kernel.hpp 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234
  1. /**
  2. * \file kernel.hpp
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 12-20-2011
  5. * \brief This file contains the definition of the struct Kernel and also the
  6. * implementation of various kernels for FMM.
  7. */
  8. #include <string>
  9. #include <pvfmm_common.hpp>
  10. #include <mem_mgr.hpp>
  11. #ifndef _PVFMM_FMM_KERNEL_HPP_
  12. #define _PVFMM_FMM_KERNEL_HPP_
  13. namespace pvfmm{
  14. template <class T>
  15. struct Kernel{
  16. public:
  17. /**
  18. * \brief Evaluate potential due to source points at target coordinates.
  19. * \param[in] r_src Coordinates of source points.
  20. * \param[in] src_cnt Number of source points.
  21. * \param[in] v_src Strength of source points.
  22. * \param[in] r_trg Coordinates of target points.
  23. * \param[in] trg_cnt Number of target points.
  24. * \param[out] k_out Output array with potential values.
  25. */
  26. typedef void (*Ker_t)(T* r_src, int src_cnt, T* v_src, int dof,
  27. T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  28. /**
  29. * \brief Constructor.
  30. */
  31. Kernel();
  32. /**
  33. * \brief Constructor.
  34. */
  35. Kernel(Ker_t poten, Ker_t dbl_poten, const char* name, int dim_,
  36. std::pair<int,int> k_dim, bool homogen_=false, T ker_scale=0,
  37. size_t dev_poten=(size_t)NULL, size_t dev_dbl_poten=(size_t)NULL);
  38. /**
  39. * \brief Compute the transformation matrix (on the source strength vector)
  40. * to get potential at target coordinates due to sources at the given
  41. * coordinates.
  42. * \param[in] r_src Coordinates of source points.
  43. * \param[in] src_cnt Number of source points.
  44. * \param[in] r_trg Coordinates of target points.
  45. * \param[in] trg_cnt Number of target points.
  46. * \param[out] k_out Output array with potential values.
  47. */
  48. void BuildMatrix(T* r_src, int src_cnt,
  49. T* r_trg, int trg_cnt, T* k_out);
  50. int dim;
  51. int ker_dim[2];
  52. Ker_t ker_poten;
  53. Ker_t dbl_layer_poten;
  54. size_t dev_ker_poten;
  55. size_t dev_dbl_layer_poten;
  56. bool homogen;
  57. T poten_scale;
  58. std::string ker_name;
  59. };
  60. template<typename T, void (*A)(T*, int, T*, int, T*, int, T*, mem::MemoryManager* mem_mgr),
  61. void (*B)(T*, int, T*, int, T*, int, T*, mem::MemoryManager* mem_mgr)>
  62. Kernel<T> BuildKernel(const char* name, int dim,
  63. std::pair<int,int> k_dim, bool homogen=false, T ker_scale=0){
  64. size_t dev_ker_poten ;
  65. size_t dev_dbl_layer_poten;
  66. #ifdef __INTEL_OFFLOAD
  67. #pragma offload target(mic:0)
  68. #endif
  69. {
  70. dev_ker_poten =(size_t)((typename Kernel<T>::Ker_t)A);
  71. dev_dbl_layer_poten=(size_t)((typename Kernel<T>::Ker_t)B);
  72. }
  73. return Kernel<T>(A, B,
  74. name, dim, k_dim, homogen, ker_scale,
  75. dev_ker_poten, dev_dbl_layer_poten);
  76. }
  77. template<typename T, void (*A)(T*, int, T*, int, T*, int, T*, mem::MemoryManager* mem_mgr)>
  78. Kernel<T> BuildKernel(const char* name, int dim,
  79. std::pair<int,int> k_dim, bool homogen=false, T ker_scale=0){
  80. size_t dev_ker_poten ;
  81. #ifdef __INTEL_OFFLOAD
  82. #pragma offload target(mic:0)
  83. #endif
  84. {
  85. dev_ker_poten =(size_t)((typename Kernel<T>::Ker_t)A);
  86. }
  87. return Kernel<T>(A, NULL,
  88. name, dim, k_dim, homogen, ker_scale,
  89. dev_ker_poten, (size_t)NULL);
  90. }
  91. }//end namespace
  92. #ifdef __INTEL_OFFLOAD
  93. #pragma offload_attribute(push,target(mic))
  94. #endif
  95. namespace pvfmm{ // Predefined Kernel-functions
  96. ////////////////////////////////////////////////////////////////////////////////
  97. //////// LAPLACE KERNEL ////////
  98. ////////////////////////////////////////////////////////////////////////////////
  99. /**
  100. * \brief Green's function for the Poisson's equation. Kernel tensor
  101. * dimension = 1x1.
  102. */
  103. template <class T>
  104. void laplace_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  105. // Laplace double layer potential.
  106. template <class T>
  107. void laplace_dbl_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  108. // Laplace grdient kernel.
