[i])->Depth()];
  3804. Vector<Real_t>& value_vec=((FMMData*)((FMMNode*)nodes[i])->FMMData())->dnward_equiv;
  3805. if(coord_vec.Dim()){
  3806. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  3807. assert(coord.dsp[i]<coord.len);
  3808. coord.cnt[i]=coord_vec.Dim();
  3809. }else{
  3810. coord.dsp[i]=0;
  3811. coord.cnt[i]=0;
  3812. }
  3813. if(value_vec.Dim()){
  3814. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  3815. assert(value.dsp[i]<value.len);
  3816. value.cnt[i]=value_vec.Dim();
  3817. }else{
  3818. value.dsp[i]=0;
  3819. value.cnt[i]=0;
  3820. }
  3821. }
  3822. }
  3823. { // Set interac_data
  3824. int omp_p=omp_get_max_threads();
  3825. std::vector<std::vector<size_t> > in_node_(omp_p);
  3826. std::vector<std::vector<size_t> > scal_idx_(omp_p);
  3827. std::vector<std::vector<Real_t> > coord_shift_(omp_p);
  3828. std::vector<std::vector<size_t> > interac_cnt_(omp_p);
  3829. size_t m=this->MultipoleOrder();
  3830. size_t Nsrf=(6*(m-1)*(m-1)+2);
  3831. #pragma omp parallel for
  3832. for(size_t tid=0;tid<omp_p;tid++){
  3833. std::vector<size_t>& in_node =in_node_[tid] ;
  3834. std::vector<size_t>& scal_idx =scal_idx_[tid] ;
  3835. std::vector<Real_t>& coord_shift=coord_shift_[tid];
  3836. std::vector<size_t>& interac_cnt=interac_cnt_[tid] ;
  3837. size_t a=(nodes_out.size()*(tid+0))/omp_p;
  3838. size_t b=(nodes_out.size()*(tid+1))/omp_p;
  3839. for(size_t i=a;i<b;i++){
  3840. FMMNode_t* tnode=(FMMNode_t*)nodes_out[i];
  3841. if(tnode->IsLeaf() && tnode->pt_cnt[1]<=Nsrf){ // skip: handled in U-list
  3842. interac_cnt.push_back(0);
  3843. continue;
  3844. }
  3845. Real_t s=pvfmm::pow<Real_t>(0.5,tnode->Depth());
  3846. size_t interac_cnt_=0;
  3847. { // X_Type
  3848. Mat_Type type=X_Type;
  3849. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  3850. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  3851. FMMNode_t* snode=intlst[j];
  3852. size_t snode_id=snode->node_id;
  3853. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  3854. in_node.push_back(snode_id);
  3855. scal_idx.push_back(snode->Depth());
  3856. { // set coord_shift
  3857. const int* rel_coord=interac_list.RelativeCoord(type,j);
  3858. const Real_t* scoord=snode->Coord();
  3859. const Real_t* tcoord=tnode->Coord();
  3860. Real_t shift[COORD_DIM];
  3861. shift[0]=rel_coord[0]*0.5*s-(scoord[0]+1.0*s)+(0+0.5*s);
  3862. shift[1]=rel_coord[1]*0.5*s-(scoord[1]+1.0*s)+(0+0.5*s);
  3863. shift[2]=rel_coord[2]*0.5*s-(scoord[2]+1.0*s)+(0+0.5*s);
  3864. coord_shift.push_back(shift[0]);
  3865. coord_shift.push_back(shift[1]);
  3866. coord_shift.push_back(shift[2]);
  3867. }
  3868. interac_cnt_++;
  3869. }
  3870. }
  3871. interac_cnt.push_back(interac_cnt_);
  3872. }
  3873. }
  3874. { // Combine interac data
  3875. InteracData& interac_data=data.interac_data;
  3876. { // in_node
  3877. typedef size_t ElemType;
  3878. std::vector<std::vector<ElemType> >& vec_=in_node_;
  3879. pvfmm::Vector<ElemType>& vec=interac_data.in_node;
  3880. std::vector<size_t> vec_dsp(omp_p+1,0);
  3881. for(size_t tid=0;tid<omp_p;tid++){
  3882. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  3883. }
  3884. vec.ReInit(vec_dsp[omp_p]);
  3885. #pragma omp parallel for
  3886. for(size_t tid=0;tid<omp_p;tid++){
  3887. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  3888. }
  3889. }
  3890. { // scal_idx
  3891. typedef size_t ElemType;
  3892. std::vector<std::vector<ElemType> >& vec_=scal_idx_;
  3893. pvfmm::Vector<ElemType>& vec=interac_data.scal_idx;
  3894. std::vector<size_t> vec_dsp(omp_p+1,0);
  3895. for(size_t tid=0;tid<omp_p;tid++){
  3896. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  3897. }
  3898. vec.ReInit(vec_dsp[omp_p]);
  3899. #pragma omp parallel for
  3900. for(size_t tid=0;tid<omp_p;tid++){
  3901. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  3902. }
  3903. }
  3904. { // coord_shift
  3905. typedef Real_t ElemType;
  3906. std::vector<std::vector<ElemType> >& vec_=coord_shift_;
  3907. pvfmm::Vector<ElemType>& vec=interac_data.coord_shift;
  3908. std::vector<size_t> vec_dsp(omp_p+1,0);
  3909. for(size_t tid=0;tid<omp_p;tid++){
  3910. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  3911. }
  3912. vec.ReInit(vec_dsp[omp_p]);
  3913. #pragma omp parallel for
  3914. for(size_t tid=0;tid<omp_p;tid++){
  3915. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  3916. }
  3917. }
  3918. { // interac_cnt
  3919. typedef size_t ElemType;
  3920. std::vector<std::vector<ElemType> >& vec_=interac_cnt_;
  3921. pvfmm::Vector<ElemType>& vec=interac_data.interac_cnt;
  3922. std::vector<size_t> vec_dsp(omp_p+1,0);
  3923. for(size_t tid=0;tid<omp_p;tid++){
  3924. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  3925. }
  3926. vec.ReInit(vec_dsp[omp_p]);
  3927. #pragma omp parallel for
  3928. for(size_t tid=0;tid<omp_p;tid++){
  3929. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  3930. }
  3931. }
  3932. { // interac_dsp
  3933. pvfmm::Vector<size_t>& cnt=interac_data.interac_cnt;
  3934. pvfmm::Vector<size_t>& dsp=interac_data.interac_dsp;
  3935. dsp.ReInit(cnt.Dim()); if(dsp.Dim()) dsp[0]=0;
  3936. omp_par::scan(&cnt[0],&dsp[0],dsp.Dim());
  3937. }
  3938. }
  3939. }
  3940. PtSetup(setup_data, &data);
  3941. }
  3942. template <class FMMNode>
  3943. void FMM_Pts<FMMNode>::X_List (SetupData<Real_t>& setup_data, bool device){
  3944. if(!this->MultipoleOrder()) return;
  3945. //Add X_List contribution.
