12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091 |
- /**
- * \file fmm_cheb.txx
- * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
- * \date 3-07-2011
- * \brief This file contains the implementation of the FMM_Cheb class.
- */
- #include <omp.h>
- #include <sstream>
- #include <iostream>
- #include <cstdlib>
- #include <cmath>
- #ifdef PVFMM_HAVE_SYS_STAT_H
- #include <sys/stat.h>
- #endif
- #include <dtypes.h>
- #include <parUtils.h>
- #include <cheb_utils.hpp>
- #include <mem_mgr.hpp>
- #include <profile.hpp>
- namespace pvfmm{
- template <class FMMNode>
- FMM_Cheb<FMMNode>::~FMM_Cheb() {
- if(this->mat!=NULL){
- int rank;
- MPI_Comm_rank(this->comm,&rank);
- if(!rank){
- FILE* f=fopen(this->mat_fname.c_str(),"r");
- if(f==NULL) { //File does not exists.
- { // Delete easy to compute matrices.
- Mat_Type type=W_Type;
- for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- type=V_Type;
- for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- type=V1_Type;
- for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- type=U2U_Type;
- for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- type=D2D_Type;
- for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- type=D2T_Type;
- for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- }
- this->mat->Save2File(this->mat_fname.c_str());
- }else fclose(f);
- }
- }
- }
- template <class FMMNode>
- void FMM_Cheb<FMMNode>::Initialize(int mult_order, int cheb_deg_, const MPI_Comm& comm_, const Kernel<Real_t>* kernel_){
- Profile::Tic("InitFMM_Cheb",&comm_,true);{
- int rank;
- MPI_Comm_rank(comm_,&rank);
- int dim=3; //Only supporting 3D
- cheb_deg=cheb_deg_;
- if(this->mat_fname.size()==0){
- std::stringstream st;
- st<<PVFMM_PRECOMP_DATA_PATH;
- if(!st.str().size()){ // look in PVFMM_DIR
- char* pvfmm_dir = getenv ("PVFMM_DIR");
- if(pvfmm_dir) st<<pvfmm_dir;
- }
- #ifndef STAT_MACROS_BROKEN
- if(st.str().size()){ // check if the path is a directory
- struct stat stat_buff;
- if(stat(st.str().c_str(), &stat_buff) || !S_ISDIR(stat_buff.st_mode)){
- std::cout<<"error: path not found: "<<st.str()<<'\n';
- exit(0);
- }
- }
- #endif
- if(st.str().size()) st<<'/';
- st<<"Precomp_"<<kernel_->ker_name.c_str()<<"_q"<<cheb_deg<<"_m"<<mult_order;
- if(sizeof(Real_t)==8) st<<"";
- else if(sizeof(Real_t)==4) st<<"_f";
- else st<<"_t"<<sizeof(Real_t);
- st<<".data";
- this->mat_fname=st.str();
- }
- if(!rank){
- FILE* f=fopen(this->mat_fname.c_str(),"r");
- if(f==NULL) { //File does not exists.
- std::cout<<"Could not find precomputed data file for "<<kernel_->ker_name.c_str()<<" kernel with q="<<cheb_deg<<" and m="<<mult_order<<".\n";
- std::cout<<"This data will be computed and stored for future use at:\n"<<this->mat_fname<<'\n';
- std::cout<<"This may take a while...\n";
- }else fclose(f);
- }
- //this->mat->LoadFile(this->mat_fname.c_str(), this->comm);
- FMM_Pts<FMMNode>::Initialize(mult_order, comm_, kernel_);
- this->mat->RelativeTrgCoord()=cheb_nodes<Real_t>(ChebDeg(),dim);
- Profile::Tic("PrecompD2T",&this->comm,false,4);
- this->PrecompAll(D2T_Type);
- Profile::Toc();
- //Volume solver.
- Profile::Tic("PrecompS2M",&this->comm,false,4);
- this->PrecompAll(S2U_Type);
- Profile::Toc();
- Profile::Tic("PrecompX",&this->comm,false,4);
- this->PrecompAll(X_Type);
- Profile::Toc();
- Profile::Tic("PrecompW",&this->comm,false,4);
- this->PrecompAll(W_Type);
- Profile::Toc();
- Profile::Tic("PrecompU0",&this->comm,false,4);
- this->PrecompAll(U0_Type);
- Profile::Toc();
- Profile::Tic("PrecompU1",&this->comm,false,4);
- this->PrecompAll(U1_Type);
- Profile::Toc();
- Profile::Tic("PrecompU2",&this->comm,false,4);
- this->PrecompAll(U2_Type);
- Profile::Toc();
- Profile::Tic("Save2File",&this->comm,false,4);
- if(!rank){
- FILE* f=fopen(this->mat_fname.c_str(),"r");
- if(f==NULL) { //File does not exists.
- { // Delete easy to compute matrices.
- Mat_Type type=W_Type;
- for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- type=V_Type;
- for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- type=V1_Type;
- for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- type=U2U_Type;
- for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- type=D2D_Type;
- for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- type=D2T_Type;
- for(int l=-BC_LEVELS;l<MAX_DEPTH;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- }
- this->mat->Save2File(this->mat_fname.c_str());
- }else fclose(f);
- }
- Profile::Toc();
- Profile::Tic("Recompute",&this->comm,false,4);
- { // Recompute matrices.
