fmm_pts.txx 145 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843
  1. /**
  2. * \file fmm_pts.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 3-07-2011
  5. * \brief This file contains the implementation of the FMM_Pts class.
  6. */
  7. #include <omp.h>
  8. #include <cmath>
  9. #include <cstdlib>
  10. #include <cassert>
  11. #include <sstream>
  12. #include <iostream>
  13. #include <stdint.h>
  14. #include <set>
  15. #ifdef PVFMM_HAVE_SYS_STAT_H
  16. #include <sys/stat.h>
  17. #endif
  18. #ifdef __SSE__
  19. #include <xmmintrin.h>
  20. #endif
  21. #ifdef __SSE2__
  22. #include <emmintrin.h>
  23. #endif
  24. #ifdef __SSE3__
  25. #include <pmmintrin.h>
  26. #endif
  27. #ifdef __AVX__
  28. #include <immintrin.h>
  29. #endif
  30. #if defined(__MIC__)
  31. #include <immintrin.h>
  32. #endif
  33. #include <profile.hpp>
  34. namespace pvfmm{
  35. /**
  36. * \brief Returns the coordinates of points on the surface of a cube.
  37. * \param[in] p Number of points on an edge of the cube is (n+1)
  38. * \param[in] c Coordinates to the centre of the cube (3D array).
  39. * \param[in] alpha Scaling factor for the size of the cube.
  40. * \param[in] depth Depth of the cube in the octree.
  41. * \return Vector with coordinates of points on the surface of the cube in the
  42. * format [x0 y0 z0 x1 y1 z1 .... ].
  43. */
  44. template <class Real_t>
  45. std::vector<Real_t> surface(int p, Real_t* c, Real_t alpha, int depth){
  46. size_t n_=(6*(p-1)*(p-1)+2); //Total number of points.
  47. std::vector<Real_t> coord(n_*3);
  48. coord[0]=coord[1]=coord[2]=-1.0;
  49. size_t cnt=1;
  50. for(int i=0;i<p-1;i++)
  51. for(int j=0;j<p-1;j++){
  52. coord[cnt*3 ]=-1.0;
  53. coord[cnt*3+1]=(2.0*(i+1)-p+1)/(p-1);
  54. coord[cnt*3+2]=(2.0*j-p+1)/(p-1);
  55. cnt++;
  56. }
  57. for(int i=0;i<p-1;i++)
  58. for(int j=0;j<p-1;j++){
  59. coord[cnt*3 ]=(2.0*i-p+1)/(p-1);
  60. coord[cnt*3+1]=-1.0;
  61. coord[cnt*3+2]=(2.0*(j+1)-p+1)/(p-1);
  62. cnt++;
  63. }
  64. for(int i=0;i<p-1;i++)
  65. for(int j=0;j<p-1;j++){
  66. coord[cnt*3 ]=(2.0*(i+1)-p+1)/(p-1);
  67. coord[cnt*3+1]=(2.0*j-p+1)/(p-1);
  68. coord[cnt*3+2]=-1.0;
  69. cnt++;
  70. }
  71. for(size_t i=0;i<(n_/2)*3;i++)
  72. coord[cnt*3+i]=-coord[i];
  73. Real_t r = 0.5*pow(0.5,depth);
  74. Real_t b = alpha*r;
  75. for(size_t i=0;i<n_;i++){
  76. coord[i*3+0]=(coord[i*3+0]+1.0)*b+c[0];
  77. coord[i*3+1]=(coord[i*3+1]+1.0)*b+c[1];
  78. coord[i*3+2]=(coord[i*3+2]+1.0)*b+c[2];
  79. }
  80. return coord;
  81. }
  82. /**
  83. * \brief Returns the coordinates of points on the upward check surface of cube.
  84. * \see surface()
  85. */
  86. template <class Real_t>
  87. std::vector<Real_t> u_check_surf(int p, Real_t* c, int depth){
  88. Real_t r=0.5*pow(0.5,depth);
  89. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  90. return surface(p,coord,(Real_t)RAD1,depth);
  91. }
  92. /**
  93. * \brief Returns the coordinates of points on the upward equivalent surface of cube.