  3946. this->EvalListPts(setup_data, device);
  3947. }
  3948. template <class FMMNode>
  3949. void FMM_Pts<FMMNode>::W_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3950. if(!this->MultipoleOrder()) return;
  3951. { // Set setup_data
  3952. setup_data. level=level;
  3953. setup_data.kernel=kernel->k_m2t;
  3954. setup_data. input_data=&buff[0];
  3955. setup_data.output_data=&buff[5];
  3956. setup_data. coord_data=&buff[6];
  3957. Vector<FMMNode_t*>& nodes_in =n_list[0];
  3958. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3959. setup_data.nodes_in .clear();
  3960. setup_data.nodes_out.clear();
  3961. for(size_t i=0;i<nodes_in .Dim();i++) if((level==0 || level==-1) && nodes_in [i]->pt_cnt[0] ) setup_data.nodes_in .push_back(nodes_in [i]);
  3962. for(size_t i=0;i<nodes_out.Dim();i++) if((level==0 || level==-1) && nodes_out[i]->trg_coord.Dim() && nodes_out[i]->IsLeaf() && !nodes_out[i]->IsGhost()) setup_data.nodes_out.push_back(nodes_out[i]);
  3963. }
  3964. struct PackedData{
  3965. size_t len;
  3966. Matrix<Real_t>* ptr;
  3967. Vector<size_t> cnt;
  3968. Vector<size_t> dsp;
  3969. };
  3970. struct InteracData{
  3971. Vector<size_t> in_node;
  3972. Vector<size_t> scal_idx;
  3973. Vector<Real_t> coord_shift;
  3974. Vector<size_t> interac_cnt;
  3975. Vector<size_t> interac_dsp;
  3976. Vector<size_t> interac_cst;
  3977. Vector<Real_t> scal[4*MAX_DEPTH];
  3978. Matrix<Real_t> M[4];
  3979. };
  3980. struct ptSetupData{
  3981. int level;
  3982. const Kernel<Real_t>* kernel;
  3983. PackedData src_coord; // Src coord
  3984. PackedData src_value; // Src density
  3985. PackedData srf_coord; // Srf coord
  3986. PackedData srf_value; // Srf density
  3987. PackedData trg_coord; // Trg coord
  3988. PackedData trg_value; // Trg potential
  3989. InteracData interac_data;
  3990. };
  3991. ptSetupData data;
  3992. data. level=setup_data. level;
  3993. data.kernel=setup_data.kernel;
  3994. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3995. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3996. { // Set src data
  3997. std::vector<void*>& nodes=nodes_in;
  3998. PackedData& coord=data.src_coord;
  3999. PackedData& value=data.src_value;
  4000. coord.ptr=setup_data. coord_data;
  4001. value.ptr=setup_data. input_data;
  4002. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  4003. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  4004. coord.cnt.ReInit(nodes.size());
  4005. coord.dsp.ReInit(nodes.size());
  4006. value.cnt.ReInit(nodes.size());
  4007. value.dsp.ReInit(nodes.size());
  4008. #pragma omp parallel for
  4009. for(size_t i=0;i<nodes.size();i++){
  4010. ((FMMNode_t*)nodes[i])->node_id=i;
  4011. Vector<Real_t>& coord_vec=tree->upwd_equiv_surf[((FMMNode*)nodes[i])->Depth()];
  4012. Vector<Real_t>& value_vec=((FMMData*)((FMMNode*)nodes[i])->FMMData())->upward_equiv;
  4013. if(coord_vec.Dim()){
  4014. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  4015. assert(coord.dsp[i]<coord.len);
  4016. coord.cnt[i]=coord_vec.Dim();
  4017. }else{
  4018. coord.dsp[i]=0;
  4019. coord.cnt[i]=0;
  4020. }
  4021. if(value_vec.Dim()){
  4022. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  4023. assert(value.dsp[i]<value.len);
  4024. value.cnt[i]=value_vec.Dim();
  4025. }else{
  4026. value.dsp[i]=0;
  4027. value.cnt[i]=0;
  4028. }
  4029. }
  4030. }
  4031. { // Set srf data
  4032. std::vector<void*>& nodes=nodes_in;
  4033. PackedData& coord=data.srf_coord;
  4034. PackedData& value=data.srf_value;
  4035. coord.ptr=setup_data. coord_data;
  4036. value.ptr=setup_data. input_data;
  4037. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  4038. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  4039. coord.cnt.ReInit(nodes.size());
  4040. coord.dsp.ReInit(nodes.size());
  4041. value.cnt.ReInit(nodes.size());
  4042. value.dsp.ReInit(nodes.size());
  4043. #pragma omp parallel for
  4044. for(size_t i=0;i<nodes.size();i++){
  4045. coord.dsp[i]=0;
  4046. coord.cnt[i]=0;
  4047. value.dsp[i]=0;
  4048. value.cnt[i]=0;
  4049. }
  4050. }
  4051. { // Set trg data
  4052. std::vector<void*>& nodes=nodes_out;
  4053. PackedData& coord=data.trg_coord;
  4054. PackedData& value=data.trg_value;
  4055. coord.ptr=setup_data. coord_data;
  4056. value.ptr=setup_data.output_data;
  4057. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  4058. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  4059. coord.cnt.ReInit(nodes.size());
  4060. coord.dsp.ReInit(nodes.size());
  4061. value.cnt.ReInit(nodes.size());
  4062. value.dsp.ReInit(nodes.size());
  4063. #pragma omp parallel for
  4064. for(size_t i=0;i<nodes.size();i++){
  4065. Vector<Real_t>& coord_vec=((FMMNode_t*)nodes[i])->trg_coord;
  4066. Vector<Real_t>& value_vec=((FMMNode_t*)nodes[i])->trg_value;
  4067. if(coord_vec.Dim()){
  4068. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  4069. assert(coord.dsp[i]<coord.len);
  4070. coord.cnt[i]=coord_vec.Dim();
  4071. }else{
  4072. coord.dsp[i]=0;
  4073. coord.cnt[i]=0;
  4074. }
  4075. if(value_vec.Dim()){