  109. template <class T>
  110. void laplace_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  111. #ifdef QuadReal_t
  112. const Kernel<QuadReal_t> laplace_potn_q=BuildKernel<QuadReal_t, laplace_poten, laplace_dbl_poten>("laplace" , 3, std::pair<int,int>(1,1), true, 1.0);
  113. const Kernel<QuadReal_t> laplace_grad_q=BuildKernel<QuadReal_t, laplace_grad >("laplace_grad", 3, std::pair<int,int>(1,3), true, 2.0);
  114. #endif
  115. const Kernel<double > laplace_potn_d=BuildKernel<double , laplace_poten, laplace_dbl_poten>("laplace" , 3, std::pair<int,int>(1,1), true, 1.0);
  116. const Kernel<double > laplace_grad_d=BuildKernel<double , laplace_grad >("laplace_grad", 3, std::pair<int,int>(1,3), true, 2.0);
  117. const Kernel<float > laplace_potn_f=BuildKernel<float , laplace_poten, laplace_dbl_poten>("laplace" , 3, std::pair<int,int>(1,1), true, 1.0);
  118. const Kernel<float > laplace_grad_f=BuildKernel<float , laplace_grad >("laplace_grad", 3, std::pair<int,int>(1,3), true, 2.0);
  119. template<class T>
  120. struct LaplaceKernel{
  121. inline static const Kernel<T>& potn_ker();
  122. inline static const Kernel<T>& grad_ker();
  123. };
  124. #ifdef QuadReal_t
  125. template<> const Kernel<QuadReal_t>& LaplaceKernel<QuadReal_t>::potn_ker(){ return laplace_potn_q; };
  126. template<> const Kernel<QuadReal_t>& LaplaceKernel<QuadReal_t>::grad_ker(){ return laplace_grad_q; };
  127. #endif
  128. template<> const Kernel<double>& LaplaceKernel<double>::potn_ker(){ return laplace_potn_d; };
  129. template<> const Kernel<double>& LaplaceKernel<double>::grad_ker(){ return laplace_grad_d; };
  130. template<> const Kernel<float>& LaplaceKernel<float>::potn_ker(){ return laplace_potn_f; };
  131. template<> const Kernel<float>& LaplaceKernel<float>::grad_ker(){ return laplace_grad_f; };
  132. ////////////////////////////////////////////////////////////////////////////////
  133. //////// STOKES KERNEL ////////
  134. ////////////////////////////////////////////////////////////////////////////////
  135. /**
  136. * \brief Green's function for the Stokes's equation. Kernel tensor
  137. * dimension = 3x3.
  138. */
  139. template <class T>
  140. void stokes_vel(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  141. template <class T>
  142. void stokes_sym_dip(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  143. template <class T>
  144. void stokes_press(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  145. template <class T>
  146. void stokes_stress(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  147. template <class T>
  148. void stokes_grad(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  149. const Kernel<double> ker_stokes_vel =BuildKernel<double, stokes_vel, stokes_sym_dip>("stokes_vel" , 3, std::pair<int,int>(3,3),true,1.0);
  150. const Kernel<double> ker_stokes_press =BuildKernel<double, stokes_press >("stokes_press" , 3, std::pair<int,int>(3,1),true,2.0);
  151. const Kernel<double> ker_stokes_stress=BuildKernel<double, stokes_stress >("stokes_stress", 3, std::pair<int,int>(3,9),true,2.0);
  152. const Kernel<double> ker_stokes_grad =BuildKernel<double, stokes_grad >("stokes_grad" , 3, std::pair<int,int>(3,9),true,2.0);
  153. ////////////////////////////////////////////////////////////////////////////////
  154. //////// BIOT-SAVART KERNEL ////////
  155. ////////////////////////////////////////////////////////////////////////////////
  156. template <class T>
  157. void biot_savart(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  158. const Kernel<double> ker_biot_savart=BuildKernel<double, biot_savart>("biot_savart", 3, std::pair<int,int>(3,3),true,2.0);
  159. ////////////////////////////////////////////////////////////////////////////////
  160. //////// HELMHOLTZ KERNEL ////////
  161. ////////////////////////////////////////////////////////////////////////////////
  162. /**
  163. * \brief Green's function for the Helmholtz's equation. Kernel tensor
  164. * dimension = 2x2.
  165. */
  166. template <class T>
  167. void helmholtz_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  168. template <class T>
  169. void helmholtz_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr);
  170. const Kernel<double> ker_helmholtz =BuildKernel<double, helmholtz_poten>("helmholtz" , 3, std::pair<int,int>(2,2));
  171. const Kernel<double> ker_helmholtz_grad=BuildKernel<double, helmholtz_grad >("helmholtz_grad", 3, std::pair<int,int>(2,6));
  172. }//end namespace
  173. #ifdef __INTEL_OFFLOAD
  174. #pragma offload_attribute(pop)
  175. #endif
  176. #include <kernel.txx>
  177. #endif //_PVFMM_FMM_KERNEL_HPP_