fmm_cheb.txx 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091
  1. /**
  2. * \file fmm_cheb.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 3-07-2011
  5. * \brief This file contains the implementation of the FMM_Cheb class.
  6. */
  7. #include <omp.h>
  8. #include <sstream>
  9. #include <iostream>
  10. #include <cstdlib>
  11. #include <cmath>
  12. #ifdef PVFMM_HAVE_SYS_STAT_H
  13. #include <sys/stat.h>
  14. #endif
  15. #include <dtypes.h>
  16. #include <parUtils.h>
  17. #include <cheb_utils.hpp>
  18. #include <mem_mgr.hpp>
  19. #include <profile.hpp>
  20. namespace pvfmm{
  21. template <class FMMNode>
  22. FMM_Cheb<FMMNode>::~FMM_Cheb() {
  23. if(this->mat!=NULL){
  24. int rank;
  25. MPI_Comm_rank(this->comm,&rank);
  26. if(!rank){
  27. FILE* f=fopen(this->mat_fname.c_str(),"r");
  28. if(f==NULL) { //File does not exists.
  29. { // Delete easy to compute matrices.
  30. Mat_Type type=W_Type;
  31. for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
  32. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  33. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  34. M.Resize(0,0);
  35. }
  36. type=V_Type;
  37. for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
  38. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  39. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  40. M.Resize(0,0);
  41. }
  42. type=V1_Type;
  43. for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
  44. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  45. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  46. M.Resize(0,0);
  47. }
  48. type=U2U_Type;
  49. for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
  50. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  51. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  52. M.Resize(0,0);
  53. }
  54. type=D2D_Type;
  55. for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
  56. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  57. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  58. M.Resize(0,0);
  59. }
  60. type=D2T_Type;
  61. for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
  62. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  63. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  64. M.Resize(0,0);
  65. }
  66. }
  67. this->mat->Save2File(this->mat_fname.c_str());
  68. }else fclose(f);
  69. }
  70. }
  71. }
  72. template <class FMMNode>
  73. void FMM_Cheb<FMMNode>::Initialize(int mult_order, int cheb_deg_, const MPI_Comm& comm_, const Kernel<Real_t>* kernel_){
  74. Profile::Tic("InitFMM_Cheb",&comm_,true);{
  75. int rank;
  76. MPI_Comm_rank(comm_,&rank);
  77. int dim=3; //Only supporting 3D
  78. cheb_deg=cheb_deg_;
  79. if(this->mat_fname.size()==0){
  80. std::stringstream st;
  81. st<<PVFMM_PRECOMP_DATA_PATH;
  82. if(!st.str().size()){ // look in PVFMM_DIR
  83. char* pvfmm_dir = getenv ("PVFMM_DIR");
  84. if(pvfmm_dir) st<<pvfmm_dir;
  85. }
  86. #ifndef STAT_MACROS_BROKEN
  87. if(st.str().size()){ // check if the path is a directory
  88. struct stat stat_buff;
  89. if(stat(st.str().c_str(), &stat_buff) || !S_ISDIR(stat_buff.st_mode)){
  90. std::cout<<"error: path not found: "<<st.str()<<'\n';
  91. exit(0);
  92. }
  93. }
  94. #endif
  95. if(st.str().size()) st<<'/';
  96. st<<"Precomp_"<<kernel_->ker_name.c_str()<<"_q"<<cheb_deg<<"_m"<<mult_order;
  97. if(sizeof(Real_t)==8) st<<"";
  98. else if(sizeof(Real_t)==4) st<<"_f";
  99. else st<<"_t"<<sizeof(Real_t);
  100. st<<".data";
  101. this->mat_fname=st.str();
  102. }
  103. if(!rank){
  104. FILE* f=fopen(this->mat_fname.c_str(),"r");
  105. if(f==NULL) { //File does not exists.
  106. std::cout<<"Could not find precomputed data file for "<<kernel_->ker_name.c_str()<<" kernel with q="<<cheb_deg<<" and m="<<mult_order<<".\n";
  107. std::cout<<"This data will be computed and stored for future use at:\n"<<this->mat_fname<<'\n';
  108. std::cout<<"This may take a while...\n";
  109. }else fclose(f);
  110. }
  111. //this->mat->LoadFile(this->mat_fname.c_str(), this->comm);
  112. FMM_Pts<FMMNode>::Initialize(mult_order, comm_, kernel_);
  113. this->mat->RelativeTrgCoord()=cheb_nodes<Real_t>(ChebDeg(),dim);
  114. Profile::Tic("PrecompD2T",&this->comm,false,4);
  115. this->PrecompAll(D2T_Type);
  116. Profile::Toc();
  117. //Volume solver.
  118. Profile::Tic("PrecompS2M",&this->comm,false,4);
  119. this->PrecompAll(S2U_Type);
  120. Profile::Toc();
  121. Profile::Tic("PrecompX",&this->comm,false,4);
  122. this->PrecompAll(X_Type);
  123. Profile::Toc();
  124. Profile::Tic("PrecompW",&this->comm,false,4);
  125. this->PrecompAll(W_Type);
  126. Profile::Toc();
  127. Profile::Tic("PrecompU0",&this->comm,false,4);
  128. this->PrecompAll(U0_Type);
  129. Profile::Toc();
  130. Profile::Tic("PrecompU1",&this->comm,false,4);
  131. this->PrecompAll(U1_Type);
  132. Profile::Toc();
  133. Profile::Tic("PrecompU2",&this->comm,false,4);
  134. this->PrecompAll(U2_Type);
  135. Profile::Toc();
  136. Profile::Tic("Save2File",&this->comm,false,4);
  137. if(!rank){
  138. FILE* f=fopen(this->mat_fname.c_str(),"r");
  139. if(f==NULL) { //File does not exists.
  140. { // Delete easy to compute matrices.