  4076. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  4077. assert(value.dsp[i]<value.len);
  4078. value.cnt[i]=value_vec.Dim();
  4079. }else{
  4080. value.dsp[i]=0;
  4081. value.cnt[i]=0;
  4082. }
  4083. }
  4084. }
  4085. { // Set interac_data
  4086. int omp_p=omp_get_max_threads();
  4087. std::vector<std::vector<size_t> > in_node_(omp_p);
  4088. std::vector<std::vector<size_t> > scal_idx_(omp_p);
  4089. std::vector<std::vector<Real_t> > coord_shift_(omp_p);
  4090. std::vector<std::vector<size_t> > interac_cnt_(omp_p);
  4091. size_t m=this->MultipoleOrder();
  4092. size_t Nsrf=(6*(m-1)*(m-1)+2);
  4093. #pragma omp parallel for
  4094. for(size_t tid=0;tid<omp_p;tid++){
  4095. std::vector<size_t>& in_node =in_node_[tid] ;
  4096. std::vector<size_t>& scal_idx =scal_idx_[tid] ;
  4097. std::vector<Real_t>& coord_shift=coord_shift_[tid];
  4098. std::vector<size_t>& interac_cnt=interac_cnt_[tid] ;
  4099. size_t a=(nodes_out.size()*(tid+0))/omp_p;
  4100. size_t b=(nodes_out.size()*(tid+1))/omp_p;
  4101. for(size_t i=a;i<b;i++){
  4102. FMMNode_t* tnode=(FMMNode_t*)nodes_out[i];
  4103. Real_t s=pvfmm::pow<Real_t>(0.5,tnode->Depth());
  4104. size_t interac_cnt_=0;
  4105. { // W_Type
  4106. Mat_Type type=W_Type;
  4107. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  4108. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  4109. FMMNode_t* snode=intlst[j];
  4110. size_t snode_id=snode->node_id;
  4111. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  4112. if(snode->IsGhost() && snode->src_coord.Dim()+snode->surf_coord.Dim()==0){ // Is non-leaf ghost node
  4113. }else if(snode->IsLeaf() && snode->pt_cnt[0]<=Nsrf) continue; // skip: handled in U-list
  4114. in_node.push_back(snode_id);
  4115. scal_idx.push_back(snode->Depth());
  4116. { // set coord_shift
  4117. const int* rel_coord=interac_list.RelativeCoord(type,j);
  4118. const Real_t* scoord=snode->Coord();
  4119. const Real_t* tcoord=tnode->Coord();
  4120. Real_t shift[COORD_DIM];
  4121. shift[0]=rel_coord[0]*0.25*s-(0+0.25*s)+(tcoord[0]+0.5*s);
  4122. shift[1]=rel_coord[1]*0.25*s-(0+0.25*s)+(tcoord[1]+0.5*s);
  4123. shift[2]=rel_coord[2]*0.25*s-(0+0.25*s)+(tcoord[2]+0.5*s);
  4124. coord_shift.push_back(shift[0]);
  4125. coord_shift.push_back(shift[1]);
  4126. coord_shift.push_back(shift[2]);
  4127. }
  4128. interac_cnt_++;
  4129. }
  4130. }
  4131. interac_cnt.push_back(interac_cnt_);
  4132. }
  4133. }
  4134. { // Combine interac data
  4135. InteracData& interac_data=data.interac_data;
  4136. { // in_node
  4137. typedef size_t ElemType;
  4138. std::vector<std::vector<ElemType> >& vec_=in_node_;
  4139. pvfmm::Vector<ElemType>& vec=interac_data.in_node;
  4140. std::vector<size_t> vec_dsp(omp_p+1,0);
  4141. for(size_t tid=0;tid<omp_p;tid++){
  4142. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4143. }
  4144. vec.ReInit(vec_dsp[omp_p]);
  4145. #pragma omp parallel for
  4146. for(size_t tid=0;tid<omp_p;tid++){
  4147. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4148. }
  4149. }
  4150. { // scal_idx
  4151. typedef size_t ElemType;
  4152. std::vector<std::vector<ElemType> >& vec_=scal_idx_;
  4153. pvfmm::Vector<ElemType>& vec=interac_data.scal_idx;
  4154. std::vector<size_t> vec_dsp(omp_p+1,0);
  4155. for(size_t tid=0;tid<omp_p;tid++){
  4156. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4157. }
  4158. vec.ReInit(vec_dsp[omp_p]);
  4159. #pragma omp parallel for
  4160. for(size_t tid=0;tid<omp_p;tid++){
  4161. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4162. }
  4163. }
  4164. { // coord_shift
  4165. typedef Real_t ElemType;
  4166. std::vector<std::vector<ElemType> >& vec_=coord_shift_;
  4167. pvfmm::Vector<ElemType>& vec=interac_data.coord_shift;
  4168. std::vector<size_t> vec_dsp(omp_p+1,0);
  4169. for(size_t tid=0;tid<omp_p;tid++){
  4170. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4171. }
  4172. vec.ReInit(vec_dsp[omp_p]);
  4173. #pragma omp parallel for
  4174. for(size_t tid=0;tid<omp_p;tid++){
  4175. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4176. }
  4177. }
  4178. { // interac_cnt
  4179. typedef size_t ElemType;
  4180. std::vector<std::vector<ElemType> >& vec_=interac_cnt_;
  4181. pvfmm::Vector<ElemType>& vec=interac_data.interac_cnt;
  4182. std::vector<size_t> vec_dsp(omp_p+1,0);
  4183. for(size_t tid=0;tid<omp_p;tid++){
  4184. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4185. }
  4186. vec.ReInit(vec_dsp[omp_p]);
  4187. #pragma omp parallel for
  4188. for(size_t tid=0;tid<omp_p;tid++){
  4189. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4190. }
  4191. }
  4192. { // interac_dsp
  4193. pvfmm::Vector<size_t>& cnt=interac_data.interac_cnt;
  4194. pvfmm::Vector<size_t>& dsp=interac_data.interac_dsp;
  4195. dsp.ReInit(cnt.Dim()); if(dsp.Dim()) dsp[0]=0;
  4196. omp_par::scan(&cnt[0],&dsp[0],dsp.Dim());
  4197. }
  4198. }
  4199. }
  4200. PtSetup(setup_data, &data);
  4201. }
  4202. template <class FMMNode>
  4203. void FMM_Pts<FMMNode>::W_List (SetupData<Real_t>& setup_data, bool device){
  4204. if(!this->MultipoleOrder()) return;
  4205. //Add W_List contribution.
