kernel.hpp 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242
  1. /**
  2. * \file kernel.hpp
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 12-20-2011
  5. * \brief This file contains the definition of the struct Kernel and also the
  6. * implementation of various kernels for FMM.
  7. */
  8. #ifndef _PVFMM_FMM_KERNEL_HPP_
  9. #define _PVFMM_FMM_KERNEL_HPP_
  10. #include <pvfmm_common.hpp>
  11. #include <quad_utils.hpp>
  12. #include <mem_mgr.hpp>
  13. #include <string>
  14. #ifdef __INTEL_OFFLOAD
  15. #pragma offload_attribute(push,target(mic))
  16. #endif
  17. namespace pvfmm{
  18. template <class T>
  19. struct Kernel{
  20. public:
  21. /**
  22. * \brief Evaluate potential due to source points at target coordinates.
  23. * \param[in] r_src Coordinates of source points.
  24. * \param[in] src_cnt Number of source points.
  25. * \param[in] v_src Strength of source points.
  26. * \param[in] r_trg Coordinates of target points.
  27. * \param[in] trg_cnt Number of target points.
  28. * \param[out] k_out Output array with potential values.
  29. */
  30. typedef void (*Ker_t)(T* r_src, int src_cnt, T* v_src, int dof,
  31. T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  32. /**
  33. * \brief Constructor.
  34. */
  35. Kernel();
  36. /**
  37. * \brief Constructor.
  38. */
  39. Kernel(Ker_t poten, Ker_t dbl_poten, const char* name, int dim_,
  40. const int (&k_dim)[2], bool homogen_=false, T ker_scale=0,
  41. size_t dev_poten=(size_t)NULL, size_t dev_dbl_poten=(size_t)NULL);
  42. /**
  43. * \brief Compute the transformation matrix (on the source strength vector)
  44. * to get potential at target coordinates due to sources at the given
  45. * coordinates.
  46. * \param[in] r_src Coordinates of source points.
  47. * \param[in] src_cnt Number of source points.
  48. * \param[in] r_trg Coordinates of target points.
  49. * \param[in] trg_cnt Number of target points.
  50. * \param[out] k_out Output array with potential values.
  51. */
  52. void BuildMatrix(T* r_src, int src_cnt,
  53. T* r_trg, int trg_cnt, T* k_out);
  54. int dim;
  55. int ker_dim[2];
  56. Ker_t ker_poten;
  57. Ker_t dbl_layer_poten;
  58. size_t dev_ker_poten;
  59. size_t dev_dbl_layer_poten;
  60. bool homogen;
  61. T poten_scale;
  62. std::string ker_name;
  63. };
  64. template<typename T, void (*A)(T*, int, T*, int, T*, int, T*, mem::MemoryManager* mem_mgr),
  65. void (*B)(T*, int, T*, int, T*, int, T*, mem::MemoryManager* mem_mgr)>
  66. Kernel<T> BuildKernel(const char* name, int dim,
  67. const int (&k_dim)[2], bool homogen=false, T ker_scale=0){
  68. size_t dev_ker_poten ;
  69. size_t dev_dbl_layer_poten;
  70. #ifdef __INTEL_OFFLOAD
  71. #pragma offload target(mic:0)
  72. #endif
  73. {
  74. dev_ker_poten =(size_t)((typename Kernel<T>::Ker_t)A);
  75. dev_dbl_layer_poten=(size_t)((typename Kernel<T>::Ker_t)B);
  76. }
  77. return Kernel<T>(A, B,
  78. name, dim, k_dim, homogen, ker_scale,
  79. dev_ker_poten, dev_dbl_layer_poten);
  80. }
  81. template<typename T, void (*A)(T*, int, T*, int, T*, int, T*, mem::MemoryManager* mem_mgr)>
  82. Kernel<T> BuildKernel(const char* name, int dim,
  83. const int (&k_dim)[2], bool homogen=false, T ker_scale=0){
  84. size_t dev_ker_poten ;
  85. #ifdef __INTEL_OFFLOAD
  86. #pragma offload target(mic:0)
  87. #endif
  88. {
  89. dev_ker_poten =(size_t)((typename Kernel<T>::Ker_t)A);
  90. }
  91. return Kernel<T>(A, NULL,
  92. name, dim, k_dim, homogen, ker_scale,
  93. dev_ker_poten, (size_t)NULL);
  94. }
  95. ////////////////////////////////////////////////////////////////////////////////
  96. //////// LAPLACE KERNEL ////////
  97. ////////////////////////////////////////////////////////////////////////////////
  98. /**
  99. * \brief Green's function for the Poisson's equation. Kernel tensor
  100. * dimension = 1x1.
  101. */
  102. template <class T>
  103. void laplace_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  104. // Laplace double layer potential.
  105. template <class T>
  106. void laplace_dbl_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  107. // Laplace grdient kernel.
