matrix.txx 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619
  1. /**
  2. * \file matrix.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 2-11-2011
  5. * \brief This file contains inplementation of the class Matrix.
  6. */
  7. #include <omp.h>
  8. #include <cmath>
  9. #include <cstdlib>
  10. #include <cassert>
  11. #include <iostream>
  12. #include <iomanip>
  13. #include <device_wrapper.hpp>
  14. #include <mat_utils.hpp>
  15. #include <mem_mgr.hpp>
  16. #include <profile.hpp>
  17. namespace pvfmm{
  18. template <class T>
  19. std::ostream& operator<<(std::ostream& output, const Matrix<T>& M){
  20. std::ios::fmtflags f(std::cout.flags());
  21. output<<std::fixed<<std::setprecision(4)<<std::setiosflags(std::ios::left);
  22. for(size_t i=0;i<M.Dim(0);i++){
  23. for(size_t j=0;j<M.Dim(1);j++){
  24. float f=((float)M(i,j));
  25. if(pvfmm::fabs<T>(f)<1e-25) f=0;
  26. output<<std::setw(10)<<((double)f)<<' ';
  27. }
  28. output<<";\n";
  29. }
  30. std::cout.flags(f);
  31. return output;
  32. }
  33. template <class T>
  34. Matrix<T>::Matrix(){
  35. dim[0]=0;
  36. dim[1]=0;
  37. own_data=true;
  38. data_ptr=NULL;
  39. dev.dev_ptr=(uintptr_t)NULL;
  40. }
  41. template <class T>
  42. Matrix<T>::Matrix(size_t dim1, size_t dim2, T* data_, bool own_data_){
  43. dim[0]=dim1;
  44. dim[1]=dim2;
  45. own_data=own_data_;
  46. if(own_data){
  47. if(dim[0]*dim[1]>0){
  48. data_ptr=mem::aligned_new<T>(dim[0]*dim[1]);
  49. #if !defined(__MIC__) || !defined(__INTEL_OFFLOAD)
  50. Profile::Add_MEM(dim[0]*dim[1]*sizeof(T));
  51. #endif
  52. if(data_!=NULL) mem::memcopy(data_ptr,data_,dim[0]*dim[1]*sizeof(T));
  53. }else data_ptr=NULL;
  54. }else
  55. data_ptr=data_;
  56. dev.dev_ptr=(uintptr_t)NULL;
  57. }
  58. template <class T>
  59. Matrix<T>::Matrix(const Matrix<T>& M){
  60. dim[0]=M.dim[0];
  61. dim[1]=M.dim[1];
  62. own_data=true;
  63. if(dim[0]*dim[1]>0){
  64. data_ptr=mem::aligned_new<T>(dim[0]*dim[1]);
  65. #if !defined(__MIC__) || !defined(__INTEL_OFFLOAD)
  66. Profile::Add_MEM(dim[0]*dim[1]*sizeof(T));
  67. #endif
  68. mem::memcopy(data_ptr,M.data_ptr,dim[0]*dim[1]*sizeof(T));
  69. }else
  70. data_ptr=NULL;
  71. dev.dev_ptr=(uintptr_t)NULL;
  72. }
  73. template <class T>
  74. Matrix<T>::~Matrix(){
  75. FreeDevice(false);
  76. if(own_data){
  77. if(data_ptr!=NULL){
  78. mem::aligned_delete(data_ptr);
  79. #if !defined(__MIC__) || !defined(__INTEL_OFFLOAD)
  80. Profile::Add_MEM(-dim[0]*dim[1]*sizeof(T));
  81. #endif
  82. }
  83. }
  84. data_ptr=NULL;
  85. dim[0]=0;
