fmm_pts.txx 139 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684
  1. /**
  2. * \file fmm_pts.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 3-07-2011
  5. * \brief This file contains the implementation of the FMM_Pts class.
  6. */
  7. #include <omp.h>
  8. #include <cmath>
  9. #include <cstdlib>
  10. #include <cassert>
  11. #include <sstream>
  12. #include <iostream>
  13. #include <stdint.h>
  14. #include <set>
  15. #ifdef PVFMM_HAVE_SYS_STAT_H
  16. #include <sys/stat.h>
  17. #endif
  18. #ifdef __SSE__
  19. #include <xmmintrin.h>
  20. #endif
  21. #ifdef __SSE2__
  22. #include <emmintrin.h>
  23. #endif
  24. #ifdef __SSE3__
  25. #include <pmmintrin.h>
  26. #endif
  27. #ifdef __AVX__
  28. #include <immintrin.h>
  29. #endif
  30. #if defined(__MIC__)
  31. #include <immintrin.h>
  32. #endif
  33. #include <profile.hpp>
  34. namespace pvfmm{
  35. /**
  36. * \brief Returns the coordinates of points on the surface of a cube.
  37. * \param[in] p Number of points on an edge of the cube is (n+1)
  38. * \param[in] c Coordinates to the centre of the cube (3D array).
  39. * \param[in] alpha Scaling factor for the size of the cube.
  40. * \param[in] depth Depth of the cube in the octree.
  41. * \return Vector with coordinates of points on the surface of the cube in the
  42. * format [x0 y0 z0 x1 y1 z1 .... ].
  43. */
  44. template <class Real_t>
  45. std::vector<Real_t> surface(int p, Real_t* c, Real_t alpha, int depth){
  46. size_t n_=(6*(p-1)*(p-1)+2); //Total number of points.
  47. std::vector<Real_t> coord(n_*3);
  48. coord[0]=coord[1]=coord[2]=-1.0;
  49. size_t cnt=1;
  50. for(int i=0;i<p-1;i++)
  51. for(int j=0;j<p-1;j++){
  52. coord[cnt*3 ]=-1.0;
  53. coord[cnt*3+1]=(2.0*(i+1)-p+1)/(p-1);
  54. coord[cnt*3+2]=(2.0*j-p+1)/(p-1);
  55. cnt++;
  56. }
  57. for(int i=0;i<p-1;i++)
  58. for(int j=0;j<p-1;j++){
  59. coord[cnt*3 ]=(2.0*i-p+1)/(p-1);
  60. coord[cnt*3+1]=-1.0;
  61. coord[cnt*3+2]=(2.0*(j+1)-p+1)/(p-1);
  62. cnt++;
  63. }
  64. for(int i=0;i<p-1;i++)
  65. for(int j=0;j<p-1;j++){
  66. coord[cnt*3 ]=(2.0*(i+1)-p+1)/(p-1);
  67. coord[cnt*3+1]=(2.0*j-p+1)/(p-1);
  68. coord[cnt*3+2]=-1.0;
  69. cnt++;
  70. }
  71. for(size_t i=0;i<(n_/2)*3;i++)
  72. coord[cnt*3+i]=-coord[i];
  73. Real_t r = 0.5*pow(0.5,depth);
  74. Real_t b = alpha*r;
  75. for(size_t i=0;i<n_;i++){
  76. coord[i*3+0]=(coord[i*3+0]+1.0)*b+c[0];
  77. coord[i*3+1]=(coord[i*3+1]+1.0)*b+c[1];
  78. coord[i*3+2]=(coord[i*3+2]+1.0)*b+c[2];
  79. }
  80. return coord;
  81. }
  82. /**
  83. * \brief Returns the coordinates of points on the upward check surface of cube.
  84. * \see surface()
  85. */
  86. template <class Real_t>
  87. std::vector<Real_t> u_check_surf(int p, Real_t* c, int depth){
  88. Real_t r=0.5*pow(0.5,depth);
  89. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  90. return surface(p,coord,(Real_t)RAD1,depth);
  91. }
  92. /**
  93. * \brief Returns the coordinates of points on the upward equivalent surface of cube.
  94. * \see surface()
  95. */
  96. template <class Real_t>
  97. std::vector<Real_t> u_equiv_surf(int p, Real_t* c, int depth){
  98. Real_t r=0.5*pow(0.5,depth);
  99. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  100. return surface(p,coord,(Real_t)RAD0,depth);
  101. }
  102. /**
  103. * \brief Returns the coordinates of points on the downward check surface of cube.
  104. * \see surface()
  105. */
  106. template <class Real_t>
  107. std::vector<Real_t> d_check_surf(int p, Real_t* c, int depth){
  108. Real_t r=0.5*pow(0.5,depth);
  109. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  110. return surface(p,coord,(Real_t)RAD0,depth);
  111. }
  112. /**
  113. * \brief Returns the coordinates of points on the downward equivalent surface of cube.
  114. * \see surface()
  115. */
  116. template <class Real_t>
  117. std::vector<Real_t> d_equiv_surf(int p, Real_t* c, int depth){
  118. Real_t r=0.5*pow(0.5,depth);
  119. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  120. return surface(p,coord,(Real_t)RAD1,depth);
  121. }
  122. /**
  123. * \brief Defines the 3D grid for convolution in FFT acceleration of V-list.
  124. * \see surface()
  125. */
  126. template <class Real_t>
  127. std::vector<Real_t> conv_grid(int p, Real_t* c, int depth){
  128. Real_t r=pow(0.5,depth);
  129. Real_t a=r*RAD0;
  130. Real_t coord[3]={c[0],c[1],c[2]};
  131. int n1=p*2;
  132. int n2=(int)pow((Real_t)n1,2);
  133. int n3=(int)pow((Real_t)n1,3);
  134. std::vector<Real_t> grid(n3*3);
  135. for(int i=0;i<n1;i++)
  136. for(int j=0;j<n1;j++)
  137. for(int k=0;k<n1;k++){
  138. grid[(i+n1*j+n2*k)*3+0]=(i-p)*a/(p-1)+coord[0];
  139. grid[(i+n1*j+n2*k)*3+1]=(j-p)*a/(p-1)+coord[1];
  140. grid[(i+n1*j+n2*k)*3+2]=(k-p)*a/(p-1)+coord[2];
  141. }
  142. return grid;
  143. }
  144. template <class Real_t>
  145. void FMM_Data<Real_t>::Clear(){
  146. upward_equiv.Resize(0);
  147. }
  148. template <class Real_t>
  149. PackedData FMM_Data<Real_t>::PackMultipole(void* buff_ptr){
  150. PackedData p0; p0.data=buff_ptr;
  151. p0.length=upward_equiv.Dim()*sizeof(Real_t);
  152. if(p0.length==0) return p0;
  153. if(p0.data==NULL) p0.data=(char*)&upward_equiv[0];
  154. else mem::memcopy(p0.data,&upward_equiv[0],p0.length);
  155. return p0;
  156. }
  157. template <class Real_t>
  158. void FMM_Data<Real_t>::AddMultipole(PackedData p0){
  159. Real_t* data=(Real_t*)p0.data;
  160. size_t n=p0.length/sizeof(Real_t);
  161. assert(upward_equiv.Dim()==n);
  162. Matrix<Real_t> v0(1,n,&upward_equiv[0],false);
  163. Matrix<Real_t> v1(1,n,data,false);
  164. v0+=v1;
  165. }
  166. template <class Real_t>
  167. void FMM_Data<Real_t>::InitMultipole(PackedData p0, bool own_data){
  168. Real_t* data=(Real_t*)p0.data;
  169. size_t n=p0.length/sizeof(Real_t);
  170. if(n==0) return;
  171. if(own_data){
  172. upward_equiv=Vector<Real_t>(n, &data[0], false);
  173. }else{
  174. upward_equiv.ReInit(n, &data[0], false);
  175. }
  176. }
  177. template <class FMMNode>
  178. FMM_Pts<FMMNode>::~FMM_Pts() {
  179. if(mat!=NULL){
  180. // int rank;
  181. // MPI_Comm_rank(comm,&rank);
  182. // if(rank==0) mat->Save2File("Precomp.data");
  183. delete mat;
  184. mat=NULL;
  185. }
  186. if(vprecomp_fft_flag) FFTW_t<Real_t>::fft_destroy_plan(vprecomp_fftplan);
  187. #ifdef __INTEL_OFFLOAD0
  188. #pragma offload target(mic:0)
  189. #endif
  190. {
  191. if(vlist_fft_flag ) FFTW_t<Real_t>::fft_destroy_plan(vlist_fftplan );
  192. if(vlist_ifft_flag) FFTW_t<Real_t>::fft_destroy_plan(vlist_ifftplan);
  193. vlist_fft_flag =false;
  194. vlist_ifft_flag=false;
  195. }
  196. }
  197. template <class FMMNode>
  198. void FMM_Pts<FMMNode>::Initialize(int mult_order, const MPI_Comm& comm_, const Kernel<Real_t>* kernel_, const Kernel<Real_t>* aux_kernel_){
  199. Profile::Tic("InitFMM_Pts",&comm_,true);{
  200. bool verbose=false;
  201. #ifndef NDEBUG
  202. #ifdef __VERBOSE__
  203. int rank;
  204. MPI_Comm_rank(comm_,&rank);
  205. if(!rank) verbose=true;
  206. #endif
  207. #endif
  208. if( kernel_) kernel_->Initialize(verbose);
  209. if(aux_kernel_) aux_kernel_->Initialize(verbose);
  210. multipole_order=mult_order;
  211. comm=comm_;
  212. kernel=kernel_;
  213. assert(kernel!=NULL);
  214. aux_kernel=(aux_kernel_?aux_kernel_:kernel_);
  215. assert(kernel->ker_dim[0]==aux_kernel->ker_dim[0]);
  216. mat=new PrecompMat<Real_t>(Homogen(), MAX_DEPTH+1);
  217. if(this->mat_fname.size()==0){
  218. std::stringstream st;
  219. st<<PVFMM_PRECOMP_DATA_PATH;
  220. if(!st.str().size()){ // look in PVFMM_DIR
  221. char* pvfmm_dir = getenv ("PVFMM_DIR");
  222. if(pvfmm_dir) st<<pvfmm_dir<<'/';
  223. }
  224. #ifndef STAT_MACROS_BROKEN
  225. if(st.str().size()){ // check if the path is a directory
  226. struct stat stat_buff;
  227. if(stat(st.str().c_str(), &stat_buff) || !S_ISDIR(stat_buff.st_mode)){
  228. std::cout<<"error: path not found: "<<st.str()<<'\n';
  229. exit(0);
  230. }
  231. }
  232. #endif
  233. st<<"Precomp_"<<kernel->ker_name.c_str()<<"_m"<<mult_order;
  234. if(sizeof(Real_t)==8) st<<"";
  235. else if(sizeof(Real_t)==4) st<<"_f";
  236. else st<<"_t"<<sizeof(Real_t);
  237. st<<".data";
  238. this->mat_fname=st.str();
  239. }
  240. this->mat->LoadFile(mat_fname.c_str(), this->comm);
  241. interac_list.Initialize(COORD_DIM, this->mat);
  242. Profile::Tic("PrecompUC2UE",&comm,false,4);
  243. this->PrecompAll(UC2UE_Type);
  244. Profile::Toc();
  245. Profile::Tic("PrecompDC2DE",&comm,false,4);
  246. this->PrecompAll(DC2DE_Type);
  247. Profile::Toc();
  248. Profile::Tic("PrecompBC",&comm,false,4);
  249. { /*
  250. int type=BC_Type;
  251. for(int l=0;l<MAX_DEPTH;l++)
  252. for(size_t indx=0;indx<this->interac_list.ListCount((Mat_Type)type);indx++){
  253. Matrix<Real_t>& M=this->mat->Mat(l, (Mat_Type)type, indx);
  254. M.Resize(0,0);
  255. } // */
  256. }
  257. this->PrecompAll(BC_Type,0);
  258. Profile::Toc();
  259. Profile::Tic("PrecompU2U",&comm,false,4);
  260. this->PrecompAll(U2U_Type);
  261. Profile::Toc();
  262. Profile::Tic("PrecompD2D",&comm,false,4);
  263. this->PrecompAll(D2D_Type);
  264. Profile::Toc();
  265. Profile::Tic("PrecompV",&comm,false,4);
  266. this->PrecompAll(V_Type);
  267. Profile::Toc();
  268. Profile::Tic("PrecompV1",&comm,false,4);
  269. this->PrecompAll(V1_Type);
  270. Profile::Toc();
  271. }Profile::Toc();
  272. }
  273. template <class FMMNode>
  274. Permutation<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::PrecompPerm(Mat_Type type, Perm_Type perm_indx){
  275. //Check if the matrix already exists.
  276. Permutation<Real_t>& P_ = mat->Perm((Mat_Type)type, perm_indx);
  277. if(P_.Dim()!=0) return P_;
  278. //Compute the matrix.
  279. Permutation<Real_t> P;
  280. switch (type){
  281. case UC2UE_Type:
  282. {
  283. break;
  284. }
  285. case DC2DE_Type:
  286. {
  287. break;
  288. }
  289. case S2U_Type:
  290. {
  291. break;
  292. }
  293. case U2U_Type:
  294. {
  295. P=PrecompPerm(D2D_Type, perm_indx);
  296. break;
  297. }
  298. case D2D_Type:
  299. {
  300. Real_t eps=1e-10;
  301. int dof=kernel->ker_dim[0];
  302. size_t p_indx=perm_indx % C_Perm;
  303. Permutation<Real_t>& ker_perm=kernel->perm_vec[p_indx];
  304. assert(dof==ker_perm.Dim());
  305. Real_t c[3]={-0.5,-0.5,-0.5};
  306. std::vector<Real_t> trg_coord=d_check_surf(this->MultipoleOrder(),c,0);
  307. int n_trg=trg_coord.size()/3;
  308. P=Permutation<Real_t>(n_trg*dof);
  309. if(p_indx==ReflecX || p_indx==ReflecY || p_indx==ReflecZ){ // Set P.perm
  310. for(int i=0;i<n_trg;i++)
  311. for(int j=0;j<n_trg;j++){
  312. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+0]*(p_indx==ReflecX?-1.0:1.0))<eps)
  313. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+1]*(p_indx==ReflecY?-1.0:1.0))<eps)
  314. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+2]*(p_indx==ReflecZ?-1.0:1.0))<eps){
  315. for(int k=0;k<dof;k++){
  316. P.perm[j*dof+k]=i*dof+ker_perm.perm[k];
  317. }
  318. }
  319. }
  320. }else if(p_indx==SwapXY || p_indx==SwapXZ){
  321. for(int i=0;i<n_trg;i++)
  322. for(int j=0;j<n_trg;j++){
  323. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+(p_indx==SwapXY?1:2)])<eps)
  324. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+(p_indx==SwapXY?0:1)])<eps)
  325. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+(p_indx==SwapXY?2:0)])<eps){
  326. for(int k=0;k<dof;k++){
  327. P.perm[j*dof+k]=i*dof+ker_perm.perm[k];
  328. }
  329. }
  330. }
  331. }else{
  332. for(int j=0;j<n_trg;j++){
  333. for(int k=0;k<dof;k++){
  334. P.perm[j*dof+k]=j*dof+ker_perm.perm[k];
  335. }
  336. }
  337. }
  338. if(p_indx==Scaling && this->Homogen()){ // Set level-by-level scaling
  339. const Vector<Real_t>& scal_exp=kernel->src_scal;
  340. assert(dof==scal_exp.Dim());
  341. Vector<Real_t> scal(scal_exp.Dim());
  342. for(size_t i=0;i<scal_exp.Dim();i++){
  343. scal[i]=pow(2.0,(perm_indx<C_Perm?1.0:-1.0)*scal_exp[i]);
  344. }
  345. for(int j=0;j<n_trg;j++){
  346. for(int i=0;i<dof;i++){
  347. P.scal[j*dof+i]*=scal[i];
  348. }
  349. }
  350. }
  351. { // Set P.scal
  352. for(int j=0;j<n_trg;j++){
  353. for(int i=0;i<dof;i++){
  354. P.scal[j*dof+i]*=ker_perm.scal[i];
  355. }
  356. }
  357. }
  358. break;
  359. }
  360. case D2T_Type:
  361. {
  362. break;
  363. }
  364. case U0_Type:
  365. {
  366. break;
  367. }
  368. case U1_Type:
  369. {
  370. break;
  371. }
  372. case U2_Type:
  373. {
  374. break;
  375. }
  376. case V_Type:
  377. {
  378. break;
  379. }
  380. case V1_Type:
  381. {
  382. break;
  383. }
  384. case W_Type:
  385. {
  386. break;
  387. }
  388. case X_Type:
  389. {
  390. break;
  391. }
  392. case BC_Type:
  393. {
  394. break;
  395. }
  396. default:
  397. break;
  398. }
  399. //Save the matrix for future use.
  400. #pragma omp critical (PRECOMP_MATRIX_PTS)
  401. {
  402. if(P_.Dim()==0) P_=P;
  403. }
  404. return P_;
  405. }
  406. template <class FMMNode>
  407. Matrix<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::Precomp(int level, Mat_Type type, size_t mat_indx){
  408. if(this->Homogen()) level=0;
  409. //Check if the matrix already exists.
  410. Matrix<Real_t>& M_ = this->mat->Mat(level, type, mat_indx);
  411. if(M_.Dim(0)!=0 && M_.Dim(1)!=0) return M_;
  412. else{ //Compute matrix from symmetry class (if possible).
  413. size_t class_indx = this->interac_list.InteracClass(type, mat_indx);
  414. if(class_indx!=mat_indx){
  415. Matrix<Real_t>& M0 = this->Precomp(level, type, class_indx);
  416. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, type, mat_indx);
  417. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, type, mat_indx);
  418. if(Pr.Dim()>0 && Pc.Dim()>0 && M0.Dim(0)>0 && M0.Dim(1)>0) return M_;
  419. }
  420. }
  421. //Compute the matrix.
  422. Matrix<Real_t> M;
  423. const int* ker_dim=kernel->ker_dim;
  424. const int* aux_ker_dim=aux_kernel->ker_dim;
  425. //int omp_p=omp_get_max_threads();
  426. switch (type){
  427. case UC2UE_Type:
  428. {
  429. if(MultipoleOrder()==0) break;
  430. // Coord of upward check surface
  431. Real_t c[3]={0,0,0};
  432. std::vector<Real_t> uc_coord=u_check_surf(MultipoleOrder(),c,level);
  433. size_t n_uc=uc_coord.size()/3;
  434. // Coord of upward equivalent surface
  435. std::vector<Real_t> ue_coord=u_equiv_surf(MultipoleOrder(),c,level);
  436. size_t n_ue=ue_coord.size()/3;
  437. // Evaluate potential at check surface due to equivalent surface.
  438. Matrix<Real_t> M_e2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
  439. aux_kernel->BuildMatrix(&ue_coord[0], n_ue,
  440. &uc_coord[0], n_uc, &(M_e2c[0][0]));
  441. Real_t eps=1.0;
  442. while(eps+(Real_t)1.0>1.0) eps*=0.5;
  443. M=M_e2c.pinv(sqrt(eps)); //check 2 equivalent
  444. break;
  445. }
  446. case DC2DE_Type:
  447. {
  448. if(MultipoleOrder()==0) break;
  449. // Coord of downward check surface
  450. Real_t c[3]={0,0,0};
  451. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  452. size_t n_ch=check_surf.size()/3;
  453. // Coord of downward equivalent surface
  454. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  455. size_t n_eq=equiv_surf.size()/3;
  456. // Evaluate potential at check surface due to equivalent surface.
  457. Matrix<Real_t> M_e2c(n_eq*aux_ker_dim[0],n_ch*aux_ker_dim[1]);
  458. aux_kernel->BuildMatrix(&equiv_surf[0], n_eq,
  459. &check_surf[0], n_ch, &(M_e2c[0][0]));
  460. Real_t eps=1.0;
  461. while(eps+(Real_t)1.0>1.0) eps*=0.5;
  462. M=M_e2c.pinv(sqrt(eps)); //check 2 equivalent
  463. break;
  464. }
  465. case S2U_Type:
  466. {
  467. break;
  468. }
  469. case U2U_Type:
  470. {
  471. if(MultipoleOrder()==0) break;
  472. // Coord of upward check surface
  473. Real_t c[3]={0,0,0};
  474. std::vector<Real_t> check_surf=u_check_surf(MultipoleOrder(),c,level);
  475. size_t n_uc=check_surf.size()/3;
  476. // Coord of child's upward equivalent surface
  477. Real_t s=pow(0.5,(level+2));
  478. int* coord=interac_list.RelativeCoord(type,mat_indx);
  479. Real_t child_coord[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  480. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),child_coord,level+1);
  481. size_t n_ue=equiv_surf.size()/3;
  482. // Evaluate potential at check surface due to equivalent surface.