  4206. this->EvalListPts(setup_data, device);
  4207. }
  4208. template <class FMMNode>
  4209. void FMM_Pts<FMMNode>::U_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  4210. { // Set setup_data
  4211. setup_data. level=level;
  4212. setup_data.kernel=kernel->k_s2t;
  4213. setup_data. input_data=&buff[4];
  4214. setup_data.output_data=&buff[5];
  4215. setup_data. coord_data=&buff[6];
  4216. Vector<FMMNode_t*>& nodes_in =n_list[4];
  4217. Vector<FMMNode_t*>& nodes_out=n_list[5];
  4218. setup_data.nodes_in .clear();
  4219. setup_data.nodes_out.clear();
  4220. for(size_t i=0;i<nodes_in .Dim();i++) if((level==0 || level==-1) && (nodes_in [i]->src_coord.Dim() || nodes_in [i]->surf_coord.Dim()) && nodes_in [i]->IsLeaf() ) setup_data.nodes_in .push_back(nodes_in [i]);
  4221. for(size_t i=0;i<nodes_out.Dim();i++) if((level==0 || level==-1) && (nodes_out[i]->trg_coord.Dim() ) && nodes_out[i]->IsLeaf() && !nodes_out[i]->IsGhost()) setup_data.nodes_out.push_back(nodes_out[i]);
  4222. }
  4223. struct PackedData{
  4224. size_t len;
  4225. Matrix<Real_t>* ptr;
  4226. Vector<size_t> cnt;
  4227. Vector<size_t> dsp;
  4228. };
  4229. struct InteracData{
  4230. Vector<size_t> in_node;
  4231. Vector<size_t> scal_idx;
  4232. Vector<Real_t> coord_shift;
  4233. Vector<size_t> interac_cnt;
  4234. Vector<size_t> interac_dsp;
  4235. Vector<size_t> interac_cst;
  4236. Vector<Real_t> scal[4*MAX_DEPTH];
  4237. Matrix<Real_t> M[4];
  4238. };
  4239. struct ptSetupData{
  4240. int level;
  4241. const Kernel<Real_t>* kernel;
  4242. PackedData src_coord; // Src coord
  4243. PackedData src_value; // Src density
  4244. PackedData srf_coord; // Srf coord
  4245. PackedData srf_value; // Srf density
  4246. PackedData trg_coord; // Trg coord
  4247. PackedData trg_value; // Trg potential
  4248. InteracData interac_data;
  4249. };
  4250. ptSetupData data;
  4251. data. level=setup_data. level;
  4252. data.kernel=setup_data.kernel;
  4253. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  4254. std::vector<void*>& nodes_out=setup_data.nodes_out;
  4255. { // Set src data
  4256. std::vector<void*>& nodes=nodes_in;
  4257. PackedData& coord=data.src_coord;
  4258. PackedData& value=data.src_value;
  4259. coord.ptr=setup_data. coord_data;
  4260. value.ptr=setup_data. input_data;
  4261. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  4262. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  4263. coord.cnt.ReInit(nodes.size());
  4264. coord.dsp.ReInit(nodes.size());
  4265. value.cnt.ReInit(nodes.size());
  4266. value.dsp.ReInit(nodes.size());
  4267. #pragma omp parallel for
  4268. for(size_t i=0;i<nodes.size();i++){
  4269. ((FMMNode_t*)nodes[i])->node_id=i;
  4270. Vector<Real_t>& coord_vec=((FMMNode_t*)nodes[i])->src_coord;
  4271. Vector<Real_t>& value_vec=((FMMNode_t*)nodes[i])->src_value;
  4272. if(coord_vec.Dim()){
  4273. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  4274. assert(coord.dsp[i]<coord.len);
  4275. coord.cnt[i]=coord_vec.Dim();
  4276. }else{
  4277. coord.dsp[i]=0;
  4278. coord.cnt[i]=0;
  4279. }
  4280. if(value_vec.Dim()){
  4281. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  4282. assert(value.dsp[i]<value.len);
  4283. value.cnt[i]=value_vec.Dim();
  4284. }else{
  4285. value.dsp[i]=0;
  4286. value.cnt[i]=0;
  4287. }
  4288. }
  4289. }
  4290. { // Set srf data
  4291. std::vector<void*>& nodes=nodes_in;
  4292. PackedData& coord=data.srf_coord;
  4293. PackedData& value=data.srf_value;
  4294. coord.ptr=setup_data. coord_data;
  4295. value.ptr=setup_data. input_data;
  4296. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  4297. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  4298. coord.cnt.ReInit(nodes.size());
  4299. coord.dsp.ReInit(nodes.size());
  4300. value.cnt.ReInit(nodes.size());
  4301. value.dsp.ReInit(nodes.size());
  4302. #pragma omp parallel for
  4303. for(size_t i=0;i<nodes.size();i++){
  4304. Vector<Real_t>& coord_vec=((FMMNode_t*)nodes[i])->surf_coord;
  4305. Vector<Real_t>& value_vec=((FMMNode_t*)nodes[i])->surf_value;
  4306. if(coord_vec.Dim()){
  4307. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  4308. assert(coord.dsp[i]<coord.len);
  4309. coord.cnt[i]=coord_vec.Dim();
  4310. }else{
  4311. coord.dsp[i]=0;
  4312. coord.cnt[i]=0;
  4313. }
  4314. if(value_vec.Dim()){
  4315. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  4316. assert(value.dsp[i]<value.len);
  4317. value.cnt[i]=value_vec.Dim();
  4318. }else{
  4319. value.dsp[i]=0;
  4320. value.cnt[i]=0;
  4321. }
  4322. }
  4323. }
  4324. { // Set trg data
  4325. std::vector<void*>& nodes=nodes_out;
  4326. PackedData& coord=data.trg_coord;
  4327. PackedData& value=data.trg_value;
  4328. coord.ptr=setup_data. coord_data;
  4329. value.ptr=setup_data.output_data;
  4330. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  4331. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  4332. coord.cnt.ReInit(nodes.size());
  4333. coord.dsp.ReInit(nodes.size());
  4334. value.cnt.ReInit(nodes.size());
  4335. value.dsp.ReInit(nodes.size());
  4336. #pragma omp parallel for
  4337. for(size_t i=0;i<nodes.size();i++){
  4338. Vector<Real_t>& coord_vec=((FMMNode_t*)nodes[i])->trg_coord;
