mem_mgr.hpp 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336
  1. /**
  2. * \file mem_mgr.hpp
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 6-30-2014
  5. * \brief This file contains the definition of a simple memory manager which
  6. * uses a pre-allocated buffer of size defined in call to the constructor.
  7. */
  8. #include <omp.h>
  9. #include <cstdlib>
  10. #include <stdint.h>
  11. #include <algorithm>
  12. #include <iostream>
  13. #include <cassert>
  14. #include <vector>
  15. #include <stack>
  16. #include <map>
  17. #include <pvfmm_common.hpp>
  18. #ifndef _PVFMM_MEM_MGR_HPP_
  19. #define _PVFMM_MEM_MGR_HPP_
  20. #ifdef __INTEL_OFFLOAD
  21. #pragma offload_attribute(push,target(mic))
  22. #endif
  23. namespace pvfmm{
  24. namespace mem{
  25. class MemoryManager{
  26. public:
  27. static const char init_mem_val=42;
  28. MemoryManager(size_t N){
  29. buff_size=N;
  30. buff=(char*)::malloc(buff_size); assert(buff);
  31. { // Debugging
  32. #ifndef NDEBUG
  33. for(size_t i=0;i<buff_size;i++) buff[i]=init_mem_val;
  34. #endif
  35. }
  36. n_dummy_indx=new_node();
  37. size_t n_indx=new_node();
  38. node& n_dummy=node_buff[n_dummy_indx-1];
  39. node& n=node_buff[n_indx-1];
  40. n_dummy.size=0;
  41. n_dummy.free=false;
  42. n_dummy.prev=0;
  43. n_dummy.next=n_indx;
  44. n_dummy.mem_ptr=&buff[0];
  45. assert(n_indx);
  46. n.size=N;
  47. n.free=true;
  48. n.prev=n_dummy_indx;
  49. n.next=0;
  50. n.mem_ptr=&buff[0];
  51. n.it=free_map.insert(std::make_pair(N,n_indx));
  52. omp_init_lock(&omp_lock);
  53. }
  54. ~MemoryManager(){
  55. node* n=&node_buff[n_dummy_indx-1];
  56. n=&node_buff[n->next-1];
  57. if(n==NULL || !n->free || n->size!=buff_size ||
  58. node_stack.size()!=node_buff.size()-2){
  59. std::cout<<"\nWarning: memory leak detected.\n";
  60. }
  61. omp_destroy_lock(&omp_lock);
  62. { // Debugging
  63. #ifndef NDEBUG
  64. for(size_t i=0;i<buff_size;i++){
  65. assert(buff[i]==init_mem_val);
  66. }
  67. #endif
  68. }
  69. if(buff) ::free(buff);
  70. }
  71. void* malloc(size_t size) const{
  72. size_t alignment=MEM_ALIGN;
  73. assert(alignment <= 0x8000);
  74. if(!size) return NULL;
  75. size+=sizeof(size_t) + --alignment + 2;
  76. std::multimap<size_t, size_t>::iterator it;
  77. uintptr_t r=0;
  78. omp_set_lock(&omp_lock);
  79. it=free_map.lower_bound(size);
  80. if(it==free_map.end()){ // Use system malloc
  81. r = (uintptr_t)::malloc(size);
  82. }else if(it->first==size){ // Found exact size block
  83. size_t n_indx=it->second;
  84. node& n=node_buff[n_indx-1];
  85. assert(n.size==it->first);
  86. assert(n.it==it);
  87. assert(n.free);
  88. n.free=false;
  89. { // Debugging
  90. #ifndef NDEBUG
  91. for(size_t i=0;i<n.size;i++) assert(((char*)n.mem_ptr)[i]==init_mem_val);
  92. #endif
  93. }
  94. free_map.erase(it);
  95. ((size_t*)n.mem_ptr)[0]=n_indx;
  96. r = (uintptr_t)&((size_t*)n.mem_ptr)[1];
  97. }else{ // Found larger block.