  483. Matrix<Real_t> M_ce2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
  484. aux_kernel->BuildMatrix(&equiv_surf[0], n_ue,
  485. &check_surf[0], n_uc, &(M_ce2c[0][0]));
  486. Matrix<Real_t>& M_c2e = Precomp(level, UC2UE_Type, 0);
  487. M=M_ce2c*M_c2e;
  488. break;
  489. }
  490. case D2D_Type:
  491. {
  492. if(MultipoleOrder()==0) break;
  493. // Coord of downward check surface
  494. Real_t s=pow(0.5,level+1);
  495. int* coord=interac_list.RelativeCoord(type,mat_indx);
  496. Real_t c[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  497. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  498. size_t n_dc=check_surf.size()/3;
  499. // Coord of parent's downward equivalent surface
  500. Real_t parent_coord[3]={0,0,0};
  501. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),parent_coord,level-1);
  502. size_t n_de=equiv_surf.size()/3;
  503. // Evaluate potential at check surface due to equivalent surface.
  504. Matrix<Real_t> M_pe2c(n_de*aux_ker_dim[0],n_dc*aux_ker_dim[1]);
  505. aux_kernel->BuildMatrix(&equiv_surf[0], n_de,
  506. &check_surf[0], n_dc, &(M_pe2c[0][0]));
  507. Matrix<Real_t>& M_c2e=Precomp(level,DC2DE_Type,0);
  508. M=M_pe2c*M_c2e;
  509. break;
  510. }
  511. case D2T_Type:
  512. {
  513. if(MultipoleOrder()==0) break;
  514. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  515. // Coord of target points
  516. Real_t r=pow(0.5,level);
  517. size_t n_trg=rel_trg_coord.size()/3;
  518. std::vector<Real_t> trg_coord(n_trg*3);
  519. for(size_t i=0;i<n_trg*COORD_DIM;i++) trg_coord[i]=rel_trg_coord[i]*r;
  520. // Coord of downward equivalent surface
  521. Real_t c[3]={0,0,0};
  522. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  523. size_t n_eq=equiv_surf.size()/3;
  524. // Evaluate potential at target points due to equivalent surface.
  525. {
  526. M .Resize(n_eq*ker_dim [0], n_trg*ker_dim [1]);
  527. kernel->BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  528. }
  529. break;
  530. }
  531. case U0_Type:
  532. {
  533. break;
  534. }
  535. case U1_Type:
  536. {
  537. break;
  538. }
  539. case U2_Type:
  540. {
  541. break;
  542. }
  543. case V_Type:
  544. {
  545. if(MultipoleOrder()==0) break;
  546. int n1=MultipoleOrder()*2;
  547. int n3 =n1*n1*n1;
  548. int n3_=n1*n1*(n1/2+1);
  549. //Compute the matrix.
  550. Real_t s=pow(0.5,level);
  551. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  552. Real_t coord_diff[3]={coord2[0]*s,coord2[1]*s,coord2[2]*s};
  553. //Evaluate potential.
  554. std::vector<Real_t> r_trg(COORD_DIM,0.0);
  555. std::vector<Real_t> conv_poten(n3*aux_ker_dim[0]*aux_ker_dim[1]);
  556. std::vector<Real_t> conv_coord=conv_grid(MultipoleOrder(),coord_diff,level);
  557. aux_kernel->BuildMatrix(&conv_coord[0],n3,&r_trg[0],1,&conv_poten[0]);
  558. //Rearrange data.
  559. Matrix<Real_t> M_conv(n3,aux_ker_dim[0]*aux_ker_dim[1],&conv_poten[0],false);
  560. M_conv=M_conv.Transpose();
  561. //Compute FFTW plan.
  562. int nnn[3]={n1,n1,n1};
  563. Real_t *fftw_in, *fftw_out;
  564. fftw_in = mem::aligned_new<Real_t>( n3 *aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  565. fftw_out = mem::aligned_new<Real_t>(2*n3_*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  566. #pragma omp critical (FFTW_PLAN)
  567. {
  568. if (!vprecomp_fft_flag){
  569. vprecomp_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM, nnn, aux_ker_dim[0]*aux_ker_dim[1],
  570. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*) fftw_out, NULL, 1, n3_, FFTW_ESTIMATE);
  571. vprecomp_fft_flag=true;
  572. }
  573. }
  574. //Compute FFT.
  575. mem::memcopy(fftw_in, &conv_poten[0], n3*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  576. FFTW_t<Real_t>::fft_execute_dft_r2c(vprecomp_fftplan, (Real_t*)fftw_in, (typename FFTW_t<Real_t>::cplx*)(fftw_out));
  577. Matrix<Real_t> M_(2*n3_*aux_ker_dim[0]*aux_ker_dim[1],1,(Real_t*)fftw_out,false);
  578. M=M_;
  579. //Free memory.
  580. mem::aligned_delete<Real_t>(fftw_in);
  581. mem::aligned_delete<Real_t>(fftw_out);
  582. break;
  583. }
  584. case V1_Type:
  585. {
  586. if(MultipoleOrder()==0) break;
  587. size_t mat_cnt =interac_list.ListCount( V_Type);
  588. for(size_t k=0;k<mat_cnt;k++) Precomp(level, V_Type, k);
  589. const size_t chld_cnt=1UL<<COORD_DIM;
  590. size_t n1=MultipoleOrder()*2;
  591. size_t M_dim=n1*n1*(n1/2+1);
  592. size_t n3=n1*n1*n1;
  593. Vector<Real_t> zero_vec(M_dim*aux_ker_dim[0]*aux_ker_dim[1]*2);
  594. zero_vec.SetZero();
  595. Vector<Real_t*> M_ptr(chld_cnt*chld_cnt);
  596. for(size_t i=0;i<chld_cnt*chld_cnt;i++) M_ptr[i]=&zero_vec[0];
  597. int* rel_coord_=interac_list.RelativeCoord(V1_Type, mat_indx);
  598. for(int j1=0;j1<chld_cnt;j1++)
  599. for(int j2=0;j2<chld_cnt;j2++){
  600. int rel_coord[3]={rel_coord_[0]*2-(j1/1)%2+(j2/1)%2,
  601. rel_coord_[1]*2-(j1/2)%2+(j2/2)%2,
  602. rel_coord_[2]*2-(j1/4)%2+(j2/4)%2};
  603. for(size_t k=0;k<mat_cnt;k++){
  604. int* ref_coord=interac_list.RelativeCoord(V_Type, k);
  605. if(ref_coord[0]==rel_coord[0] &&
  606. ref_coord[1]==rel_coord[1] &&
  607. ref_coord[2]==rel_coord[2]){
  608. Matrix<Real_t>& M = this->mat->Mat(level, V_Type, k);
  609. M_ptr[j2*chld_cnt+j1]=&M[0][0];
  610. break;
  611. }
  612. }
  613. }
  614. // Build matrix aux_ker_dim0 x aux_ker_dim1 x M_dim x 8 x 8
  615. M.Resize(aux_ker_dim[0]*aux_ker_dim[1]*M_dim, 2*chld_cnt*chld_cnt);
  616. for(int j=0;j<aux_ker_dim[0]*aux_ker_dim[1]*M_dim;j++){
  617. for(size_t k=0;k<chld_cnt*chld_cnt;k++){
  618. M[j][k*2+0]=M_ptr[k][j*2+0]/n3;
  619. M[j][k*2+1]=M_ptr[k][j*2+1]/n3;
  620. }
  621. }
  622. break;
  623. }
  624. case W_Type:
  625. {
  626. if(MultipoleOrder()==0) break;
  627. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  628. // Coord of target points
  629. Real_t s=pow(0.5,level);
  630. size_t n_trg=rel_trg_coord.size()/3;
  631. std::vector<Real_t> trg_coord(n_trg*3);
  632. for(size_t j=0;j<n_trg*COORD_DIM;j++) trg_coord[j]=rel_trg_coord[j]*s;
  633. // Coord of downward equivalent surface
  634. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  635. Real_t c[3]={(coord2[0]+1)*s*0.25,(coord2[1]+1)*s*0.25,(coord2[2]+1)*s*0.25};
  636. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),c,level+1);
  637. size_t n_eq=equiv_surf.size()/3;
  638. // Evaluate potential at target points due to equivalent surface.
  639. {
  640. M .Resize(n_eq*ker_dim [0],n_trg*ker_dim [1]);
  641. kernel->BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  642. }
  643. break;
  644. }
  645. case X_Type:
  646. {
  647. break;
  648. }
  649. case BC_Type:
  650. {
  651. if(MultipoleOrder()==0) break;
  652. size_t mat_cnt_m2m=interac_list.ListCount(U2U_Type);
  653. size_t n_surf=(6*(MultipoleOrder()-1)*(MultipoleOrder()-1)+2); //Total number of points.
  654. if((M.Dim(0)!=n_surf*aux_ker_dim[0] || M.Dim(1)!=n_surf*aux_ker_dim[1]) && level==0){
  655. Matrix<Real_t> M_m2m[BC_LEVELS+1];
  656. Matrix<Real_t> M_m2l[BC_LEVELS+1];
  657. Matrix<Real_t> M_l2l[BC_LEVELS+1];
  658. Matrix<Real_t> M_zero_avg(n_surf*aux_ker_dim[0],n_surf*aux_ker_dim[0]);
  659. { // Set average multipole charge to zero. (improves stability for large BC_LEVELS)
  660. M_zero_avg.SetZero();
  661. for(size_t i=0;i<n_surf*aux_ker_dim[0];i++)
  662. M_zero_avg[i][i]+=1;
  663. for(size_t i=0;i<n_surf;i++)
  664. for(size_t j=0;j<n_surf;j++)
  665. for(size_t k=0;k<aux_ker_dim[0];k++)
  666. M_zero_avg[i*aux_ker_dim[0]+k][j*aux_ker_dim[0]+k]-=1.0/n_surf;
  667. }
  668. for(int level=0; level>=-BC_LEVELS; level--){
  669. // Compute M_l2l
  670. M_l2l[-level] = this->Precomp(level, D2D_Type, 0);
  671. assert(M_l2l[-level].Dim(0)>0 && M_l2l[-level].Dim(1)>0);
  672. // Compute M_m2m
  673. for(size_t mat_indx=0; mat_indx<mat_cnt_m2m; mat_indx++){
  674. Matrix<Real_t> M=this->Precomp(level, U2U_Type, mat_indx);
  675. assert(M.Dim(0)>0 && M_m2m>0);
  676. if(mat_indx==0) M_m2m[-level] = M_zero_avg*M;
  677. else M_m2m[-level] += M_zero_avg*M;
  678. }
  679. // Compute M_m2l
  680. if(!Homogen() || level==0){
  681. Real_t s=(1UL<<(-level));
  682. Real_t ue_coord[3]={0,0,0};
  683. Real_t dc_coord[3]={0,0,0};
  684. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  685. std::vector<Real_t> trg_coord=d_check_surf(MultipoleOrder(), dc_coord, level);
  686. Matrix<Real_t> M_ue2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  687. M_ue2dc.SetZero();
  688. for(int x0=-2;x0<4;x0++)
  689. for(int x1=-2;x1<4;x1++)
  690. for(int x2=-2;x2<4;x2++)
  691. if(abs(x0)>1 || abs(x1)>1 || abs(x2)>1){
  692. ue_coord[0]=x0*s; ue_coord[1]=x1*s; ue_coord[2]=x2*s;
  693. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  694. Matrix<Real_t> M_tmp(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  695. aux_kernel->BuildMatrix(&src_coord[0], n_surf,
  696. &trg_coord[0], n_surf, &(M_tmp[0][0]));
  697. M_ue2dc+=M_tmp;
  698. }
  699. // Shift by constant.
  700. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  701. std::vector<Real_t> avg(aux_ker_dim[1],0);
  702. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  703. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  704. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
  705. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  706. for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]-=avg[k];
  707. }
  708. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  709. M_m2l[-level]=M_ue2dc*M_dc2de;
  710. }else M_m2l[-level]=M_m2l[-level-1];
  711. }
  712. for(int level=-BC_LEVELS;level<=0;level++){
  713. if(level==-BC_LEVELS) M = M_m2l[-level];
  714. else M = M_m2l[-level] + M_m2m[-level]*M*M_l2l[-level];
  715. { // Shift by constant. (improves stability for large BC_LEVELS)
  716. Matrix<Real_t> M_de2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  717. { // M_de2dc TODO: For homogeneous kernels, compute only once.
  718. // Coord of downward check surface
  719. Real_t c[3]={0,0,0};
  720. int level_=(Homogen()?0:level);
  721. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level_);
  722. size_t n_ch=check_surf.size()/3;
  723. // Coord of downward equivalent surface
  724. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level_);
  725. size_t n_eq=equiv_surf.size()/3;
  726. // Evaluate potential at check surface due to equivalent surface.
  727. aux_kernel->BuildMatrix(&equiv_surf[0], n_eq,
  728. &check_surf[0], n_ch, &(M_de2dc[0][0]));
  729. }
  730. Matrix<Real_t> M_ue2dc=M*M_de2dc;
  731. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  732. std::vector<Real_t> avg(aux_ker_dim[1],0);
  733. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  734. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  735. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
  736. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  737. for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]-=avg[k];
  738. }
  739. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  740. M=M_ue2dc*M_dc2de;
  741. }
  742. }
  743. { // ax+by+cz+d correction.
  744. std::vector<Real_t> corner_pts;
  745. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(0);
  746. corner_pts.push_back(1); corner_pts.push_back(0); corner_pts.push_back(0);
  747. corner_pts.push_back(0); corner_pts.push_back(1); corner_pts.push_back(0);
  748. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(1);
  749. size_t n_corner=corner_pts.size()/3;
  750. // Coord of downward equivalent surface
  751. Real_t c[3]={0,0,0};
  752. std::vector<Real_t> up_equiv_surf=u_equiv_surf(MultipoleOrder(),c,0);
  753. std::vector<Real_t> dn_equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  754. std::vector<Real_t> dn_check_surf=d_check_surf(MultipoleOrder(),c,0);
  755. Matrix<Real_t> M_err;
  756. { // Evaluate potential at corner due to upward and dnward equivalent surface.
  757. { // Error from local expansion.
  758. Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],n_corner*aux_ker_dim[1]);
  759. aux_kernel->BuildMatrix(&dn_equiv_surf[0], n_surf,
  760. &corner_pts[0], n_corner, &(M_e2pt[0][0]));
  761. M_err=M*M_e2pt;
  762. }
  763. for(size_t k=0;k<4;k++){ // Error from colleagues of root.
  764. for(int j0=-1;j0<=1;j0++)
  765. for(int j1=-1;j1<=1;j1++)
  766. for(int j2=-1;j2<=1;j2++){
  767. Real_t pt_coord[3]={corner_pts[k*COORD_DIM+0]-j0,
  768. corner_pts[k*COORD_DIM+1]-j1,
  769. corner_pts[k*COORD_DIM+2]-j2};
  770. if(fabs(pt_coord[0]-0.5)>1.0 || fabs(pt_coord[1]-0.5)>1.0 || fabs(pt_coord[2]-0.5)>1.0){
  771. Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],aux_ker_dim[1]);
  772. aux_kernel->BuildMatrix(&up_equiv_surf[0], n_surf,
  773. &pt_coord[0], 1, &(M_e2pt[0][0]));
  774. for(size_t i=0;i<M_e2pt.Dim(0);i++)
  775. for(size_t j=0;j<M_e2pt.Dim(1);j++)
  776. M_err[i][k*aux_ker_dim[1]+j]+=M_e2pt[i][j];
  777. }
  778. }
  779. }
  780. }
  781. Matrix<Real_t> M_grad(M_err.Dim(0),n_surf*aux_ker_dim[1]);
  782. for(size_t i=0;i<M_err.Dim(0);i++)
  783. for(size_t k=0;k<aux_ker_dim[1];k++)
  784. for(size_t j=0;j<n_surf;j++){
  785. M_grad[i][j*aux_ker_dim[1]+k]=(M_err[i][0*aux_ker_dim[1]+k] )*1.0 +
  786. (M_err[i][1*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+0]+
  787. (M_err[i][2*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+1]+
  788. (M_err[i][3*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+2];
  789. }
  790. Matrix<Real_t>& M_dc2de = Precomp(0, DC2DE_Type, 0);
  791. M-=M_grad*M_dc2de;
  792. }
  793. { // Free memory
  794. Mat_Type type=D2D_Type;
  795. for(int l=-BC_LEVELS;l<0;l++)
  796. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  797. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  798. M.Resize(0,0);
  799. }
  800. type=U2U_Type;
  801. for(int l=-BC_LEVELS;l<0;l++)
  802. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  803. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  804. M.Resize(0,0);
  805. }
  806. type=DC2DE_Type;
  807. for(int l=-BC_LEVELS;l<0;l++)
  808. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  809. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  810. M.Resize(0,0);
  811. }
  812. type=UC2UE_Type;
  813. for(int l=-BC_LEVELS;l<0;l++)
  814. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  815. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  816. M.Resize(0,0);
  817. }
  818. }
  819. }
  820. break;
  821. }
  822. default:
  823. break;
  824. }
  825. //Save the matrix for future use.
  826. #pragma omp critical (PRECOMP_MATRIX_PTS)
  827. if(M_.Dim(0)==0 && M_.Dim(1)==0){
  828. M_=M;
  829. /*
  830. M_.Resize(M.Dim(0),M.Dim(1));
  831. int dof=aux_ker_dim[0]*aux_ker_dim[1];
  832. for(int j=0;j<dof;j++){
  833. size_t a=(M.Dim(0)*M.Dim(1)* j )/dof;
  834. size_t b=(M.Dim(0)*M.Dim(1)*(j+1))/dof;
  835. #pragma omp parallel for // NUMA
  836. for(int tid=0;tid<omp_p;tid++){
  837. size_t a_=a+((b-a)* tid )/omp_p;
  838. size_t b_=a+((b-a)*(tid+1))/omp_p;
  839. mem::memcopy(&M_[0][a_], &M[0][a_], (b_-a_)*sizeof(Real_t));
  840. }
  841. }
  842. */
  843. }
  844. return M_;
  845. }
  846. template <class FMMNode>
  847. void FMM_Pts<FMMNode>::PrecompAll(Mat_Type type, int level){
  848. if(level==-1){
  849. for(int l=0;l<MAX_DEPTH;l++){
  850. PrecompAll(type, l);
  851. }
  852. return;
  853. }
  854. //Compute basic permutations.
  855. for(size_t i=0;i<Perm_Count;i++)
  856. this->PrecompPerm(type, (Perm_Type) i);
  857. {
  858. //Allocate matrices.
  859. size_t mat_cnt=interac_list.ListCount((Mat_Type)type);
  860. mat->Mat(level, (Mat_Type)type, mat_cnt-1);
  861. { // Compute InteracClass matrices.
  862. std::vector<size_t> indx_lst;
  863. for(size_t i=0; i<mat_cnt; i++){
  864. if(interac_list.InteracClass((Mat_Type)type,i)==i)
  865. indx_lst.push_back(i);
  866. }
  867. //Compute Transformations.