- this->PrecompAll(W_Type);
- this->PrecompAll(V_Type);
- this->PrecompAll(V1_Type);
- this->PrecompAll(U2U_Type);
- this->PrecompAll(D2D_Type);
- this->PrecompAll(D2T_Type);
- }
- Profile::Toc();
- }Profile::Toc();
- }
- template <class Real_t>
- Permutation<Real_t> cheb_perm(size_t q, size_t p_indx, const Permutation<Real_t>& ker_perm, const Vector<Real_t>* scal_exp=NULL){
- int dim=3; //Only supporting 3D
- int dof=ker_perm.Dim();
- int coeff_cnt=((q+1)*(q+2)*(q+3))/6;
- int n3=(int)pow((Real_t)(q+1),dim);
- Permutation<Real_t> P0(n3*dof);
- if(scal_exp && p_indx==Scaling){ // Set level-by-level scaling
- assert(dof==scal_exp->Dim());
- Vector<Real_t> scal(scal_exp->Dim());
- for(size_t i=0;i<scal.Dim();i++){
- scal[i]=pow(2.0,(*scal_exp)[i]);
- }
- for(int j=0;j<dof;j++){
- for(int i=0;i<n3;i++){
- P0.scal[j*n3+i]*=scal[j];
- }
- }
- }
- { // Set P0.scal
- for(int j=0;j<dof;j++){
- for(int i=0;i<n3;i++){
- P0.scal[j*n3+i]*=ker_perm.scal[j];
- }
- }
- }
- if(p_indx==ReflecX || p_indx==ReflecY || p_indx==ReflecZ){
- for(int j=0;j<dof;j++)
- for(int i=0;i<n3;i++){
- size_t x[3]={i%(q+1), (i/(q+1))%(q+1), i/(q+1)/(q+1)};
- P0.scal[i+n3*j]*=(x[p_indx-ReflecX]%2?-1.0:1.0);
- }
- }
- { // Set P0.perm
- int indx[3]={0,1,2};
- if(p_indx==SwapXY) {indx[0]=1; indx[1]=0; indx[2]=2;}
- if(p_indx==SwapXZ) {indx[0]=2; indx[1]=1; indx[2]=0;}
- for(int j=0;j<dof;j++)
- for(int i=0;i<n3;i++){
- size_t x[3]={i%(q+1), (i/(q+1))%(q+1), i/(q+1)/(q+1)};
- P0.perm[i+n3*j]=x[indx[0]]+(x[indx[1]]+x[indx[2]]*(q+1))*(q+1)
- +n3*ker_perm.perm[j];
- }
- }
- std::vector<size_t> coeff_map(n3*dof,0);
- {
- int indx=0;
- for(int j=0;j<dof;j++)
- for(int i=0;i<n3;i++){
- size_t x[3]={i%(q+1), (i/(q+1))%(q+1), i/(q+1)/(q+1)};
- if(x[0]+x[1]+x[2]<=q){
- coeff_map[i+n3*j]=indx;
- indx++;
- }
- }
- }
- Permutation<Real_t> P=Permutation<Real_t>(coeff_cnt*dof);
- {
- int indx=0;
- for(int j=0;j<dof;j++)
- for(int i=0;i<n3;i++){
- size_t x[3]={i%(q+1), (i/(q+1))%(q+1), i/(q+1)/(q+1)};
- if(x[0]+x[1]+x[2]<=q){
- P.perm[indx]=coeff_map[P0.perm[i+n3*j]];
- P.scal[indx]= P0.scal[i+n3*j] ;
- indx++;
- }
- }
- }
- return P;
- }
- template <class FMMNode>
- Permutation<typename FMMNode::Real_t>& FMM_Cheb<FMMNode>::PrecompPerm(Mat_Type type, Perm_Type perm_indx){
- int dim=3; //Only supporting 3D
- Real_t eps=1e-10;
- //Check if the matrix already exists.
- Permutation<Real_t>& P_ = FMM_Pts<FMMNode>::PrecompPerm(type, perm_indx);
- if(P_.Dim()!=0) return P_;
- size_t q=cheb_deg;
- size_t m=this->MultipoleOrder();
- size_t p_indx=perm_indx % C_Perm;
- //Compute the matrix.
- Permutation<Real_t> P;
- switch (type){
- case UC2UE_Type:
- {
- break;
- }
- case DC2DE_Type:
- {
- break;
- }
- case S2U_Type:
- {
- Vector<Real_t> scal_exp;
- Permutation<Real_t> ker_perm;
- if(perm_indx<C_Perm){
- ker_perm=this->kernel->k_s2m->perm_vec[0 +p_indx];
- scal_exp=this->kernel->k_s2m->src_scal;
- for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]-=COORD_DIM;
- P=cheb_perm(q, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
- }else{
- ker_perm=this->kernel->k_m2m->perm_vec[0 +p_indx];
- scal_exp=this->kernel->k_m2m->src_scal;
- for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]=-scal_exp[i];
- // Check that target perm for the two kernels agree.