  141. Mat_Type type=W_Type;
  142. for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
  143. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  144. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  145. M.Resize(0,0);
  146. }
  147. type=V_Type;
  148. for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
  149. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  150. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  151. M.Resize(0,0);
  152. }
  153. type=V1_Type;
  154. for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
  155. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  156. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  157. M.Resize(0,0);
  158. }
  159. type=U2U_Type;
  160. for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
  161. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  162. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  163. M.Resize(0,0);
  164. }
  165. type=D2D_Type;
  166. for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
  167. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  168. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  169. M.Resize(0,0);
  170. }
  171. type=D2T_Type;
  172. for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
  173. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  174. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  175. M.Resize(0,0);
  176. }
  177. }
  178. this->mat->Save2File(this->mat_fname.c_str());
  179. }else fclose(f);
  180. }
  181. Profile::Toc();
  182. Profile::Tic("Recompute",&this->comm,false,4);
  183. { // Recompute matrices.
  184. this->PrecompAll(W_Type);
  185. this->PrecompAll(V_Type);
  186. this->PrecompAll(V1_Type);
  187. this->PrecompAll(U2U_Type);
  188. this->PrecompAll(D2D_Type);
  189. this->PrecompAll(D2T_Type);
  190. }
  191. Profile::Toc();
  192. }Profile::Toc();
  193. }
  194. template <class Real_t>
  195. Permutation<Real_t> cheb_perm(size_t q, size_t p_indx, const Permutation<Real_t>& ker_perm, const Vector<Real_t>* scal_exp=NULL){
  196. int dim=3; //Only supporting 3D
  197. int dof=ker_perm.Dim();
  198. int coeff_cnt=((q+1)*(q+2)*(q+3))/6;
  199. int n3=(int)pow((Real_t)(q+1),dim);
  200. Permutation<Real_t> P0(n3*dof);
  201. if(scal_exp && p_indx==Scaling){ // Set level-by-level scaling
  202. assert(dof==scal_exp->Dim());
  203. Vector<Real_t> scal(scal_exp->Dim());
  204. for(size_t i=0;i<scal.Dim();i++){
  205. scal[i]=pow(2.0,(*scal_exp)[i]);
  206. }
  207. for(int j=0;j<dof;j++){
  208. for(int i=0;i<n3;i++){
  209. P0.scal[j*n3+i]*=scal[j];
  210. }
  211. }
  212. }
  213. { // Set P0.scal
  214. for(int j=0;j<dof;j++){
  215. for(int i=0;i<n3;i++){
  216. P0.scal[j*n3+i]*=ker_perm.scal[j];
  217. }
  218. }
  219. }
  220. if(p_indx==ReflecX || p_indx==ReflecY || p_indx==ReflecZ){
  221. for(int j=0;j<dof;j++)
  222. for(int i=0;i<n3;i++){
  223. size_t x[3]={i%(q+1), (i/(q+1))%(q+1), i/(q+1)/(q+1)};
  224. P0.scal[i+n3*j]*=(x[p_indx-ReflecX]%2?-1.0:1.0);
  225. }
  226. }
  227. { // Set P0.perm
  228. int indx[3]={0,1,2};
  229. if(p_indx==SwapXY) {indx[0]=1; indx[1]=0; indx[2]=2;}
  230. if(p_indx==SwapXZ) {indx[0]=2; indx[1]=1; indx[2]=0;}
  231. for(int j=0;j<dof;j++)
  232. for(int i=0;i<n3;i++){
  233. size_t x[3]={i%(q+1), (i/(q+1))%(q+1), i/(q+1)/(q+1)};
  234. P0.perm[i+n3*j]=x[indx[0]]+(x[indx[1]]+x[indx[2]]*(q+1))*(q+1)
  235. +n3*ker_perm.perm[j];
  236. }
  237. }
  238. std::vector<size_t> coeff_map(n3*dof,0);
  239. {
  240. int indx=0;
  241. for(int j=0;j<dof;j++)
  242. for(int i=0;i<n3;i++){
  243. size_t x[3]={i%(q+1), (i/(q+1))%(q+1), i/(q+1)/(q+1)};
  244. if(x[0]+x[1]+x[2]<=q){
  245. coeff_map[i+n3*j]=indx;
  246. indx++;
  247. }
  248. }
  249. }
  250. Permutation<Real_t> P=Permutation<Real_t>(coeff_cnt*dof);
  251. {
  252. int indx=0;
  253. for(int j=0;j<dof;j++)
  254. for(int i=0;i<n3;i++){
  255. size_t x[3]={i%(q+1), (i/(q+1))%(q+1), i/(q+1)/(q+1)};
  256. if(x[0]+x[1]+x[2]<=q){
  257. P.perm[indx]=coeff_map[P0.perm[i+n3*j]];
  258. P.scal[indx]= P0.scal[i+n3*j] ;
  259. indx++;
  260. }
  261. }
  262. }
  263. return P;
  264. }
  265. template <class FMMNode>
  266. Permutation<typename FMMNode::Real_t>& FMM_Cheb<FMMNode>::PrecompPerm(Mat_Type type, Perm_Type perm_indx){
  267. int dim=3; //Only supporting 3D
  268. Real_t eps=1e-10;
  269. //Check if the matrix already exists.
  270. Permutation<Real_t>& P_ = FMM_Pts<FMMNode>::PrecompPerm(type, perm_indx);
  271. if(P_.Dim()!=0) return P_;
  272. size_t q=cheb_deg;
  273. size_t m=this->MultipoleOrder();
  274. size_t p_indx=perm_indx % C_Perm;
  275. //Compute the matrix.
  276. Permutation<Real_t> P;
  277. switch (type){
  278. case UC2UE_Type:
  279. {
  280. break;
  281. }
  282. case DC2DE_Type:
  283. {
  284. break;
  285. }
  286. case S2U_Type:
  287. {
  288. Vector<Real_t> scal_exp;
  289. Permutation<Real_t> ker_perm;
  290. if(perm_indx<C_Perm){
  291. ker_perm=this->kernel->k_s2m->perm_vec[0 +p_indx];
  292. scal_exp=this->kernel->k_s2m->src_scal;
  293. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]-=COORD_DIM;
  294. P=cheb_perm(q, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
  295. }else{
  296. ker_perm=this->kernel->k_m2m->perm_vec[0 +p_indx];
  297. scal_exp=this->kernel->k_m2m->src_scal;
  298. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]=-scal_exp[i];
  299. // Check that target perm for the two kernels agree.