  868. //#pragma omp parallel for //lets use fine grained parallelism
  869. for(size_t i=0; i<indx_lst.size(); i++){
  870. Precomp(level, (Mat_Type)type, indx_lst[i]);
  871. }
  872. }
  873. //#pragma omp parallel for //lets use fine grained parallelism
  874. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
  875. Matrix<Real_t>& M0=interac_list.ClassMat(level,(Mat_Type)type,mat_indx);
  876. Permutation<Real_t>& pr=interac_list.Perm_R(level, (Mat_Type)type, mat_indx);
  877. Permutation<Real_t>& pc=interac_list.Perm_C(level, (Mat_Type)type, mat_indx);
  878. if(pr.Dim()!=M0.Dim(0) || pc.Dim()!=M0.Dim(1)) Precomp(level, (Mat_Type)type, mat_indx);
  879. }
  880. }
  881. }
  882. template <class FMMNode>
  883. void FMM_Pts<FMMNode>::CollectNodeData(std::vector<FMMNode*>& node, std::vector<Matrix<Real_t> >& buff_list, std::vector<Vector<FMMNode_t*> >& n_list, std::vector<std::vector<Vector<Real_t>* > > vec_list){
  884. if(buff_list.size()<7) buff_list.resize(7);
  885. if( n_list.size()<7) n_list.resize(7);
  886. if( vec_list.size()<7) vec_list.resize(7);
  887. int omp_p=omp_get_max_threads();
  888. if(node.size()==0) return;
  889. {// 0. upward_equiv
  890. int indx=0;
  891. size_t vec_sz;
  892. { // Set vec_sz
  893. Matrix<Real_t>& M_uc2ue = this->interac_list.ClassMat(0, UC2UE_Type, 0);
  894. vec_sz=M_uc2ue.Dim(1);
  895. }
  896. std::vector< FMMNode* > node_lst;
  897. {// Construct node_lst
  898. node_lst.clear();
  899. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  900. FMMNode_t* r_node=NULL;
  901. for(size_t i=0;i<node.size();i++){
  902. if(!node[i]->IsLeaf())
  903. node_lst_[node[i]->Depth()].push_back(node[i]);
  904. if(node[i]->Depth()==0) r_node=node[i];
  905. }
  906. size_t chld_cnt=1UL<<COORD_DIM;
  907. for(int i=0;i<=MAX_DEPTH;i++){
  908. for(size_t j=0;j<node_lst_[i].size();j++){
  909. for(size_t k=0;k<chld_cnt;k++){
  910. FMMNode_t* node=(FMMNode_t*)node_lst_[i][j]->Child(k);
  911. node_lst.push_back(node);
  912. }
  913. }
  914. }
  915. if(r_node!=NULL) node_lst.push_back(r_node);
  916. n_list[indx]=node_lst;
  917. }
  918. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  919. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  920. FMMNode_t* node=node_lst[i];
  921. Vector<Real_t>& data_vec=node->FMMData()->upward_equiv;
  922. vec_lst.push_back(&data_vec);
  923. data_vec.Resize(vec_sz);
  924. }
  925. }
  926. {// 1. dnward_equiv
  927. int indx=1;
  928. size_t vec_sz;
  929. { // Set vec_sz
  930. Matrix<Real_t>& M_dc2de = this->interac_list.ClassMat(0, DC2DE_Type, 0);
  931. vec_sz=M_dc2de.Dim(1);
  932. }
  933. std::vector< FMMNode* > node_lst;
  934. {// Construct node_lst
  935. node_lst.clear();
  936. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  937. FMMNode_t* r_node=NULL;
  938. for(size_t i=0;i<node.size();i++){
  939. if(!node[i]->IsLeaf())
  940. node_lst_[node[i]->Depth()].push_back(node[i]);
  941. if(node[i]->Depth()==0) r_node=node[i];
  942. }
  943. size_t chld_cnt=1UL<<COORD_DIM;
  944. for(int i=0;i<=MAX_DEPTH;i++){
  945. for(size_t j=0;j<node_lst_[i].size();j++){
  946. for(size_t k=0;k<chld_cnt;k++){
  947. FMMNode_t* node=(FMMNode_t*)node_lst_[i][j]->Child(k);
  948. node_lst.push_back(node);
  949. }
  950. }
  951. }
  952. if(r_node!=NULL) node_lst.push_back(r_node);
  953. n_list[indx]=node_lst;
  954. }
  955. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  956. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  957. FMMNode_t* node=node_lst[i];
  958. Vector<Real_t>& data_vec=node->FMMData()->dnward_equiv;
  959. vec_lst.push_back(&data_vec);
  960. data_vec.Resize(vec_sz);
  961. }
  962. }
  963. {// 2. upward_equiv_fft
  964. int indx=2;
  965. std::vector< FMMNode* > node_lst;
  966. {
  967. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  968. for(size_t i=0;i<node.size();i++)
  969. if(!node[i]->IsLeaf())
  970. node_lst_[node[i]->Depth()].push_back(node[i]);
  971. for(int i=0;i<=MAX_DEPTH;i++)
  972. for(size_t j=0;j<node_lst_[i].size();j++)
  973. node_lst.push_back(node_lst_[i][j]);
  974. }
  975. n_list[indx]=node_lst;
  976. }
  977. {// 3. dnward_check_fft
  978. int indx=3;
  979. std::vector< FMMNode* > node_lst;
  980. {
  981. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  982. for(size_t i=0;i<node.size();i++)
  983. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  984. node_lst_[node[i]->Depth()].push_back(node[i]);
  985. for(int i=0;i<=MAX_DEPTH;i++)
  986. for(size_t j=0;j<node_lst_[i].size();j++)
  987. node_lst.push_back(node_lst_[i][j]);
  988. }
  989. n_list[indx]=node_lst;
  990. }
  991. {// 4. src_val
  992. int indx=4;
  993. int src_dof=kernel->ker_dim[0];
  994. int surf_dof=COORD_DIM+src_dof;
  995. std::vector< FMMNode* > node_lst;
  996. for(size_t i=0;i<node.size();i++){// Construct node_lst
  997. if(node[i]->IsLeaf()){
  998. node_lst.push_back(node[i]);
  999. }
  1000. }
  1001. n_list[indx]=node_lst;
  1002. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  1003. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  1004. FMMNode_t* node=node_lst[i];
  1005. { // src_value
  1006. Vector<Real_t>& data_vec=node->src_value;
  1007. data_vec.Resize((node->src_coord.Dim()/COORD_DIM)*src_dof);
  1008. vec_lst.push_back(&data_vec);
  1009. }
  1010. { // surf_value
  1011. Vector<Real_t>& data_vec=node->surf_value;
  1012. data_vec.Resize((node->surf_coord.Dim()/COORD_DIM)*surf_dof);
  1013. vec_lst.push_back(&data_vec);
  1014. }
  1015. }
  1016. }
  1017. {// 5. trg_val
  1018. int indx=5;
  1019. int trg_dof=kernel->ker_dim[1];
  1020. std::vector< FMMNode* > node_lst;
  1021. for(size_t i=0;i<node.size();i++){// Construct node_lst
  1022. if(node[i]->IsLeaf() && !node[i]->IsGhost()){
  1023. node_lst.push_back(node[i]);
  1024. }
  1025. }
  1026. n_list[indx]=node_lst;
  1027. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  1028. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  1029. FMMNode_t* node=node_lst[i];
  1030. { // trg_value
  1031. Vector<Real_t>& data_vec=node->trg_value;
  1032. data_vec.Resize((node->trg_coord.Dim()/COORD_DIM)*trg_dof);
  1033. vec_lst.push_back(&data_vec);
  1034. }
  1035. }
  1036. }
  1037. {// 6. pts_coord
  1038. int indx=6;
  1039. std::vector< FMMNode* > node_lst;
  1040. for(size_t i=0;i<node.size();i++){// Construct node_lst
  1041. if(node[i]->IsLeaf()){
  1042. node_lst.push_back(node[i]);
  1043. }
  1044. }
  1045. n_list[indx]=node_lst;
  1046. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  1047. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  1048. FMMNode_t* node=node_lst[i];
  1049. { // src_coord
  1050. Vector<Real_t>& data_vec=node->src_coord;
  1051. vec_lst.push_back(&data_vec);
  1052. }
  1053. { // surf_coord
  1054. Vector<Real_t>& data_vec=node->surf_coord;
  1055. vec_lst.push_back(&data_vec);
  1056. }
  1057. { // trg_coord
  1058. Vector<Real_t>& data_vec=node->trg_coord;
  1059. vec_lst.push_back(&data_vec);
  1060. }
  1061. }
  1062. { // check and equiv surfaces.
  1063. if(upwd_check_surf.size()==0){
  1064. size_t m=MultipoleOrder();
  1065. upwd_check_surf.resize(MAX_DEPTH);
  1066. upwd_equiv_surf.resize(MAX_DEPTH);
  1067. dnwd_check_surf.resize(MAX_DEPTH);
  1068. dnwd_equiv_surf.resize(MAX_DEPTH);
  1069. for(size_t depth=0;depth<MAX_DEPTH;depth++){
  1070. Real_t c[3]={0.0,0.0,0.0};
  1071. upwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
  1072. upwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
  1073. dnwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
  1074. dnwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
  1075. upwd_check_surf[depth]=u_check_surf(m,c,depth);
  1076. upwd_equiv_surf[depth]=u_equiv_surf(m,c,depth);
  1077. dnwd_check_surf[depth]=d_check_surf(m,c,depth);
  1078. dnwd_equiv_surf[depth]=d_equiv_surf(m,c,depth);
  1079. }
  1080. }
  1081. for(size_t depth=0;depth<MAX_DEPTH;depth++){
  1082. vec_lst.push_back(&upwd_check_surf[depth]);
  1083. vec_lst.push_back(&upwd_equiv_surf[depth]);
  1084. vec_lst.push_back(&dnwd_check_surf[depth]);
  1085. vec_lst.push_back(&dnwd_equiv_surf[depth]);
  1086. }
  1087. }
  1088. }
  1089. // Create extra auxiliary buffer.
  1090. if(buff_list.size()<=vec_list.size()) buff_list.resize(vec_list.size()+1);
  1091. for(size_t indx=0;indx<vec_list.size();indx++){ // Resize buffer
  1092. Matrix<Real_t>& aux_buff=buff_list[vec_list.size()];
  1093. Matrix<Real_t>& buff=buff_list[indx];
  1094. std::vector<Vector<Real_t>*>& vec_lst= vec_list[indx];
  1095. bool keep_data=(indx==4 || indx==6);
  1096. size_t n_vec=vec_lst.size();
  1097. { // Continue if nothing to be done.
  1098. if(!n_vec) continue;
  1099. if(buff.Dim(0)*buff.Dim(1)>0){
  1100. bool init_buff=false;
  1101. Real_t* buff_start=&buff[0][0];
  1102. Real_t* buff_end=&buff[0][0]+buff.Dim(0)*buff.Dim(1);
  1103. #pragma omp parallel for reduction(||:init_buff)
  1104. for(size_t i=0;i<n_vec;i++){
  1105. if(&(*vec_lst[i])[0]<buff_start || &(*vec_lst[i])[0]>=buff_end){
  1106. init_buff=true;
  1107. }
  1108. }
  1109. if(!init_buff) continue;
  1110. }
  1111. }
  1112. std::vector<size_t> vec_size(n_vec);
  1113. std::vector<size_t> vec_disp(n_vec);
  1114. if(n_vec){ // Set vec_size and vec_disp
  1115. #pragma omp parallel for
  1116. for(size_t i=0;i<n_vec;i++){ // Set vec_size
  1117. vec_size[i]=vec_lst[i]->Dim();
  1118. }
  1119. vec_disp[0]=0;
  1120. omp_par::scan(&vec_size[0],&vec_disp[0],n_vec);
  1121. }
  1122. size_t buff_size=vec_size[n_vec-1]+vec_disp[n_vec-1];
  1123. if(keep_data){ // Copy to aux_buff
  1124. if(aux_buff.Dim(0)*aux_buff.Dim(1)<buff_size){ // Resize aux_buff
  1125. aux_buff.Resize(1,buff_size*1.05);
  1126. }
  1127. #pragma omp parallel for schedule(dynamic)
  1128. for(size_t i=0;i<n_vec;i++){
  1129. mem::memcopy(&aux_buff[0][0]+vec_disp[i],&(*vec_lst[i])[0],vec_size[i]*sizeof(Real_t));
  1130. }
  1131. }
  1132. if(buff.Dim(0)*buff.Dim(1)<buff_size){ // Resize buff
  1133. buff.Resize(1,buff_size*1.05);
  1134. }
  1135. if(keep_data){ // Copy to buff (from aux_buff)
  1136. #pragma omp parallel for
  1137. for(size_t tid=0;tid<omp_p;tid++){
  1138. size_t a=(buff_size*(tid+0))/omp_p;
  1139. size_t b=(buff_size*(tid+1))/omp_p;
  1140. mem::memcopy(&buff[0][0]+a,&aux_buff[0][0]+a,(b-a)*sizeof(Real_t));
  1141. }
  1142. }
  1143. #pragma omp parallel for
  1144. for(size_t i=0;i<n_vec;i++){ // ReInit vectors
  1145. vec_lst[i]->ReInit(vec_size[i],&buff[0][0]+vec_disp[i],false);
  1146. }
  1147. }
  1148. }
  1149. template <class FMMNode>
  1150. void FMM_Pts<FMMNode>::SetupPrecomp(SetupData<Real_t>& setup_data, bool device){
  1151. if(setup_data.precomp_data==NULL || setup_data.level>MAX_DEPTH) return;
  1152. Profile::Tic("SetupPrecomp",&this->comm,true,25);
  1153. { // Build precomp_data
  1154. size_t precomp_offset=0;
  1155. int level=setup_data.level;
  1156. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1157. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1158. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1159. Mat_Type& interac_type=interac_type_lst[type_indx];
  1160. this->PrecompAll(interac_type, level); // Compute matrices.
  1161. precomp_offset=this->mat->CompactData(level, interac_type, precomp_data, precomp_offset);
  1162. }
  1163. }
  1164. Profile::Toc();
  1165. if(device){ // Host2Device
  1166. Profile::Tic("Host2Device",&this->comm,false,25);
  1167. setup_data.precomp_data->AllocDevice(true);
  1168. Profile::Toc();
  1169. }
  1170. }
  1171. template <class FMMNode>
  1172. void FMM_Pts<FMMNode>::SetupInterac(SetupData<Real_t>& setup_data, bool device){
  1173. int level=setup_data.level;
  1174. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1175. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1176. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1177. Matrix<Real_t>& input_data=*setup_data. input_data;
  1178. Matrix<Real_t>& output_data=*setup_data.output_data;
  1179. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  1180. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  1181. size_t n_in =nodes_in .size();
  1182. size_t n_out=nodes_out.size();
  1183. // Setup precomputed data.
  1184. if(setup_data.precomp_data->Dim(0)*setup_data.precomp_data->Dim(1)==0) SetupPrecomp(setup_data,device);
  1185. // Build interac_data
  1186. Profile::Tic("Interac-Data",&this->comm,true,25);
  1187. Matrix<char>& interac_data=setup_data.interac_data;
  1188. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  1189. std::vector<size_t> interac_mat;
  1190. std::vector<size_t> interac_cnt;
  1191. std::vector<size_t> interac_blk;
  1192. std::vector<size_t> input_perm;
  1193. std::vector<size_t> output_perm;
  1194. size_t dof=0, M_dim0=0, M_dim1=0;
  1195. size_t precomp_offset=0;
  1196. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  1197. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1198. Mat_Type& interac_type=interac_type_lst[type_indx];
  1199. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  1200. Matrix<size_t> precomp_data_offset;
  1201. { // Load precomp_data for interac_type.
  1202. struct HeaderData{
  1203. size_t total_size;
  1204. size_t level;
  1205. size_t mat_cnt ;
  1206. size_t max_depth;
  1207. };
  1208. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1209. char* indx_ptr=precomp_data[0]+precomp_offset;
  1210. HeaderData& header=*(HeaderData*)indx_ptr;indx_ptr+=sizeof(HeaderData);
  1211. precomp_data_offset.ReInit(header.mat_cnt,(1+(2+2)*header.max_depth), (size_t*)indx_ptr, false);
  1212. precomp_offset+=header.total_size;
  1213. }
  1214. Matrix<FMMNode*> src_interac_list(n_in ,mat_cnt); src_interac_list.SetZero();
  1215. Matrix<FMMNode*> trg_interac_list(n_out,mat_cnt); trg_interac_list.SetZero();
  1216. { // Build trg_interac_list
  1217. #pragma omp parallel for
  1218. for(size_t i=0;i<n_out;i++){
  1219. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  1220. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  1221. mem::memcopy(&trg_interac_list[i][0], &lst[0], lst.size()*sizeof(FMMNode*));
  1222. assert(lst.size()==mat_cnt);
  1223. }
  1224. }
  1225. }
  1226. { // Build src_interac_list
  1227. #pragma omp parallel for
  1228. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  1229. #pragma omp parallel for
  1230. for(size_t i=0;i<n_out;i++){
  1231. for(size_t j=0;j<mat_cnt;j++)
  1232. if(trg_interac_list[i][j]!=NULL){
  1233. src_interac_list[trg_interac_list[i][j]->node_id][j]=(FMMNode*)nodes_out[i];
  1234. }
  1235. }
  1236. }
  1237. Matrix<size_t> interac_dsp(n_out,mat_cnt);
  1238. std::vector<size_t> interac_blk_dsp(1,0);
  1239. { // Determine dof, M_dim0, M_dim1
  1240. dof=1;
  1241. Matrix<Real_t>& M0 = this->interac_list.ClassMat(level, interac_type_lst[0], 0);
  1242. M_dim0=M0.Dim(0); M_dim1=M0.Dim(1);
  1243. }
  1244. { // Determine interaction blocks which fit in memory.
  1245. size_t vec_size=(M_dim0+M_dim1)*sizeof(Real_t)*dof;
  1246. for(size_t j=0;j<mat_cnt;j++){// Determine minimum buff_size
  1247. size_t vec_cnt=0;
  1248. for(size_t i=0;i<n_out;i++){
  1249. if(trg_interac_list[i][j]!=NULL) vec_cnt++;
  1250. }
  1251. if(buff_size<vec_cnt*vec_size)
  1252. buff_size=vec_cnt*vec_size;
  1253. }
  1254. size_t interac_dsp_=0;
  1255. for(size_t j=0;j<mat_cnt;j++){
  1256. for(size_t i=0;i<n_out;i++){
  1257. interac_dsp[i][j]=interac_dsp_;
  1258. if(trg_interac_list[i][j]!=NULL) interac_dsp_++;
  1259. }
  1260. if(interac_dsp_*vec_size>buff_size) // Comment to disable symmetries.
  1261. {
  1262. interac_blk.push_back(j-interac_blk_dsp.back());
  1263. interac_blk_dsp.push_back(j);
  1264. size_t offset=interac_dsp[0][j];
  1265. for(size_t i=0;i<n_out;i++) interac_dsp[i][j]-=offset;
  1266. interac_dsp_-=offset;
  1267. assert(interac_dsp_*vec_size<=buff_size); // Problem too big for buff_size.
  1268. }
  1269. interac_mat.push_back(precomp_data_offset[this->interac_list.InteracClass(interac_type,j)][0]);
  1270. interac_cnt.push_back(interac_dsp_-interac_dsp[0][j]);
  1271. }
  1272. interac_blk.push_back(mat_cnt-interac_blk_dsp.back());
  1273. interac_blk_dsp.push_back(mat_cnt);
  1274. }
  1275. { // Determine input_perm.
  1276. size_t vec_size=M_dim0*dof;
  1277. for(size_t i=0;i<n_out;i++) ((FMMNode*)nodes_out[i])->node_id=i;
  1278. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1279. for(size_t i=0;i<n_in ;i++){
  1280. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1281. FMMNode_t* trg_node=src_interac_list[i][j];
  1282. if(trg_node!=NULL){
  1283. size_t depth=(this->Homogen()?trg_node->Depth():0);
  1284. input_perm .push_back(precomp_data_offset[j][1+4*depth+0]); // prem
  1285. input_perm .push_back(precomp_data_offset[j][1+4*depth+1]); // scal
  1286. input_perm .push_back(interac_dsp[trg_node->node_id][j]*vec_size*sizeof(Real_t)); // trg_ptr
  1287. input_perm .push_back((size_t)(& input_vector[i][0][0]- input_data[0])); // src_ptr
  1288. assert(input_vector[i]->Dim()==vec_size);
  1289. }
  1290. }
  1291. }
  1292. }
  1293. }
  1294. { // Determine output_perm
  1295. size_t vec_size=M_dim1*dof;
  1296. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1297. for(size_t i=0;i<n_out;i++){
  1298. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1299. if(trg_interac_list[i][j]!=NULL){
  1300. size_t depth=(this->Homogen()?((FMMNode*)nodes_out[i])->Depth():0);
  1301. output_perm.push_back(precomp_data_offset[j][1+4*depth+2]); // prem
  1302. output_perm.push_back(precomp_data_offset[j][1+4*depth+3]); // scal
  1303. output_perm.push_back(interac_dsp[ i ][j]*vec_size*sizeof(Real_t)); // src_ptr
  1304. output_perm.push_back((size_t)(&output_vector[i][0][0]-output_data[0])); // trg_ptr
  1305. assert(output_vector[i]->Dim()==vec_size);
  1306. }
  1307. }
  1308. }
  1309. }
  1310. }
  1311. }
  1312. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  1313. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  1314. { // Set interac_data.