  86. dim[1]=0;
  87. }
  88. template <class T>
  89. void Matrix<T>::Swap(Matrix<T>& M){
  90. size_t dim_[2]={dim[0],dim[1]};
  91. T* data_ptr_=data_ptr;
  92. bool own_data_=own_data;
  93. Device dev_=dev;
  94. Vector<char> dev_sig_=dev_sig;
  95. dim[0]=M.dim[0];
  96. dim[1]=M.dim[1];
  97. data_ptr=M.data_ptr;
  98. own_data=M.own_data;
  99. dev=M.dev;
  100. dev_sig=M.dev_sig;
  101. M.dim[0]=dim_[0];
  102. M.dim[1]=dim_[1];
  103. M.data_ptr=data_ptr_;
  104. M.own_data=own_data_;
  105. M.dev=dev_;
  106. M.dev_sig=dev_sig_;
  107. }
  108. template <class T>
  109. void Matrix<T>::ReInit(size_t dim1, size_t dim2, T* data_, bool own_data_){
  110. if(own_data_ && own_data && dim[0]*dim[1]>=dim1*dim2){
  111. if(dim[0]*dim[1]!=dim1*dim2) FreeDevice(false);
  112. dim[0]=dim1; dim[1]=dim2;
  113. if(data_) mem::memcopy(data_ptr,data_,dim[0]*dim[1]*sizeof(T));
  114. }else{
  115. Matrix<T> tmp(dim1,dim2,data_,own_data_);
  116. this->Swap(tmp);
  117. }
  118. }
  119. template <class T>
  120. typename Matrix<T>::Device& Matrix<T>::AllocDevice(bool copy){
  121. size_t len=dim[0]*dim[1];
  122. if(dev.dev_ptr==(uintptr_t)NULL && len>0) // Allocate data on device.
  123. dev.dev_ptr=DeviceWrapper::alloc_device((char*)data_ptr, len*sizeof(T));
  124. if(dev.dev_ptr!=(uintptr_t)NULL && copy) // Copy data to device
  125. dev.lock_idx=DeviceWrapper::host2device((char*)data_ptr,(char*)data_ptr,dev.dev_ptr,len*sizeof(T));
  126. dev.dim[0]=dim[0];
  127. dev.dim[1]=dim[1];
  128. return dev;
  129. }
  130. template <class T>
  131. void Matrix<T>::Device2Host(T* host_ptr){
  132. dev.lock_idx=DeviceWrapper::device2host((char*)data_ptr,dev.dev_ptr,(char*)(host_ptr==NULL?data_ptr:host_ptr),dim[0]*dim[1]*sizeof(T));
  133. //#if defined(PVFMM_HAVE_CUDA)
  134. // cudaEventCreate(&lock);
  135. // cudaEventRecord(lock, 0);
  136. //#endif
  137. }
  138. template <class T>
  139. void Matrix<T>::Device2HostWait(){
  140. //#if defined(PVFMM_HAVE_CUDA)
  141. // cudaEventSynchronize(lock);
  142. // cudaEventDestroy(lock);
  143. //#endif
  144. DeviceWrapper::wait(dev.lock_idx);
  145. dev.lock_idx=-1;
  146. }
  147. template <class T>
  148. void Matrix<T>::FreeDevice(bool copy){
  149. if(dev.dev_ptr==(uintptr_t)NULL) return;
  150. if(copy) DeviceWrapper::device2host((char*)data_ptr,dev.dev_ptr,(char*)data_ptr,dim[0]*dim[1]*sizeof(T));
  151. DeviceWrapper::free_device((char*)data_ptr, dev.dev_ptr);
  152. dev.dev_ptr=(uintptr_t)NULL;
  153. dev.dim[0]=0;
  154. dev.dim[1]=0;
  155. }
  156. template <class T>