  94. * \see surface()
  95. */
  96. template <class Real_t>
  97. std::vector<Real_t> u_equiv_surf(int p, Real_t* c, int depth){
  98. Real_t r=0.5*pow(0.5,depth);
  99. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  100. return surface(p,coord,(Real_t)RAD0,depth);
  101. }
  102. /**
  103. * \brief Returns the coordinates of points on the downward check surface of cube.
  104. * \see surface()
  105. */
  106. template <class Real_t>
  107. std::vector<Real_t> d_check_surf(int p, Real_t* c, int depth){
  108. Real_t r=0.5*pow(0.5,depth);
  109. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  110. return surface(p,coord,(Real_t)RAD0,depth);
  111. }
  112. /**
  113. * \brief Returns the coordinates of points on the downward equivalent surface of cube.
  114. * \see surface()
  115. */
  116. template <class Real_t>
  117. std::vector<Real_t> d_equiv_surf(int p, Real_t* c, int depth){
  118. Real_t r=0.5*pow(0.5,depth);
  119. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  120. return surface(p,coord,(Real_t)RAD1,depth);
  121. }
  122. /**
  123. * \brief Defines the 3D grid for convolution in FFT acceleration of V-list.
  124. * \see surface()
  125. */
  126. template <class Real_t>
  127. std::vector<Real_t> conv_grid(int p, Real_t* c, int depth){
  128. Real_t r=pow(0.5,depth);
  129. Real_t a=r*RAD0;
  130. Real_t coord[3]={c[0],c[1],c[2]};
  131. int n1=p*2;
  132. int n2=(int)pow((Real_t)n1,2);
  133. int n3=(int)pow((Real_t)n1,3);
  134. std::vector<Real_t> grid(n3*3);
  135. for(int i=0;i<n1;i++)
  136. for(int j=0;j<n1;j++)
  137. for(int k=0;k<n1;k++){
  138. grid[(i+n1*j+n2*k)*3+0]=(i-p)*a/(p-1)+coord[0];
  139. grid[(i+n1*j+n2*k)*3+1]=(j-p)*a/(p-1)+coord[1];
  140. grid[(i+n1*j+n2*k)*3+2]=(k-p)*a/(p-1)+coord[2];
  141. }
  142. return grid;
  143. }
  144. template <class Real_t>
  145. void FMM_Data<Real_t>::Clear(){
  146. upward_equiv.Resize(0);
  147. }
  148. template <class Real_t>
  149. PackedData FMM_Data<Real_t>::PackMultipole(void* buff_ptr){
  150. PackedData p0; p0.data=buff_ptr;
  151. p0.length=upward_equiv.Dim()*sizeof(Real_t);
  152. if(p0.length==0) return p0;
  153. if(p0.data==NULL) p0.data=(char*)&upward_equiv[0];
  154. else mem::memcopy(p0.data,&upward_equiv[0],p0.length);
  155. return p0;
  156. }
  157. template <class Real_t>
  158. void FMM_Data<Real_t>::AddMultipole(PackedData p0){
  159. Real_t* data=(Real_t*)p0.data;
  160. size_t n=p0.length/sizeof(Real_t);
  161. assert(upward_equiv.Dim()==n);
  162. Matrix<Real_t> v0(1,n,&upward_equiv[0],false);
  163. Matrix<Real_t> v1(1,n,data,false);
  164. v0+=v1;
  165. }
  166. template <class Real_t>
  167. void FMM_Data<Real_t>::InitMultipole(PackedData p0, bool own_data){
  168. Real_t* data=(Real_t*)p0.data;
  169. size_t n=p0.length/sizeof(Real_t);
  170. if(n==0) return;
  171. if(own_data){
  172. upward_equiv=Vector<Real_t>(n, &data[0], false);
  173. }else{
  174. upward_equiv.ReInit(n, &data[0], false);
  175. }
  176. }
  177. template <class FMMNode>
  178. FMM_Pts<FMMNode>::~FMM_Pts() {
  179. if(mat!=NULL){
  180. // int rank;
  181. // MPI_Comm_rank(comm,&rank);
  182. // if(rank==0) mat->Save2File("Precomp.data");
  183. delete mat;
  184. mat=NULL;
  185. }
  186. if(vprecomp_fft_flag) FFTW_t<Real_t>::fft_destroy_plan(vprecomp_fftplan);
  187. #ifdef __INTEL_OFFLOAD0
  188. #pragma offload target(mic:0)
  189. #endif
  190. {
  191. if(vlist_fft_flag ) FFTW_t<Real_t>::fft_destroy_plan(vlist_fftplan );
  192. if(vlist_ifft_flag) FFTW_t<Real_t>::fft_destroy_plan(vlist_ifftplan);