  1315. size_t data_size=sizeof(size_t)*4;
  1316. data_size+=sizeof(size_t)+interac_blk.size()*sizeof(size_t);
  1317. data_size+=sizeof(size_t)+interac_cnt.size()*sizeof(size_t);
  1318. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  1319. data_size+=sizeof(size_t)+ input_perm.size()*sizeof(size_t);
  1320. data_size+=sizeof(size_t)+output_perm.size()*sizeof(size_t);
  1321. if(interac_data.Dim(0)*interac_data.Dim(1)<sizeof(size_t)){
  1322. data_size+=sizeof(size_t);
  1323. interac_data.Resize(1,data_size);
  1324. ((size_t*)&interac_data[0][0])[0]=sizeof(size_t);
  1325. }else{
  1326. size_t pts_data_size=*((size_t*)&interac_data[0][0]);
  1327. assert(interac_data.Dim(0)*interac_data.Dim(1)>=pts_data_size);
  1328. data_size+=pts_data_size;
  1329. if(data_size>interac_data.Dim(0)*interac_data.Dim(1)){ //Resize and copy interac_data.
  1330. Matrix< char> pts_interac_data=interac_data;
  1331. interac_data.Resize(1,data_size);
  1332. mem::memcopy(&interac_data[0][0],&pts_interac_data[0][0],pts_data_size);
  1333. }
  1334. }
  1335. char* data_ptr=&interac_data[0][0];
  1336. data_ptr+=((size_t*)data_ptr)[0];
  1337. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  1338. ((size_t*)data_ptr)[0]= M_dim0; data_ptr+=sizeof(size_t);
  1339. ((size_t*)data_ptr)[0]= M_dim1; data_ptr+=sizeof(size_t);
  1340. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  1341. ((size_t*)data_ptr)[0]=interac_blk.size(); data_ptr+=sizeof(size_t);
  1342. mem::memcopy(data_ptr, &interac_blk[0], interac_blk.size()*sizeof(size_t));
  1343. data_ptr+=interac_blk.size()*sizeof(size_t);
  1344. ((size_t*)data_ptr)[0]=interac_cnt.size(); data_ptr+=sizeof(size_t);
  1345. mem::memcopy(data_ptr, &interac_cnt[0], interac_cnt.size()*sizeof(size_t));
  1346. data_ptr+=interac_cnt.size()*sizeof(size_t);
  1347. ((size_t*)data_ptr)[0]=interac_mat.size(); data_ptr+=sizeof(size_t);
  1348. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  1349. data_ptr+=interac_mat.size()*sizeof(size_t);
  1350. ((size_t*)data_ptr)[0]= input_perm.size(); data_ptr+=sizeof(size_t);
  1351. mem::memcopy(data_ptr, & input_perm[0], input_perm.size()*sizeof(size_t));
  1352. data_ptr+= input_perm.size()*sizeof(size_t);
  1353. ((size_t*)data_ptr)[0]=output_perm.size(); data_ptr+=sizeof(size_t);
  1354. mem::memcopy(data_ptr, &output_perm[0], output_perm.size()*sizeof(size_t));
  1355. data_ptr+=output_perm.size()*sizeof(size_t);
  1356. }
  1357. }
  1358. Profile::Toc();
  1359. if(device){ // Host2Device
  1360. Profile::Tic("Host2Device",&this->comm,false,25);
  1361. setup_data.interac_data .AllocDevice(true);
  1362. Profile::Toc();
  1363. }
  1364. }
  1365. #if defined(PVFMM_HAVE_CUDA)
  1366. #include <fmm_pts_gpu.hpp>
  1367. template <class Real_t, int SYNC>
  1368. void EvalListGPU(SetupData<Real_t>& setup_data, Vector<char>& dev_buffer, MPI_Comm& comm) {
  1369. cudaStream_t* stream = pvfmm::CUDA_Lock::acquire_stream();
  1370. Profile::Tic("Host2Device",&comm,false,25);
  1371. typename Matrix<char>::Device interac_data;
  1372. typename Vector<char>::Device buff;
  1373. typename Matrix<char>::Device precomp_data_d;
  1374. typename Matrix<char>::Device interac_data_d;
  1375. typename Matrix<Real_t>::Device input_data_d;
  1376. typename Matrix<Real_t>::Device output_data_d;
  1377. interac_data = setup_data.interac_data;
  1378. buff = dev_buffer. AllocDevice(false);
  1379. precomp_data_d= setup_data.precomp_data->AllocDevice(false);
  1380. interac_data_d= setup_data.interac_data. AllocDevice(false);
  1381. input_data_d = setup_data. input_data->AllocDevice(false);
  1382. output_data_d = setup_data. output_data->AllocDevice(false);
  1383. Profile::Toc();
  1384. Profile::Tic("DeviceComp",&comm,false,20);
  1385. { // Offloaded computation.
  1386. size_t data_size, M_dim0, M_dim1, dof;
  1387. Vector<size_t> interac_blk;
  1388. Vector<size_t> interac_cnt;
  1389. Vector<size_t> interac_mat;
  1390. Vector<size_t> input_perm_d;
  1391. Vector<size_t> output_perm_d;
  1392. { // Set interac_data.
  1393. char* data_ptr=&interac_data [0][0];
  1394. char* dev_ptr=&interac_data_d[0][0];
  1395. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size; dev_ptr += data_size;
  1396. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1397. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1398. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1399. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1400. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1401. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
  1402. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
  1403. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1404. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
  1405. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
  1406. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1407. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
  1408. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
  1409. input_perm_d.ReInit(((size_t*)data_ptr)[0],(size_t*)(dev_ptr+sizeof(size_t)),false);
  1410. data_ptr += sizeof(size_t) + sizeof(size_t)*input_perm_d.Dim();
  1411. dev_ptr += sizeof(size_t) + sizeof(size_t)*input_perm_d.Dim();
  1412. output_perm_d.ReInit(((size_t*)data_ptr)[0],(size_t*)(dev_ptr+sizeof(size_t)),false);
  1413. data_ptr += sizeof(size_t) + sizeof(size_t)*output_perm_d.Dim();
  1414. dev_ptr += sizeof(size_t) + sizeof(size_t)*output_perm_d.Dim();
  1415. }
  1416. { // interactions
  1417. size_t interac_indx = 0;
  1418. size_t interac_blk_dsp = 0;
  1419. cudaError_t error;
  1420. for (size_t k = 0; k < interac_blk.Dim(); k++) {
  1421. size_t vec_cnt=0;
  1422. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
  1423. if(vec_cnt==0){
  1424. //interac_indx += vec_cnt;
  1425. interac_blk_dsp += interac_blk[k];
  1426. continue;
  1427. }
  1428. char *buff_in_d =&buff[0];
  1429. char *buff_out_d =&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1430. { // Input permutation.
  1431. in_perm_gpu<Real_t>(&precomp_data_d[0][0], &input_data_d[0][0], buff_in_d,
  1432. &input_perm_d[interac_indx*4], vec_cnt, M_dim0, stream);
  1433. }
  1434. size_t vec_cnt0 = 0;
  1435. for (size_t j = interac_blk_dsp; j < interac_blk_dsp + interac_blk[k];) {
  1436. size_t vec_cnt1 = 0;
  1437. size_t interac_mat0 = interac_mat[j];
  1438. for (; j < interac_blk_dsp + interac_blk[k] && interac_mat[j] == interac_mat0; j++) vec_cnt1 += interac_cnt[j];
  1439. Matrix<Real_t> M_d(M_dim0, M_dim1, (Real_t*)(precomp_data_d.dev_ptr + interac_mat0), false);
  1440. Matrix<Real_t> Ms_d(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in_d + M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1441. Matrix<Real_t> Mt_d(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out_d + M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1442. Matrix<Real_t>::CUBLASGEMM(Mt_d, Ms_d, M_d);
  1443. vec_cnt0 += vec_cnt1;
  1444. }
  1445. { // Output permutation.
  1446. out_perm_gpu<Real_t>(&precomp_data_d[0][0], &output_data_d[0][0], buff_out_d,
  1447. &output_perm_d[interac_indx*4], vec_cnt, M_dim1, stream);
  1448. }
  1449. interac_indx += vec_cnt;
  1450. interac_blk_dsp += interac_blk[k];
  1451. }
  1452. }
  1453. }
  1454. Profile::Toc();
  1455. if(SYNC) CUDA_Lock::wait();
  1456. }
  1457. #endif
  1458. template <class FMMNode>
  1459. template <int SYNC>
  1460. void FMM_Pts<FMMNode>::EvalList(SetupData<Real_t>& setup_data, bool device){
  1461. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  1462. Profile::Tic("Host2Device",&this->comm,false,25);
  1463. Profile::Toc();
  1464. Profile::Tic("DeviceComp",&this->comm,false,20);
  1465. Profile::Toc();
  1466. return;
  1467. }
  1468. #if defined(PVFMM_HAVE_CUDA)
  1469. if (device) {
  1470. EvalListGPU<Real_t, SYNC>(setup_data, this->dev_buffer, this->comm);
  1471. return;
  1472. }
  1473. #endif
  1474. Profile::Tic("Host2Device",&this->comm,false,25);
  1475. typename Vector<char>::Device buff;
  1476. typename Matrix<char>::Device precomp_data;
  1477. typename Matrix<char>::Device interac_data;
  1478. typename Matrix<Real_t>::Device input_data;
  1479. typename Matrix<Real_t>::Device output_data;
  1480. if(device){
  1481. buff = this-> dev_buffer. AllocDevice(false);
  1482. precomp_data= setup_data.precomp_data->AllocDevice(false);
  1483. interac_data= setup_data.interac_data. AllocDevice(false);
  1484. input_data = setup_data. input_data->AllocDevice(false);
  1485. output_data = setup_data. output_data->AllocDevice(false);
  1486. }else{
  1487. buff = this-> cpu_buffer;
  1488. precomp_data=*setup_data.precomp_data;
  1489. interac_data= setup_data.interac_data;
  1490. input_data =*setup_data. input_data;
  1491. output_data =*setup_data. output_data;
  1492. }
  1493. Profile::Toc();
  1494. Profile::Tic("DeviceComp",&this->comm,false,20);
  1495. int lock_idx=-1;
  1496. int wait_lock_idx=-1;
  1497. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  1498. if(device) lock_idx=MIC_Lock::get_lock();
  1499. #ifdef __INTEL_OFFLOAD
  1500. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  1501. #endif
  1502. { // Offloaded computation.
  1503. // Set interac_data.
  1504. size_t data_size, M_dim0, M_dim1, dof;
  1505. Vector<size_t> interac_blk;
  1506. Vector<size_t> interac_cnt;
  1507. Vector<size_t> interac_mat;
  1508. Vector<size_t> input_perm;
  1509. Vector<size_t> output_perm;
  1510. { // Set interac_data.
  1511. char* data_ptr=&interac_data[0][0];
  1512. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size;
  1513. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1514. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1515. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1516. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1517. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1518. data_ptr+=sizeof(size_t)+interac_blk.Dim()*sizeof(size_t);
  1519. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1520. data_ptr+=sizeof(size_t)+interac_cnt.Dim()*sizeof(size_t);
  1521. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1522. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  1523. input_perm .ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1524. data_ptr+=sizeof(size_t)+ input_perm.Dim()*sizeof(size_t);
  1525. output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1526. data_ptr+=sizeof(size_t)+output_perm.Dim()*sizeof(size_t);
  1527. }
  1528. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  1529. //Compute interaction from Chebyshev source density.
  1530. { // interactions
  1531. int omp_p=omp_get_max_threads();
  1532. size_t interac_indx=0;
  1533. size_t interac_blk_dsp=0;
  1534. for(size_t k=0;k<interac_blk.Dim();k++){
  1535. size_t vec_cnt=0;
  1536. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
  1537. if(vec_cnt==0){
  1538. //interac_indx += vec_cnt;
  1539. interac_blk_dsp += interac_blk[k];
  1540. continue;
  1541. }
  1542. char* buff_in =&buff[0];
  1543. char* buff_out=&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1544. // Input permutation.
  1545. #pragma omp parallel for
  1546. for(int tid=0;tid<omp_p;tid++){
  1547. size_t a=( tid *vec_cnt)/omp_p;
  1548. size_t b=((tid+1)*vec_cnt)/omp_p;
  1549. for(size_t i=a;i<b;i++){
  1550. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+input_perm[(interac_indx+i)*4+0]);
  1551. const Real_t* scal=( Real_t*)(precomp_data[0]+input_perm[(interac_indx+i)*4+1]);
  1552. const Real_t* v_in =( Real_t*)( input_data[0]+input_perm[(interac_indx+i)*4+3]);
  1553. Real_t* v_out=( Real_t*)( buff_in +input_perm[(interac_indx+i)*4+2]);
  1554. // TODO: Fix for dof>1
  1555. #ifdef __MIC__
  1556. {
  1557. __m512d v8;
  1558. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1559. size_t j_end =(((uintptr_t)(v_out+M_dim0) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1560. j_start/=sizeof(Real_t);
  1561. j_end /=sizeof(Real_t);
  1562. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1563. assert(((uintptr_t)(v_out+j_start))%64==0);
  1564. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1565. size_t j=0;
  1566. for(;j<j_start;j++ ){
  1567. v_out[j]=v_in[perm[j]]*scal[j];
  1568. }
  1569. for(;j<j_end ;j+=8){
  1570. v8=_mm512_setr_pd(
  1571. v_in[perm[j+0]]*scal[j+0],
  1572. v_in[perm[j+1]]*scal[j+1],
  1573. v_in[perm[j+2]]*scal[j+2],
  1574. v_in[perm[j+3]]*scal[j+3],
  1575. v_in[perm[j+4]]*scal[j+4],
  1576. v_in[perm[j+5]]*scal[j+5],
  1577. v_in[perm[j+6]]*scal[j+6],
  1578. v_in[perm[j+7]]*scal[j+7]);
  1579. _mm512_storenrngo_pd(v_out+j,v8);
  1580. }
  1581. for(;j<M_dim0 ;j++ ){
  1582. v_out[j]=v_in[perm[j]]*scal[j];
  1583. }
  1584. }
  1585. #else
  1586. for(size_t j=0;j<M_dim0;j++ ){
  1587. v_out[j]=v_in[perm[j]]*scal[j];
  1588. }
  1589. #endif
  1590. }
  1591. }
  1592. size_t vec_cnt0=0;
  1593. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];){
  1594. size_t vec_cnt1=0;
  1595. size_t interac_mat0=interac_mat[j];
  1596. for(;j<interac_blk_dsp+interac_blk[k] && interac_mat[j]==interac_mat0;j++) vec_cnt1+=interac_cnt[j];
  1597. Matrix<Real_t> M(M_dim0, M_dim1, (Real_t*)(precomp_data[0]+interac_mat0), false);
  1598. #ifdef __MIC__
  1599. {
  1600. Matrix<Real_t> Ms(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1601. Matrix<Real_t> Mt(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1602. Matrix<Real_t>::GEMM(Mt,Ms,M);
  1603. }
  1604. #else
  1605. #pragma omp parallel for
  1606. for(int tid=0;tid<omp_p;tid++){
  1607. size_t a=(dof*vec_cnt1*(tid ))/omp_p;
  1608. size_t b=(dof*vec_cnt1*(tid+1))/omp_p;
  1609. Matrix<Real_t> Ms(b-a, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t))+M_dim0*a, false);
  1610. Matrix<Real_t> Mt(b-a, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t))+M_dim1*a, false);
  1611. Matrix<Real_t>::GEMM(Mt,Ms,M);
  1612. }
  1613. #endif
  1614. vec_cnt0+=vec_cnt1;
  1615. }
  1616. // Output permutation.
  1617. #pragma omp parallel for
  1618. for(int tid=0;tid<omp_p;tid++){
  1619. size_t a=( tid *vec_cnt)/omp_p;
  1620. size_t b=((tid+1)*vec_cnt)/omp_p;
  1621. if(tid> 0 && a<vec_cnt){ // Find 'a' independent of other threads.
  1622. size_t out_ptr=output_perm[(interac_indx+a)*4+3];
  1623. if(tid> 0) while(a<vec_cnt && out_ptr==output_perm[(interac_indx+a)*4+3]) a++;
  1624. }
  1625. if(tid<omp_p-1 && b<vec_cnt){ // Find 'b' independent of other threads.
  1626. size_t out_ptr=output_perm[(interac_indx+b)*4+3];
  1627. if(tid<omp_p-1) while(b<vec_cnt && out_ptr==output_perm[(interac_indx+b)*4+3]) b++;
  1628. }
  1629. for(size_t i=a;i<b;i++){ // Compute permutations.
  1630. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+output_perm[(interac_indx+i)*4+0]);
  1631. const Real_t* scal=( Real_t*)(precomp_data[0]+output_perm[(interac_indx+i)*4+1]);
  1632. const Real_t* v_in =( Real_t*)( buff_out +output_perm[(interac_indx+i)*4+2]);
  1633. Real_t* v_out=( Real_t*)( output_data[0]+output_perm[(interac_indx+i)*4+3]);
  1634. // TODO: Fix for dof>1
  1635. #ifdef __MIC__
  1636. {
  1637. __m512d v8;
  1638. __m512d v_old;
  1639. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1640. size_t j_end =(((uintptr_t)(v_out+M_dim1) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1641. j_start/=sizeof(Real_t);
  1642. j_end /=sizeof(Real_t);
  1643. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1644. assert(((uintptr_t)(v_out+j_start))%64==0);
  1645. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1646. size_t j=0;
  1647. for(;j<j_start;j++ ){
  1648. v_out[j]+=v_in[perm[j]]*scal[j];
  1649. }
  1650. for(;j<j_end ;j+=8){
  1651. v_old=_mm512_load_pd(v_out+j);
  1652. v8=_mm512_setr_pd(
  1653. v_in[perm[j+0]]*scal[j+0],
  1654. v_in[perm[j+1]]*scal[j+1],
  1655. v_in[perm[j+2]]*scal[j+2],
  1656. v_in[perm[j+3]]*scal[j+3],
  1657. v_in[perm[j+4]]*scal[j+4],
  1658. v_in[perm[j+5]]*scal[j+5],
  1659. v_in[perm[j+6]]*scal[j+6],
  1660. v_in[perm[j+7]]*scal[j+7]);
  1661. v_old=_mm512_add_pd(v_old, v8);
  1662. _mm512_storenrngo_pd(v_out+j,v_old);
  1663. }
  1664. for(;j<M_dim1 ;j++ ){
  1665. v_out[j]+=v_in[perm[j]]*scal[j];
  1666. }
  1667. }
  1668. #else
  1669. for(size_t j=0;j<M_dim1;j++ ){
  1670. v_out[j]+=v_in[perm[j]]*scal[j];
  1671. }
  1672. #endif
  1673. }
  1674. }
  1675. interac_indx+=vec_cnt;
  1676. interac_blk_dsp+=interac_blk[k];
  1677. }
  1678. }
  1679. if(device) MIC_Lock::release_lock(lock_idx);
  1680. }
  1681. #ifdef __INTEL_OFFLOAD
  1682. if(SYNC){
  1683. #pragma offload if(device) target(mic:0)
  1684. {if(device) MIC_Lock::wait_lock(lock_idx);}
  1685. }
  1686. #endif
  1687. Profile::Toc();
  1688. }
  1689. template <class FMMNode>
  1690. void FMM_Pts<FMMNode>::Source2UpSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  1691. if(this->MultipoleOrder()==0) return;
  1692. { // Set setup_data
  1693. setup_data.level=level;
  1694. setup_data.kernel=aux_kernel;
  1695. setup_data.interac_type.resize(1);
  1696. setup_data.interac_type[0]=S2U_Type;
  1697. setup_data. input_data=&buff[4];
  1698. setup_data.output_data=&buff[0];
  1699. setup_data. coord_data=&buff[6];
  1700. Vector<FMMNode_t*>& nodes_in =n_list[4];
  1701. Vector<FMMNode_t*>& nodes_out=n_list[0];
  1702. setup_data.nodes_in .clear();
  1703. setup_data.nodes_out.clear();
  1704. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  1705. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  1706. }
  1707. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1708. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1709. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  1710. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  1711. for(size_t i=0;i<nodes_in .size();i++){
  1712. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  1713. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  1714. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  1715. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  1716. }
  1717. for(size_t i=0;i<nodes_out.size();i++){
  1718. output_vector.push_back(&upwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
  1719. output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
  1720. }
  1721. //Upward check to upward equivalent matrix.
  1722. Matrix<Real_t>& M_uc2ue = this->mat->Mat(level, UC2UE_Type, 0);
  1723. this->SetupInteracPts(setup_data, false, true, &M_uc2ue,device);
  1724. { // Resize device buffer
  1725. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  1726. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  1727. }
  1728. }
  1729. template <class FMMNode>
  1730. void FMM_Pts<FMMNode>::Source2Up(SetupData<Real_t>& setup_data, bool device){
  1731. //Add Source2Up contribution.