- Permutation<Real_t> ker_perm0=this->kernel->k_s2m->perm_vec[C_Perm+p_indx];
- Permutation<Real_t> ker_perm1=this->kernel->k_m2m->perm_vec[C_Perm+p_indx];
- assert(ker_perm0.Dim()>0 && ker_perm0.Dim()==ker_perm1.Dim());
- if(fabs(ker_perm0.scal[0]-ker_perm1.scal[0])>eps){
- for(size_t i=0;i<ker_perm0.Dim();i++){
- ker_perm0.scal[i]*=-1.0;
- }
- for(size_t i=0;i<ker_perm.Dim();i++){
- ker_perm.scal[i]*=-1.0;
- }
- }
- for(size_t i=0;i<ker_perm0.Dim();i++){
- assert( (ker_perm0.perm[i]-ker_perm1.perm[i])== 0);
- assert(fabs(ker_perm0.scal[i]-ker_perm1.scal[i])<eps);
- }
- // Check that target scaling for the two kernels agree.
- const Vector<Real_t>& scal_exp0=this->kernel->k_s2m->trg_scal;
- const Vector<Real_t>& scal_exp1=this->kernel->k_m2m->trg_scal;
- assert(scal_exp0.Dim()>0 && scal_exp0.Dim()==scal_exp1.Dim());
- Real_t s=(scal_exp0[0]-scal_exp1[0]);
- for(size_t i=1;i<scal_exp0.Dim();i++){
- assert(fabs(s-(scal_exp0[i]-scal_exp1[i]))<eps);
- // In general this is not necessary, but to allow this, we must
- // also change src_scal accordingly.
- }
- // Apply the difference in scaling of the two kernels.
- for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]+=s;
- P=equiv_surf_perm(m, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
- }
- break;
- }
- case U2U_Type:
- {
- break;
- }
- case D2D_Type:
- {
- break;
- }
- case D2T_Type:
- {
- Vector<Real_t> scal_exp;
- Permutation<Real_t> ker_perm;
- if(perm_indx<C_Perm){ // Source permutation
- ker_perm=this->kernel->k_l2t->perm_vec[0 +p_indx];
- scal_exp=this->kernel->k_l2t->src_scal;
- P=equiv_surf_perm(m, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
- }else{ // Target permutation
- ker_perm=this->kernel->k_l2t->perm_vec[C_Perm+p_indx];
- scal_exp=this->kernel->k_l2t->trg_scal;
- P=cheb_perm(q, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
- }
- break;
- }
- case U0_Type:
- {
- Vector<Real_t> scal_exp;
- Permutation<Real_t> ker_perm;
- if(perm_indx<C_Perm){
- ker_perm=this->kernel->k_s2t->perm_vec[0 +p_indx];
- scal_exp=this->kernel->k_s2t->src_scal;
- for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]-=COORD_DIM;
- }else{
- ker_perm=this->kernel->k_s2t->perm_vec[C_Perm+p_indx];
- scal_exp=this->kernel->k_s2t->trg_scal;
- }
- P=cheb_perm(q, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
- break;
- }
- case U1_Type:
- {
- P=PrecompPerm(U0_Type, perm_indx);
- break;
- }
- case U2_Type:
- {
- P=PrecompPerm(U0_Type, perm_indx);
- break;
- }
- case V_Type:
- {
- break;
- }
- case V1_Type:
- {
- break;
- }
- case W_Type:
- {
- Vector<Real_t> scal_exp;
- Permutation<Real_t> ker_perm;
- if(perm_indx<C_Perm){ // Source permutation
- ker_perm=this->kernel->k_m2t->perm_vec[0 +p_indx];
- scal_exp=this->kernel->k_m2t->src_scal;
- P=equiv_surf_perm(m, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
- }else{ // Target permutation
- ker_perm=this->kernel->k_m2t->perm_vec[C_Perm+p_indx];
- scal_exp=this->kernel->k_m2t->trg_scal;
- P=cheb_perm(q, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
- }
- break;
- }
- case X_Type:
- {
- Vector<Real_t> scal_exp;
- Permutation<Real_t> ker_perm;
- if(perm_indx<C_Perm){
- ker_perm=this->kernel->k_s2l->perm_vec[0 +p_indx];
- scal_exp=this->kernel->k_s2l->src_scal;
- for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]-=COORD_DIM;
- P=cheb_perm(q, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
- }else{
- ker_perm=this->kernel->k_l2l->perm_vec[0 +p_indx];
- scal_exp=this->kernel->k_l2l->src_scal;
- for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]=-scal_exp[i];
- // Check that target perm for the two kernels agree.
- Permutation<Real_t> ker_perm0=this->kernel->k_s2l->perm_vec[C_Perm+p_indx];
- Permutation<Real_t> ker_perm1=this->kernel->k_l2l->perm_vec[C_Perm+p_indx];
- assert(ker_perm0.Dim()>0 && ker_perm0.Dim()==ker_perm1.Dim());
- if(fabs(ker_perm0.scal[0]-ker_perm1.scal[0])>eps){
- for(size_t i=0;i<ker_perm0.Dim();i++){
- ker_perm0.scal[i]*=-1.0;
- }
- for(size_t i=0;i<ker_perm.Dim();i++){
- ker_perm.scal[i]*=-1.0;
- }
- }
- for(size_t i=0;i<ker_perm0.Dim();i++){
- assert( (ker_perm0.perm[i]-ker_perm1.perm[i])== 0);
- assert(fabs(ker_perm0.scal[i]-ker_perm1.scal[i])<eps);
- }
- // Check that target scaling for the two kernels agree.