  193. vlist_fft_flag =false;
  194. vlist_ifft_flag=false;
  195. }
  196. }
  197. template <class FMMNode>
  198. void FMM_Pts<FMMNode>::Initialize(int mult_order, const MPI_Comm& comm_, const Kernel<Real_t>* kernel_){
  199. Profile::Tic("InitFMM_Pts",&comm_,true);{
  200. bool verbose=false;
  201. #ifndef NDEBUG
  202. #ifdef __VERBOSE__
  203. int rank;
  204. MPI_Comm_rank(comm_,&rank);
  205. if(!rank) verbose=true;
  206. #endif
  207. #endif
  208. if(kernel_) kernel_->Initialize(verbose);
  209. multipole_order=mult_order;
  210. comm=comm_;
  211. kernel=kernel_;
  212. assert(kernel!=NULL);
  213. mat=new PrecompMat<Real_t>(Homogen(), MAX_DEPTH+1);
  214. if(this->mat_fname.size()==0){
  215. std::stringstream st;
  216. st<<PVFMM_PRECOMP_DATA_PATH;
  217. if(!st.str().size()){ // look in PVFMM_DIR
  218. char* pvfmm_dir = getenv ("PVFMM_DIR");
  219. if(pvfmm_dir) st<<pvfmm_dir<<'/';
  220. }
  221. #ifndef STAT_MACROS_BROKEN
  222. if(st.str().size()){ // check if the path is a directory
  223. struct stat stat_buff;
  224. if(stat(st.str().c_str(), &stat_buff) || !S_ISDIR(stat_buff.st_mode)){
  225. std::cout<<"error: path not found: "<<st.str()<<'\n';
  226. exit(0);
  227. }
  228. }
  229. #endif
  230. st<<"Precomp_"<<kernel->ker_name.c_str()<<"_m"<<mult_order;
  231. if(sizeof(Real_t)==8) st<<"";
  232. else if(sizeof(Real_t)==4) st<<"_f";
  233. else st<<"_t"<<sizeof(Real_t);
  234. st<<".data";
  235. this->mat_fname=st.str();
  236. }
  237. this->mat->LoadFile(mat_fname.c_str(), this->comm);
  238. interac_list.Initialize(COORD_DIM, this->mat);
  239. Profile::Tic("PrecompUC2UE",&comm,false,4);
  240. this->PrecompAll(UC2UE_Type);
  241. Profile::Toc();
  242. Profile::Tic("PrecompDC2DE",&comm,false,4);
  243. this->PrecompAll(DC2DE_Type);
  244. Profile::Toc();
  245. Profile::Tic("PrecompBC",&comm,false,4);
  246. { /*
  247. int type=BC_Type;
  248. for(int l=0;l<MAX_DEPTH;l++)
  249. for(size_t indx=0;indx<this->interac_list.ListCount((Mat_Type)type);indx++){
  250. Matrix<Real_t>& M=this->mat->Mat(l, (Mat_Type)type, indx);
  251. M.Resize(0,0);
  252. } // */
  253. }
  254. this->PrecompAll(BC_Type,0);
  255. Profile::Toc();
  256. Profile::Tic("PrecompU2U",&comm,false,4);
  257. this->PrecompAll(U2U_Type);
  258. Profile::Toc();
  259. Profile::Tic("PrecompD2D",&comm,false,4);
  260. this->PrecompAll(D2D_Type);
  261. Profile::Toc();
  262. Profile::Tic("PrecompV",&comm,false,4);
  263. this->PrecompAll(V_Type);
  264. Profile::Toc();
  265. Profile::Tic("PrecompV1",&comm,false,4);
  266. this->PrecompAll(V1_Type);
  267. Profile::Toc();
  268. }Profile::Toc();
  269. }
  270. template <class Real_t>
  271. Permutation<Real_t> equiv_surf_perm(size_t m, size_t p_indx, const Permutation<Real_t>& ker_perm, const Vector<Real_t>* scal_exp=NULL){
  272. Real_t eps=1e-10;
  273. int dof=ker_perm.Dim();
  274. Real_t c[3]={-0.5,-0.5,-0.5};
  275. std::vector<Real_t> trg_coord=d_check_surf(m,c,0);
  276. int n_trg=trg_coord.size()/3;
  277. Permutation<Real_t> P=Permutation<Real_t>(n_trg*dof);
  278. if(p_indx==ReflecX || p_indx==ReflecY || p_indx==ReflecZ){ // Set P.perm
  279. for(int i=0;i<n_trg;i++)
  280. for(int j=0;j<n_trg;j++){
  281. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+0]*(p_indx==ReflecX?-1.0:1.0))<eps)
  282. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+1]*(p_indx==ReflecY?-1.0:1.0))<eps)
  283. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+2]*(p_indx==ReflecZ?-1.0:1.0))<eps){
  284. for(int k=0;k<dof;k++){