  1732. this->EvalListPts(setup_data, device);
  1733. }
  1734. template <class FMMNode>
  1735. void FMM_Pts<FMMNode>::Up2UpSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  1736. if(this->MultipoleOrder()==0) return;
  1737. { // Set setup_data
  1738. setup_data.level=level;
  1739. setup_data.kernel=aux_kernel;
  1740. setup_data.interac_type.resize(1);
  1741. setup_data.interac_type[0]=U2U_Type;
  1742. setup_data. input_data=&buff[0];
  1743. setup_data.output_data=&buff[0];
  1744. Vector<FMMNode_t*>& nodes_in =n_list[0];
  1745. Vector<FMMNode_t*>& nodes_out=n_list[0];
  1746. setup_data.nodes_in .clear();
  1747. setup_data.nodes_out.clear();
  1748. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1) setup_data.nodes_in .push_back(nodes_in [i]);
  1749. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
  1750. }
  1751. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1752. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1753. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  1754. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  1755. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  1756. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
  1757. SetupInterac(setup_data,device);
  1758. }
  1759. template <class FMMNode>
  1760. void FMM_Pts<FMMNode>::Up2Up (SetupData<Real_t>& setup_data, bool device){
  1761. //Add Up2Up contribution.
  1762. EvalList(setup_data, device);
  1763. }
  1764. template <class FMMNode>
  1765. void FMM_Pts<FMMNode>::PeriodicBC(FMMNode* node){
  1766. if(this->MultipoleOrder()==0) return;
  1767. Matrix<Real_t>& M = Precomp(0, BC_Type, 0);
  1768. assert(node->FMMData()->upward_equiv.Dim()>0);
  1769. int dof=1;
  1770. Vector<Real_t>& upward_equiv=node->FMMData()->upward_equiv;
  1771. Vector<Real_t>& dnward_equiv=node->FMMData()->dnward_equiv;
  1772. assert(upward_equiv.Dim()==M.Dim(0)*dof);
  1773. assert(dnward_equiv.Dim()==M.Dim(1)*dof);
  1774. Matrix<Real_t> d_equiv(dof,M.Dim(0),&dnward_equiv[0],false);
  1775. Matrix<Real_t> u_equiv(dof,M.Dim(1),&upward_equiv[0],false);
  1776. Matrix<Real_t>::GEMM(d_equiv,u_equiv,M);
  1777. }
  1778. template <class FMMNode>
  1779. void FMM_Pts<FMMNode>::FFT_UpEquiv(size_t dof, size_t m, size_t ker_dim0, Vector<size_t>& fft_vec,
  1780. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_){
  1781. size_t n1=m*2;
  1782. size_t n2=n1*n1;
  1783. size_t n3=n1*n2;
  1784. size_t n3_=n2*(n1/2+1);
  1785. size_t chld_cnt=1UL<<COORD_DIM;
  1786. size_t fftsize_in =2*n3_*chld_cnt*ker_dim0*dof;
  1787. int omp_p=omp_get_max_threads();
  1788. //Load permutation map.
  1789. size_t n=6*(m-1)*(m-1)+2;
  1790. static Vector<size_t> map;
  1791. { // Build map to reorder upward_equiv
  1792. size_t n_old=map.Dim();
  1793. if(n_old!=n){
  1794. Real_t c[3]={0,0,0};
  1795. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1796. map.Resize(surf.Dim()/COORD_DIM);
  1797. for(size_t i=0;i<map.Dim();i++)
  1798. map[i]=((size_t)(m-1-surf[i*3]+0.5))+((size_t)(m-1-surf[i*3+1]+0.5))*n1+((size_t)(m-1-surf[i*3+2]+0.5))*n2;
  1799. }
  1800. }
  1801. { // Build FFTW plan.
  1802. if(!vlist_fft_flag){
  1803. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1804. void *fftw_in, *fftw_out;
  1805. fftw_in = mem::aligned_new<Real_t>( n3 *ker_dim0*chld_cnt);
  1806. fftw_out = mem::aligned_new<Real_t>(2*n3_*ker_dim0*chld_cnt);
  1807. vlist_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM,nnn,ker_dim0*chld_cnt,
  1808. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*)(fftw_out),NULL, 1, n3_, FFTW_ESTIMATE);
  1809. mem::aligned_delete<Real_t>((Real_t*)fftw_in );
  1810. mem::aligned_delete<Real_t>((Real_t*)fftw_out);
  1811. vlist_fft_flag=true;
  1812. }
  1813. }
  1814. { // Offload section
  1815. size_t n_in = fft_vec.Dim();
  1816. #pragma omp parallel for
  1817. for(int pid=0; pid<omp_p; pid++){
  1818. size_t node_start=(n_in*(pid ))/omp_p;
  1819. size_t node_end =(n_in*(pid+1))/omp_p;
  1820. Vector<Real_t> buffer(fftsize_in, &buffer_[fftsize_in*pid], false);
  1821. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  1822. Vector<Real_t*> upward_equiv(chld_cnt);
  1823. for(size_t i=0;i<chld_cnt;i++) upward_equiv[i]=&input_data[0] + fft_vec[node_idx] + n*ker_dim0*dof*i;
  1824. Vector<Real_t> upward_equiv_fft(fftsize_in, &output_data[fftsize_in *node_idx], false);
  1825. upward_equiv_fft.SetZero();
  1826. // Rearrange upward equivalent data.
  1827. for(size_t k=0;k<n;k++){
  1828. size_t idx=map[k];
  1829. for(int j1=0;j1<dof;j1++)
  1830. for(int j0=0;j0<(int)chld_cnt;j0++)
  1831. for(int i=0;i<ker_dim0;i++)
  1832. upward_equiv_fft[idx+(j0+(i+j1*ker_dim0)*chld_cnt)*n3]=upward_equiv[j0][ker_dim0*(n*j1+k)+i];
  1833. }
  1834. // Compute FFT.
  1835. for(int i=0;i<dof;i++)
  1836. FFTW_t<Real_t>::fft_execute_dft_r2c(vlist_fftplan, (Real_t*)&upward_equiv_fft[i* n3 *ker_dim0*chld_cnt],
  1837. (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim0*chld_cnt]);
  1838. //Compute flops.
  1839. #ifndef FFTW3_MKL
  1840. double add, mul, fma;
  1841. FFTW_t<Real_t>::fftw_flops(vlist_fftplan, &add, &mul, &fma);
  1842. #ifndef __INTEL_OFFLOAD0
  1843. Profile::Add_FLOP((long long)(add+mul+2*fma));
  1844. #endif
  1845. #endif
  1846. for(int i=0;i<ker_dim0*dof;i++)
  1847. for(size_t j=0;j<n3_;j++)
  1848. for(size_t k=0;k<chld_cnt;k++){
  1849. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+0]=buffer[2*(n3_*(chld_cnt*i+k)+j)+0];
  1850. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+1]=buffer[2*(n3_*(chld_cnt*i+k)+j)+1];
  1851. }
  1852. }
  1853. }
  1854. }
  1855. }
  1856. template <class FMMNode>
  1857. void FMM_Pts<FMMNode>::FFT_Check2Equiv(size_t dof, size_t m, size_t ker_dim1, Vector<size_t>& ifft_vec,
  1858. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_, Matrix<Real_t>& M){
  1859. size_t n1=m*2;
  1860. size_t n2=n1*n1;
  1861. size_t n3=n1*n2;
  1862. size_t n3_=n2*(n1/2+1);
  1863. size_t chld_cnt=1UL<<COORD_DIM;
  1864. size_t fftsize_out=2*n3_*dof*ker_dim1*chld_cnt;
  1865. int omp_p=omp_get_max_threads();
  1866. //Load permutation map.
  1867. size_t n=6*(m-1)*(m-1)+2;
  1868. static Vector<size_t> map;
  1869. { // Build map to reorder dnward_check
  1870. size_t n_old=map.Dim();
  1871. if(n_old!=n){
  1872. Real_t c[3]={0,0,0};
  1873. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1874. map.Resize(surf.Dim()/COORD_DIM);
  1875. for(size_t i=0;i<map.Dim();i++)
  1876. map[i]=((size_t)(m*2-0.5-surf[i*3]))+((size_t)(m*2-0.5-surf[i*3+1]))*n1+((size_t)(m*2-0.5-surf[i*3+2]))*n2;
  1877. //map;//.AllocDevice(true);
  1878. }
  1879. }
  1880. { // Build FFTW plan.
  1881. if(!vlist_ifft_flag){
  1882. //Build FFTW plan.
  1883. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1884. Real_t *fftw_in, *fftw_out;
  1885. fftw_in = mem::aligned_new<Real_t>(2*n3_*ker_dim1*chld_cnt);
  1886. fftw_out = mem::aligned_new<Real_t>( n3 *ker_dim1*chld_cnt);
  1887. vlist_ifftplan = FFTW_t<Real_t>::fft_plan_many_dft_c2r(COORD_DIM,nnn,ker_dim1*chld_cnt,
  1888. (typename FFTW_t<Real_t>::cplx*)fftw_in, NULL, 1, n3_, (Real_t*)(fftw_out),NULL, 1, n3, FFTW_ESTIMATE);
  1889. mem::aligned_delete<Real_t>(fftw_in);
  1890. mem::aligned_delete<Real_t>(fftw_out);
  1891. vlist_ifft_flag=true;
  1892. }
  1893. }
  1894. { // Offload section
  1895. size_t n_out=ifft_vec.Dim();
  1896. #pragma omp parallel for
  1897. for(int pid=0; pid<omp_p; pid++){
  1898. size_t node_start=(n_out*(pid ))/omp_p;
  1899. size_t node_end =(n_out*(pid+1))/omp_p;
  1900. Vector<Real_t> buffer(fftsize_out, &buffer_[fftsize_out*pid], false);
  1901. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  1902. Vector<Real_t> dnward_check_fft(fftsize_out, &input_data[fftsize_out*node_idx], false);
  1903. //De-interleave data.
  1904. for(int i=0;i<ker_dim1*dof;i++)
  1905. for(size_t j=0;j<n3_;j++)
  1906. for(size_t k=0;k<chld_cnt;k++){
  1907. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+0]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+0];
  1908. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+1]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+1];
  1909. }
  1910. // Compute FFT.
  1911. for(int i=0;i<dof;i++)
  1912. FFTW_t<Real_t>::fft_execute_dft_c2r(vlist_ifftplan, (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim1*chld_cnt],
  1913. (Real_t*)&dnward_check_fft[i* n3 *ker_dim1*chld_cnt]);
  1914. //Compute flops.
  1915. #ifndef FFTW3_MKL
  1916. double add, mul, fma;
  1917. FFTW_t<Real_t>::fftw_flops(vlist_ifftplan, &add, &mul, &fma);
  1918. #ifndef __INTEL_OFFLOAD0
  1919. Profile::Add_FLOP((long long)(add+mul+2*fma));
  1920. #endif
  1921. #endif
  1922. // Rearrange downward check data.
  1923. for(size_t k=0;k<n;k++){
  1924. size_t idx=map[k];
  1925. for(int j1=0;j1<dof;j1++)
  1926. for(int j0=0;j0<(int)chld_cnt;j0++)
  1927. for(int i=0;i<ker_dim1;i++)
  1928. buffer[ker_dim1*(n*(dof*j0+j1)+k)+i]=dnward_check_fft[idx+(j1+(i+j0*ker_dim1)*dof)*n3];
  1929. }
  1930. // Compute check to equiv.
  1931. for(size_t j=0;j<chld_cnt;j++){
  1932. Matrix<Real_t> d_check(dof,M.Dim(0),&buffer[n*ker_dim1*dof*j],false);
  1933. Matrix<Real_t> d_equiv(dof,M.Dim(1),&output_data[0] + ifft_vec[node_idx] + M.Dim(1)*dof*j,false);
  1934. Matrix<Real_t>::GEMM(d_equiv,d_check,M,1.0);
  1935. }
  1936. }
  1937. }
  1938. }
  1939. }
  1940. template<class Real_t>
  1941. inline void matmult_8x8x2(Real_t*& M_, Real_t*& IN0, Real_t*& IN1, Real_t*& OUT0, Real_t*& OUT1){
  1942. // Generic code.
  1943. Real_t out_reg000, out_reg001, out_reg010, out_reg011;
  1944. Real_t out_reg100, out_reg101, out_reg110, out_reg111;
  1945. Real_t in_reg000, in_reg001, in_reg010, in_reg011;
  1946. Real_t in_reg100, in_reg101, in_reg110, in_reg111;
  1947. Real_t m_reg000, m_reg001, m_reg010, m_reg011;
  1948. Real_t m_reg100, m_reg101, m_reg110, m_reg111;
  1949. //#pragma unroll
  1950. for(int i1=0;i1<8;i1+=2){
  1951. Real_t* IN0_=IN0;
  1952. Real_t* IN1_=IN1;
  1953. out_reg000=OUT0[ 0]; out_reg001=OUT0[ 1];
  1954. out_reg010=OUT0[ 2]; out_reg011=OUT0[ 3];
  1955. out_reg100=OUT1[ 0]; out_reg101=OUT1[ 1];
  1956. out_reg110=OUT1[ 2]; out_reg111=OUT1[ 3];
  1957. //#pragma unroll
  1958. for(int i2=0;i2<8;i2+=2){
  1959. m_reg000=M_[ 0]; m_reg001=M_[ 1];
  1960. m_reg010=M_[ 2]; m_reg011=M_[ 3];
  1961. m_reg100=M_[16]; m_reg101=M_[17];
  1962. m_reg110=M_[18]; m_reg111=M_[19];
  1963. in_reg000=IN0_[0]; in_reg001=IN0_[1];
  1964. in_reg010=IN0_[2]; in_reg011=IN0_[3];
  1965. in_reg100=IN1_[0]; in_reg101=IN1_[1];
  1966. in_reg110=IN1_[2]; in_reg111=IN1_[3];
  1967. out_reg000 += m_reg000*in_reg000 - m_reg001*in_reg001;
  1968. out_reg001 += m_reg000*in_reg001 + m_reg001*in_reg000;
  1969. out_reg010 += m_reg010*in_reg000 - m_reg011*in_reg001;
  1970. out_reg011 += m_reg010*in_reg001 + m_reg011*in_reg000;
  1971. out_reg000 += m_reg100*in_reg010 - m_reg101*in_reg011;
  1972. out_reg001 += m_reg100*in_reg011 + m_reg101*in_reg010;
  1973. out_reg010 += m_reg110*in_reg010 - m_reg111*in_reg011;
  1974. out_reg011 += m_reg110*in_reg011 + m_reg111*in_reg010;
  1975. out_reg100 += m_reg000*in_reg100 - m_reg001*in_reg101;
  1976. out_reg101 += m_reg000*in_reg101 + m_reg001*in_reg100;
  1977. out_reg110 += m_reg010*in_reg100 - m_reg011*in_reg101;
  1978. out_reg111 += m_reg010*in_reg101 + m_reg011*in_reg100;
  1979. out_reg100 += m_reg100*in_reg110 - m_reg101*in_reg111;
  1980. out_reg101 += m_reg100*in_reg111 + m_reg101*in_reg110;
  1981. out_reg110 += m_reg110*in_reg110 - m_reg111*in_reg111;
  1982. out_reg111 += m_reg110*in_reg111 + m_reg111*in_reg110;
  1983. M_+=32; // Jump to (column+2).
  1984. IN0_+=4;
  1985. IN1_+=4;
  1986. }
  1987. OUT0[ 0]=out_reg000; OUT0[ 1]=out_reg001;
  1988. OUT0[ 2]=out_reg010; OUT0[ 3]=out_reg011;
  1989. OUT1[ 0]=out_reg100; OUT1[ 1]=out_reg101;
  1990. OUT1[ 2]=out_reg110; OUT1[ 3]=out_reg111;
  1991. M_+=4-64*2; // Jump back to first column (row+2).
  1992. OUT0+=4;
  1993. OUT1+=4;
  1994. }
  1995. }
  1996. #if defined(__AVX__) || defined(__SSE3__)
  1997. template<>
  1998. inline void matmult_8x8x2<double>(double*& M_, double*& IN0, double*& IN1, double*& OUT0, double*& OUT1){
  1999. #ifdef __AVX__ //AVX code.
  2000. __m256d out00,out01,out10,out11;
  2001. __m256d out20,out21,out30,out31;
  2002. double* in0__ = IN0;
  2003. double* in1__ = IN1;
  2004. out00 = _mm256_load_pd(OUT0);
  2005. out01 = _mm256_load_pd(OUT1);
  2006. out10 = _mm256_load_pd(OUT0+4);
  2007. out11 = _mm256_load_pd(OUT1+4);
  2008. out20 = _mm256_load_pd(OUT0+8);
  2009. out21 = _mm256_load_pd(OUT1+8);
  2010. out30 = _mm256_load_pd(OUT0+12);
  2011. out31 = _mm256_load_pd(OUT1+12);
  2012. for(int i2=0;i2<8;i2+=2){
  2013. __m256d m00;
  2014. __m256d ot00;
  2015. __m256d mt0,mtt0;
  2016. __m256d in00,in00_r,in01,in01_r;
  2017. in00 = _mm256_broadcast_pd((const __m128d*)in0__);
  2018. in00_r = _mm256_permute_pd(in00,5);
  2019. in01 = _mm256_broadcast_pd((const __m128d*)in1__);
  2020. in01_r = _mm256_permute_pd(in01,5);
  2021. m00 = _mm256_load_pd(M_);
  2022. mt0 = _mm256_unpacklo_pd(m00,m00);
  2023. ot00 = _mm256_mul_pd(mt0,in00);
  2024. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2025. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2026. ot00 = _mm256_mul_pd(mt0,in01);
  2027. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2028. m00 = _mm256_load_pd(M_+4);
  2029. mt0 = _mm256_unpacklo_pd(m00,m00);
  2030. ot00 = _mm256_mul_pd(mt0,in00);
  2031. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2032. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2033. ot00 = _mm256_mul_pd(mt0,in01);
  2034. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2035. m00 = _mm256_load_pd(M_+8);
  2036. mt0 = _mm256_unpacklo_pd(m00,m00);
  2037. ot00 = _mm256_mul_pd(mt0,in00);
  2038. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2039. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2040. ot00 = _mm256_mul_pd(mt0,in01);
  2041. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2042. m00 = _mm256_load_pd(M_+12);
  2043. mt0 = _mm256_unpacklo_pd(m00,m00);
  2044. ot00 = _mm256_mul_pd(mt0,in00);
  2045. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2046. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2047. ot00 = _mm256_mul_pd(mt0,in01);
  2048. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2049. in00 = _mm256_broadcast_pd((const __m128d*) (in0__+2));
  2050. in00_r = _mm256_permute_pd(in00,5);
  2051. in01 = _mm256_broadcast_pd((const __m128d*) (in1__+2));
  2052. in01_r = _mm256_permute_pd(in01,5);
  2053. m00 = _mm256_load_pd(M_+16);
  2054. mt0 = _mm256_unpacklo_pd(m00,m00);
  2055. ot00 = _mm256_mul_pd(mt0,in00);
  2056. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2057. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2058. ot00 = _mm256_mul_pd(mt0,in01);
  2059. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2060. m00 = _mm256_load_pd(M_+20);
  2061. mt0 = _mm256_unpacklo_pd(m00,m00);
  2062. ot00 = _mm256_mul_pd(mt0,in00);
  2063. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2064. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2065. ot00 = _mm256_mul_pd(mt0,in01);
  2066. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2067. m00 = _mm256_load_pd(M_+24);
  2068. mt0 = _mm256_unpacklo_pd(m00,m00);
  2069. ot00 = _mm256_mul_pd(mt0,in00);
  2070. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2071. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2072. ot00 = _mm256_mul_pd(mt0,in01);
  2073. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2074. m00 = _mm256_load_pd(M_+28);
  2075. mt0 = _mm256_unpacklo_pd(m00,m00);
  2076. ot00 = _mm256_mul_pd(mt0,in00);
  2077. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2078. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2079. ot00 = _mm256_mul_pd(mt0,in01);
  2080. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2081. M_ += 32;
  2082. in0__ += 4;
  2083. in1__ += 4;
  2084. }
  2085. _mm256_store_pd(OUT0,out00);
  2086. _mm256_store_pd(OUT1,out01);
  2087. _mm256_store_pd(OUT0+4,out10);
  2088. _mm256_store_pd(OUT1+4,out11);
  2089. _mm256_store_pd(OUT0+8,out20);
  2090. _mm256_store_pd(OUT1+8,out21);
  2091. _mm256_store_pd(OUT0+12,out30);
  2092. _mm256_store_pd(OUT1+12,out31);
  2093. #elif defined __SSE3__ // SSE code.