  4339. Vector<Real_t>& value_vec=((FMMNode_t*)nodes[i])->trg_value;
  4340. if(coord_vec.Dim()){
  4341. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  4342. assert(coord.dsp[i]<coord.len);
  4343. coord.cnt[i]=coord_vec.Dim();
  4344. }else{
  4345. coord.dsp[i]=0;
  4346. coord.cnt[i]=0;
  4347. }
  4348. if(value_vec.Dim()){
  4349. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  4350. assert(value.dsp[i]<value.len);
  4351. value.cnt[i]=value_vec.Dim();
  4352. }else{
  4353. value.dsp[i]=0;
  4354. value.cnt[i]=0;
  4355. }
  4356. }
  4357. }
  4358. { // Set interac_data
  4359. int omp_p=omp_get_max_threads();
  4360. std::vector<std::vector<size_t> > in_node_(omp_p);
  4361. std::vector<std::vector<size_t> > scal_idx_(omp_p);
  4362. std::vector<std::vector<Real_t> > coord_shift_(omp_p);
  4363. std::vector<std::vector<size_t> > interac_cnt_(omp_p);
  4364. size_t m=this->MultipoleOrder();
  4365. size_t Nsrf=(6*(m-1)*(m-1)+2);
  4366. #pragma omp parallel for
  4367. for(size_t tid=0;tid<omp_p;tid++){
  4368. std::vector<size_t>& in_node =in_node_[tid] ;
  4369. std::vector<size_t>& scal_idx =scal_idx_[tid] ;
  4370. std::vector<Real_t>& coord_shift=coord_shift_[tid];
  4371. std::vector<size_t>& interac_cnt=interac_cnt_[tid] ;
  4372. size_t a=(nodes_out.size()*(tid+0))/omp_p;
  4373. size_t b=(nodes_out.size()*(tid+1))/omp_p;
  4374. for(size_t i=a;i<b;i++){
  4375. FMMNode_t* tnode=(FMMNode_t*)nodes_out[i];
  4376. Real_t s=pvfmm::pow<Real_t>(0.5,tnode->Depth());
  4377. size_t interac_cnt_=0;
  4378. { // U0_Type
  4379. Mat_Type type=U0_Type;
  4380. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  4381. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  4382. FMMNode_t* snode=intlst[j];
  4383. size_t snode_id=snode->node_id;
  4384. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  4385. in_node.push_back(snode_id);
  4386. scal_idx.push_back(snode->Depth());
  4387. { // set coord_shift
  4388. const int* rel_coord=interac_list.RelativeCoord(type,j);
  4389. const Real_t* scoord=snode->Coord();
  4390. const Real_t* tcoord=tnode->Coord();
  4391. Real_t shift[COORD_DIM];
  4392. shift[0]=rel_coord[0]*0.5*s-(scoord[0]+1.0*s)+(tcoord[0]+0.5*s);
  4393. shift[1]=rel_coord[1]*0.5*s-(scoord[1]+1.0*s)+(tcoord[1]+0.5*s);
  4394. shift[2]=rel_coord[2]*0.5*s-(scoord[2]+1.0*s)+(tcoord[2]+0.5*s);
  4395. coord_shift.push_back(shift[0]);
  4396. coord_shift.push_back(shift[1]);
  4397. coord_shift.push_back(shift[2]);
  4398. }
  4399. interac_cnt_++;
  4400. }
  4401. }
  4402. { // U1_Type
  4403. Mat_Type type=U1_Type;
  4404. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  4405. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  4406. FMMNode_t* snode=intlst[j];
  4407. size_t snode_id=snode->node_id;
  4408. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  4409. in_node.push_back(snode_id);
  4410. scal_idx.push_back(snode->Depth());
  4411. { // set coord_shift
  4412. const int* rel_coord=interac_list.RelativeCoord(type,j);
  4413. const Real_t* scoord=snode->Coord();
  4414. const Real_t* tcoord=tnode->Coord();
  4415. Real_t shift[COORD_DIM];
  4416. shift[0]=rel_coord[0]*1.0*s-(scoord[0]+0.5*s)+(tcoord[0]+0.5*s);
  4417. shift[1]=rel_coord[1]*1.0*s-(scoord[1]+0.5*s)+(tcoord[1]+0.5*s);
  4418. shift[2]=rel_coord[2]*1.0*s-(scoord[2]+0.5*s)+(tcoord[2]+0.5*s);
  4419. coord_shift.push_back(shift[0]);
  4420. coord_shift.push_back(shift[1]);
  4421. coord_shift.push_back(shift[2]);
  4422. }
  4423. interac_cnt_++;
  4424. }
  4425. }
  4426. { // U2_Type
  4427. Mat_Type type=U2_Type;
  4428. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  4429. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  4430. FMMNode_t* snode=intlst[j];
  4431. size_t snode_id=snode->node_id;
  4432. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  4433. in_node.push_back(snode_id);
  4434. scal_idx.push_back(snode->Depth());
  4435. { // set coord_shift
  4436. const int* rel_coord=interac_list.RelativeCoord(type,j);
  4437. const Real_t* scoord=snode->Coord();
  4438. const Real_t* tcoord=tnode->Coord();
  4439. Real_t shift[COORD_DIM];
  4440. shift[0]=rel_coord[0]*0.25*s-(scoord[0]+0.25*s)+(tcoord[0]+0.5*s);
  4441. shift[1]=rel_coord[1]*0.25*s-(scoord[1]+0.25*s)+(tcoord[1]+0.5*s);
  4442. shift[2]=rel_coord[2]*0.25*s-(scoord[2]+0.25*s)+(tcoord[2]+0.5*s);
  4443. coord_shift.push_back(shift[0]);
  4444. coord_shift.push_back(shift[1]);
  4445. coord_shift.push_back(shift[2]);
  4446. }
  4447. interac_cnt_++;
  4448. }
  4449. }
  4450. { // X_Type
  4451. Mat_Type type=X_Type;
  4452. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  4453. if(tnode->pt_cnt[1]<=Nsrf)
  4454. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  4455. FMMNode_t* snode=intlst[j];
  4456. size_t snode_id=snode->node_id;
  4457. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  4458. in_node.push_back(snode_id);
  4459. scal_idx.push_back(snode->Depth());
  4460. { // set coord_shift
  4461. const int* rel_coord=interac_list.RelativeCoord(type,j);
  4462. const Real_t* scoord=snode->Coord();
  4463. const Real_t* tcoord=tnode->Coord();
  4464. Real_t shift[COORD_DIM];
  4465. shift[0]=rel_coord[0]*0.5*s-(scoord[0]+1.0*s)+(tcoord[0]+0.5*s);
  4466. shift[1]=rel_coord[1]*0.5*s-(scoord[1]+1.0*s)+(tcoord[1]+0.5*s);