  300. Permutation<Real_t> ker_perm0=this->kernel->k_s2m->perm_vec[C_Perm+p_indx];
  301. Permutation<Real_t> ker_perm1=this->kernel->k_m2m->perm_vec[C_Perm+p_indx];
  302. assert(ker_perm0.Dim()>0 && ker_perm0.Dim()==ker_perm1.Dim());
  303. if(fabs(ker_perm0.scal[0]-ker_perm1.scal[0])>eps){
  304. for(size_t i=0;i<ker_perm0.Dim();i++){
  305. ker_perm0.scal[i]*=-1.0;
  306. }
  307. for(size_t i=0;i<ker_perm.Dim();i++){
  308. ker_perm.scal[i]*=-1.0;
  309. }
  310. }
  311. for(size_t i=0;i<ker_perm0.Dim();i++){
  312. assert( (ker_perm0.perm[i]-ker_perm1.perm[i])== 0);
  313. assert(fabs(ker_perm0.scal[i]-ker_perm1.scal[i])<eps);
  314. }
  315. // Check that target scaling for the two kernels agree.
  316. const Vector<Real_t>& scal_exp0=this->kernel->k_s2m->trg_scal;
  317. const Vector<Real_t>& scal_exp1=this->kernel->k_m2m->trg_scal;
  318. assert(scal_exp0.Dim()>0 && scal_exp0.Dim()==scal_exp1.Dim());
  319. Real_t s=(scal_exp0[0]-scal_exp1[0]);
  320. for(size_t i=1;i<scal_exp0.Dim();i++){
  321. assert(fabs(s-(scal_exp0[i]-scal_exp1[i]))<eps);
  322. // In general this is not necessary, but to allow this, we must
  323. // also change src_scal accordingly.
  324. }
  325. // Apply the difference in scaling of the two kernels.
  326. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]+=s;
  327. P=equiv_surf_perm(m, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
  328. }
  329. break;
  330. }
  331. case U2U_Type:
  332. {
  333. break;
  334. }
  335. case D2D_Type:
  336. {
  337. break;
  338. }
  339. case D2T_Type:
  340. {
  341. Vector<Real_t> scal_exp;
  342. Permutation<Real_t> ker_perm;
  343. if(perm_indx<C_Perm){ // Source permutation
  344. ker_perm=this->kernel->k_l2t->perm_vec[0 +p_indx];
  345. scal_exp=this->kernel->k_l2t->src_scal;
  346. P=equiv_surf_perm(m, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
  347. }else{ // Target permutation
  348. ker_perm=this->kernel->k_l2t->perm_vec[C_Perm+p_indx];
  349. scal_exp=this->kernel->k_l2t->trg_scal;
  350. P=cheb_perm(q, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
  351. }
  352. break;
  353. }
  354. case U0_Type:
  355. {
  356. Vector<Real_t> scal_exp;
  357. Permutation<Real_t> ker_perm;
  358. if(perm_indx<C_Perm){
  359. ker_perm=this->kernel->k_s2t->perm_vec[0 +p_indx];
  360. scal_exp=this->kernel->k_s2t->src_scal;
  361. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]-=COORD_DIM;
  362. }else{
  363. ker_perm=this->kernel->k_s2t->perm_vec[C_Perm+p_indx];
  364. scal_exp=this->kernel->k_s2t->trg_scal;
  365. }
  366. P=cheb_perm(q, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
  367. break;
  368. }
  369. case U1_Type:
  370. {
  371. P=PrecompPerm(U0_Type, perm_indx);
  372. break;
  373. }
  374. case U2_Type:
  375. {
  376. P=PrecompPerm(U0_Type, perm_indx);
  377. break;
  378. }
  379. case V_Type:
  380. {
  381. break;
  382. }
  383. case V1_Type:
  384. {
  385. break;
  386. }
  387. case W_Type:
  388. {
  389. Vector<Real_t> scal_exp;
  390. Permutation<Real_t> ker_perm;
  391. if(perm_indx<C_Perm){ // Source permutation
  392. ker_perm=this->kernel->k_m2t->perm_vec[0 +p_indx];
  393. scal_exp=this->kernel->k_m2t->src_scal;
  394. P=equiv_surf_perm(m, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
  395. }else{ // Target permutation
  396. ker_perm=this->kernel->k_m2t->perm_vec[C_Perm+p_indx];
  397. scal_exp=this->kernel->k_m2t->trg_scal;
  398. P=cheb_perm(q, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
  399. }
  400. break;
  401. }
  402. case X_Type:
  403. {
  404. Vector<Real_t> scal_exp;
  405. Permutation<Real_t> ker_perm;
  406. if(perm_indx<C_Perm){
  407. ker_perm=this->kernel->k_s2l->perm_vec[0 +p_indx];
  408. scal_exp=this->kernel->k_s2l->src_scal;
  409. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]-=COORD_DIM;
  410. P=cheb_perm(q, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
  411. }else{
  412. ker_perm=this->kernel->k_l2l->perm_vec[0 +p_indx];
  413. scal_exp=this->kernel->k_l2l->src_scal;
  414. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]=-scal_exp[i];
  415. // Check that target perm for the two kernels agree.
  416. Permutation<Real_t> ker_perm0=this->kernel->k_s2l->perm_vec[C_Perm+p_indx];
  417. Permutation<Real_t> ker_perm1=this->kernel->k_l2l->perm_vec[C_Perm+p_indx];
  418. assert(ker_perm0.Dim()>0 && ker_perm0.Dim()==ker_perm1.Dim());
  419. if(fabs(ker_perm0.scal[0]-ker_perm1.scal[0])>eps){
  420. for(size_t i=0;i<ker_perm0.Dim();i++){
  421. ker_perm0.scal[i]*=-1.0;
  422. }
  423. for(size_t i=0;i<ker_perm.Dim();i++){
  424. ker_perm.scal[i]*=-1.0;
  425. }
  426. }
  427. for(size_t i=0;i<ker_perm0.Dim();i++){
  428. assert( (ker_perm0.perm[i]-ker_perm1.perm[i])== 0);
  429. assert(fabs(ker_perm0.scal[i]-ker_perm1.scal[i])<eps);
  430. }
  431. // Check that target scaling for the two kernels agree.