  157. void Matrix<T>::Write(const char* fname){
  158. FILE* f1=fopen(fname,"wb+");
  159. if(f1==NULL){
  160. std::cout<<"Unable to open file for writing:"<<fname<<'\n';
  161. return;
  162. }
  163. uint32_t dim_[2]={dim[0],dim[1]};
  164. fwrite(dim_,sizeof(uint32_t),2,f1);
  165. fwrite(data_ptr,sizeof(T),dim[0]*dim[1],f1);
  166. fclose(f1);
  167. }
  168. template <class T>
  169. void Matrix<T>::Read(const char* fname){
  170. FILE* f1=fopen(fname,"r");
  171. if(f1==NULL){
  172. std::cout<<"Unable to open file for reading:"<<fname<<'\n';
  173. return;
  174. }
  175. uint32_t dim_[2];
  176. size_t readlen=fread (dim_, sizeof(uint32_t), 2, f1);
  177. assert(readlen==2);
  178. ReInit(dim_[0],dim_[1]);
  179. readlen=fread(data_ptr,sizeof(T),dim[0]*dim[1],f1);
  180. assert(readlen==dim[0]*dim[1]);
  181. fclose(f1);
  182. }
  183. template <class T>
  184. size_t Matrix<T>::Dim(size_t i) const{
  185. return dim[i];
  186. }
  187. template <class T>
  188. void Matrix<T>::Resize(size_t i, size_t j){
  189. if(dim[0]*dim[1]!=i*j) FreeDevice(false);
  190. if(dim[0]*dim[1]>=i*j){
  191. dim[0]=i; dim[1]=j;
  192. }else ReInit(i,j);
  193. }
  194. template <class T>
  195. void Matrix<T>::SetZero(){
  196. if(dim[0]*dim[1])
  197. memset(data_ptr,0,dim[0]*dim[1]*sizeof(T));
  198. }
  199. template <class T>
  200. Matrix<T>& Matrix<T>::operator=(const Matrix<T>& M){
  201. if(this!=&M){
  202. if(dim[0]*dim[1]!=M.dim[0]*M.dim[1]) FreeDevice(false);
  203. if(dim[0]*dim[1]<M.dim[0]*M.dim[1]){
  204. ReInit(M.dim[0],M.dim[1]);
  205. }
  206. dim[0]=M.dim[0]; dim[1]=M.dim[1];
  207. mem::memcopy(data_ptr,M.data_ptr,dim[0]*dim[1]*sizeof(T));
  208. }
  209. return *this;
  210. }
  211. template <class T>
  212. Matrix<T>& Matrix<T>::operator+=(const Matrix<T>& M){
  213. assert(M.Dim(0)==Dim(0) && M.Dim(1)==Dim(1));
  214. Profile::Add_FLOP(dim[0]*dim[1]);
  215. for(size_t i=0;i<M.Dim(0)*M.Dim(1);i++)
  216. data_ptr[i]+=M.data_ptr[i];
  217. return *this;
  218. }
  219. template <class T>
  220. Matrix<T>& Matrix<T>::operator-=(const Matrix<T>& M){
  221. assert(M.Dim(0)==Dim(0) && M.Dim(1)==Dim(1));
  222. Profile::Add_FLOP(dim[0]*dim[1]);
  223. for(size_t i=0;i<M.Dim(0)*M.Dim(1);i++)
  224. data_ptr[i]-=M.data_ptr[i];
  225. return *this;
  226. }
  227. template <class T>
  228. Matrix<T> Matrix<T>::operator+(const Matrix<T>& M2){
  229. Matrix<T>& M1=*this;
  230. assert(M2.Dim(0)==M1.Dim(0) && M2.Dim(1)==M1.Dim(1));
  231. Profile::Add_FLOP(dim[0]*dim[1]);
  232. Matrix<T> M_r(M1.Dim(0),M1.Dim(1),NULL);
  233. for(size_t i=0;i<M1.Dim(0)*M1.Dim(1);i++)