  2094. __m128d out00, out01, out10, out11;
  2095. __m128d in00, in01, in10, in11;
  2096. __m128d m00, m01, m10, m11;
  2097. //#pragma unroll
  2098. for(int i1=0;i1<8;i1+=2){
  2099. double* IN0_=IN0;
  2100. double* IN1_=IN1;
  2101. out00 =_mm_load_pd (OUT0 );
  2102. out10 =_mm_load_pd (OUT0+2);
  2103. out01 =_mm_load_pd (OUT1 );
  2104. out11 =_mm_load_pd (OUT1+2);
  2105. //#pragma unroll
  2106. for(int i2=0;i2<8;i2+=2){
  2107. m00 =_mm_load1_pd (M_ );
  2108. m10 =_mm_load1_pd (M_+ 2);
  2109. m01 =_mm_load1_pd (M_+16);
  2110. m11 =_mm_load1_pd (M_+18);
  2111. in00 =_mm_load_pd (IN0_ );
  2112. in10 =_mm_load_pd (IN0_+2);
  2113. in01 =_mm_load_pd (IN1_ );
  2114. in11 =_mm_load_pd (IN1_+2);
  2115. out00 = _mm_add_pd (out00, _mm_mul_pd(m00 , in00 ));
  2116. out00 = _mm_add_pd (out00, _mm_mul_pd(m01 , in10 ));
  2117. out01 = _mm_add_pd (out01, _mm_mul_pd(m00 , in01 ));
  2118. out01 = _mm_add_pd (out01, _mm_mul_pd(m01 , in11 ));
  2119. out10 = _mm_add_pd (out10, _mm_mul_pd(m10 , in00 ));
  2120. out10 = _mm_add_pd (out10, _mm_mul_pd(m11 , in10 ));
  2121. out11 = _mm_add_pd (out11, _mm_mul_pd(m10 , in01 ));
  2122. out11 = _mm_add_pd (out11, _mm_mul_pd(m11 , in11 ));
  2123. m00 =_mm_load1_pd (M_+ 1);
  2124. m10 =_mm_load1_pd (M_+ 2+1);
  2125. m01 =_mm_load1_pd (M_+16+1);
  2126. m11 =_mm_load1_pd (M_+18+1);
  2127. in00 =_mm_shuffle_pd (in00,in00,_MM_SHUFFLE2(0,1));
  2128. in01 =_mm_shuffle_pd (in01,in01,_MM_SHUFFLE2(0,1));
  2129. in10 =_mm_shuffle_pd (in10,in10,_MM_SHUFFLE2(0,1));
  2130. in11 =_mm_shuffle_pd (in11,in11,_MM_SHUFFLE2(0,1));
  2131. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m00, in00));
  2132. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m01, in10));
  2133. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m00, in01));
  2134. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m01, in11));
  2135. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m10, in00));
  2136. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m11, in10));
  2137. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m10, in01));
  2138. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m11, in11));
  2139. M_+=32; // Jump to (column+2).
  2140. IN0_+=4;
  2141. IN1_+=4;
  2142. }
  2143. _mm_store_pd (OUT0 ,out00);
  2144. _mm_store_pd (OUT0+2,out10);
  2145. _mm_store_pd (OUT1 ,out01);
  2146. _mm_store_pd (OUT1+2,out11);
  2147. M_+=4-64*2; // Jump back to first column (row+2).
  2148. OUT0+=4;
  2149. OUT1+=4;
  2150. }
  2151. #endif
  2152. }
  2153. #endif
  2154. #if defined(__SSE3__)
  2155. template<>
  2156. inline void matmult_8x8x2<float>(float*& M_, float*& IN0, float*& IN1, float*& OUT0, float*& OUT1){
  2157. #if defined __SSE3__ // SSE code.
  2158. __m128 out00,out01,out10,out11;
  2159. __m128 out20,out21,out30,out31;
  2160. float* in0__ = IN0;
  2161. float* in1__ = IN1;
  2162. out00 = _mm_load_ps(OUT0);
  2163. out01 = _mm_load_ps(OUT1);
  2164. out10 = _mm_load_ps(OUT0+4);
  2165. out11 = _mm_load_ps(OUT1+4);
  2166. out20 = _mm_load_ps(OUT0+8);
  2167. out21 = _mm_load_ps(OUT1+8);
  2168. out30 = _mm_load_ps(OUT0+12);
  2169. out31 = _mm_load_ps(OUT1+12);
  2170. for(int i2=0;i2<8;i2+=2){
  2171. __m128 m00;
  2172. __m128 ot00;
  2173. __m128 mt0,mtt0;
  2174. __m128 in00,in00_r,in01,in01_r;
  2175. in00 = _mm_castpd_ps(_mm_load_pd1((const double*)in0__));
  2176. in00_r = _mm_shuffle_ps(in00,in00,_MM_SHUFFLE(2,3,0,1));
  2177. in01 = _mm_castpd_ps(_mm_load_pd1((const double*)in1__));
  2178. in01_r = _mm_shuffle_ps(in01,in01,_MM_SHUFFLE(2,3,0,1));
  2179. m00 = _mm_load_ps(M_);
  2180. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2181. out00= _mm_add_ps (out00,_mm_mul_ps( mt0,in00 ));
  2182. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2183. out00= _mm_addsub_ps(out00,_mm_mul_ps(mtt0,in00_r));
  2184. out01 = _mm_add_ps (out01,_mm_mul_ps( mt0,in01 ));
  2185. out01 = _mm_addsub_ps(out01,_mm_mul_ps(mtt0,in01_r));
  2186. m00 = _mm_load_ps(M_+4);
  2187. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2188. out10= _mm_add_ps (out10,_mm_mul_ps( mt0,in00 ));
  2189. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2190. out10= _mm_addsub_ps(out10,_mm_mul_ps(mtt0,in00_r));
  2191. out11 = _mm_add_ps (out11,_mm_mul_ps( mt0,in01 ));
  2192. out11 = _mm_addsub_ps(out11,_mm_mul_ps(mtt0,in01_r));
  2193. m00 = _mm_load_ps(M_+8);
  2194. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2195. out20= _mm_add_ps (out20,_mm_mul_ps( mt0,in00 ));
  2196. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2197. out20= _mm_addsub_ps(out20,_mm_mul_ps(mtt0,in00_r));
  2198. out21 = _mm_add_ps (out21,_mm_mul_ps( mt0,in01 ));
  2199. out21 = _mm_addsub_ps(out21,_mm_mul_ps(mtt0,in01_r));
  2200. m00 = _mm_load_ps(M_+12);
  2201. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2202. out30= _mm_add_ps (out30,_mm_mul_ps( mt0, in00));
  2203. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2204. out30= _mm_addsub_ps(out30,_mm_mul_ps(mtt0,in00_r));
  2205. out31 = _mm_add_ps (out31,_mm_mul_ps( mt0,in01 ));
  2206. out31 = _mm_addsub_ps(out31,_mm_mul_ps(mtt0,in01_r));
  2207. in00 = _mm_castpd_ps(_mm_load_pd1((const double*) (in0__+2)));
  2208. in00_r = _mm_shuffle_ps(in00,in00,_MM_SHUFFLE(2,3,0,1));
  2209. in01 = _mm_castpd_ps(_mm_load_pd1((const double*) (in1__+2)));
  2210. in01_r = _mm_shuffle_ps(in01,in01,_MM_SHUFFLE(2,3,0,1));
  2211. m00 = _mm_load_ps(M_+16);
  2212. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2213. out00= _mm_add_ps (out00,_mm_mul_ps( mt0,in00 ));
  2214. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2215. out00= _mm_addsub_ps(out00,_mm_mul_ps(mtt0,in00_r));
  2216. out01 = _mm_add_ps (out01,_mm_mul_ps( mt0,in01 ));
  2217. out01 = _mm_addsub_ps(out01,_mm_mul_ps(mtt0,in01_r));
  2218. m00 = _mm_load_ps(M_+20);
  2219. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2220. out10= _mm_add_ps (out10,_mm_mul_ps( mt0,in00 ));
  2221. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2222. out10= _mm_addsub_ps(out10,_mm_mul_ps(mtt0,in00_r));
  2223. out11 = _mm_add_ps (out11,_mm_mul_ps( mt0,in01 ));
  2224. out11 = _mm_addsub_ps(out11,_mm_mul_ps(mtt0,in01_r));
  2225. m00 = _mm_load_ps(M_+24);
  2226. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2227. out20= _mm_add_ps (out20,_mm_mul_ps( mt0,in00 ));
  2228. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2229. out20= _mm_addsub_ps(out20,_mm_mul_ps(mtt0,in00_r));
  2230. out21 = _mm_add_ps (out21,_mm_mul_ps( mt0,in01 ));
  2231. out21 = _mm_addsub_ps(out21,_mm_mul_ps(mtt0,in01_r));
  2232. m00 = _mm_load_ps(M_+28);
  2233. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2234. out30= _mm_add_ps (out30,_mm_mul_ps( mt0,in00 ));
  2235. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2236. out30= _mm_addsub_ps(out30,_mm_mul_ps(mtt0,in00_r));
  2237. out31 = _mm_add_ps (out31,_mm_mul_ps( mt0,in01 ));
  2238. out31 = _mm_addsub_ps(out31,_mm_mul_ps(mtt0,in01_r));
  2239. M_ += 32;
  2240. in0__ += 4;
  2241. in1__ += 4;
  2242. }
  2243. _mm_store_ps(OUT0,out00);
  2244. _mm_store_ps(OUT1,out01);
  2245. _mm_store_ps(OUT0+4,out10);
  2246. _mm_store_ps(OUT1+4,out11);
  2247. _mm_store_ps(OUT0+8,out20);
  2248. _mm_store_ps(OUT1+8,out21);
  2249. _mm_store_ps(OUT0+12,out30);
  2250. _mm_store_ps(OUT1+12,out31);
  2251. #endif
  2252. }
  2253. #endif
  2254. template <class Real_t>
  2255. void VListHadamard(size_t dof, size_t M_dim, size_t ker_dim0, size_t ker_dim1, Vector<size_t>& interac_dsp,
  2256. Vector<size_t>& interac_vec, Vector<Real_t*>& precomp_mat, Vector<Real_t>& fft_in, Vector<Real_t>& fft_out){
  2257. size_t chld_cnt=1UL<<COORD_DIM;
  2258. size_t fftsize_in =M_dim*ker_dim0*chld_cnt*2;
  2259. size_t fftsize_out=M_dim*ker_dim1*chld_cnt*2;
  2260. Real_t* zero_vec0=mem::aligned_new<Real_t>(fftsize_in );
  2261. Real_t* zero_vec1=mem::aligned_new<Real_t>(fftsize_out);
  2262. size_t n_out=fft_out.Dim()/fftsize_out;
  2263. // Set buff_out to zero.
  2264. #pragma omp parallel for
  2265. for(size_t k=0;k<n_out;k++){
  2266. Vector<Real_t> dnward_check_fft(fftsize_out, &fft_out[k*fftsize_out], false);
  2267. dnward_check_fft.SetZero();
  2268. }
  2269. // Build list of interaction pairs (in, out vectors).
  2270. size_t mat_cnt=precomp_mat.Dim();
  2271. size_t blk1_cnt=interac_dsp.Dim()/mat_cnt;
  2272. const size_t V_BLK_SIZE=V_BLK_CACHE*64/sizeof(Real_t);
  2273. Real_t** IN_ =mem::aligned_new<Real_t*>(2*V_BLK_SIZE*blk1_cnt*mat_cnt);
  2274. Real_t** OUT_=mem::aligned_new<Real_t*>(2*V_BLK_SIZE*blk1_cnt*mat_cnt);
  2275. #pragma omp parallel for
  2276. for(size_t interac_blk1=0; interac_blk1<blk1_cnt*mat_cnt; interac_blk1++){
  2277. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2278. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2279. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2280. for(size_t j=0;j<interac_cnt;j++){
  2281. IN_ [2*V_BLK_SIZE*interac_blk1 +j]=&fft_in [interac_vec[(interac_dsp0+j)*2+0]];
  2282. OUT_[2*V_BLK_SIZE*interac_blk1 +j]=&fft_out[interac_vec[(interac_dsp0+j)*2+1]];
  2283. }
  2284. IN_ [2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec0;
  2285. OUT_[2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec1;
  2286. }
  2287. int omp_p=omp_get_max_threads();
  2288. #pragma omp parallel for
  2289. for(int pid=0; pid<omp_p; pid++){
  2290. size_t a=( pid *M_dim)/omp_p;
  2291. size_t b=((pid+1)*M_dim)/omp_p;
  2292. for(int in_dim=0;in_dim<ker_dim0;in_dim++)
  2293. for(int ot_dim=0;ot_dim<ker_dim1;ot_dim++)
  2294. for(size_t blk1=0; blk1<blk1_cnt; blk1++)
  2295. for(size_t k=a; k< b; k++)
  2296. for(size_t mat_indx=0; mat_indx< mat_cnt;mat_indx++){
  2297. size_t interac_blk1 = blk1*mat_cnt+mat_indx;
  2298. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2299. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2300. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2301. Real_t** IN = IN_ + 2*V_BLK_SIZE*interac_blk1;
  2302. Real_t** OUT= OUT_+ 2*V_BLK_SIZE*interac_blk1;
  2303. Real_t* M = precomp_mat[mat_indx] + k*chld_cnt*chld_cnt*2 + (ot_dim+in_dim*ker_dim1)*M_dim*128;
  2304. {
  2305. for(size_t j=0;j<interac_cnt;j+=2){
  2306. Real_t* M_ = M;
  2307. Real_t* IN0 = IN [j+0] + (in_dim*M_dim+k)*chld_cnt*2;
  2308. Real_t* IN1 = IN [j+1] + (in_dim*M_dim+k)*chld_cnt*2;
  2309. Real_t* OUT0 = OUT[j+0] + (ot_dim*M_dim+k)*chld_cnt*2;
  2310. Real_t* OUT1 = OUT[j+1] + (ot_dim*M_dim+k)*chld_cnt*2;
  2311. #ifdef __SSE__
  2312. if (j+2 < interac_cnt) { // Prefetch
  2313. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2314. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2315. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2316. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2317. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2318. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2319. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2320. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2321. }
  2322. #endif
  2323. matmult_8x8x2(M_, IN0, IN1, OUT0, OUT1);
  2324. }
  2325. }
  2326. }
  2327. }
  2328. // Compute flops.
  2329. {
  2330. Profile::Add_FLOP(8*8*8*(interac_vec.Dim()/2)*M_dim*ker_dim0*ker_dim1*dof);
  2331. }
  2332. // Free memory
  2333. mem::aligned_delete<Real_t*>(IN_ );
  2334. mem::aligned_delete<Real_t*>(OUT_);
  2335. mem::aligned_delete<Real_t>(zero_vec0);
  2336. mem::aligned_delete<Real_t>(zero_vec1);
  2337. }
  2338. template <class FMMNode>
  2339. void FMM_Pts<FMMNode>::V_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2340. if(this->MultipoleOrder()==0) return;
  2341. if(level==0) return;
  2342. { // Set setup_data
  2343. setup_data.level=level;
  2344. setup_data.kernel=aux_kernel;
  2345. setup_data.interac_type.resize(1);
  2346. setup_data.interac_type[0]=V1_Type;
  2347. setup_data. input_data=&buff[0];
  2348. setup_data.output_data=&buff[1];
  2349. Vector<FMMNode_t*>& nodes_in =n_list[2];
  2350. Vector<FMMNode_t*>& nodes_out=n_list[3];
  2351. setup_data.nodes_in .clear();
  2352. setup_data.nodes_out.clear();
  2353. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2354. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level-1 || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2355. }
  2356. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2357. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2358. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2359. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2360. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_in [i])->Child(0))->FMMData())->upward_equiv);
  2361. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_out[i])->Child(0))->FMMData())->dnward_equiv);
  2362. /////////////////////////////////////////////////////////////////////////////
  2363. size_t n_in =nodes_in .size();
  2364. size_t n_out=nodes_out.size();
  2365. // Setup precomputed data.
  2366. if(setup_data.precomp_data->Dim(0)*setup_data.precomp_data->Dim(1)==0) SetupPrecomp(setup_data,device);
  2367. // Build interac_data
  2368. Profile::Tic("Interac-Data",&this->comm,true,25);
  2369. Matrix<char>& interac_data=setup_data.interac_data;
  2370. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  2371. size_t precomp_offset=0;
  2372. Mat_Type& interac_type=setup_data.interac_type[0];
  2373. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2374. Matrix<size_t> precomp_data_offset;
  2375. std::vector<size_t> interac_mat;
  2376. { // Load precomp_data for interac_type.
  2377. struct HeaderData{
  2378. size_t total_size;
  2379. size_t level;
  2380. size_t mat_cnt ;
  2381. size_t max_depth;
  2382. };
  2383. Matrix<char>& precomp_data=*setup_data.precomp_data;
  2384. char* indx_ptr=precomp_data[0]+precomp_offset;
  2385. HeaderData& header=*(HeaderData*)indx_ptr;indx_ptr+=sizeof(HeaderData);
  2386. precomp_data_offset.ReInit(header.mat_cnt,1+(2+2)*header.max_depth, (size_t*)indx_ptr, false);
  2387. precomp_offset+=header.total_size;
  2388. for(size_t mat_id=0;mat_id<mat_cnt;mat_id++){
  2389. Matrix<Real_t>& M0 = this->mat->Mat(level, interac_type, mat_id);
  2390. assert(M0.Dim(0)>0 && M0.Dim(1)>0); UNUSED(M0);
  2391. interac_mat.push_back(precomp_data_offset[mat_id][0]);
  2392. }
  2393. }
  2394. size_t dof;
  2395. size_t m=MultipoleOrder();
  2396. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2397. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2398. size_t fftsize;
  2399. {
  2400. size_t n1=m*2;
  2401. size_t n2=n1*n1;
  2402. size_t n3_=n2*(n1/2+1);
  2403. size_t chld_cnt=1UL<<COORD_DIM;
  2404. fftsize=2*n3_*chld_cnt;
  2405. dof=1;
  2406. }
  2407. int omp_p=omp_get_max_threads();
  2408. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2409. size_t n_blk0=2*fftsize*dof*(ker_dim0*n_in +ker_dim1*n_out)*sizeof(Real_t)/buff_size;
  2410. if(n_blk0==0) n_blk0=1;
  2411. std::vector<std::vector<size_t> > fft_vec(n_blk0);
  2412. std::vector<std::vector<size_t> > ifft_vec(n_blk0);
  2413. std::vector<std::vector<size_t> > interac_vec(n_blk0);
  2414. std::vector<std::vector<size_t> > interac_dsp(n_blk0);
  2415. {
  2416. Matrix<Real_t>& input_data=*setup_data. input_data;
  2417. Matrix<Real_t>& output_data=*setup_data.output_data;
  2418. std::vector<std::vector<FMMNode*> > nodes_blk_in (n_blk0);
  2419. std::vector<std::vector<FMMNode*> > nodes_blk_out(n_blk0);
  2420. for(size_t i=0;i<n_in;i++) ((FMMNode*)nodes_in[i])->node_id=i;
  2421. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2422. size_t blk0_start=(n_out* blk0 )/n_blk0;
  2423. size_t blk0_end =(n_out*(blk0+1))/n_blk0;
  2424. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2425. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2426. { // Build node list for blk0.
  2427. std::set<void*> nodes_in;
  2428. for(size_t i=blk0_start;i<blk0_end;i++){
  2429. nodes_out_.push_back((FMMNode*)nodes_out[i]);
  2430. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2431. for(size_t k=0;k<mat_cnt;k++) if(lst[k]!=NULL) nodes_in.insert(lst[k]);
  2432. }
  2433. for(std::set<void*>::iterator node=nodes_in.begin(); node != nodes_in.end(); node++){
  2434. nodes_in_.push_back((FMMNode*)*node);
  2435. }
  2436. size_t input_dim=nodes_in_ .size()*ker_dim0*dof*fftsize;
  2437. size_t output_dim=nodes_out_.size()*ker_dim1*dof*fftsize;
  2438. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2439. if(buff_size<(input_dim + output_dim + buffer_dim)*sizeof(Real_t))
  2440. buff_size=(input_dim + output_dim + buffer_dim)*sizeof(Real_t);
  2441. }
  2442. { // Set fft vectors.