  432. const Vector<Real_t>& scal_exp0=this->kernel->k_s2l->trg_scal;
  433. const Vector<Real_t>& scal_exp1=this->kernel->k_l2l->trg_scal;
  434. assert(scal_exp0.Dim()>0 && scal_exp0.Dim()==scal_exp1.Dim());
  435. Real_t s=(scal_exp0[0]-scal_exp1[0]);
  436. for(size_t i=1;i<scal_exp0.Dim();i++){
  437. assert(fabs(s-(scal_exp0[i]-scal_exp1[i]))<eps);
  438. // In general this is not necessary, but to allow this, we must
  439. // also change src_scal accordingly.
  440. }
  441. // Apply the difference in scaling of the two kernels.
  442. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]+=s;
  443. P=equiv_surf_perm(m, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
  444. }
  445. break;
  446. }
  447. default:
  448. return FMM_Pts<FMMNode>::PrecompPerm(type, perm_indx);
  449. break;
  450. }
  451. //Save the matrix for future use.
  452. #pragma omp critical (PRECOMP_MATRIX_PTS)
  453. if(P_.Dim()==0){ P_=P;}
  454. return P_;
  455. }
  456. template <class FMMNode>
  457. Matrix<typename FMMNode::Real_t>& FMM_Cheb<FMMNode>::Precomp(int level, Mat_Type type, size_t mat_indx){
  458. if(this->Homogen()) level=0;
  459. //Check if the matrix already exists.
  460. //Compute matrix from symmetry class (if possible).
  461. Matrix<Real_t>& M_ = this->mat->Mat(level, type, mat_indx);
  462. if(M_.Dim(0)!=0 && M_.Dim(1)!=0) return M_;
  463. else{ //Compute matrix from symmetry class (if possible).
  464. size_t class_indx = this->interac_list.InteracClass(type, mat_indx);
  465. if(class_indx!=mat_indx){
  466. Matrix<Real_t>& M0 = this->Precomp(level, type, class_indx);
  467. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, type, mat_indx);
  468. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, type, mat_indx);
  469. if(Pr.Dim()>0 && Pc.Dim()>0 && M0.Dim(0)>0 && M0.Dim(1)>0) return M_;
  470. }
  471. }
  472. int myrank, np;
  473. MPI_Comm_rank(this->comm, &myrank);
  474. MPI_Comm_size(this->comm,&np);
  475. size_t progress=0, class_count=0;
  476. { // Determine precomputation progress.
  477. size_t mat_cnt=this->interac_list.ListCount((Mat_Type)type);
  478. for(size_t i=0; i<mat_cnt; i++){
  479. size_t indx=this->interac_list.InteracClass((Mat_Type)type,i);
  480. if(indx==i){
  481. class_count++;
  482. if(i<mat_indx) progress++;
  483. }
  484. }
  485. }
  486. //Compute the matrix.
  487. Matrix<Real_t> M;
  488. int n_src=((cheb_deg+1)*(cheb_deg+2)*(cheb_deg+3))/6;
  489. switch (type){
  490. case S2U_Type:
  491. {
  492. if(this->MultipoleOrder()==0) break;
  493. Real_t r=pow(0.5,level);
  494. Real_t c[3]={0,0,0};
  495. // Coord of upward check surface
  496. std::vector<Real_t> uc_coord=u_check_surf(this->MultipoleOrder(),c,level);
  497. size_t n_uc=uc_coord.size()/3;
  498. // Evaluate potential at check surface.
  499. Matrix<Real_t> M_s2c(n_src*this->kernel->k_s2m->ker_dim[0],n_uc*this->kernel->k_s2m->ker_dim[1]); //source 2 check
  500. Matrix<Real_t> M_s2c_local(n_src*this->kernel->k_s2m->ker_dim[0],n_uc*this->kernel->k_s2m->ker_dim[1]);
  501. {
  502. M_s2c.SetZero();
  503. M_s2c_local.SetZero();
  504. size_t cnt_done=0;
  505. #pragma omp parallel for schedule(dynamic)
  506. for(size_t i=myrank;i<n_uc;i+=np){
  507. std::vector<Real_t> M_=cheb_integ(cheb_deg, &uc_coord[i*3], r, *this->kernel->k_s2m);
  508. #ifdef __VERBOSE__
  509. #pragma omp critical
  510. if(!myrank){
  511. cnt_done++;
  512. std::cout<<"\r Progress: "<<(100*progress*n_uc+100*cnt_done*np)/(class_count*n_uc)<<"% "<<std::flush;
  513. }
  514. #endif
  515. for(int k=0; k<this->kernel->k_s2m->ker_dim[1]; k++)
  516. for(size_t j=0; j<(size_t)M_s2c.Dim(0); j++)
  517. M_s2c_local[j][i*this->kernel->k_s2m->ker_dim[1]+k] = M_[j+k*M_s2c.Dim(0)];
  518. }
  519. if(!myrank) std::cout<<"\r \r"<<std::flush;
  520. MPI_Allreduce(M_s2c_local[0], M_s2c[0], M_s2c.Dim(0)*M_s2c.Dim(1), par::Mpi_datatype<Real_t>::value(), par::Mpi_datatype<Real_t>::sum(), this->comm);
  521. }
  522. Matrix<Real_t>& M_c2e = this->Precomp(level, UC2UE_Type, 0);
  523. M=M_s2c*M_c2e;
  524. break;
  525. }
  526. case D2T_Type:
  527. {
  528. if(this->MultipoleOrder()==0) break;
  529. Matrix<Real_t>& M_s2t=FMM_Pts<FMMNode>::Precomp(level, type, mat_indx);
  530. int n_trg=M_s2t.Dim(1)/this->kernel->k_l2t->ker_dim[1];
  531. // Compute Chebyshev approx from target potential.