  234. M_r[0][i]=M1[0][i]+M2[0][i];
  235. return M_r;
  236. }
  237. template <class T>
  238. Matrix<T> Matrix<T>::operator-(const Matrix<T>& M2){
  239. Matrix<T>& M1=*this;
  240. assert(M2.Dim(0)==M1.Dim(0) && M2.Dim(1)==M1.Dim(1));
  241. Profile::Add_FLOP(dim[0]*dim[1]);
  242. Matrix<T> M_r(M1.Dim(0),M1.Dim(1),NULL);
  243. for(size_t i=0;i<M1.Dim(0)*M1.Dim(1);i++)
  244. M_r[0][i]=M1[0][i]-M2[0][i];
  245. return M_r;
  246. }
  247. template <class T>
  248. inline T& Matrix<T>::operator()(size_t i,size_t j) const{
  249. assert(i<dim[0] && j<dim[1]);
  250. return data_ptr[i*dim[1]+j];
  251. }
  252. template <class T>
  253. inline T* Matrix<T>::operator[](size_t i) const{
  254. assert(i<dim[0]);
  255. return &data_ptr[i*dim[1]];
  256. }
  257. template <class T>
  258. Matrix<T> Matrix<T>::operator*(const Matrix<T>& M){
  259. assert(dim[1]==M.dim[0]);
  260. Profile::Add_FLOP(2*(((long long)dim[0])*dim[1])*M.dim[1]);
  261. Matrix<T> M_r(dim[0],M.dim[1],NULL);
  262. if(M.Dim(0)*M.Dim(1)==0 || this->Dim(0)*this->Dim(1)==0) return M_r;
  263. mat::gemm<T>('N','N',M.dim[1],dim[0],dim[1],
  264. 1.0,M.data_ptr,M.dim[1],data_ptr,dim[1],0.0,M_r.data_ptr,M_r.dim[1]);
  265. return M_r;
  266. }
  267. template <class T>
  268. void Matrix<T>::GEMM(Matrix<T>& M_r, const Matrix<T>& A, const Matrix<T>& B, T beta){
  269. if(A.Dim(0)*A.Dim(1)==0 || B.Dim(0)*B.Dim(1)==0) return;
  270. assert(A.dim[1]==B.dim[0]);
  271. assert(M_r.dim[0]==A.dim[0]);
  272. assert(M_r.dim[1]==B.dim[1]);
  273. #if !defined(__MIC__) || !defined(__INTEL_OFFLOAD)
  274. Profile::Add_FLOP(2*(((long long)A.dim[0])*A.dim[1])*B.dim[1]);
  275. #endif
  276. mat::gemm<T>('N','N',B.dim[1],A.dim[0],A.dim[1],
  277. 1.0,B.data_ptr,B.dim[1],A.data_ptr,A.dim[1],beta,M_r.data_ptr,M_r.dim[1]);
  278. }
  279. // cublasgemm wrapper
  280. #if defined(PVFMM_HAVE_CUDA)
  281. template <class T>
  282. void Matrix<T>::CUBLASGEMM(Matrix<T>& M_r, const Matrix<T>& A, const Matrix<T>& B, T beta){
  283. if(A.Dim(0)*A.Dim(1)==0 || B.Dim(0)*B.Dim(1)==0) return;
  284. assert(A.dim[1]==B.dim[0]);
  285. assert(M_r.dim[0]==A.dim[0]);
  286. assert(M_r.dim[1]==B.dim[1]);
  287. Profile::Add_FLOP(2*(((long long)A.dim[0])*A.dim[1])*B.dim[1]);
  288. mat::cublasgemm('N', 'N', B.dim[1], A.dim[0], A.dim[1],
  289. (T)1.0, B.data_ptr, B.dim[1], A.data_ptr, A.dim[1], beta, M_r.data_ptr, M_r.dim[1]);
  290. }
  291. #endif
  292. #define myswap(t,a,b) {t c=a;a=b;b=c;}
  293. template <class T>
  294. void Matrix<T>::RowPerm(const Permutation<T>& P){
  295. Matrix<T>& M=*this;