  4467. shift[2]=rel_coord[2]*0.5*s-(scoord[2]+1.0*s)+(tcoord[2]+0.5*s);
  4468. coord_shift.push_back(shift[0]);
  4469. coord_shift.push_back(shift[1]);
  4470. coord_shift.push_back(shift[2]);
  4471. }
  4472. interac_cnt_++;
  4473. }
  4474. }
  4475. { // W_Type
  4476. Mat_Type type=W_Type;
  4477. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  4478. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  4479. FMMNode_t* snode=intlst[j];
  4480. size_t snode_id=snode->node_id;
  4481. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  4482. if(snode->IsGhost() && snode->src_coord.Dim()+snode->surf_coord.Dim()==0) continue; // Is non-leaf ghost node
  4483. if(snode->pt_cnt[0]> Nsrf) continue;
  4484. in_node.push_back(snode_id);
  4485. scal_idx.push_back(snode->Depth());
  4486. { // set coord_shift
  4487. const int* rel_coord=interac_list.RelativeCoord(type,j);
  4488. const Real_t* scoord=snode->Coord();
  4489. const Real_t* tcoord=tnode->Coord();
  4490. Real_t shift[COORD_DIM];
  4491. shift[0]=rel_coord[0]*0.25*s-(scoord[0]+0.25*s)+(tcoord[0]+0.5*s);
  4492. shift[1]=rel_coord[1]*0.25*s-(scoord[1]+0.25*s)+(tcoord[1]+0.5*s);
  4493. shift[2]=rel_coord[2]*0.25*s-(scoord[2]+0.25*s)+(tcoord[2]+0.5*s);
  4494. coord_shift.push_back(shift[0]);
  4495. coord_shift.push_back(shift[1]);
  4496. coord_shift.push_back(shift[2]);
  4497. }
  4498. interac_cnt_++;
  4499. }
  4500. }
  4501. interac_cnt.push_back(interac_cnt_);
  4502. }
  4503. }
  4504. { // Combine interac data
  4505. InteracData& interac_data=data.interac_data;
  4506. { // in_node
  4507. typedef size_t ElemType;
  4508. std::vector<std::vector<ElemType> >& vec_=in_node_;
  4509. pvfmm::Vector<ElemType>& vec=interac_data.in_node;
  4510. std::vector<size_t> vec_dsp(omp_p+1,0);
  4511. for(size_t tid=0;tid<omp_p;tid++){
  4512. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4513. }
  4514. vec.ReInit(vec_dsp[omp_p]);
  4515. #pragma omp parallel for
  4516. for(size_t tid=0;tid<omp_p;tid++){
  4517. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4518. }
  4519. }
  4520. { // scal_idx
  4521. typedef size_t ElemType;
  4522. std::vector<std::vector<ElemType> >& vec_=scal_idx_;
  4523. pvfmm::Vector<ElemType>& vec=interac_data.scal_idx;
  4524. std::vector<size_t> vec_dsp(omp_p+1,0);
  4525. for(size_t tid=0;tid<omp_p;tid++){
  4526. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4527. }
  4528. vec.ReInit(vec_dsp[omp_p]);
  4529. #pragma omp parallel for
  4530. for(size_t tid=0;tid<omp_p;tid++){
  4531. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4532. }
  4533. }
  4534. { // coord_shift
  4535. typedef Real_t ElemType;
  4536. std::vector<std::vector<ElemType> >& vec_=coord_shift_;
  4537. pvfmm::Vector<ElemType>& vec=interac_data.coord_shift;
  4538. std::vector<size_t> vec_dsp(omp_p+1,0);
  4539. for(size_t tid=0;tid<omp_p;tid++){
  4540. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4541. }
  4542. vec.ReInit(vec_dsp[omp_p]);
  4543. #pragma omp parallel for
  4544. for(size_t tid=0;tid<omp_p;tid++){
  4545. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4546. }
  4547. }
  4548. { // interac_cnt
  4549. typedef size_t ElemType;
  4550. std::vector<std::vector<ElemType> >& vec_=interac_cnt_;
  4551. pvfmm::Vector<ElemType>& vec=interac_data.interac_cnt;
  4552. std::vector<size_t> vec_dsp(omp_p+1,0);
  4553. for(size_t tid=0;tid<omp_p;tid++){
  4554. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4555. }
  4556. vec.ReInit(vec_dsp[omp_p]);
  4557. #pragma omp parallel for
  4558. for(size_t tid=0;tid<omp_p;tid++){
  4559. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4560. }
  4561. }
  4562. { // interac_dsp
  4563. pvfmm::Vector<size_t>& cnt=interac_data.interac_cnt;
  4564. pvfmm::Vector<size_t>& dsp=interac_data.interac_dsp;
  4565. dsp.ReInit(cnt.Dim()); if(dsp.Dim()) dsp[0]=0;
  4566. omp_par::scan(&cnt[0],&dsp[0],dsp.Dim());
  4567. }
  4568. }
  4569. }
  4570. PtSetup(setup_data, &data);
  4571. }
  4572. template <class FMMNode>
  4573. void FMM_Pts<FMMNode>::U_List (SetupData<Real_t>& setup_data, bool device){
  4574. //Add U_List contribution.
  4575. this->EvalListPts(setup_data, device);
  4576. }
  4577. template <class FMMNode>
  4578. void FMM_Pts<FMMNode>::Down2TargetSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  4579. if(!this->MultipoleOrder()) return;
  4580. { // Set setup_data
  4581. setup_data. level=level;
  4582. setup_data.kernel=kernel->k_l2t;
  4583. setup_data. input_data=&buff[1];
  4584. setup_data.output_data=&buff[5];
  4585. setup_data. coord_data=&buff[6];
  4586. Vector<FMMNode_t*>& nodes_in =n_list[1];
  4587. Vector<FMMNode_t*>& nodes_out=n_list[5];
  4588. setup_data.nodes_in .clear();
  4589. setup_data.nodes_out.clear();
  4590. for(size_t i=0;i<nodes_in .Dim();i++) if((nodes_in [i]->Depth()==level || level==-1) && nodes_in [i]->trg_coord.Dim() && nodes_in [i]->IsLeaf() && !nodes_in [i]->IsGhost()) setup_data.nodes_in .push_back(nodes_in [i]);
  4591. for(size_t i=0;i<nodes_out.Dim();i++) if((nodes_out[i]->Depth()==level || level==-1) && nodes_out[i]->trg_coord.Dim() && nodes_out[i]->IsLeaf() && !nodes_out[i]->IsGhost()) setup_data.nodes_out.push_back(nodes_out[i]);
  4592. }
  4593. struct PackedData{