  532. M.Resize(M_s2t.Dim(0), n_src*this->kernel->k_l2t->ker_dim [1]);
  533. #pragma omp parallel for schedule(dynamic)
  534. for(size_t j=0; j<(size_t)M_s2t.Dim(0); j++){
  535. Matrix<Real_t> M_trg(n_trg,this->kernel->k_l2t->ker_dim[1],M_s2t[j],false);
  536. M_trg=M_trg.Transpose();
  537. cheb_approx<Real_t,Real_t>(M_s2t[j],cheb_deg,this->kernel->k_l2t->ker_dim[1],M[j]);
  538. }
  539. #pragma omp critical (PRECOMP_MATRIX_PTS)
  540. {
  541. M_s2t.Resize(0,0);
  542. }
  543. break;
  544. }
  545. case U0_Type:
  546. {
  547. // Coord of target points
  548. Real_t s=pow(0.5,level);
  549. int* coord=this->interac_list.RelativeCoord(type,mat_indx);
  550. Real_t coord_diff[3]={(coord[0]-1)*s*0.5,(coord[1]-1)*s*0.5,(coord[2]-1)*s*0.5};
  551. std::vector<Real_t>& rel_trg_coord = this->mat->RelativeTrgCoord();
  552. size_t n_trg = rel_trg_coord.size()/3;
  553. std::vector<Real_t> trg_coord(n_trg*3);
  554. for(size_t j=0;j<n_trg;j++){
  555. trg_coord[j*3+0]=rel_trg_coord[j*3+0]*s-coord_diff[0];
  556. trg_coord[j*3+1]=rel_trg_coord[j*3+1]*s-coord_diff[1];
  557. trg_coord[j*3+2]=rel_trg_coord[j*3+2]*s-coord_diff[2];
  558. }
  559. // Evaluate potential at target points.
  560. Matrix<Real_t> M_s2t(n_src*this->kernel->k_s2t->ker_dim [0], n_trg*this->kernel->k_s2t->ker_dim [1]);
  561. Matrix<Real_t> M_s2t_local(n_src*this->kernel->k_s2t->ker_dim [0], n_trg*this->kernel->k_s2t->ker_dim [1]);
  562. {
  563. M_s2t.SetZero();
  564. M_s2t_local.SetZero();
  565. size_t cnt_done=0;
  566. #pragma omp parallel for schedule(dynamic)
  567. for(size_t i=myrank;i<n_trg;i+=np){
  568. std::vector<Real_t> s2t=cheb_integ(cheb_deg, &trg_coord[i*3], (Real_t)(s*2.0), *this->kernel->k_s2t);
  569. #ifdef __VERBOSE__
  570. #pragma omp critical
  571. if(!myrank){
  572. cnt_done++;
  573. std::cout<<"\r Progress: "<<(100*progress*n_trg+100*cnt_done*np)/(class_count*n_trg)<<"% "<<std::flush;
  574. }
  575. #endif
  576. for(int k=0; k<this->kernel->k_s2t->ker_dim[1]; k++)
  577. for(size_t j=0; j<(size_t)M_s2t.Dim(0); j++)
  578. M_s2t_local[j][i*this->kernel->k_s2t->ker_dim[1]+k] = s2t[j+k*M_s2t.Dim(0)];
  579. }
  580. if(!myrank) std::cout<<"\r \r"<<std::flush;
  581. MPI_Allreduce(M_s2t_local[0], M_s2t[0], M_s2t.Dim(0)*M_s2t.Dim(1), par::Mpi_datatype<Real_t>::value(), par::Mpi_datatype<Real_t>::sum(), this->comm);
  582. }
  583. // Compute Chebyshev approx from target potential.
  584. M.Resize(M_s2t.Dim(0), n_src*this->kernel->k_s2t->ker_dim [1]);
  585. #pragma omp parallel for schedule(dynamic)
  586. for(size_t j=0; j<(size_t)M_s2t.Dim(0); j++){
  587. Matrix<Real_t> M_trg(n_trg,this->kernel->k_s2t->ker_dim[1],M_s2t[j],false);
  588. M_trg=M_trg.Transpose();
  589. cheb_approx<Real_t,Real_t>(M_s2t[j],cheb_deg,this->kernel->k_s2t->ker_dim[1],M[j]);
  590. }
  591. break;
  592. }
  593. case U1_Type:
  594. {
  595. // Coord of target points
  596. Real_t s=pow(0.5,level);
  597. int* coord=this->interac_list.RelativeCoord(type,mat_indx);
  598. Real_t coord_diff[3]={coord[0]*s,coord[1]*s,coord[2]*s};
  599. std::vector<Real_t>& rel_trg_coord = this->mat->RelativeTrgCoord();
  600. size_t n_trg = rel_trg_coord.size()/3;
  601. std::vector<Real_t> trg_coord(n_trg*3);
  602. for(size_t j=0;j<n_trg;j++){
  603. trg_coord[j*3+0]=rel_trg_coord[j*3+0]*s-coord_diff[0];
  604. trg_coord[j*3+1]=rel_trg_coord[j*3+1]*s-coord_diff[1];
  605. trg_coord[j*3+2]=rel_trg_coord[j*3+2]*s-coord_diff[2];
  606. }
  607. // Evaluate potential at target points.
  608. Matrix<Real_t> M_s2t(n_src*this->kernel->k_s2t->ker_dim [0], n_trg*this->kernel->k_s2t->ker_dim [1]);
  609. Matrix<Real_t> M_s2t_local(n_src*this->kernel->k_s2t->ker_dim [0], n_trg*this->kernel->k_s2t->ker_dim [1]);
  610. {
  611. M_s2t.SetZero();
  612. M_s2t_local.SetZero();
  613. size_t cnt_done=0;
  614. #pragma omp parallel for schedule(dynamic)
  615. for(size_t i=myrank;i<n_trg;i+=np){
  616. std::vector<Real_t> s2t=cheb_integ(cheb_deg, &trg_coord[i*3], s, *this->kernel->k_s2t);
  617. #ifdef __VERBOSE__
  618. #pragma omp critical
  619. if(!myrank){
  620. cnt_done++;
  621. std::cout<<"\r Progress: "<<(100*progress*n_trg+100*cnt_done*np)/(class_count*n_trg)<<"% "<<std::flush;
  622. }
  623. #endif
  624. for(int k=0; k<this->kernel->k_s2t->ker_dim[1]; k++)
  625. for(size_t j=0; j<(size_t)M_s2t.Dim(0); j++)
  626. M_s2t_local[j][i*this->kernel->k_s2t->ker_dim[1]+k] = s2t[j+k*M_s2t.Dim(0)];
  627. }
  628. if(!myrank) std::cout<<"\r \r"<<std::flush;
  629. MPI_Allreduce(M_s2t_local[0], M_s2t[0], M_s2t.Dim(0)*M_s2t.Dim(1), par::Mpi_datatype<Real_t>::value(), par::Mpi_datatype<Real_t>::sum(), this->comm);
  630. }
  631. // Compute Chebyshev approx from target potential.