  296. if(P.Dim()==0) return;
  297. assert(M.Dim(0)==P.Dim());
  298. size_t d0=M.Dim(0);
  299. size_t d1=M.Dim(1);
  300. #pragma omp parallel for
  301. for(size_t i=0;i<d0;i++){
  302. T* M_=M[i];
  303. const T s=P.scal[i];
  304. for(size_t j=0;j<d1;j++) M_[j]*=s;
  305. }
  306. Permutation<T> P_=P;
  307. for(size_t i=0;i<d0;i++)
  308. while(P_.perm[i]!=i){
  309. size_t a=P_.perm[i];
  310. size_t b=i;
  311. T* M_a=M[a];
  312. T* M_b=M[b];
  313. myswap(size_t,P_.perm[a],P_.perm[b]);
  314. for(size_t j=0;j<d1;j++)
  315. myswap(T,M_a[j],M_b[j]);
  316. }
  317. }
  318. template <class T>
  319. void Matrix<T>::ColPerm(const Permutation<T>& P){
  320. Matrix<T>& M=*this;
  321. if(P.Dim()==0) return;
  322. assert(M.Dim(1)==P.Dim());
  323. size_t d0=M.Dim(0);
  324. size_t d1=M.Dim(1);
  325. int omp_p=omp_get_max_threads();
  326. Matrix<T> M_buff(omp_p,d1);
  327. const size_t* perm_=&(P.perm[0]);
  328. const T* scal_=&(P.scal[0]);
  329. #pragma omp parallel for
  330. for(size_t i=0;i<d0;i++){
  331. int pid=omp_get_thread_num();
  332. T* buff=&M_buff[pid][0];
  333. T* M_=M[i];
  334. for(size_t j=0;j<d1;j++)
  335. buff[j]=M_[j];
  336. for(size_t j=0;j<d1;j++){
  337. M_[j]=buff[perm_[j]]*scal_[j];
  338. }
  339. }
  340. }
  341. #undef myswap
  342. #define B1 128
  343. #define B2 32
  344. template <class T>
  345. Matrix<T> Matrix<T>::Transpose(){
  346. Matrix<T>& M=*this;
  347. size_t d0=M.dim[0];
  348. size_t d1=M.dim[1];
  349. Matrix<T> M_r(d1,d0,NULL);
  350. const size_t blk0=((d0+B1-1)/B1);
  351. const size_t blk1=((d1+B1-1)/B1);
  352. const size_t blks=blk0*blk1;
  353. // #pragma omp parallel for
  354. for(size_t k=0;k<blks;k++){
  355. size_t i=(k%blk0)*B1;
  356. size_t j=(k/blk0)*B1;
  357. // for(size_t i=0;i<d0;i+=B1)
  358. // for(size_t j=0;j<d1;j+=B1){
  359. size_t d0_=i+B1; if(d0_>=d0) d0_=d0;
  360. size_t d1_=j+B1; if(d1_>=d1) d1_=d1;
  361. for(size_t ii=i;ii<d0_;ii+=B2)
  362. for(size_t jj=j;jj<d1_;jj+=B2){
  363. size_t d0__=ii+B2; if(d0__>=d0) d0__=d0;
  364. size_t d1__=jj+B2; if(d1__>=d1) d1__=d1;
  365. for(size_t iii=ii;iii<d0__;iii++)
  366. for(size_t jjj=jj;jjj<d1__;jjj++){
  367. M_r[jjj][iii]=M[iii][jjj];
  368. }
  369. }
  370. }
  371. // for(size_t i=0;i<d0;i++)
  372. // for(size_t j=0;j<d1;j++)
  373. // M_r[j][i]=M[i][j];
  374. return M_r;
  375. }
  376. template <class T>
  377. void Matrix<T>::Transpose(Matrix<T>& M_r, const Matrix<T>& M){
  378. size_t d0=M.dim[0];
  379. size_t d1=M.dim[1];
  380. M_r.Resize(d1, d0);
  381. const size_t blk0=((d0+B1-1)/B1);