  285. P.perm[j*dof+k]=i*dof+ker_perm.perm[k];
  286. }
  287. }
  288. }
  289. }else if(p_indx==SwapXY || p_indx==SwapXZ){
  290. for(int i=0;i<n_trg;i++)
  291. for(int j=0;j<n_trg;j++){
  292. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+(p_indx==SwapXY?1:2)])<eps)
  293. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+(p_indx==SwapXY?0:1)])<eps)
  294. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+(p_indx==SwapXY?2:0)])<eps){
  295. for(int k=0;k<dof;k++){
  296. P.perm[j*dof+k]=i*dof+ker_perm.perm[k];
  297. }
  298. }
  299. }
  300. }else{
  301. for(int j=0;j<n_trg;j++){
  302. for(int k=0;k<dof;k++){
  303. P.perm[j*dof+k]=j*dof+ker_perm.perm[k];
  304. }
  305. }
  306. }
  307. if(scal_exp && p_indx==Scaling){ // Set level-by-level scaling
  308. assert(dof==scal_exp->Dim());
  309. Vector<Real_t> scal(scal_exp->Dim());
  310. for(size_t i=0;i<scal.Dim();i++){
  311. scal[i]=pow(2.0,(*scal_exp)[i]);
  312. }
  313. for(int j=0;j<n_trg;j++){
  314. for(int i=0;i<dof;i++){
  315. P.scal[j*dof+i]*=scal[i];
  316. }
  317. }
  318. }
  319. { // Set P.scal
  320. for(int j=0;j<n_trg;j++){
  321. for(int i=0;i<dof;i++){
  322. P.scal[j*dof+i]*=ker_perm.scal[i];
  323. }
  324. }
  325. }
  326. return P;
  327. }
  328. template <class FMMNode>
  329. Permutation<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::PrecompPerm(Mat_Type type, Perm_Type perm_indx){
  330. //Check if the matrix already exists.
  331. Permutation<Real_t>& P_ = mat->Perm((Mat_Type)type, perm_indx);
  332. if(P_.Dim()!=0) return P_;
  333. size_t m=this->MultipoleOrder();
  334. size_t p_indx=perm_indx % C_Perm;
  335. //Compute the matrix.
  336. Permutation<Real_t> P;
  337. switch (type){
  338. case UC2UE_Type:
  339. {
  340. break;
  341. }
  342. case DC2DE_Type:
  343. {
  344. break;
  345. }
  346. case S2U_Type:
  347. {
  348. break;
  349. }
  350. case U2U_Type:
  351. {
  352. Vector<Real_t> scal_exp;
  353. Permutation<Real_t> ker_perm;
  354. if(perm_indx<C_Perm){ // Source permutation
  355. ker_perm=kernel->k_m2m->perm_vec[0 +p_indx];
  356. scal_exp=kernel->k_m2m->src_scal;
  357. }else{ // Target permutation
  358. ker_perm=kernel->k_m2m->perm_vec[0 +p_indx];
  359. scal_exp=kernel->k_m2m->src_scal;
  360. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]=-scal_exp[i];
  361. }
  362. P=equiv_surf_perm(m, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
  363. break;
  364. }
  365. case D2D_Type:
  366. {
  367. Vector<Real_t> scal_exp;
  368. Permutation<Real_t> ker_perm;
  369. if(perm_indx<C_Perm){ // Source permutation
  370. ker_perm=kernel->k_l2l->perm_vec[0 +p_indx];
  371. scal_exp=kernel->k_l2l->src_scal;
  372. }else{ // Target permutation
  373. ker_perm=kernel->k_l2l->perm_vec[0 +p_indx];
  374. scal_exp=kernel->k_l2l->src_scal;
  375. for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]=-scal_exp[i];
  376. }
  377. P=equiv_surf_perm(m, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
  378. break;
  379. }
  380. case D2T_Type:
  381. {
  382. break;
  383. }
  384. case U0_Type:
  385. {
  386. break;
  387. }
  388. case U1_Type:
  389. {
  390. break;
  391. }
  392. case U2_Type:
  393. {
  394. break;
  395. }
  396. case V_Type:
  397. {
  398. break;
  399. }
  400. case V1_Type:
  401. {
  402. break;
  403. }
  404. case W_Type:
  405. {
  406. break;
  407. }
  408. case X_Type:
  409. {
  410. break;
  411. }
  412. case BC_Type:
  413. {
  414. break;
  415. }
  416. default:
  417. break;
  418. }
  419. //Save the matrix for future use.