- const Vector<Real_t>& scal_exp0=this->kernel->k_s2l->trg_scal;
- const Vector<Real_t>& scal_exp1=this->kernel->k_l2l->trg_scal;
- assert(scal_exp0.Dim()>0 && scal_exp0.Dim()==scal_exp1.Dim());
- Real_t s=(scal_exp0[0]-scal_exp1[0]);
- for(size_t i=1;i<scal_exp0.Dim();i++){
- assert(fabs(s-(scal_exp0[i]-scal_exp1[i]))<eps);
- // In general this is not necessary, but to allow this, we must
- // also change src_scal accordingly.
- }
- // Apply the difference in scaling of the two kernels.
- for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]+=s;
- P=equiv_surf_perm(m, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
- }
- break;
- }
- default:
- return FMM_Pts<FMMNode>::PrecompPerm(type, perm_indx);
- break;
- }
- //Save the matrix for future use.
- #pragma omp critical (PRECOMP_MATRIX_PTS)
- if(P_.Dim()==0){ P_=P;}
- return P_;
- }
- template <class FMMNode>
- Matrix<typename FMMNode::Real_t>& FMM_Cheb<FMMNode>::Precomp(int level, Mat_Type type, size_t mat_indx){
- if(this->Homogen()) level=0;
- //Check if the matrix already exists.
- //Compute matrix from symmetry class (if possible).
- Matrix<Real_t>& M_ = this->mat->Mat(level, type, mat_indx);
- if(M_.Dim(0)!=0 && M_.Dim(1)!=0) return M_;
- else{ //Compute matrix from symmetry class (if possible).
- size_t class_indx = this->interac_list.InteracClass(type, mat_indx);
- if(class_indx!=mat_indx){
- Matrix<Real_t>& M0 = this->Precomp(level, type, class_indx);
- Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, type, mat_indx);
- Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, type, mat_indx);
- if(Pr.Dim()>0 && Pc.Dim()>0 && M0.Dim(0)>0 && M0.Dim(1)>0) return M_;
- }
- }
- int myrank, np;
- MPI_Comm_rank(this->comm, &myrank);
- MPI_Comm_size(this->comm,&np);
- size_t progress=0, class_count=0;
- { // Determine precomputation progress.
- size_t mat_cnt=this->interac_list.ListCount((Mat_Type)type);
- for(size_t i=0; i<mat_cnt; i++){
- size_t indx=this->interac_list.InteracClass((Mat_Type)type,i);
- if(indx==i){
- class_count++;
- if(i<mat_indx) progress++;
- }
- }
- }
- //Compute the matrix.
- Matrix<Real_t> M;
- int n_src=((cheb_deg+1)*(cheb_deg+2)*(cheb_deg+3))/6;
- switch (type){
- case S2U_Type:
- {
- if(this->MultipoleOrder()==0) break;
- Real_t r=pow(0.5,level);
- Real_t c[3]={0,0,0};
- // Coord of upward check surface
- std::vector<Real_t> uc_coord=u_check_surf(this->MultipoleOrder(),c,level);
- size_t n_uc=uc_coord.size()/3;
- // Evaluate potential at check surface.
- Matrix<Real_t> M_s2c(n_src*this->kernel->k_s2m->ker_dim[0],n_uc*this->kernel->k_s2m->ker_dim[1]); //source 2 check
- Matrix<Real_t> M_s2c_local(n_src*this->kernel->k_s2m->ker_dim[0],n_uc*this->kernel->k_s2m->ker_dim[1]);
- {
- M_s2c.SetZero();
- M_s2c_local.SetZero();
- size_t cnt_done=0;
- #pragma omp parallel for schedule(dynamic)
- for(size_t i=myrank;i<n_uc;i+=np){
- std::vector<Real_t> M_=cheb_integ(cheb_deg, &uc_coord[i*3], r, *this->kernel->k_s2m);
- #ifdef __VERBOSE__
- #pragma omp critical
- if(!myrank){
- cnt_done++;
- std::cout<<"\r Progress: "<<(100*progress*n_uc+100*cnt_done*np)/(class_count*n_uc)<<"% "<<std::flush;
- }
- #endif
- for(int k=0; k<this->kernel->k_s2m->ker_dim[1]; k++)
- for(size_t j=0; j<(size_t)M_s2c.Dim(0); j++)
- M_s2c_local[j][i*this->kernel->k_s2m->ker_dim[1]+k] = M_[j+k*M_s2c.Dim(0)];
- }
- if(!myrank) std::cout<<"\r \r"<<std::flush;
- MPI_Allreduce(M_s2c_local[0], M_s2c[0], M_s2c.Dim(0)*M_s2c.Dim(1), par::Mpi_datatype<Real_t>::value(), par::Mpi_datatype<Real_t>::sum(), this->comm);
- }
- Matrix<Real_t>& M_c2e = this->Precomp(level, UC2UE_Type, 0);
- M=M_s2c*M_c2e;
- break;
- }
- case D2T_Type:
- {
- if(this->MultipoleOrder()==0) break;
- Matrix<Real_t>& M_s2t=FMM_Pts<FMMNode>::Precomp(level, type, mat_indx);
- int n_trg=M_s2t.Dim(1)/this->kernel->k_l2t->ker_dim[1];
- // Compute Chebyshev approx from target potential.