  382. const size_t blk1=((d1+B1-1)/B1);
  383. const size_t blks=blk0*blk1;
  384. #pragma omp parallel for
  385. for(size_t k=0;k<blks;k++){
  386. size_t i=(k%blk0)*B1;
  387. size_t j=(k/blk0)*B1;
  388. // for(size_t i=0;i<d0;i+=B1)
  389. // for(size_t j=0;j<d1;j+=B1){
  390. size_t d0_=i+B1; if(d0_>=d0) d0_=d0;
  391. size_t d1_=j+B1; if(d1_>=d1) d1_=d1;
  392. for(size_t ii=i;ii<d0_;ii+=B2)
  393. for(size_t jj=j;jj<d1_;jj+=B2){
  394. size_t d0__=ii+B2; if(d0__>=d0) d0__=d0;
  395. size_t d1__=jj+B2; if(d1__>=d1) d1__=d1;
  396. for(size_t iii=ii;iii<d0__;iii++)
  397. for(size_t jjj=jj;jjj<d1__;jjj++){
  398. M_r[jjj][iii]=M[iii][jjj];
  399. }
  400. }
  401. }
  402. }
  403. #undef B2
  404. #undef B1
  405. template <class T>
  406. void Matrix<T>::SVD(Matrix<T>& tU, Matrix<T>& tS, Matrix<T>& tVT){
  407. pvfmm::Matrix<T>& M=*this;
  408. pvfmm::Matrix<T> M_=M;
  409. int n=M.Dim(0);
  410. int m=M.Dim(1);
  411. int k = (m<n?m:n);
  412. tU.Resize(n,k); tU.SetZero();
  413. tS.Resize(k,k); tS.SetZero();
  414. tVT.Resize(k,m); tVT.SetZero();
  415. //SVD
  416. int INFO=0;
  417. char JOBU = 'S';
  418. char JOBVT = 'S';
  419. int wssize = 3*(m<n?m:n)+(m>n?m:n);
  420. int wssize1 = 5*(m<n?m:n);
  421. wssize = (wssize>wssize1?wssize:wssize1);
  422. T* wsbuf = mem::aligned_new<T>(wssize);
  423. pvfmm::mat::svd(&JOBU, &JOBVT, &m, &n, &M[0][0], &m, &tS[0][0], &tVT[0][0], &m, &tU[0][0], &k, wsbuf, &wssize, &INFO);
  424. mem::aligned_delete<T>(wsbuf);
  425. if(INFO!=0) std::cout<<INFO<<'\n';
  426. assert(INFO==0);
  427. for(size_t i=1;i<k;i++){
  428. tS[i][i]=tS[0][i];
  429. tS[0][i]=0;
  430. }
  431. //std::cout<<tU*tS*tVT-M_<<'\n';
  432. }
  433. template <class T>
  434. Matrix<T> Matrix<T>::pinv(T eps){
  435. if(eps<0){
  436. eps=1.0;
  437. while(eps+(T)1.0>1.0) eps*=0.5;
  438. eps=pvfmm::sqrt<T>(eps);
  439. }
  440. Matrix<T> M_r(dim[1],dim[0]);
  441. mat::pinv(data_ptr,dim[0],dim[1],eps,M_r.data_ptr);
  442. this->Resize(0,0);
  443. return M_r;
  444. }
  445. template <class T>
  446. std::ostream& operator<<(std::ostream& output, const Permutation<T>& P){
  447. output<<std::setprecision(4)<<std::setiosflags(std::ios::left);
  448. size_t size=P.perm.Dim();
  449. for(size_t i=0;i<size;i++) output<<std::setw(10)<<P.perm[i]<<' ';
  450. output<<";\n";
  451. for(size_t i=0;i<size;i++) output<<std::setw(10)<<P.scal[i]<<' ';
  452. output<<";\n";
  453. return output;
  454. }
  455. template <class T>
  456. Permutation<T>::Permutation(size_t size){
  457. perm.Resize(size);
  458. scal.Resize(size);