  632. M.Resize(M_s2t.Dim(0), n_src*this->kernel->k_s2t->ker_dim [1]);
  633. #pragma omp parallel for schedule(dynamic)
  634. for(size_t j=0; j<(size_t)M_s2t.Dim(0); j++){
  635. Matrix<Real_t> M_trg(n_trg,this->kernel->k_s2t->ker_dim[1],M_s2t[j],false);
  636. M_trg=M_trg.Transpose();
  637. cheb_approx<Real_t,Real_t>(M_s2t[j],cheb_deg,this->kernel->k_s2t->ker_dim[1],M[j]);
  638. }
  639. break;
  640. }
  641. case U2_Type:
  642. {
  643. // Coord of target points
  644. Real_t s=pow(0.5,level);
  645. int* coord=this->interac_list.RelativeCoord(type,mat_indx);
  646. Real_t coord_diff[3]={(coord[0]+1)*s*0.25,(coord[1]+1)*s*0.25,(coord[2]+1)*s*0.25};
  647. std::vector<Real_t>& rel_trg_coord = this->mat->RelativeTrgCoord();
  648. size_t n_trg = rel_trg_coord.size()/3;
  649. std::vector<Real_t> trg_coord(n_trg*3);
  650. for(size_t j=0;j<n_trg;j++){
  651. trg_coord[j*3+0]=rel_trg_coord[j*3+0]*s-coord_diff[0];
  652. trg_coord[j*3+1]=rel_trg_coord[j*3+1]*s-coord_diff[1];
  653. trg_coord[j*3+2]=rel_trg_coord[j*3+2]*s-coord_diff[2];
  654. }
  655. // Evaluate potential at target points.
  656. Matrix<Real_t> M_s2t(n_src*this->kernel->k_s2t->ker_dim [0], n_trg*this->kernel->k_s2t->ker_dim [1]);
  657. Matrix<Real_t> M_s2t_local(n_src*this->kernel->k_s2t->ker_dim [0], n_trg*this->kernel->k_s2t->ker_dim [1]);
  658. {
  659. M_s2t.SetZero();
  660. M_s2t_local.SetZero();
  661. size_t cnt_done=0;
  662. #pragma omp parallel for schedule(dynamic)
  663. for(size_t i=myrank;i<n_trg;i+=np){
  664. std::vector<Real_t> s2t=cheb_integ(cheb_deg, &trg_coord[i*3], (Real_t)(s*0.5), *this->kernel->k_s2t);
  665. #ifdef __VERBOSE__
  666. #pragma omp critical
  667. if(!myrank){
  668. cnt_done++;
  669. std::cout<<"\r Progress: "<<(100*progress*n_trg+100*cnt_done*np)/(class_count*n_trg)<<"% "<<std::flush;
  670. }
  671. #endif
  672. for(int k=0; k<this->kernel->k_s2t->ker_dim[1]; k++)
  673. for(size_t j=0; j<(size_t)M_s2t.Dim(0); j++)
  674. M_s2t_local[j][i*this->kernel->k_s2t->ker_dim[1]+k] = s2t[j+k*M_s2t.Dim(0)];
  675. }
  676. if(!myrank) std::cout<<"\r \r"<<std::flush;
  677. MPI_Allreduce(M_s2t_local[0], M_s2t[0], M_s2t.Dim(0)*M_s2t.Dim(1), par::Mpi_datatype<Real_t>::value(), par::Mpi_datatype<Real_t>::sum(), this->comm);
  678. }
  679. // Compute Chebyshev approx from target potential.
  680. M.Resize(M_s2t.Dim(0), n_src*this->kernel->k_s2t->ker_dim [1]);
  681. #pragma omp parallel for schedule(dynamic)
  682. for(size_t j=0; j<(size_t)M_s2t.Dim(0); j++){
  683. Matrix<Real_t> M_trg(n_trg,this->kernel->k_s2t->ker_dim[1],M_s2t[j],false);
  684. M_trg=M_trg.Transpose();
  685. cheb_approx<Real_t,Real_t>(M_s2t[j],cheb_deg,this->kernel->k_s2t->ker_dim[1],M[j]);
  686. }
  687. break;
  688. }
  689. case W_Type:
  690. {
  691. if(this->MultipoleOrder()==0) break;
  692. Matrix<Real_t>& M_s2t=FMM_Pts<FMMNode>::Precomp(level, type, mat_indx);
  693. int n_trg=M_s2t.Dim(1)/this->kernel->k_m2t->ker_dim[1];
  694. // Compute Chebyshev approx from target potential.
  695. M.Resize(M_s2t.Dim(0), n_src*this->kernel->k_m2t->ker_dim [1]);
  696. #pragma omp parallel for schedule(dynamic)
  697. for(size_t j=0; j<(size_t)M_s2t.Dim(0); j++){
  698. Matrix<Real_t> M_trg(n_trg,this->kernel->k_m2t->ker_dim[1],M_s2t[j],false);
  699. M_trg=M_trg.Transpose();
  700. cheb_approx<Real_t,Real_t>(M_s2t[j],cheb_deg,this->kernel->k_m2t->ker_dim[1],M[j]);
  701. }
  702. #pragma omp critical (PRECOMP_MATRIX_PTS)
  703. {
  704. M_s2t.Resize(0,0);
  705. }
  706. break;
  707. }
  708. case X_Type:
  709. {
  710. if(this->MultipoleOrder()==0) break;
  711. // Coord of target points
  712. Real_t s=pow(0.5,level-1);
  713. int* coord=this->interac_list.RelativeCoord(type,mat_indx);
  714. Real_t c[3]={-(coord[0]-1)*s*0.25,-(coord[1]-1)*s*0.25,-(coord[2]-1)*s*0.25};
  715. std::vector<Real_t> trg_coord=d_check_surf(this->MultipoleOrder(),c,level);
  716. size_t n_trg=trg_coord.size()/3;
  717. // Evaluate potential at target points.