  98. size_t n_indx=it->second;
  99. size_t n_free_indx=new_node();
  100. node& n_free=node_buff[n_free_indx-1];
  101. node& n =node_buff[n_indx-1];
  102. assert(n.size==it->first);
  103. assert(n.it==it);
  104. assert(n.free);
  105. n_free=n;
  106. n_free.size-=size;
  107. n_free.mem_ptr=(char*)n_free.mem_ptr+size;
  108. n_free.prev=n_indx;
  109. if(n_free.next){
  110. size_t n_next_indx=n_free.next;
  111. node& n_next=node_buff[n_next_indx-1];
  112. n_next.prev=n_free_indx;
  113. }
  114. n.free=false;
  115. n.size=size;
  116. n.next=n_free_indx;
  117. { // Debugging
  118. #ifndef NDEBUG
  119. for(size_t i=0;i<n.size;i++) assert(((char*)n.mem_ptr)[i]==init_mem_val);
  120. #endif
  121. }
  122. free_map.erase(it);
  123. n_free.it=free_map.insert(std::make_pair(n_free.size,n_free_indx));
  124. ((size_t*)n.mem_ptr)[0]=n_indx;
  125. r = (uintptr_t) &((size_t*)n.mem_ptr)[1];
  126. }
  127. omp_unset_lock(&omp_lock);
  128. uintptr_t o = (uintptr_t)(r + 2 + alignment) & ~(uintptr_t)alignment;
  129. ((uint16_t*)o)[-1] = (uint16_t)(o-r);
  130. return (void*)o;
  131. }
  132. void free(void* p_) const{
  133. if(!p_) return;
  134. void* p=((void*)((uintptr_t)p_-((uint16_t*)p_)[-1]));
  135. if(p<&buff[0] || p>=&buff[buff_size]) return ::free(p);
  136. size_t n_indx=((size_t*)p)[-1];
  137. assert(n_indx>0 && n_indx<=node_buff.size());
  138. omp_set_lock(&omp_lock);
  139. node& n=node_buff[n_indx-1];
  140. assert(!n.free && n.size>0 && n.mem_ptr==&((size_t*)p)[-1]);
  141. { // Debugging
  142. #ifndef NDEBUG
  143. for(char* c=((char*)p )-sizeof( size_t);c<((char*)p );c++) *c=init_mem_val;
  144. for(char* c=((char*)p_)-sizeof(uint16_t);c<((char*)p_);c++) *c=init_mem_val;
  145. //((size_t*)p)[-1]=0;
  146. //((uint16_t*)p_)[-1]=0;
  147. size_t alignment=MEM_ALIGN;
  148. size_t size=n.size-(sizeof(size_t) + --alignment + 2);
  149. for(size_t i=0;i<size;i++) ((char*)p_)[i]=init_mem_val;
  150. //for(char* c=((char*)p_)-(sizeof(size_t)+2); c<((char*)p_)+size; c++){
  151. // *c=init_mem_val;
  152. //}
  153. #endif
  154. }
  155. n.free=true;
  156. if(n.prev!=0 && node_buff[n.prev-1].free){
  157. size_t n_prev_indx=n.prev;
  158. node& n_prev=node_buff[n_prev_indx-1];
  159. free_map.erase(n_prev.it);
  160. n.size+=n_prev.size;
  161. n.mem_ptr=n_prev.mem_ptr;
  162. n.prev=n_prev.prev;
  163. delete_node(n_prev_indx);
  164. if(n.prev){
  165. size_t n_prev_indx=n.prev;
  166. node& n_prev=node_buff[n_prev_indx-1];
  167. n_prev.next=n_indx;
  168. }
  169. }
  170. if(n.next!=0 && node_buff[n.next-1].free){
  171. size_t n_next_indx=n.next;
  172. node& n_next=node_buff[n_next_indx-1];
  173. free_map.erase(n_next.it);
  174. n.size+=n_next.size;
  175. n.next=n_next.next;
  176. delete_node(n_next_indx);
  177. if(n.next){
  178. size_t n_next_indx=n.next;
  179. node& n_next=node_buff[n_next_indx-1];
  180. n_next.prev=n_indx;
  181. }
  182. }
  183. n.it=free_map.insert(std::make_pair(n.size,n_indx));