  4594. size_t len;
  4595. Matrix<Real_t>* ptr;
  4596. Vector<size_t> cnt;
  4597. Vector<size_t> dsp;
  4598. };
  4599. struct InteracData{
  4600. Vector<size_t> in_node;
  4601. Vector<size_t> scal_idx;
  4602. Vector<Real_t> coord_shift;
  4603. Vector<size_t> interac_cnt;
  4604. Vector<size_t> interac_dsp;
  4605. Vector<size_t> interac_cst;
  4606. Vector<Real_t> scal[4*MAX_DEPTH];
  4607. Matrix<Real_t> M[4];
  4608. };
  4609. struct ptSetupData{
  4610. int level;
  4611. const Kernel<Real_t>* kernel;
  4612. PackedData src_coord; // Src coord
  4613. PackedData src_value; // Src density
  4614. PackedData srf_coord; // Srf coord
  4615. PackedData srf_value; // Srf density
  4616. PackedData trg_coord; // Trg coord
  4617. PackedData trg_value; // Trg potential
  4618. InteracData interac_data;
  4619. };
  4620. ptSetupData data;
  4621. data. level=setup_data. level;
  4622. data.kernel=setup_data.kernel;
  4623. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  4624. std::vector<void*>& nodes_out=setup_data.nodes_out;
  4625. { // Set src data
  4626. std::vector<void*>& nodes=nodes_in;
  4627. PackedData& coord=data.src_coord;
  4628. PackedData& value=data.src_value;
  4629. coord.ptr=setup_data. coord_data;
  4630. value.ptr=setup_data. input_data;
  4631. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  4632. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  4633. coord.cnt.ReInit(nodes.size());
  4634. coord.dsp.ReInit(nodes.size());
  4635. value.cnt.ReInit(nodes.size());
  4636. value.dsp.ReInit(nodes.size());
  4637. #pragma omp parallel for
  4638. for(size_t i=0;i<nodes.size();i++){
  4639. ((FMMNode_t*)nodes[i])->node_id=i;
  4640. Vector<Real_t>& coord_vec=tree->dnwd_equiv_surf[((FMMNode*)nodes[i])->Depth()];
  4641. Vector<Real_t>& value_vec=((FMMData*)((FMMNode*)nodes[i])->FMMData())->dnward_equiv;
  4642. if(coord_vec.Dim()){
  4643. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  4644. assert(coord.dsp[i]<coord.len);
  4645. coord.cnt[i]=coord_vec.Dim();
  4646. }else{
  4647. coord.dsp[i]=0;
  4648. coord.cnt[i]=0;
  4649. }
  4650. if(value_vec.Dim()){
  4651. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  4652. assert(value.dsp[i]<value.len);
  4653. value.cnt[i]=value_vec.Dim();
  4654. }else{
  4655. value.dsp[i]=0;
  4656. value.cnt[i]=0;
  4657. }
  4658. }
  4659. }
  4660. { // Set srf data
  4661. std::vector<void*>& nodes=nodes_in;
  4662. PackedData& coord=data.srf_coord;
  4663. PackedData& value=data.srf_value;
  4664. coord.ptr=setup_data. coord_data;
  4665. value.ptr=setup_data. input_data;
  4666. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  4667. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  4668. coord.cnt.ReInit(nodes.size());
  4669. coord.dsp.ReInit(nodes.size());
  4670. value.cnt.ReInit(nodes.size());
  4671. value.dsp.ReInit(nodes.size());
  4672. #pragma omp parallel for
  4673. for(size_t i=0;i<nodes.size();i++){
  4674. coord.dsp[i]=0;
  4675. coord.cnt[i]=0;
  4676. value.dsp[i]=0;
  4677. value.cnt[i]=0;
  4678. }
  4679. }
  4680. { // Set trg data
  4681. std::vector<void*>& nodes=nodes_out;
  4682. PackedData& coord=data.trg_coord;
  4683. PackedData& value=data.trg_value;
  4684. coord.ptr=setup_data. coord_data;
  4685. value.ptr=setup_data.output_data;
  4686. coord.len=coord.ptr->Dim(0)*coord.ptr->Dim(1);
  4687. value.len=value.ptr->Dim(0)*value.ptr->Dim(1);
  4688. coord.cnt.ReInit(nodes.size());
  4689. coord.dsp.ReInit(nodes.size());
  4690. value.cnt.ReInit(nodes.size());
  4691. value.dsp.ReInit(nodes.size());
  4692. #pragma omp parallel for
  4693. for(size_t i=0;i<nodes.size();i++){
  4694. Vector<Real_t>& coord_vec=((FMMNode_t*)nodes[i])->trg_coord;
  4695. Vector<Real_t>& value_vec=((FMMNode_t*)nodes[i])->trg_value;
  4696. if(coord_vec.Dim()){
  4697. coord.dsp[i]=&coord_vec[0]-coord.ptr[0][0];
  4698. assert(coord.dsp[i]<coord.len);
  4699. coord.cnt[i]=coord_vec.Dim();
  4700. }else{
  4701. coord.dsp[i]=0;
  4702. coord.cnt[i]=0;
  4703. }
  4704. if(value_vec.Dim()){
  4705. value.dsp[i]=&value_vec[0]-value.ptr[0][0];
  4706. assert(value.dsp[i]<value.len);
  4707. value.cnt[i]=value_vec.Dim();
  4708. }else{
  4709. value.dsp[i]=0;
  4710. value.cnt[i]=0;
  4711. }
  4712. }
  4713. }
  4714. { // Set interac_data
  4715. int omp_p=omp_get_max_threads();
  4716. std::vector<std::vector<size_t> > in_node_(omp_p);
  4717. std::vector<std::vector<size_t> > scal_idx_(omp_p);
  4718. std::vector<std::vector<Real_t> > coord_shift_(omp_p);
  4719. std::vector<std::vector<size_t> > interac_cnt_(omp_p);
  4720. if(this->ScaleInvar()){ // Set scal
  4721. const Kernel<Real_t>* ker=kernel->k_l2l;
  4722. for(size_t l=0;l<MAX_DEPTH;l++){ // scal[l*4+0]
  4723. Vector<Real_t>& scal=data.interac_data.scal[l*4+0];
  4724. Vector<Real_t>& scal_exp=ker->trg_scal;
  4725. scal.ReInit(scal_exp.Dim());
  4726. for(size_t i=0;i<scal.Dim();i++){
  4727. scal[i]=pvfmm::pow<Real_t>(2.0,-scal_exp[i]*l);
  4728. }
  4729. }
  4730. for(size_t l=0;l<MAX_DEPTH;l++){ // scal[l*4+1]
  4731. Vector<Real_t>& scal=data.interac_data.scal[l*4+1];
  4732. Vector<Real_t>& scal_exp=ker->src_scal;
  4733. scal.ReInit(scal_exp.Dim());
  4734. for(size_t i=0;i<scal.Dim();i++){
  4735. scal[i]=pvfmm::pow<Real_t>(2.0,-scal_exp[i]*l);