- M.Resize(M_s2t.Dim(0), n_src*this->kernel->k_l2t->ker_dim [1]);
- #pragma omp parallel for schedule(dynamic)
- for(size_t j=0; j<(size_t)M_s2t.Dim(0); j++){
- Matrix<Real_t> M_trg(n_trg,this->kernel->k_l2t->ker_dim[1],M_s2t[j],false);
- M_trg=M_trg.Transpose();
- cheb_approx<Real_t,Real_t>(M_s2t[j],cheb_deg,this->kernel->k_l2t->ker_dim[1],M[j]);
- }
- #pragma omp critical (PRECOMP_MATRIX_PTS)
- {
- M_s2t.Resize(0,0);
- }
- break;
- }
- case U0_Type:
- {
- // Coord of target points
- Real_t s=pow(0.5,level);
- int* coord=this->interac_list.RelativeCoord(type,mat_indx);
- Real_t coord_diff[3]={(coord[0]-1)*s*0.5,(coord[1]-1)*s*0.5,(coord[2]-1)*s*0.5};
- std::vector<Real_t>& rel_trg_coord = this->mat->RelativeTrgCoord();
- size_t n_trg = rel_trg_coord.size()/3;
- std::vector<Real_t> trg_coord(n_trg*3);
- for(size_t j=0;j<n_trg;j++){
- trg_coord[j*3+0]=rel_trg_coord[j*3+0]*s-coord_diff[0];
- trg_coord[j*3+1]=rel_trg_coord[j*3+1]*s-coord_diff[1];
- trg_coord[j*3+2]=rel_trg_coord[j*3+2]*s-coord_diff[2];
- }
- // Evaluate potential at target points.
- Matrix<Real_t> M_s2t(n_src*this->kernel->k_s2t->ker_dim [0], n_trg*this->kernel->k_s2t->ker_dim [1]);
- Matrix<Real_t> M_s2t_local(n_src*this->kernel->k_s2t->ker_dim [0], n_trg*this->kernel->k_s2t->ker_dim [1]);
- {
- M_s2t.SetZero();
- M_s2t_local.SetZero();
- size_t cnt_done=0;
- #pragma omp parallel for schedule(dynamic)
- for(size_t i=myrank;i<n_trg;i+=np){
- std::vector<Real_t> s2t=cheb_integ(cheb_deg, &trg_coord[i*3], (Real_t)(s*2.0), *this->kernel->k_s2t);
- #ifdef __VERBOSE__
- #pragma omp critical
- if(!myrank){
- cnt_done++;
- std::cout<<"\r Progress: "<<(100*progress*n_trg+100*cnt_done*np)/(class_count*n_trg)<<"% "<<std::flush;
- }
- #endif
- for(int k=0; k<this->kernel->k_s2t->ker_dim[1]; k++)
- for(size_t j=0; j<(size_t)M_s2t.Dim(0); j++)
- M_s2t_local[j][i*this->kernel->k_s2t->ker_dim[1]+k] = s2t[j+k*M_s2t.Dim(0)];
- }
- if(!myrank) std::cout<<"\r \r"<<std::flush;
- MPI_Allreduce(M_s2t_local[0], M_s2t[0], M_s2t.Dim(0)*M_s2t.Dim(1), par::Mpi_datatype<Real_t>::value(), par::Mpi_datatype<Real_t>::sum(), this->comm);
- }
- // Compute Chebyshev approx from target potential.
- M.Resize(M_s2t.Dim(0), n_src*this->kernel->k_s2t->ker_dim [1]);
- #pragma omp parallel for schedule(dynamic)
- for(size_t j=0; j<(size_t)M_s2t.Dim(0); j++){
- Matrix<Real_t> M_trg(n_trg,this->kernel->k_s2t->ker_dim[1],M_s2t[j],false);
- M_trg=M_trg.Transpose();
- cheb_approx<Real_t,Real_t>(M_s2t[j],cheb_deg,this->kernel->k_s2t->ker_dim[1],M[j]);
- }
- break;
- }
- case U1_Type:
- {
- // Coord of target points
- Real_t s=pow(0.5,level);
- int* coord=this->interac_list.RelativeCoord(type,mat_indx);
- Real_t coord_diff[3]={coord[0]*s,coord[1]*s,coord[2]*s};
- std::vector<Real_t>& rel_trg_coord = this->mat->RelativeTrgCoord();
- size_t n_trg = rel_trg_coord.size()/3;
- std::vector<Real_t> trg_coord(n_trg*3);
- for(size_t j=0;j<n_trg;j++){
- trg_coord[j*3+0]=rel_trg_coord[j*3+0]*s-coord_diff[0];
- trg_coord[j*3+1]=rel_trg_coord[j*3+1]*s-coord_diff[1];
- trg_coord[j*3+2]=rel_trg_coord[j*3+2]*s-coord_diff[2];
- }
- // Evaluate potential at target points.
- Matrix<Real_t> M_s2t(n_src*this->kernel->k_s2t->ker_dim [0], n_trg*this->kernel->k_s2t->ker_dim [1]);
- Matrix<Real_t> M_s2t_local(n_src*this->kernel->k_s2t->ker_dim [0], n_trg*this->kernel->k_s2t->ker_dim [1]);
- {
- M_s2t.SetZero();
- M_s2t_local.SetZero();
- size_t cnt_done=0;
- #pragma omp parallel for schedule(dynamic)
- for(size_t i=myrank;i<n_trg;i+=np){
- std::vector<Real_t> s2t=cheb_integ(cheb_deg, &trg_coord[i*3], s, *this->kernel->k_s2t);
- #ifdef __VERBOSE__
- #pragma omp critical
- if(!myrank){
- cnt_done++;
- std::cout<<"\r Progress: "<<(100*progress*n_trg+100*cnt_done*np)/(class_count*n_trg)<<"% "<<std::flush;
- }
- #endif
- for(int k=0; k<this->kernel->k_s2t->ker_dim[1]; k++)
- for(size_t j=0; j<(size_t)M_s2t.Dim(0); j++)
- M_s2t_local[j][i*this->kernel->k_s2t->ker_dim[1]+k] = s2t[j+k*M_s2t.Dim(0)];
- }
- if(!myrank) std::cout<<"\r \r"<<std::flush;
- MPI_Allreduce(M_s2t_local[0], M_s2t[0], M_s2t.Dim(0)*M_s2t.Dim(1), par::Mpi_datatype<Real_t>::value(), par::Mpi_datatype<Real_t>::sum(), this->comm);
- }
- // Compute Chebyshev approx from target potential.