  184. omp_unset_lock(&omp_lock);
  185. }
  186. void print() const{
  187. if(!buff_size) return;
  188. omp_set_lock(&omp_lock);
  189. size_t size=0;
  190. size_t largest_size=0;
  191. node* n=&node_buff[n_dummy_indx-1];
  192. std::cout<<"\n|";
  193. while(n->next){
  194. n=&node_buff[n->next-1];
  195. if(n->free){
  196. std::cout<<' ';
  197. largest_size=std::max(largest_size,n->size);
  198. }
  199. else{
  200. std::cout<<'#';
  201. size+=n->size;
  202. }
  203. }
  204. std::cout<<"| allocated="<<round(size*1000.0/buff_size)/10<<"%";
  205. std::cout<<" largest_free="<<round(largest_size*1000.0/buff_size)/10<<"%\n";
  206. omp_unset_lock(&omp_lock);
  207. }
  208. static void test(){
  209. size_t M=2000000000;
  210. { // With memory manager
  211. size_t N=M*sizeof(double)*1.1;
  212. double tt;
  213. double* tmp;
  214. std::cout<<"With memory manager: ";
  215. MemoryManager memgr(N);
  216. for(size_t j=0;j<3;j++){
  217. tmp=(double*)memgr.malloc(M*sizeof(double)); assert(tmp);
  218. tt=omp_get_wtime();
  219. #pragma omp parallel for
  220. for(size_t i=0;i<M;i+=64) tmp[i]=i;
  221. tt=omp_get_wtime()-tt;
  222. std::cout<<tt<<' ';
  223. memgr.free(tmp);
  224. }
  225. std::cout<<'\n';
  226. }
  227. { // Without memory manager
  228. double tt;
  229. double* tmp;
  230. //pvfmm::MemoryManager memgr(N);
  231. std::cout<<"Without memory manager: ";
  232. for(size_t j=0;j<3;j++){
  233. tmp=(double*)::malloc(M*sizeof(double)); assert(tmp);
  234. tt=omp_get_wtime();
  235. #pragma omp parallel for
  236. for(size_t i=0;i<M;i+=64) tmp[i]=i;
  237. tt=omp_get_wtime()-tt;
  238. std::cout<<tt<<' ';
  239. ::free(tmp);
  240. }
  241. std::cout<<'\n';
  242. }
  243. }
  244. private:
  245. struct node{
  246. bool free;
  247. size_t size;
  248. void* mem_ptr;
  249. size_t prev, next;
  250. std::multimap<size_t, size_t>::iterator it;
  251. };
  252. MemoryManager();
  253. MemoryManager(const MemoryManager& m);
  254. size_t new_node() const{
  255. if(node_stack.empty()){
  256. node_buff.resize(node_buff.size()+1);
  257. node_stack.push(node_buff.size());
  258. }
  259. size_t indx=node_stack.top();
  260. node_stack.pop();
  261. assert(indx);
  262. return indx;
  263. }
  264. void delete_node(size_t indx) const{
  265. assert(indx);
  266. assert(indx<=node_buff.size());
  267. node& n=node_buff[indx-1];
  268. n.size=0;
  269. n.prev=0;
  270. n.next=0;
  271. n.mem_ptr=NULL;
  272. node_stack.push(indx);
  273. }
  274. char* buff;
  275. size_t buff_size;
  276. size_t n_dummy_indx;
  277. mutable std::vector<node> node_buff;
  278. mutable std::stack<size_t> node_stack;
  279. mutable std::multimap<size_t, size_t> free_map;
  280. mutable omp_lock_t omp_lock;
  281. };
  282. const MemoryManager glbMemMgr(GLOBAL_MEM_BUFF*1024LL*1024LL);
  283. }//end namespace
  284. }//end namespace
  285. #ifdef __INTEL_OFFLOAD
  286. #pragma offload_attribute(pop)
  287. #endif
  288. #endif //_PVFMM_MEM_MGR_HPP_