  108. template <class T>
  109. void laplace_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  110. int dim_laplace_poten[2]={1,1};
  111. int dim_laplace_grad [2]={1,3};
  112. #ifdef QuadReal_t
  113. const Kernel<QuadReal_t> laplace_potn_q=BuildKernel<QuadReal_t, laplace_poten, laplace_dbl_poten>("laplace" , 3, dim_laplace_poten, true, 1.0);
  114. const Kernel<QuadReal_t> laplace_grad_q=BuildKernel<QuadReal_t, laplace_grad >("laplace_grad", 3, dim_laplace_grad , true, 2.0);
  115. #endif
  116. const Kernel<double > laplace_potn_d=BuildKernel<double , laplace_poten, laplace_dbl_poten>("laplace" , 3, dim_laplace_poten, true, 1.0);
  117. const Kernel<double > laplace_grad_d=BuildKernel<double , laplace_grad >("laplace_grad", 3, dim_laplace_grad , true, 2.0);
  118. const Kernel<float > laplace_potn_f=BuildKernel<float , laplace_poten, laplace_dbl_poten>("laplace" , 3, dim_laplace_poten, true, 1.0);
  119. const Kernel<float > laplace_grad_f=BuildKernel<float , laplace_grad >("laplace_grad", 3, dim_laplace_grad , true, 2.0);
  120. template<class T>
  121. struct LaplaceKernel{
  122. static Kernel<T>* potn_ker;
  123. static Kernel<T>* grad_ker;
  124. };
  125. #ifdef QuadReal_t
  126. template<> Kernel<QuadReal_t>* LaplaceKernel<QuadReal_t>::potn_ker=(Kernel<QuadReal_t>*)&laplace_potn_q;
  127. template<> Kernel<QuadReal_t>* LaplaceKernel<QuadReal_t>::grad_ker=(Kernel<QuadReal_t>*)&laplace_grad_q;
  128. #endif
  129. template<> Kernel<double>* LaplaceKernel<double>::potn_ker=(Kernel<double>*)&laplace_potn_d;
  130. template<> Kernel<double>* LaplaceKernel<double>::grad_ker=(Kernel<double>*)&laplace_grad_d;
  131. template<> Kernel<float>* LaplaceKernel<float>::potn_ker=(Kernel<float>*)&laplace_potn_f;
  132. template<> Kernel<float>* LaplaceKernel<float>::grad_ker=(Kernel<float>*)&laplace_grad_f;
  133. ////////////////////////////////////////////////////////////////////////////////
  134. //////// STOKES KERNEL ////////
  135. ////////////////////////////////////////////////////////////////////////////////
  136. /**
  137. * \brief Green's function for the Stokes's equation. Kernel tensor
  138. * dimension = 3x3.
  139. */
  140. template <class T>
  141. void stokes_vel(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  142. template <class T>
  143. void stokes_dbl_vel(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  144. template <class T>
  145. void stokes_press(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  146. template <class T>
  147. void stokes_stress(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  148. template <class T>
  149. void stokes_grad(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  150. int dim_stokes_vel [2]={3,3};
  151. const Kernel<double> ker_stokes_vel =BuildKernel<double, stokes_vel, stokes_dbl_vel>("stokes_vel" , 3, dim_stokes_vel ,true,1.0);
  152. int dim_stokes_press [2]={3,1};
  153. const Kernel<double> ker_stokes_press =BuildKernel<double, stokes_press >("stokes_press" , 3, dim_stokes_press ,true,2.0);
  154. int dim_stokes_stress[2]={3,9};
  155. const Kernel<double> ker_stokes_stress=BuildKernel<double, stokes_stress >("stokes_stress", 3, dim_stokes_stress,true,2.0);
  156. int dim_stokes_grad [2]={3,9};
  157. const Kernel<double> ker_stokes_grad =BuildKernel<double, stokes_grad >("stokes_grad" , 3, dim_stokes_grad ,true,2.0);
  158. ////////////////////////////////////////////////////////////////////////////////
  159. //////// BIOT-SAVART KERNEL ////////
  160. ////////////////////////////////////////////////////////////////////////////////
  161. template <class T>
  162. void biot_savart(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  163. int dim_biot_savart[2]={3,3};
  164. const Kernel<double> ker_biot_savart=BuildKernel<double, biot_savart>("biot_savart", 3, dim_biot_savart,true,2.0);
  165. ////////////////////////////////////////////////////////////////////////////////
  166. //////// HELMHOLTZ KERNEL ////////
  167. ////////////////////////////////////////////////////////////////////////////////
  168. /**
  169. * \brief Green's function for the Helmholtz's equation. Kernel tensor
  170. * dimension = 2x2.
  171. */
  172. template <class T>
  173. void helmholtz_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  174. template <class T>
  175. void helmholtz_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  176. int dim_helmholtz [2]={2,2};
  177. const Kernel<double> ker_helmholtz =BuildKernel<double, helmholtz_poten>("helmholtz" , 3, dim_helmholtz );
  178. int dim_helmholtz_grad[2]={2,6};
  179. const Kernel<double> ker_helmholtz_grad=BuildKernel<double, helmholtz_grad >("helmholtz_grad", 3, dim_helmholtz_grad);
  180. }//end namespace
  181. #include <kernel.txx>
  182. #ifdef __INTEL_OFFLOAD
  183. #pragma offload_attribute(pop)
  184. #endif
  185. #endif //_PVFMM_FMM_KERNEL_HPP_