  718. Matrix<Real_t> M_xs2c(n_src*this->kernel->k_s2l->ker_dim[0], n_trg*this->kernel->k_s2l->ker_dim[1]);
  719. Matrix<Real_t> M_xs2c_local(n_src*this->kernel->k_s2l->ker_dim[0], n_trg*this->kernel->k_s2l->ker_dim[1]);
  720. {
  721. M_xs2c.SetZero();
  722. M_xs2c_local.SetZero();
  723. size_t cnt_done=0;
  724. #pragma omp parallel for schedule(dynamic)
  725. for(size_t i=myrank;i<n_trg;i+=np){
  726. std::vector<Real_t> M_=cheb_integ(cheb_deg, &trg_coord[i*3], s, *this->kernel->k_s2l);
  727. #ifdef __VERBOSE__
  728. #pragma omp critical
  729. if(!myrank){
  730. cnt_done++;
  731. std::cout<<"\r Progress: "<<(100*progress*n_trg+100*cnt_done*np)/(class_count*n_trg)<<"% "<<std::flush;
  732. }
  733. #endif
  734. for(int k=0; k<this->kernel->k_s2l->ker_dim[1]; k++)
  735. for(size_t j=0; j<(size_t)M_xs2c.Dim(0); j++)
  736. M_xs2c_local[j][i*this->kernel->k_s2l->ker_dim[1]+k] = M_[j+k*M_xs2c.Dim(0)];
  737. }
  738. if(!myrank) std::cout<<"\r \r"<<std::flush;
  739. MPI_Allreduce(M_xs2c_local[0], M_xs2c[0], M_xs2c.Dim(0)*M_xs2c.Dim(1), par::Mpi_datatype<Real_t>::value(), par::Mpi_datatype<Real_t>::sum(), this->comm);
  740. }
  741. Matrix<Real_t>& M_c2e = this->Precomp(level, DC2DE_Type, 0);
  742. M=M_xs2c*M_c2e;
  743. break;
  744. }
  745. default:
  746. {
  747. return FMM_Pts<FMMNode>::Precomp(level, type, mat_indx);
  748. break;
  749. }
  750. }
  751. //Save the matrix for future use.
  752. #pragma omp critical (PRECOMP_MATRIX_PTS)
  753. if(M_.Dim(0)==0 && M_.Dim(1)==0){ M_=M;}
  754. return M_;
  755. }
  756. template <class FMMNode>
  757. void FMM_Cheb<FMMNode>::CollectNodeData(FMMTree_t* tree, std::vector<FMMNode*>& node, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, std::vector<std::vector<Vector<Real_t>* > > vec_list){
  758. if(vec_list.size()<6) vec_list.resize(6);
  759. size_t n_coeff=(cheb_deg+1)*(cheb_deg+2)*(cheb_deg+3)/6;
  760. if(node.size()==0) return;
  761. {// 4. cheb_in
  762. int indx=4;
  763. size_t vec_sz=this->kernel->ker_dim[0]*n_coeff;
  764. for(size_t i=0;i<node.size();i++){
  765. if(node[i]->IsLeaf()){
  766. Vector<Real_t>& data_vec=node[i]->ChebData();
  767. if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz);
  768. vec_list[indx].push_back(&data_vec);
  769. }
  770. }
  771. }
  772. {// 5. cheb_out
  773. int indx=5;
  774. size_t vec_sz=this->kernel->ker_dim[1]*n_coeff;
  775. for(size_t i=0;i<node.size();i++){
  776. if(node[i]->IsLeaf() && !node[i]->IsGhost()){
  777. Vector<Real_t>& data_vec=((FMMData*)node[i]->FMMData())->cheb_out;
  778. if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz);
  779. vec_list[indx].push_back(&data_vec);
  780. }
  781. }
  782. }
  783. FMM_Pts<FMMNode_t>::CollectNodeData(tree, node, buff, n_list, vec_list);
  784. }
  785. template <class FMMNode>
  786. void FMM_Cheb<FMMNode>::Source2UpSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  787. if(this->MultipoleOrder()==0) return;
  788. FMM_Pts<FMMNode>::Source2UpSetup(setup_data, tree, buff, n_list, level, device);
  789. { // Set setup_data
  790. setup_data.level=level;
  791. setup_data.kernel=this->kernel->k_s2m;
  792. setup_data.interac_type.resize(1);
  793. setup_data.interac_type[0]=S2U_Type;
  794. setup_data. input_data=&buff[4];
  795. setup_data.output_data=&buff[0];
  796. Vector<FMMNode_t*>& nodes_in =n_list[4];
  797. Vector<FMMNode_t*>& nodes_out=n_list[0];
  798. setup_data.nodes_in .clear();
  799. setup_data.nodes_out.clear();
  800. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  801. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  802. }
  803. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  804. std::vector<void*>& nodes_out=setup_data.nodes_out;
  805. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  806. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  807. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&( ((FMMNode*)nodes_in [i]) )->ChebData() );
  808. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
  809. this->SetupInterac(setup_data,device);
  810. }
  811. template <class FMMNode>
  812. void FMM_Cheb<FMMNode>::Source2Up (SetupData<Real_t>& setup_data, bool device){
  813. //Add Source2Up contribution.
  814. this->EvalList(setup_data, device);
  815. }
  816. template <class FMMNode>
  817. void FMM_Cheb<FMMNode>::X_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  818. if(this->MultipoleOrder()==0) return;
  819. FMM_Pts<FMMNode>::X_ListSetup(setup_data, tree, buff, n_list, level, device);
  820. { // Set setup_data
  821. setup_data.level=level;
  822. setup_data.kernel=this->kernel->k_s2l;
  823. setup_data.interac_type.resize(1);
  824. setup_data.interac_type[0]=X_Type;
  825. setup_data. input_data=&buff[4];
  826. setup_data.output_data=&buff[1];
  827. Vector<FMMNode_t*>& nodes_in =n_list[4];
  828. Vector<FMMNode_t*>& nodes_out=n_list[1];
  829. setup_data.nodes_in .clear();
  830. setup_data.nodes_out.clear();
  831. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  832. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  833. }
  834. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  835. std::vector<void*>& nodes_out=setup_data.nodes_out;
  836. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  837. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  838. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&( ((FMMNode*)nodes_in [i]) )->ChebData() );
  839. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  840. this->SetupInterac(setup_data,device);
  841. { // Resize device buffer
  842. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  843. if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
  844. }
  845. }
  846. template <class FMMNode>
  847. void FMM_Cheb<FMMNode>::X_List (SetupData<Real_t>& setup_data, bool device){
  848. //Add X_List contribution.