  459. for(size_t i=0;i<size;i++){
  460. perm[i]=i;
  461. scal[i]=1.0;
  462. }
  463. }
  464. template <class T>
  465. Permutation<T> Permutation<T>::RandPerm(size_t size){
  466. Permutation<T> P(size);
  467. for(size_t i=0;i<size;i++){
  468. P.perm[i]=rand()%size;
  469. for(size_t j=0;j<i;j++)
  470. if(P.perm[i]==P.perm[j]){ i--; break; }
  471. P.scal[i]=((T)rand())/RAND_MAX;
  472. }
  473. return P;
  474. }
  475. template <class T>
  476. Matrix<T> Permutation<T>::GetMatrix() const{
  477. size_t size=perm.Dim();
  478. Matrix<T> M_r(size,size,NULL);
  479. for(size_t i=0;i<size;i++)
  480. for(size_t j=0;j<size;j++)
  481. M_r[i][j]=(perm[j]==i?scal[j]:0.0);
  482. return M_r;
  483. }
  484. template <class T>
  485. size_t Permutation<T>::Dim() const{
  486. return perm.Dim();
  487. }
  488. template <class T>
  489. Permutation<T> Permutation<T>::Transpose(){
  490. size_t size=perm.Dim();
  491. Permutation<T> P_r(size);
  492. Vector<PERM_INT_T>& perm_r=P_r.perm;
  493. Vector<T>& scal_r=P_r.scal;
  494. for(size_t i=0;i<size;i++){
  495. perm_r[perm[i]]=i;
  496. scal_r[perm[i]]=scal[i];
  497. }
  498. return P_r;
  499. }
  500. template <class T>
  501. Permutation<T> Permutation<T>::operator*(const Permutation<T>& P){
  502. size_t size=perm.Dim();
  503. assert(P.Dim()==size);
  504. Permutation<T> P_r(size);
  505. Vector<PERM_INT_T>& perm_r=P_r.perm;
  506. Vector<T>& scal_r=P_r.scal;
  507. for(size_t i=0;i<size;i++){
  508. perm_r[i]=perm[P.perm[i]];
  509. scal_r[i]=scal[P.perm[i]]*P.scal[i];
  510. }
  511. return P_r;
  512. }
  513. template <class T>
  514. Matrix<T> Permutation<T>::operator*(const Matrix<T>& M){
  515. if(Dim()==0) return M;
  516. assert(M.Dim(0)==Dim());
  517. size_t d0=M.Dim(0);
  518. size_t d1=M.Dim(1);
  519. Matrix<T> M_r(d0,d1,NULL);
  520. for(size_t i=0;i<d0;i++){
  521. const T s=scal[i];
  522. const T* M_=M[i];
  523. T* M_r_=M_r[perm[i]];
  524. for(size_t j=0;j<d1;j++)
  525. M_r_[j]=M_[j]*s;
  526. }
  527. return M_r;
  528. }
  529. template <class T>
  530. Matrix<T> operator*(const Matrix<T>& M, const Permutation<T>& P){
  531. if(P.Dim()==0) return M;
  532. assert(M.Dim(1)==P.Dim());
  533. size_t d0=M.Dim(0);
  534. size_t d1=M.Dim(1);
  535. Matrix<T> M_r(d0,d1,NULL);
  536. for(size_t i=0;i<d0;i++){
  537. const PERM_INT_T* perm_=&(P.perm[0]);
  538. const T* scal_=&(P.scal[0]);
  539. const T* M_=M[i];
  540. T* M_r_=M_r[i];
  541. for(size_t j=0;j<d1;j++)
  542. M_r_[j]=M_[perm_[j]]*scal_[j];
  543. }
  544. return M_r;
  545. }
  546. }//end namespace