- M.Resize(M_s2t.Dim(0), n_src*this->kernel->k_s2t->ker_dim [1]);
- #pragma omp parallel for schedule(dynamic)
- for(size_t j=0; j<(size_t)M_s2t.Dim(0); j++){
- Matrix<Real_t> M_trg(n_trg,this->kernel->k_s2t->ker_dim[1],M_s2t[j],false);
- M_trg=M_trg.Transpose();
- cheb_approx<Real_t,Real_t>(M_s2t[j],cheb_deg,this->kernel->k_s2t->ker_dim[1],M[j]);
- }
- break;
- }
- case U2_Type:
- {
- // Coord of target points
- Real_t s=pow(0.5,level);
- int* coord=this->interac_list.RelativeCoord(type,mat_indx);
- Real_t coord_diff[3]={(coord[0]+1)*s*0.25,(coord[1]+1)*s*0.25,(coord[2]+1)*s*0.25};
- std::vector<Real_t>& rel_trg_coord = this->mat->RelativeTrgCoord();
- size_t n_trg = rel_trg_coord.size()/3;
- std::vector<Real_t> trg_coord(n_trg*3);
- for(size_t j=0;j<n_trg;j++){
- trg_coord[j*3+0]=rel_trg_coord[j*3+0]*s-coord_diff[0];
- trg_coord[j*3+1]=rel_trg_coord[j*3+1]*s-coord_diff[1];
- trg_coord[j*3+2]=rel_trg_coord[j*3+2]*s-coord_diff[2];
- }
- // Evaluate potential at target points.
- Matrix<Real_t> M_s2t(n_src*this->kernel->k_s2t->ker_dim [0], n_trg*this->kernel->k_s2t->ker_dim [1]);
- Matrix<Real_t> M_s2t_local(n_src*this->kernel->k_s2t->ker_dim [0], n_trg*this->kernel->k_s2t->ker_dim [1]);
- {
- M_s2t.SetZero();
- M_s2t_local.SetZero();
- size_t cnt_done=0;
- #pragma omp parallel for schedule(dynamic)
- for(size_t i=myrank;i<n_trg;i+=np){
- std::vector<Real_t> s2t=cheb_integ(cheb_deg, &trg_coord[i*3], (Real_t)(s*0.5), *this->kernel->k_s2t);
- #ifdef __VERBOSE__
- #pragma omp critical
- if(!myrank){
- cnt_done++;
- std::cout<<"\r Progress: "<<(100*progress*n_trg+100*cnt_done*np)/(class_count*n_trg)<<"% "<<std::flush;
- }
- #endif
- for(int k=0; k<this->kernel->k_s2t->ker_dim[1]; k++)
- for(size_t j=0; j<(size_t)M_s2t.Dim(0); j++)
- M_s2t_local[j][i*this->kernel->k_s2t->ker_dim[1]+k] = s2t[j+k*M_s2t.Dim(0)];
- }
- if(!myrank) std::cout<<"\r \r"<<std::flush;
- MPI_Allreduce(M_s2t_local[0], M_s2t[0], M_s2t.Dim(0)*M_s2t.Dim(1), par::Mpi_datatype<Real_t>::value(), par::Mpi_datatype<Real_t>::sum(), this->comm);
- }
- // Compute Chebyshev approx from target potential.
- M.Resize(M_s2t.Dim(0), n_src*this->kernel->k_s2t->ker_dim [1]);
- #pragma omp parallel for schedule(dynamic)
- for(size_t j=0; j<(size_t)M_s2t.Dim(0); j++){
- Matrix<Real_t> M_trg(n_trg,this->kernel->k_s2t->ker_dim[1],M_s2t[j],false);
- M_trg=M_trg.Transpose();
- cheb_approx<Real_t,Real_t>(M_s2t[j],cheb_deg,this->kernel->k_s2t->ker_dim[1],M[j]);
- }
- break;
- }
- case W_Type:
- {
- if(this->MultipoleOrder()==0) break;
- Matrix<Real_t>& M_s2t=FMM_Pts<FMMNode>::Precomp(level, type, mat_indx);
- int n_trg=M_s2t.Dim(1)/this->kernel->k_m2t->ker_dim[1];
- // Compute Chebyshev approx from target potential.