  849. FMM_Pts<FMMNode>::X_List(setup_data, device);
  850. this->EvalList(setup_data, device);
  851. }
  852. template <class FMMNode>
  853. void FMM_Cheb<FMMNode>::W_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  854. if(this->MultipoleOrder()==0) return;
  855. { // Set setup_data
  856. setup_data.level=level;
  857. setup_data.kernel=this->kernel->k_m2t;
  858. setup_data.interac_type.resize(1);
  859. setup_data.interac_type[0]=W_Type;
  860. setup_data. input_data=&buff[0];
  861. setup_data.output_data=&buff[5];
  862. Vector<FMMNode_t*>& nodes_in =n_list[0];
  863. Vector<FMMNode_t*>& nodes_out=n_list[5];
  864. setup_data.nodes_in .clear();
  865. setup_data.nodes_out.clear();
  866. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  867. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  868. }
  869. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  870. std::vector<void*>& nodes_out=setup_data.nodes_out;
  871. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  872. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  873. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  874. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->cheb_out );
  875. this->SetupInterac(setup_data,device);
  876. { // Resize device buffer
  877. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  878. if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
  879. }
  880. }
  881. template <class FMMNode>
  882. void FMM_Cheb<FMMNode>::W_List (SetupData<Real_t>& setup_data, bool device){
  883. //Add W_List contribution.
  884. this->EvalList(setup_data, device);
  885. }
  886. template <class FMMNode>
  887. void FMM_Cheb<FMMNode>::U_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  888. FMM_Pts<FMMNode>::U_ListSetup(setup_data, tree, buff, n_list, level, device);
  889. { // Set setup_data
  890. setup_data.level=level;
  891. setup_data.kernel=this->kernel->k_s2t;
  892. setup_data.interac_type.resize(3);
  893. setup_data.interac_type[0]=U0_Type;
  894. setup_data.interac_type[1]=U1_Type;
  895. setup_data.interac_type[2]=U2_Type;
  896. setup_data. input_data=&buff[4];
  897. setup_data.output_data=&buff[5];
  898. Vector<FMMNode_t*>& nodes_in =n_list[4];
  899. Vector<FMMNode_t*>& nodes_out=n_list[5];
  900. setup_data.nodes_in .clear();
  901. setup_data.nodes_out.clear();
  902. for(size_t i=0;i<nodes_in .Dim();i++) if((level-1<=nodes_in [i]->Depth() && nodes_in [i]->Depth()<=level+1) || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  903. for(size_t i=0;i<nodes_out.Dim();i++) if(( nodes_out[i]->Depth()==level ) || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  904. }
  905. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  906. std::vector<void*>& nodes_out=setup_data.nodes_out;
  907. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  908. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  909. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&( ((FMMNode*)nodes_in [i]) )->ChebData());
  910. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->cheb_out );
  911. this->SetupInterac(setup_data,device);
  912. { // Resize device buffer
  913. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  914. if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
  915. }
  916. }
  917. template <class FMMNode>
  918. void FMM_Cheb<FMMNode>::U_List (SetupData<Real_t>& setup_data, bool device){
  919. //Add U_List contribution.
  920. FMM_Pts<FMMNode>::U_List(setup_data, device);
  921. this->EvalList(setup_data, device);
  922. }
  923. template <class FMMNode>
  924. void FMM_Cheb<FMMNode>::Down2TargetSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  925. if(this->MultipoleOrder()==0) return;
  926. { // Set setup_data
  927. setup_data.level=level;
  928. setup_data.kernel=this->kernel->k_l2t;
  929. setup_data.interac_type.resize(1);
  930. setup_data.interac_type[0]=D2T_Type;
  931. setup_data. input_data=&buff[1];
  932. setup_data.output_data=&buff[5];
  933. Vector<FMMNode_t*>& nodes_in =n_list[1];
  934. Vector<FMMNode_t*>& nodes_out=n_list[5];
  935. setup_data.nodes_in .clear();
  936. setup_data.nodes_out.clear();
  937. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  938. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  939. }
  940. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  941. std::vector<void*>& nodes_out=setup_data.nodes_out;
  942. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  943. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  944. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  945. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->cheb_out );
  946. this->SetupInterac(setup_data,device);
  947. }
  948. template <class FMMNode>
  949. void FMM_Cheb<FMMNode>::Down2Target (SetupData<Real_t>& setup_data, bool device){
  950. //Add Down2Target contribution.
  951. this->EvalList(setup_data, device);
  952. }
  953. template <class FMMNode>
  954. void FMM_Cheb<FMMNode>::PostProcessing(std::vector<FMMNode_t*>& nodes){
  955. size_t n=nodes.size();
  956. #pragma omp parallel
  957. {
  958. int omp_p=omp_get_num_threads();
  959. int pid = omp_get_thread_num();
  960. size_t a=(pid*n)/omp_p;
  961. size_t b=((pid+1)*n)/omp_p;
  962. //For each node, compute interaction from point sources.
  963. for(size_t i=a;i<b;i++){
  964. Vector<Real_t>& trg_coord=nodes[i]->trg_coord;
  965. Vector<Real_t>& trg_value=nodes[i]->trg_value;
  966. Vector<Real_t>& cheb_out =((FMMData*)nodes[i]->FMMData())->cheb_out;
  967. //Initialize target potential.
  968. size_t trg_cnt=trg_coord.Dim()/COORD_DIM;
  969. //trg_value.assign(trg_cnt*dof*this->kernel->ker_dim[1],0);
  970. //Sample local expansion at target points.
  971. if(trg_cnt>0 && cheb_out.Dim()>0){
  972. Real_t* c=nodes[i]->Coord();
  973. Real_t scale=pow(2.0,nodes[i]->Depth()+1);
  974. std::vector<Real_t> rel_coord(COORD_DIM*trg_cnt);
  975. for(size_t j=0;j<trg_cnt;j++) for(int k=0;k<COORD_DIM;k++)
  976. rel_coord[j*COORD_DIM+k]=(trg_coord[j*COORD_DIM+k]-c[k])*scale-1.0;
  977. cheb_eval(cheb_out, cheb_deg, rel_coord, trg_value);
  978. }
  979. }
  980. }
  981. }
  982. }//end namespace