  2443. for(size_t i=0;i<nodes_in_ .size();i++) fft_vec[blk0].push_back((size_t)(& input_vector[nodes_in_[i]->node_id][0][0]- input_data[0]));
  2444. for(size_t i=0;i<nodes_out_.size();i++)ifft_vec[blk0].push_back((size_t)(&output_vector[blk0_start + i ][0][0]-output_data[0]));
  2445. }
  2446. }
  2447. for(size_t blk0=0;blk0<n_blk0;blk0++){ // Hadamard interactions.
  2448. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2449. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2450. for(size_t i=0;i<nodes_in_.size();i++) nodes_in_[i]->node_id=i;
  2451. { // Next blocking level.
  2452. size_t n_blk1=nodes_out_.size()*(2)*sizeof(Real_t)/(64*V_BLK_CACHE);
  2453. if(n_blk1==0) n_blk1=1;
  2454. size_t interac_dsp_=0;
  2455. for(size_t blk1=0;blk1<n_blk1;blk1++){
  2456. size_t blk1_start=(nodes_out_.size()* blk1 )/n_blk1;
  2457. size_t blk1_end =(nodes_out_.size()*(blk1+1))/n_blk1;
  2458. for(size_t k=0;k<mat_cnt;k++){
  2459. for(size_t i=blk1_start;i<blk1_end;i++){
  2460. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out_[i])->interac_list[interac_type];
  2461. if(lst[k]!=NULL){
  2462. interac_vec[blk0].push_back(lst[k]->node_id*fftsize*ker_dim0*dof);
  2463. interac_vec[blk0].push_back( i *fftsize*ker_dim1*dof);
  2464. interac_dsp_++;
  2465. }
  2466. }
  2467. interac_dsp[blk0].push_back(interac_dsp_);
  2468. }
  2469. }
  2470. }
  2471. }
  2472. }
  2473. { // Set interac_data.
  2474. size_t data_size=sizeof(size_t)*6; // buff_size, m, dof, ker_dim0, ker_dim1, n_blk0
  2475. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2476. data_size+=sizeof(size_t)+ fft_vec[blk0].size()*sizeof(size_t);
  2477. data_size+=sizeof(size_t)+ ifft_vec[blk0].size()*sizeof(size_t);
  2478. data_size+=sizeof(size_t)+interac_vec[blk0].size()*sizeof(size_t);
  2479. data_size+=sizeof(size_t)+interac_dsp[blk0].size()*sizeof(size_t);
  2480. }
  2481. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  2482. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2483. interac_data.Resize(1,data_size);
  2484. char* data_ptr=&interac_data[0][0];
  2485. ((size_t*)data_ptr)[0]=buff_size; data_ptr+=sizeof(size_t);
  2486. ((size_t*)data_ptr)[0]= m; data_ptr+=sizeof(size_t);
  2487. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2488. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2489. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2490. ((size_t*)data_ptr)[0]= n_blk0; data_ptr+=sizeof(size_t);
  2491. ((size_t*)data_ptr)[0]= interac_mat.size(); data_ptr+=sizeof(size_t);
  2492. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  2493. data_ptr+=interac_mat.size()*sizeof(size_t);
  2494. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2495. ((size_t*)data_ptr)[0]= fft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2496. mem::memcopy(data_ptr, & fft_vec[blk0][0], fft_vec[blk0].size()*sizeof(size_t));
  2497. data_ptr+= fft_vec[blk0].size()*sizeof(size_t);
  2498. ((size_t*)data_ptr)[0]=ifft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2499. mem::memcopy(data_ptr, &ifft_vec[blk0][0], ifft_vec[blk0].size()*sizeof(size_t));
  2500. data_ptr+=ifft_vec[blk0].size()*sizeof(size_t);
  2501. ((size_t*)data_ptr)[0]=interac_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2502. mem::memcopy(data_ptr, &interac_vec[blk0][0], interac_vec[blk0].size()*sizeof(size_t));
  2503. data_ptr+=interac_vec[blk0].size()*sizeof(size_t);
  2504. ((size_t*)data_ptr)[0]=interac_dsp[blk0].size(); data_ptr+=sizeof(size_t);
  2505. mem::memcopy(data_ptr, &interac_dsp[blk0][0], interac_dsp[blk0].size()*sizeof(size_t));
  2506. data_ptr+=interac_dsp[blk0].size()*sizeof(size_t);
  2507. }
  2508. }
  2509. }
  2510. Profile::Toc();
  2511. if(device){ // Host2Device
  2512. Profile::Tic("Host2Device",&this->comm,false,25);
  2513. setup_data.interac_data. AllocDevice(true);
  2514. Profile::Toc();
  2515. }
  2516. }
  2517. template <class FMMNode>
  2518. void FMM_Pts<FMMNode>::V_List (SetupData<Real_t>& setup_data, bool device){
  2519. assert(!device); //Can not run on accelerator yet.
  2520. int np;
  2521. MPI_Comm_size(comm,&np);
  2522. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2523. if(np>1) Profile::Tic("Host2Device",&this->comm,false,25);
  2524. if(np>1) Profile::Toc();
  2525. return;
  2526. }
  2527. Profile::Tic("Host2Device",&this->comm,false,25);
  2528. int level=setup_data.level;
  2529. size_t buff_size=*((size_t*)&setup_data.interac_data[0][0]);
  2530. typename Matrix<Real_t>::Device M_d;
  2531. typename Vector<char>::Device buff;
  2532. typename Matrix<char>::Device precomp_data;
  2533. typename Matrix<char>::Device interac_data;
  2534. typename Matrix<Real_t>::Device input_data;
  2535. typename Matrix<Real_t>::Device output_data;
  2536. Matrix<Real_t>& M = this->mat->Mat(level, DC2DE_Type, 0);
  2537. if(device){
  2538. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  2539. M_d = M. AllocDevice(false);
  2540. buff = this-> dev_buffer. AllocDevice(false);
  2541. precomp_data= setup_data.precomp_data->AllocDevice(false);
  2542. interac_data= setup_data.interac_data. AllocDevice(false);
  2543. input_data = setup_data. input_data->AllocDevice(false);
  2544. output_data = setup_data. output_data->AllocDevice(false);
  2545. }else{
  2546. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  2547. M_d = M;
  2548. buff = this-> cpu_buffer;
  2549. precomp_data=*setup_data.precomp_data;
  2550. interac_data= setup_data.interac_data;
  2551. input_data =*setup_data. input_data;
  2552. output_data =*setup_data. output_data;
  2553. }
  2554. Profile::Toc();
  2555. { // Offloaded computation.
  2556. // Set interac_data.
  2557. size_t m, dof, ker_dim0, ker_dim1, n_blk0;
  2558. std::vector<Vector<size_t> > fft_vec;
  2559. std::vector<Vector<size_t> > ifft_vec;
  2560. std::vector<Vector<size_t> > interac_vec;
  2561. std::vector<Vector<size_t> > interac_dsp;
  2562. Vector<Real_t*> precomp_mat;
  2563. { // Set interac_data.
  2564. char* data_ptr=&interac_data[0][0];
  2565. buff_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2566. m =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2567. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2568. ker_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2569. ker_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2570. n_blk0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2571. fft_vec .resize(n_blk0);
  2572. ifft_vec.resize(n_blk0);
  2573. interac_vec.resize(n_blk0);
  2574. interac_dsp.resize(n_blk0);
  2575. Vector<size_t> interac_mat;
  2576. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2577. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  2578. precomp_mat.Resize(interac_mat.Dim());
  2579. for(size_t i=0;i<interac_mat.Dim();i++){
  2580. precomp_mat[i]=(Real_t*)(precomp_data[0]+interac_mat[i]);
  2581. }
  2582. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2583. fft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2584. data_ptr+=sizeof(size_t)+fft_vec[blk0].Dim()*sizeof(size_t);
  2585. ifft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2586. data_ptr+=sizeof(size_t)+ifft_vec[blk0].Dim()*sizeof(size_t);
  2587. interac_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2588. data_ptr+=sizeof(size_t)+interac_vec[blk0].Dim()*sizeof(size_t);
  2589. interac_dsp[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2590. data_ptr+=sizeof(size_t)+interac_dsp[blk0].Dim()*sizeof(size_t);
  2591. }
  2592. }
  2593. int omp_p=omp_get_max_threads();
  2594. size_t M_dim, fftsize;
  2595. {
  2596. size_t n1=m*2;
  2597. size_t n2=n1*n1;
  2598. size_t n3_=n2*(n1/2+1);
  2599. size_t chld_cnt=1UL<<COORD_DIM;
  2600. fftsize=2*n3_*chld_cnt;
  2601. M_dim=n3_;
  2602. }
  2603. for(size_t blk0=0;blk0<n_blk0;blk0++){ // interactions
  2604. size_t n_in = fft_vec[blk0].Dim();
  2605. size_t n_out=ifft_vec[blk0].Dim();
  2606. size_t input_dim=n_in *ker_dim0*dof*fftsize;
  2607. size_t output_dim=n_out*ker_dim1*dof*fftsize;
  2608. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2609. Vector<Real_t> fft_in ( input_dim, (Real_t*)&buff[ 0 ],false);
  2610. Vector<Real_t> fft_out(output_dim, (Real_t*)&buff[ input_dim *sizeof(Real_t)],false);
  2611. Vector<Real_t> buffer(buffer_dim, (Real_t*)&buff[(input_dim+output_dim)*sizeof(Real_t)],false);
  2612. { // FFT
  2613. if(np==1) Profile::Tic("FFT",&comm,false,100);
  2614. Vector<Real_t> input_data_( input_data.dim[0]* input_data.dim[1], input_data[0], false);
  2615. FFT_UpEquiv(dof, m, ker_dim0, fft_vec[blk0], input_data_, fft_in, buffer);
  2616. if(np==1) Profile::Toc();
  2617. }
  2618. { // Hadamard
  2619. #ifdef PVFMM_HAVE_PAPI
  2620. #ifdef __VERBOSE__
  2621. std::cout << "Starting counters new\n";
  2622. if (PAPI_start(EventSet) != PAPI_OK) std::cout << "handle_error3" << std::endl;
  2623. #endif
  2624. #endif
  2625. if(np==1) Profile::Tic("HadamardProduct",&comm,false,100);
  2626. VListHadamard<Real_t>(dof, M_dim, ker_dim0, ker_dim1, interac_dsp[blk0], interac_vec[blk0], precomp_mat, fft_in, fft_out);
  2627. if(np==1) Profile::Toc();
  2628. #ifdef PVFMM_HAVE_PAPI
  2629. #ifdef __VERBOSE__
  2630. if (PAPI_stop(EventSet, values) != PAPI_OK) std::cout << "handle_error4" << std::endl;
  2631. std::cout << "Stopping counters\n";
  2632. #endif
  2633. #endif
  2634. }
  2635. { // IFFT
  2636. if(np==1) Profile::Tic("IFFT",&comm,false,100);
  2637. Matrix<Real_t> M(M_d.dim[0],M_d.dim[1],M_d[0],false);
  2638. Vector<Real_t> output_data_(output_data.dim[0]*output_data.dim[1], output_data[0], false);
  2639. FFT_Check2Equiv(dof, m, ker_dim1, ifft_vec[blk0], fft_out, output_data_, buffer, M);
  2640. if(np==1) Profile::Toc();
  2641. }
  2642. }
  2643. }
  2644. }
  2645. template <class FMMNode>
  2646. void FMM_Pts<FMMNode>::Down2DownSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2647. if(this->MultipoleOrder()==0) return;
  2648. { // Set setup_data
  2649. setup_data.level=level;
  2650. setup_data.kernel=aux_kernel;
  2651. setup_data.interac_type.resize(1);
  2652. setup_data.interac_type[0]=D2D_Type;
  2653. setup_data. input_data=&buff[1];
  2654. setup_data.output_data=&buff[1];
  2655. Vector<FMMNode_t*>& nodes_in =n_list[1];
  2656. Vector<FMMNode_t*>& nodes_out=n_list[1];
  2657. setup_data.nodes_in .clear();
  2658. setup_data.nodes_out.clear();
  2659. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2660. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
  2661. }
  2662. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2663. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2664. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2665. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2666. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  2667. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  2668. SetupInterac(setup_data,device);
  2669. }
  2670. template <class FMMNode>
  2671. void FMM_Pts<FMMNode>::Down2Down (SetupData<Real_t>& setup_data, bool device){
  2672. //Add Down2Down contribution.
  2673. EvalList(setup_data, device);
  2674. }
  2675. template <class FMMNode>
  2676. void FMM_Pts<FMMNode>::SetupInteracPts(SetupData<Real_t>& setup_data, bool shift_src, bool shift_trg, Matrix<Real_t>* M, bool device){
  2677. int level=setup_data.level;
  2678. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  2679. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2680. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2681. Matrix<Real_t>& output_data=*setup_data.output_data;
  2682. Matrix<Real_t>& input_data=*setup_data. input_data;
  2683. Matrix<Real_t>& coord_data=*setup_data. coord_data;
  2684. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  2685. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  2686. size_t n_in =nodes_in .size();
  2687. size_t n_out=nodes_out.size();
  2688. //setup_data.precomp_data=NULL;
  2689. // Build interac_data
  2690. Profile::Tic("Interac-Data",&this->comm,true,25);
  2691. Matrix<char>& interac_data=setup_data.interac_data;
  2692. if(n_out>0 && n_in >0){
  2693. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2694. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2695. size_t dof=1;
  2696. #pragma omp parallel for
  2697. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  2698. std::vector<size_t> trg_interac_cnt(n_out,0);
  2699. std::vector<size_t> trg_coord(n_out);
  2700. std::vector<size_t> trg_value(n_out);
  2701. std::vector<size_t> trg_cnt(n_out);
  2702. std::vector<Real_t> scaling(n_out*(ker_dim0+ker_dim1),0);
  2703. { // Set trg data
  2704. Mat_Type& interac_type=interac_type_lst[0];
  2705. #pragma omp parallel for
  2706. for(size_t i=0;i<n_out;i++){
  2707. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2708. trg_cnt [i]=output_vector[i*2+0]->Dim()/COORD_DIM;
  2709. trg_coord[i]=(size_t)(&output_vector[i*2+0][0][0]- coord_data[0]);
  2710. trg_value[i]=(size_t)(&output_vector[i*2+1][0][0]-output_data[0]);
  2711. Real_t* s=&scaling[i*(ker_dim0+ker_dim1)];
  2712. for(size_t j=0;j<ker_dim1;j++){
  2713. if(!this->Homogen()) s[j]=1.0;
  2714. else if(interac_type==S2U_Type) s[ j]=pow(0.5, setup_data.kernel->trg_scal[j]*((FMMNode*)nodes_out[i])->Depth());
  2715. else if(interac_type== X_Type) s[ j]=pow(0.5, setup_data.kernel->trg_scal[j]*((FMMNode*)nodes_out[i])->Depth());
  2716. }
  2717. for(size_t j=0;j<ker_dim0;j++){
  2718. if(!this->Homogen()) s[ker_dim1+j]=1.0;
  2719. else if(interac_type==S2U_Type) s[ker_dim1+j]=pow(0.5, setup_data.kernel->src_scal[j]*((FMMNode*)nodes_out[i])->Depth());
  2720. else if(interac_type== X_Type) s[ker_dim1+j]=pow(0.5, setup_data.kernel->src_scal[j]*((FMMNode*)nodes_out[i])->Depth());
  2721. }
  2722. }
  2723. }
  2724. }
  2725. std::vector<std::vector<size_t> > src_cnt(n_out);
  2726. std::vector<std::vector<size_t> > src_coord(n_out);
  2727. std::vector<std::vector<size_t> > src_value(n_out);
  2728. std::vector<std::vector<Real_t> > shift_coord(n_out);
  2729. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  2730. Mat_Type& interac_type=interac_type_lst[type_indx];
  2731. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2732. #pragma omp parallel for
  2733. for(size_t i=0;i<n_out;i++){ // For each target node.
  2734. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2735. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2736. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++) if(lst[mat_indx]!=NULL){ // For each direction.
  2737. size_t j=lst[mat_indx]->node_id;
  2738. if(input_vector[j*4+0]->Dim()>0 || input_vector[j*4+2]->Dim()>0){
  2739. trg_interac_cnt[i]++;
  2740. { // Determine shift for periodic boundary condition
  2741. Real_t* sc=lst[mat_indx]->Coord();
  2742. Real_t* tc=((FMMNode*)nodes_out[i])->Coord();
  2743. int* rel_coord=this->interac_list.RelativeCoord(interac_type, mat_indx);
  2744. shift_coord[i].push_back((tc[0]>sc[0] && rel_coord[0]>0? 1.0:
  2745. (tc[0]<sc[0] && rel_coord[0]<0?-1.0:0.0)) +
  2746. (shift_src?sc[0]:0) - (shift_trg?tc[0]:0) );
  2747. shift_coord[i].push_back((tc[1]>sc[1] && rel_coord[1]>0? 1.0:
  2748. (tc[1]<sc[1] && rel_coord[1]<0?-1.0:0.0)) +
  2749. (shift_src?sc[1]:0) - (shift_trg?tc[1]:0) );
  2750. shift_coord[i].push_back((tc[2]>sc[2] && rel_coord[2]>0? 1.0:
  2751. (tc[2]<sc[2] && rel_coord[2]<0?-1.0:0.0)) +
  2752. (shift_src?sc[2]:0) - (shift_trg?tc[2]:0) );
  2753. }
  2754. { // Set src data
  2755. if(input_vector[j*4+0]!=NULL){
  2756. src_cnt [i].push_back(input_vector[j*4+0]->Dim()/COORD_DIM);
  2757. src_coord[i].push_back((size_t)(& input_vector[j*4+0][0][0]- coord_data[0]));
  2758. src_value[i].push_back((size_t)(& input_vector[j*4+1][0][0]- input_data[0]));
  2759. }else{
  2760. src_cnt [i].push_back(0);
  2761. src_coord[i].push_back(0);
  2762. src_value[i].push_back(0);
  2763. }
  2764. if(input_vector[j*4+2]!=NULL){
  2765. src_cnt [i].push_back(input_vector[j*4+2]->Dim()/COORD_DIM);
  2766. src_coord[i].push_back((size_t)(& input_vector[j*4+2][0][0]- coord_data[0]));
  2767. src_value[i].push_back((size_t)(& input_vector[j*4+3][0][0]- input_data[0]));
  2768. }else{
  2769. src_cnt [i].push_back(0);
  2770. src_coord[i].push_back(0);
  2771. src_value[i].push_back(0);
  2772. }
  2773. }
  2774. }
  2775. }
  2776. }
  2777. }
  2778. }
  2779. { // Set interac_data.