- M.Resize(M_s2t.Dim(0), n_src*this->kernel->k_m2t->ker_dim [1]);
- #pragma omp parallel for schedule(dynamic)
- for(size_t j=0; j<(size_t)M_s2t.Dim(0); j++){
- Matrix<Real_t> M_trg(n_trg,this->kernel->k_m2t->ker_dim[1],M_s2t[j],false);
- M_trg=M_trg.Transpose();
- cheb_approx<Real_t,Real_t>(M_s2t[j],cheb_deg,this->kernel->k_m2t->ker_dim[1],M[j]);
- }
- #pragma omp critical (PRECOMP_MATRIX_PTS)
- {
- M_s2t.Resize(0,0);
- }
- break;
- }
- case X_Type:
- {
- if(this->MultipoleOrder()==0) break;
- // Coord of target points
- Real_t s=pow(0.5,level-1);
- int* coord=this->interac_list.RelativeCoord(type,mat_indx);
- Real_t c[3]={-(coord[0]-1)*s*0.25,-(coord[1]-1)*s*0.25,-(coord[2]-1)*s*0.25};
- std::vector<Real_t> trg_coord=d_check_surf(this->MultipoleOrder(),c,level);
- size_t n_trg=trg_coord.size()/3;
- // Evaluate potential at target points.
- Matrix<Real_t> M_xs2c(n_src*this->kernel->k_s2l->ker_dim[0], n_trg*this->kernel->k_s2l->ker_dim[1]);
- Matrix<Real_t> M_xs2c_local(n_src*this->kernel->k_s2l->ker_dim[0], n_trg*this->kernel->k_s2l->ker_dim[1]);
- {
- M_xs2c.SetZero();
- M_xs2c_local.SetZero();
- size_t cnt_done=0;
- #pragma omp parallel for schedule(dynamic)
- for(size_t i=myrank;i<n_trg;i+=np){
- std::vector<Real_t> M_=cheb_integ(cheb_deg, &trg_coord[i*3], s, *this->kernel->k_s2l);
- #ifdef __VERBOSE__
- #pragma omp critical
- if(!myrank){
- cnt_done++;
- std::cout<<"\r Progress: "<<(100*progress*n_trg+100*cnt_done*np)/(class_count*n_trg)<<"% "<<std::flush;
- }
- #endif
- for(int k=0; k<this->kernel->k_s2l->ker_dim[1]; k++)
- for(size_t j=0; j<(size_t)M_xs2c.Dim(0); j++)
- M_xs2c_local[j][i*this->kernel->k_s2l->ker_dim[1]+k] = M_[j+k*M_xs2c.Dim(0)];
- }
- if(!myrank) std::cout<<"\r \r"<<std::flush;
- MPI_Allreduce(M_xs2c_local[0], M_xs2c[0], M_xs2c.Dim(0)*M_xs2c.Dim(1), par::Mpi_datatype<Real_t>::value(), par::Mpi_datatype<Real_t>::sum(), this->comm);
- }
- Matrix<Real_t>& M_c2e = this->Precomp(level, DC2DE_Type, 0);
- M=M_xs2c*M_c2e;
- break;
- }
- default:
- {
- return FMM_Pts<FMMNode>::Precomp(level, type, mat_indx);
- break;
- }
- }
- //Save the matrix for future use.
- #pragma omp critical (PRECOMP_MATRIX_PTS)
- if(M_.Dim(0)==0 && M_.Dim(1)==0){ M_=M;}
- return M_;
- }
- template <class FMMNode>
- void FMM_Cheb<FMMNode>::CollectNodeData(FMMTree_t* tree, std::vector<FMMNode*>& node, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, std::vector<std::vector<Vector<Real_t>* > > vec_list){
- if(vec_list.size()<6) vec_list.resize(6);
- size_t n_coeff=(cheb_deg+1)*(cheb_deg+2)*(cheb_deg+3)/6;
- if(node.size()==0) return;
- {// 4. cheb_in
- int indx=4;
- size_t vec_sz=this->kernel->ker_dim[0]*n_coeff;
- for(size_t i=0;i<node.size();i++){
- if(node[i]->IsLeaf()){
- Vector<Real_t>& data_vec=node[i]->ChebData();
- if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz);
- vec_list[indx].push_back(&data_vec);
- }
- }
- }
- {// 5. cheb_out
- int indx=5;
- size_t vec_sz=this->kernel->ker_dim[1]*n_coeff;
- for(size_t i=0;i<node.size();i++){
- if(node[i]->IsLeaf() && !node[i]->IsGhost()){
- Vector<Real_t>& data_vec=((FMMData*)node[i]->FMMData())->cheb_out;
- if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz);
- vec_list[indx].push_back(&data_vec);
- }
- }
- }
- FMM_Pts<FMMNode_t>::CollectNodeData(tree, node, buff, n_list, vec_list);
- }
- template <class FMMNode>
- void FMM_Cheb<FMMNode>::Source2UpSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- if(this->MultipoleOrder()==0) return;
- FMM_Pts<FMMNode>::Source2UpSetup(setup_data, tree, buff, n_list, level, device);
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=this->kernel->k_s2m;
- setup_data.interac_type.resize(1);
- setup_data.interac_type[0]=S2U_Type;
- setup_data. input_data=&buff[4];
- setup_data.output_data=&buff[0];
- Vector<FMMNode_t*>& nodes_in =n_list[4];
- Vector<FMMNode_t*>& nodes_out=n_list[0];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&( ((FMMNode*)nodes_in [i]) )->ChebData() );
- for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
- this->SetupInterac(setup_data,device);
- }
- template <class FMMNode>
- void FMM_Cheb<FMMNode>::Source2Up (SetupData<Real_t>& setup_data, bool device){
- //Add Source2Up contribution.