  4736. }
  4737. }
  4738. }
  4739. #pragma omp parallel for
  4740. for(size_t tid=0;tid<omp_p;tid++){
  4741. std::vector<size_t>& in_node =in_node_[tid] ;
  4742. std::vector<size_t>& scal_idx =scal_idx_[tid] ;
  4743. std::vector<Real_t>& coord_shift=coord_shift_[tid];
  4744. std::vector<size_t>& interac_cnt=interac_cnt_[tid];
  4745. size_t a=(nodes_out.size()*(tid+0))/omp_p;
  4746. size_t b=(nodes_out.size()*(tid+1))/omp_p;
  4747. for(size_t i=a;i<b;i++){
  4748. FMMNode_t* tnode=(FMMNode_t*)nodes_out[i];
  4749. Real_t s=pvfmm::pow<Real_t>(0.5,tnode->Depth());
  4750. size_t interac_cnt_=0;
  4751. { // D2T_Type
  4752. Mat_Type type=D2T_Type;
  4753. Vector<FMMNode_t*>& intlst=tnode->interac_list[type];
  4754. for(size_t j=0;j<intlst.Dim();j++) if(intlst[j]){
  4755. FMMNode_t* snode=intlst[j];
  4756. size_t snode_id=snode->node_id;
  4757. if(snode_id>=nodes_in.size() || nodes_in[snode_id]!=snode) continue;
  4758. in_node.push_back(snode_id);
  4759. scal_idx.push_back(snode->Depth());
  4760. { // set coord_shift
  4761. const int* rel_coord=interac_list.RelativeCoord(type,j);
  4762. const Real_t* scoord=snode->Coord();
  4763. const Real_t* tcoord=tnode->Coord();
  4764. Real_t shift[COORD_DIM];
  4765. shift[0]=rel_coord[0]*0.5*s-(0+0.5*s)+(tcoord[0]+0.5*s);
  4766. shift[1]=rel_coord[1]*0.5*s-(0+0.5*s)+(tcoord[1]+0.5*s);
  4767. shift[2]=rel_coord[2]*0.5*s-(0+0.5*s)+(tcoord[2]+0.5*s);
  4768. coord_shift.push_back(shift[0]);
  4769. coord_shift.push_back(shift[1]);
  4770. coord_shift.push_back(shift[2]);
  4771. }
  4772. interac_cnt_++;
  4773. }
  4774. }
  4775. interac_cnt.push_back(interac_cnt_);
  4776. }
  4777. }
  4778. { // Combine interac data
  4779. InteracData& interac_data=data.interac_data;
  4780. { // in_node
  4781. typedef size_t ElemType;
  4782. std::vector<std::vector<ElemType> >& vec_=in_node_;
  4783. pvfmm::Vector<ElemType>& vec=interac_data.in_node;
  4784. std::vector<size_t> vec_dsp(omp_p+1,0);
  4785. for(size_t tid=0;tid<omp_p;tid++){
  4786. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4787. }
  4788. vec.ReInit(vec_dsp[omp_p]);
  4789. #pragma omp parallel for
  4790. for(size_t tid=0;tid<omp_p;tid++){
  4791. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4792. }
  4793. }
  4794. { // scal_idx
  4795. typedef size_t ElemType;
  4796. std::vector<std::vector<ElemType> >& vec_=scal_idx_;
  4797. pvfmm::Vector<ElemType>& vec=interac_data.scal_idx;
  4798. std::vector<size_t> vec_dsp(omp_p+1,0);
  4799. for(size_t tid=0;tid<omp_p;tid++){
  4800. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4801. }
  4802. vec.ReInit(vec_dsp[omp_p]);
  4803. #pragma omp parallel for
  4804. for(size_t tid=0;tid<omp_p;tid++){
  4805. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4806. }
  4807. }
  4808. { // coord_shift
  4809. typedef Real_t ElemType;
  4810. std::vector<std::vector<ElemType> >& vec_=coord_shift_;
  4811. pvfmm::Vector<ElemType>& vec=interac_data.coord_shift;
  4812. std::vector<size_t> vec_dsp(omp_p+1,0);
  4813. for(size_t tid=0;tid<omp_p;tid++){
  4814. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4815. }
  4816. vec.ReInit(vec_dsp[omp_p]);
  4817. #pragma omp parallel for
  4818. for(size_t tid=0;tid<omp_p;tid++){
  4819. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4820. }
  4821. }
  4822. { // interac_cnt
  4823. typedef size_t ElemType;
  4824. std::vector<std::vector<ElemType> >& vec_=interac_cnt_;
  4825. pvfmm::Vector<ElemType>& vec=interac_data.interac_cnt;
  4826. std::vector<size_t> vec_dsp(omp_p+1,0);
  4827. for(size_t tid=0;tid<omp_p;tid++){
  4828. vec_dsp[tid+1]=vec_dsp[tid]+vec_[tid].size();
  4829. }
  4830. vec.ReInit(vec_dsp[omp_p]);
  4831. #pragma omp parallel for
  4832. for(size_t tid=0;tid<omp_p;tid++){
  4833. memcpy(&vec[0]+vec_dsp[tid],&vec_[tid][0],vec_[tid].size()*sizeof(ElemType));
  4834. }
  4835. }
  4836. { // interac_dsp
  4837. pvfmm::Vector<size_t>& cnt=interac_data.interac_cnt;
  4838. pvfmm::Vector<size_t>& dsp=interac_data.interac_dsp;
  4839. dsp.ReInit(cnt.Dim()); if(dsp.Dim()) dsp[0]=0;
  4840. omp_par::scan(&cnt[0],&dsp[0],dsp.Dim());
  4841. }
  4842. }
  4843. { // Set M[0], M[1]
  4844. InteracData& interac_data=data.interac_data;
  4845. pvfmm::Vector<size_t>& cnt=interac_data.interac_cnt;
  4846. pvfmm::Vector<size_t>& dsp=interac_data.interac_dsp;
  4847. if(cnt.Dim() && cnt[cnt.Dim()-1]+dsp[dsp.Dim()-1]){
  4848. data.interac_data.M[0]=this->mat->Mat(level, DC2DE0_Type, 0);
  4849. data.interac_data.M[1]=this->mat->Mat(level, DC2DE1_Type, 0);
  4850. }else{
  4851. data.interac_data.M[0].ReInit(0,0);
  4852. data.interac_data.M[1].ReInit(0,0);
  4853. }
  4854. }
  4855. }
  4856. PtSetup(setup_data, &data);
  4857. }
  4858. template <class FMMNode>
  4859. void FMM_Pts<FMMNode>::Down2Target(SetupData<Real_t>& setup_data, bool device){
  4860. if(!this->MultipoleOrder()) return;
  4861. //Add Down2Target contribution.
  4862. this->EvalListPts(setup_data, device);
  4863. }
  4864. template <class FMMNode>
  4865. void FMM_Pts<FMMNode>::PostProcessing(std::vector<FMMNode_t*>& nodes){
  4866. }
  4867. template <class FMMNode>
  4868. void FMM_Pts<FMMNode>::CopyOutput(FMMNode** nodes, size_t n){
  4869. }
  4870. }//end namespace