  2780. size_t data_size=sizeof(size_t)*4;
  2781. data_size+=sizeof(size_t)+trg_interac_cnt.size()*sizeof(size_t);
  2782. data_size+=sizeof(size_t)+trg_coord.size()*sizeof(size_t);
  2783. data_size+=sizeof(size_t)+trg_value.size()*sizeof(size_t);
  2784. data_size+=sizeof(size_t)+trg_cnt .size()*sizeof(size_t);
  2785. data_size+=sizeof(size_t)+scaling .size()*sizeof(Real_t);
  2786. data_size+=sizeof(size_t)*2+(M!=NULL?M->Dim(0)*M->Dim(1)*sizeof(Real_t):0);
  2787. for(size_t i=0;i<n_out;i++){
  2788. data_size+=sizeof(size_t)+src_cnt [i].size()*sizeof(size_t);
  2789. data_size+=sizeof(size_t)+src_coord[i].size()*sizeof(size_t);
  2790. data_size+=sizeof(size_t)+src_value[i].size()*sizeof(size_t);
  2791. data_size+=sizeof(size_t)+shift_coord[i].size()*sizeof(Real_t);
  2792. }
  2793. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2794. interac_data.Resize(1,data_size);
  2795. char* data_ptr=&interac_data[0][0];
  2796. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  2797. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2798. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2799. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2800. ((size_t*)data_ptr)[0]=trg_interac_cnt.size(); data_ptr+=sizeof(size_t);
  2801. mem::memcopy(data_ptr, &trg_interac_cnt[0], trg_interac_cnt.size()*sizeof(size_t));
  2802. data_ptr+=trg_interac_cnt.size()*sizeof(size_t);
  2803. ((size_t*)data_ptr)[0]=trg_coord.size(); data_ptr+=sizeof(size_t);
  2804. mem::memcopy(data_ptr, &trg_coord[0], trg_coord.size()*sizeof(size_t));
  2805. data_ptr+=trg_coord.size()*sizeof(size_t);
  2806. ((size_t*)data_ptr)[0]=trg_value.size(); data_ptr+=sizeof(size_t);
  2807. mem::memcopy(data_ptr, &trg_value[0], trg_value.size()*sizeof(size_t));
  2808. data_ptr+=trg_value.size()*sizeof(size_t);
  2809. ((size_t*)data_ptr)[0]=trg_cnt.size(); data_ptr+=sizeof(size_t);
  2810. mem::memcopy(data_ptr, &trg_cnt[0], trg_cnt.size()*sizeof(size_t));
  2811. data_ptr+=trg_cnt.size()*sizeof(size_t);
  2812. ((size_t*)data_ptr)[0]=scaling.size(); data_ptr+=sizeof(size_t);
  2813. mem::memcopy(data_ptr, &scaling[0], scaling.size()*sizeof(Real_t));
  2814. data_ptr+=scaling.size()*sizeof(Real_t);
  2815. if(M!=NULL){
  2816. ((size_t*)data_ptr)[0]=M->Dim(0); data_ptr+=sizeof(size_t);
  2817. ((size_t*)data_ptr)[0]=M->Dim(1); data_ptr+=sizeof(size_t);
  2818. mem::memcopy(data_ptr, M[0][0], M->Dim(0)*M->Dim(1)*sizeof(Real_t));
  2819. data_ptr+=M->Dim(0)*M->Dim(1)*sizeof(Real_t);
  2820. }else{
  2821. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2822. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2823. }
  2824. for(size_t i=0;i<n_out;i++){
  2825. ((size_t*)data_ptr)[0]=src_cnt[i].size(); data_ptr+=sizeof(size_t);
  2826. mem::memcopy(data_ptr, &src_cnt[i][0], src_cnt[i].size()*sizeof(size_t));
  2827. data_ptr+=src_cnt[i].size()*sizeof(size_t);
  2828. ((size_t*)data_ptr)[0]=src_coord[i].size(); data_ptr+=sizeof(size_t);
  2829. mem::memcopy(data_ptr, &src_coord[i][0], src_coord[i].size()*sizeof(size_t));
  2830. data_ptr+=src_coord[i].size()*sizeof(size_t);
  2831. ((size_t*)data_ptr)[0]=src_value[i].size(); data_ptr+=sizeof(size_t);
  2832. mem::memcopy(data_ptr, &src_value[i][0], src_value[i].size()*sizeof(size_t));
  2833. data_ptr+=src_value[i].size()*sizeof(size_t);
  2834. ((size_t*)data_ptr)[0]=shift_coord[i].size(); data_ptr+=sizeof(size_t);
  2835. mem::memcopy(data_ptr, &shift_coord[i][0], shift_coord[i].size()*sizeof(Real_t));
  2836. data_ptr+=shift_coord[i].size()*sizeof(Real_t);
  2837. }
  2838. }
  2839. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2840. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  2841. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  2842. }
  2843. Profile::Toc();
  2844. if(device){ // Host2Device
  2845. Profile::Tic("Host2Device",&this->comm,false,25);
  2846. setup_data.interac_data .AllocDevice(true);
  2847. Profile::Toc();
  2848. }
  2849. }
  2850. template <class FMMNode>
  2851. template <int SYNC>
  2852. void FMM_Pts<FMMNode>::EvalListPts(SetupData<Real_t>& setup_data, bool device){
  2853. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2854. Profile::Tic("Host2Device",&this->comm,false,25);
  2855. Profile::Toc();
  2856. Profile::Tic("DeviceComp",&this->comm,false,20);
  2857. Profile::Toc();
  2858. return;
  2859. }
  2860. bool have_gpu=false;
  2861. #if defined(PVFMM_HAVE_CUDA)
  2862. have_gpu=true;
  2863. #endif
  2864. Profile::Tic("Host2Device",&this->comm,false,25);
  2865. typename Vector<char>::Device buff;
  2866. //typename Matrix<char>::Device precomp_data;
  2867. typename Matrix<char>::Device interac_data;
  2868. typename Matrix<Real_t>::Device coord_data;
  2869. typename Matrix<Real_t>::Device input_data;
  2870. typename Matrix<Real_t>::Device output_data;
  2871. if(device && !have_gpu){
  2872. buff = this-> dev_buffer. AllocDevice(false);
  2873. interac_data= setup_data.interac_data. AllocDevice(false);
  2874. //if(setup_data.precomp_data!=NULL) precomp_data= setup_data.precomp_data->AllocDevice(false);
  2875. if(setup_data. coord_data!=NULL) coord_data = setup_data. coord_data->AllocDevice(false);
  2876. if(setup_data. input_data!=NULL) input_data = setup_data. input_data->AllocDevice(false);
  2877. if(setup_data. output_data!=NULL) output_data = setup_data. output_data->AllocDevice(false);
  2878. }else{
  2879. buff = this-> cpu_buffer;
  2880. interac_data= setup_data.interac_data;
  2881. //if(setup_data.precomp_data!=NULL) precomp_data=*setup_data.precomp_data;
  2882. if(setup_data. coord_data!=NULL) coord_data =*setup_data. coord_data;
  2883. if(setup_data. input_data!=NULL) input_data =*setup_data. input_data;
  2884. if(setup_data. output_data!=NULL) output_data =*setup_data. output_data;
  2885. }
  2886. Profile::Toc();
  2887. size_t ptr_single_layer_kernel=(size_t)setup_data.kernel->ker_poten;
  2888. size_t ptr_double_layer_kernel=(size_t)setup_data.kernel->dbl_layer_poten;
  2889. Profile::Tic("DeviceComp",&this->comm,false,20);
  2890. int lock_idx=-1;
  2891. int wait_lock_idx=-1;
  2892. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  2893. if(device) lock_idx=MIC_Lock::get_lock();
  2894. #ifdef __INTEL_OFFLOAD
  2895. if(device) ptr_single_layer_kernel=setup_data.kernel->dev_ker_poten;
  2896. if(device) ptr_double_layer_kernel=setup_data.kernel->dev_dbl_layer_poten;
  2897. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  2898. #endif
  2899. { // Offloaded computation.
  2900. // Set interac_data.
  2901. size_t data_size;
  2902. size_t ker_dim0;
  2903. size_t ker_dim1;
  2904. size_t dof, n_out;
  2905. Vector<size_t> trg_interac_cnt;
  2906. Vector<size_t> trg_coord;
  2907. Vector<size_t> trg_value;
  2908. Vector<size_t> trg_cnt;
  2909. Vector<Real_t> scaling;
  2910. Matrix<Real_t> M;
  2911. Vector< Vector<size_t> > src_cnt;
  2912. Vector< Vector<size_t> > src_coord;
  2913. Vector< Vector<size_t> > src_value;
  2914. Vector< Vector<Real_t> > shift_coord;
  2915. { // Set interac_data.
  2916. char* data_ptr=&interac_data[0][0];
  2917. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2918. ker_dim0=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2919. ker_dim1=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2920. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2921. trg_interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2922. data_ptr+=sizeof(size_t)+trg_interac_cnt.Dim()*sizeof(size_t);
  2923. n_out=trg_interac_cnt.Dim();
  2924. trg_coord.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2925. data_ptr+=sizeof(size_t)+trg_coord.Dim()*sizeof(size_t);
  2926. trg_value.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2927. data_ptr+=sizeof(size_t)+trg_value.Dim()*sizeof(size_t);
  2928. trg_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2929. data_ptr+=sizeof(size_t)+trg_cnt.Dim()*sizeof(size_t);
  2930. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2931. data_ptr+=sizeof(size_t)+scaling.Dim()*sizeof(Real_t);
  2932. M.ReInit(((size_t*)data_ptr)[0],((size_t*)data_ptr)[1],(Real_t*)(data_ptr+2*sizeof(size_t)),false);
  2933. data_ptr+=sizeof(size_t)*2+M.Dim(0)*M.Dim(1)*sizeof(Real_t);
  2934. src_cnt.Resize(n_out);
  2935. src_coord.Resize(n_out);
  2936. src_value.Resize(n_out);
  2937. shift_coord.Resize(n_out);
  2938. for(size_t i=0;i<n_out;i++){
  2939. src_cnt[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2940. data_ptr+=sizeof(size_t)+src_cnt[i].Dim()*sizeof(size_t);
  2941. src_coord[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2942. data_ptr+=sizeof(size_t)+src_coord[i].Dim()*sizeof(size_t);
  2943. src_value[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2944. data_ptr+=sizeof(size_t)+src_value[i].Dim()*sizeof(size_t);
  2945. shift_coord[i].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2946. data_ptr+=sizeof(size_t)+shift_coord[i].Dim()*sizeof(Real_t);
  2947. }
  2948. }
  2949. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  2950. //Compute interaction from point sources.
  2951. { // interactions
  2952. typename Kernel<Real_t>::Ker_t single_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_single_layer_kernel;
  2953. typename Kernel<Real_t>::Ker_t double_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_double_layer_kernel;
  2954. int omp_p=omp_get_max_threads();
  2955. Vector<Real_t*> thread_buff(omp_p);
  2956. size_t thread_buff_size=buff.dim/sizeof(Real_t)/omp_p;
  2957. for(int i=0;i<omp_p;i++) thread_buff[i]=(Real_t*)&buff[i*thread_buff_size*sizeof(Real_t)];
  2958. #pragma omp parallel for schedule(dynamic)
  2959. for(size_t i=0;i<n_out;i++)
  2960. if(trg_interac_cnt[i]>0 && trg_cnt[i]>0){
  2961. int thread_id=omp_get_thread_num();
  2962. Real_t* s_coord=thread_buff[thread_id];
  2963. Real_t* t_value=output_data[0]+trg_value[i];
  2964. if(M.Dim(0)>0 && M.Dim(1)>0){
  2965. s_coord+=dof*M.Dim(0);
  2966. t_value=thread_buff[thread_id];
  2967. for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]=0;
  2968. }
  2969. size_t interac_cnt=0;
  2970. for(size_t j=0;j<trg_interac_cnt[i];j++){
  2971. if(ptr_single_layer_kernel!=(size_t)NULL){// Single layer kernel
  2972. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+0];
  2973. assert(thread_buff_size>=dof*M.Dim(0)+dof*M.Dim(1)+src_cnt[i][2*j+0]*COORD_DIM);
  2974. for(size_t k1=0;k1<src_cnt[i][2*j+0];k1++){ // Compute shifted source coordinates.
  2975. for(size_t k0=0;k0<COORD_DIM;k0++){
  2976. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  2977. }
  2978. }
  2979. single_layer_kernel( s_coord , src_cnt[i][2*j+0], input_data[0]+src_value[i][2*j+0], dof,
  2980. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value, NULL);
  2981. interac_cnt+=src_cnt[i][2*j+0]*trg_cnt[i];
  2982. }else if(src_cnt[i][2*j+0]!=0 && trg_cnt[i]!=0){
  2983. assert(ptr_single_layer_kernel); // Single-layer kernel not implemented
  2984. }
  2985. if(ptr_double_layer_kernel!=(size_t)NULL){// Double layer kernel
  2986. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+1];
  2987. assert(thread_buff_size>=dof*M.Dim(0)+dof*M.Dim(1)+src_cnt[i][2*j+1]*COORD_DIM);
  2988. for(size_t k1=0;k1<src_cnt[i][2*j+1];k1++){ // Compute shifted source coordinates.
  2989. for(size_t k0=0;k0<COORD_DIM;k0++){
  2990. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  2991. }
  2992. }
  2993. double_layer_kernel( s_coord , src_cnt[i][2*j+1], input_data[0]+src_value[i][2*j+1], dof,
  2994. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value, NULL);
  2995. interac_cnt+=src_cnt[i][2*j+1]*trg_cnt[i];
  2996. }else if(src_cnt[i][2*j+1]!=0 && trg_cnt[i]!=0){
  2997. assert(ptr_double_layer_kernel); // Double-layer kernel not implemented
  2998. }
  2999. }
  3000. if(M.Dim(0)>0 && M.Dim(1)>0 && interac_cnt>0){
  3001. assert(trg_cnt[i]*ker_dim1==M.Dim(0));
  3002. assert(trg_cnt[i]*ker_dim0==M.Dim(1));
  3003. {// Scaling (ker_dim1)
  3004. Real_t* s=&scaling[i*(ker_dim0+ker_dim1)];
  3005. for(size_t j=0;j<dof*M.Dim(0);j+=ker_dim1){
  3006. for(size_t k=0;k<ker_dim1;k++){
  3007. t_value[j+k]*=s[k];
  3008. }
  3009. }
  3010. }
  3011. Matrix<Real_t> in_vec(dof, M.Dim(0), t_value, false);
  3012. Matrix<Real_t> tmp_vec(dof, M.Dim(1),dof*M.Dim(0)+t_value, false);
  3013. Matrix<Real_t>::GEMM(tmp_vec, in_vec, M, 0.0);
  3014. Matrix<Real_t> out_vec(dof, M.Dim(1), output_data[0]+trg_value[i], false);
  3015. {// Scaling (ker_dim0)
  3016. Real_t* s=&scaling[i*(ker_dim0+ker_dim1)+ker_dim1];
  3017. for(size_t j=0;j<dof*M.Dim(1);j+=ker_dim0){
  3018. for(size_t k=0;k<ker_dim0;k++){
  3019. out_vec[0][j+k]+=tmp_vec[0][j+k]*s[k];
  3020. }
  3021. }
  3022. }
  3023. }
  3024. }
  3025. }
  3026. if(device) MIC_Lock::release_lock(lock_idx);
  3027. }
  3028. #ifdef __INTEL_OFFLOAD
  3029. if(SYNC){
  3030. #pragma offload if(device) target(mic:0)
  3031. {if(device) MIC_Lock::wait_lock(lock_idx);}
  3032. }
  3033. #endif
  3034. Profile::Toc();
  3035. }
  3036. template <class FMMNode>
  3037. void FMM_Pts<FMMNode>::X_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3038. if(this->MultipoleOrder()==0) return;
  3039. { // Set setup_data
  3040. setup_data.level=level;
  3041. setup_data.kernel=aux_kernel;
  3042. setup_data.interac_type.resize(1);
  3043. setup_data.interac_type[0]=X_Type;
  3044. setup_data. input_data=&buff[4];
  3045. setup_data.output_data=&buff[1];
  3046. setup_data. coord_data=&buff[6];
  3047. Vector<FMMNode_t*>& nodes_in =n_list[4];
  3048. Vector<FMMNode_t*>& nodes_out=n_list[1];
  3049. setup_data.nodes_in .clear();
  3050. setup_data.nodes_out.clear();
  3051. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3052. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3053. }
  3054. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3055. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3056. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3057. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3058. for(size_t i=0;i<nodes_in .size();i++){
  3059. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  3060. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  3061. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  3062. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  3063. }
  3064. for(size_t i=0;i<nodes_out.size();i++){
  3065. output_vector.push_back(&dnwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
  3066. output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  3067. }
  3068. //Downward check to downward equivalent matrix.
  3069. Matrix<Real_t>& M_dc2de = this->mat->Mat(level, DC2DE_Type, 0);
  3070. this->SetupInteracPts(setup_data, false, true, &M_dc2de,device);
  3071. { // Resize device buffer
  3072. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3073. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3074. }
  3075. }
  3076. template <class FMMNode>
  3077. void FMM_Pts<FMMNode>::X_List (SetupData<Real_t>& setup_data, bool device){
  3078. //Add X_List contribution.
  3079. this->EvalListPts(setup_data, device);
  3080. }
  3081. template <class FMMNode>
  3082. void FMM_Pts<FMMNode>::W_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3083. if(this->MultipoleOrder()==0) return;
  3084. { // Set setup_data
  3085. setup_data.level=level;
  3086. setup_data.kernel=kernel;
  3087. setup_data.interac_type.resize(1);
  3088. setup_data.interac_type[0]=W_Type;
  3089. setup_data. input_data=&buff[0];
  3090. setup_data.output_data=&buff[5];
  3091. setup_data. coord_data=&buff[6];
  3092. Vector<FMMNode_t*>& nodes_in =n_list[0];
  3093. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3094. setup_data.nodes_in .clear();
  3095. setup_data.nodes_out.clear();
  3096. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3097. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3098. }
  3099. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3100. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3101. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3102. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3103. for(size_t i=0;i<nodes_in .size();i++){
  3104. input_vector .push_back(&upwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  3105. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  3106. input_vector .push_back(NULL);
  3107. input_vector .push_back(NULL);
  3108. }
  3109. for(size_t i=0;i<nodes_out.size();i++){
  3110. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3111. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3112. }
  3113. this->SetupInteracPts(setup_data, true, false, NULL, device);
  3114. { // Resize device buffer
  3115. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3116. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3117. }
  3118. }
  3119. template <class FMMNode>
  3120. void FMM_Pts<FMMNode>::W_List (SetupData<Real_t>& setup_data, bool device){
  3121. //Add W_List contribution.
  3122. this->EvalListPts(setup_data, device);
  3123. }
  3124. template <class FMMNode>
  3125. void FMM_Pts<FMMNode>::U_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3126. { // Set setup_data
  3127. setup_data.level=level;
  3128. setup_data.kernel=kernel;
  3129. setup_data.interac_type.resize(3);
  3130. setup_data.interac_type[0]=U0_Type;
  3131. setup_data.interac_type[1]=U1_Type;
  3132. setup_data.interac_type[2]=U2_Type;
  3133. setup_data. input_data=&buff[4];
  3134. setup_data.output_data=&buff[5];
  3135. setup_data. coord_data=&buff[6];
  3136. Vector<FMMNode_t*>& nodes_in =n_list[4];
  3137. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3138. setup_data.nodes_in .clear();
  3139. setup_data.nodes_out.clear();
  3140. for(size_t i=0;i<nodes_in .Dim();i++) if((level-1<=nodes_in [i]->Depth() && nodes_in [i]->Depth()<=level+1) || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3141. for(size_t i=0;i<nodes_out.Dim();i++) if(( nodes_out[i]->Depth()==level ) || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3142. }
  3143. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3144. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3145. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3146. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3147. for(size_t i=0;i<nodes_in .size();i++){
  3148. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  3149. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  3150. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  3151. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  3152. }
  3153. for(size_t i=0;i<nodes_out.size();i++){
  3154. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3155. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3156. }
  3157. this->SetupInteracPts(setup_data, false, false, NULL, device);
  3158. { // Resize device buffer
  3159. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3160. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3161. }
  3162. }
  3163. template <class FMMNode>
  3164. void FMM_Pts<FMMNode>::U_List (SetupData<Real_t>& setup_data, bool device){
  3165. //Add U_List contribution.
  3166. this->EvalListPts(setup_data, device);
  3167. }
  3168. template <class FMMNode>
  3169. void FMM_Pts<FMMNode>::Down2TargetSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3170. if(this->MultipoleOrder()==0) return;
  3171. { // Set setup_data
  3172. setup_data.level=level;
  3173. setup_data.kernel=kernel;
  3174. setup_data.interac_type.resize(1);
  3175. setup_data.interac_type[0]=D2T_Type;
  3176. setup_data. input_data=&buff[1];
  3177. setup_data.output_data=&buff[5];
  3178. setup_data. coord_data=&buff[6];
  3179. Vector<FMMNode_t*>& nodes_in =n_list[1];
  3180. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3181. setup_data.nodes_in .clear();
  3182. setup_data.nodes_out.clear();
  3183. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3184. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3185. }
  3186. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3187. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3188. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3189. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3190. for(size_t i=0;i<nodes_in .size();i++){
  3191. input_vector .push_back(&dnwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  3192. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  3193. input_vector .push_back(NULL);
  3194. input_vector .push_back(NULL);
  3195. }
  3196. for(size_t i=0;i<nodes_out.size();i++){
  3197. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3198. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3199. }
  3200. this->SetupInteracPts(setup_data, true, false, NULL, device);
  3201. { // Resize device buffer
  3202. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3203. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3204. }
  3205. }
  3206. template <class FMMNode>
  3207. void FMM_Pts<FMMNode>::Down2Target(SetupData<Real_t>& setup_data, bool device){
  3208. //Add Down2Target contribution.
  3209. this->EvalListPts(setup_data, device);
  3210. }
  3211. template <class FMMNode>
  3212. void FMM_Pts<FMMNode>::PostProcessing(std::vector<FMMNode_t*>& nodes){
  3213. }
  3214. template <class FMMNode>
  3215. void FMM_Pts<FMMNode>::CopyOutput(FMMNode** nodes, size_t n){
  3216. }
  3217. }//end namespace