- this->EvalList(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Cheb<FMMNode>::X_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- if(this->MultipoleOrder()==0) return;
- FMM_Pts<FMMNode>::X_ListSetup(setup_data, tree, buff, n_list, level, device);
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=this->kernel->k_s2l;
- setup_data.interac_type.resize(1);
- setup_data.interac_type[0]=X_Type;
- setup_data. input_data=&buff[4];
- setup_data.output_data=&buff[1];
- Vector<FMMNode_t*>& nodes_in =n_list[4];
- Vector<FMMNode_t*>& nodes_out=n_list[1];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&( ((FMMNode*)nodes_in [i]) )->ChebData() );
- for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
- this->SetupInterac(setup_data,device);
- { // Resize device buffer
- size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
- if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
- }
- }
- template <class FMMNode>
- void FMM_Cheb<FMMNode>::X_List (SetupData<Real_t>& setup_data, bool device){
- //Add X_List contribution.
- FMM_Pts<FMMNode>::X_List(setup_data, device);
- this->EvalList(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Cheb<FMMNode>::W_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- if(this->MultipoleOrder()==0) return;
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=this->kernel->k_m2t;
- setup_data.interac_type.resize(1);
- setup_data.interac_type[0]=W_Type;
- setup_data. input_data=&buff[0];
- setup_data.output_data=&buff[5];
- Vector<FMMNode_t*>& nodes_in =n_list[0];
- Vector<FMMNode_t*>& nodes_out=n_list[5];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
- for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->cheb_out );
- this->SetupInterac(setup_data,device);
- { // Resize device buffer
- size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
- if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
- }
- }
- template <class FMMNode>
- void FMM_Cheb<FMMNode>::W_List (SetupData<Real_t>& setup_data, bool device){
- //Add W_List contribution.
- this->EvalList(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Cheb<FMMNode>::U_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- FMM_Pts<FMMNode>::U_ListSetup(setup_data, tree, buff, n_list, level, device);
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=this->kernel->k_s2t;
- setup_data.interac_type.resize(3);
- setup_data.interac_type[0]=U0_Type;
- setup_data.interac_type[1]=U1_Type;
- setup_data.interac_type[2]=U2_Type;
- setup_data. input_data=&buff[4];
- setup_data.output_data=&buff[5];
- Vector<FMMNode_t*>& nodes_in =n_list[4];
- Vector<FMMNode_t*>& nodes_out=n_list[5];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if((level-1<=nodes_in [i]->Depth() && nodes_in [i]->Depth()<=level+1) || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(( nodes_out[i]->Depth()==level ) || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&( ((FMMNode*)nodes_in [i]) )->ChebData());
- for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->cheb_out );
- this->SetupInterac(setup_data,device);
- { // Resize device buffer
- size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
- if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
- }
- }
- template <class FMMNode>
- void FMM_Cheb<FMMNode>::U_List (SetupData<Real_t>& setup_data, bool device){
- //Add U_List contribution.
- FMM_Pts<FMMNode>::U_List(setup_data, device);
- this->EvalList(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Cheb<FMMNode>::Down2TargetSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- if(this->MultipoleOrder()==0) return;
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=this->kernel->k_l2t;
- setup_data.interac_type.resize(1);
- setup_data.interac_type[0]=D2T_Type;
- setup_data. input_data=&buff[1];
- setup_data.output_data=&buff[5];
- Vector<FMMNode_t*>& nodes_in =n_list[1];
- Vector<FMMNode_t*>& nodes_out=n_list[5];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
- for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->cheb_out );
- this->SetupInterac(setup_data,device);
- }
- template <class FMMNode>
- void FMM_Cheb<FMMNode>::Down2Target (SetupData<Real_t>& setup_data, bool device){
- //Add Down2Target contribution.
- this->EvalList(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Cheb<FMMNode>::PostProcessing(std::vector<FMMNode_t*>& nodes){
- size_t n=nodes.size();
- #pragma omp parallel
- {
- int omp_p=omp_get_num_threads();
- int pid = omp_get_thread_num();
- size_t a=(pid*n)/omp_p;
- size_t b=((pid+1)*n)/omp_p;
- //For each node, compute interaction from point sources.
- for(size_t i=a;i<b;i++){
- Vector<Real_t>& trg_coord=nodes[i]->trg_coord;
- Vector<Real_t>& trg_value=nodes[i]->trg_value;
- Vector<Real_t>& cheb_out =((FMMData*)nodes[i]->FMMData())->cheb_out;
- //Initialize target potential.
- size_t trg_cnt=trg_coord.Dim()/COORD_DIM;
- //trg_value.assign(trg_cnt*dof*this->kernel->ker_dim[1],0);
- //Sample local expansion at target points.
- if(trg_cnt>0 && cheb_out.Dim()>0){
- Real_t* c=nodes[i]->Coord();
- Real_t scale=pow(2.0,nodes[i]->Depth()+1);
- std::vector<Real_t> rel_coord(COORD_DIM*trg_cnt);
- for(size_t j=0;j<trg_cnt;j++) for(int k=0;k<COORD_DIM;k++)
- rel_coord[j*COORD_DIM+k]=(trg_coord[j*COORD_DIM+k]-c[k])*scale-1.0;
- cheb_eval(cheb_out, cheb_deg, rel_coord, trg_value);
- }
- }
- }
- }
- }//end namespace
|