  420. #pragma omp critical (PRECOMP_MATRIX_PTS)
  421. {
  422. if(P_.Dim()==0) P_=P;
  423. }
  424. return P_;
  425. }
  426. template <class FMMNode>
  427. Matrix<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::Precomp(int level, Mat_Type type, size_t mat_indx){
  428. if(this->Homogen()) level=0;
  429. //Check if the matrix already exists.
  430. Matrix<Real_t>& M_ = this->mat->Mat(level, type, mat_indx);
  431. if(M_.Dim(0)!=0 && M_.Dim(1)!=0) return M_;
  432. else{ //Compute matrix from symmetry class (if possible).
  433. size_t class_indx = this->interac_list.InteracClass(type, mat_indx);
  434. if(class_indx!=mat_indx){
  435. Matrix<Real_t>& M0 = this->Precomp(level, type, class_indx);
  436. if(M0.Dim(0)==0 || M0.Dim(1)==0) return M_;
  437. for(size_t i=0;i<Perm_Count;i++) this->PrecompPerm(type, (Perm_Type) i);
  438. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, type, mat_indx);
  439. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, type, mat_indx);
  440. if(Pr.Dim()>0 && Pc.Dim()>0 && M0.Dim(0)>0 && M0.Dim(1)>0) return M_;
  441. }
  442. }
  443. //Compute the matrix.
  444. Matrix<Real_t> M;
  445. //int omp_p=omp_get_max_threads();
  446. switch (type){
  447. case UC2UE_Type:
  448. {
  449. if(MultipoleOrder()==0) break;
  450. const int* ker_dim=kernel->k_m2m->ker_dim;
  451. // Coord of upward check surface
  452. Real_t c[3]={0,0,0};
  453. std::vector<Real_t> uc_coord=u_check_surf(MultipoleOrder(),c,level);
  454. size_t n_uc=uc_coord.size()/3;
  455. // Coord of upward equivalent surface
  456. std::vector<Real_t> ue_coord=u_equiv_surf(MultipoleOrder(),c,level);
  457. size_t n_ue=ue_coord.size()/3;
  458. // Evaluate potential at check surface due to equivalent surface.
  459. Matrix<Real_t> M_e2c(n_ue*ker_dim[0],n_uc*ker_dim[1]);
  460. kernel->k_m2m->BuildMatrix(&ue_coord[0], n_ue,
  461. &uc_coord[0], n_uc, &(M_e2c[0][0]));
  462. Real_t eps=1.0;
  463. while(eps+(Real_t)1.0>1.0) eps*=0.5;
  464. M=M_e2c.pinv(sqrt(eps)); //check 2 equivalent
  465. break;
  466. }
  467. case DC2DE_Type:
  468. {
  469. if(MultipoleOrder()==0) break;
  470. const int* ker_dim=kernel->k_l2l->ker_dim;
  471. // Coord of downward check surface
  472. Real_t c[3]={0,0,0};
  473. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  474. size_t n_ch=check_surf.size()/3;
  475. // Coord of downward equivalent surface
  476. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  477. size_t n_eq=equiv_surf.size()/3;
  478. // Evaluate potential at check surface due to equivalent surface.
  479. Matrix<Real_t> M_e2c(n_eq*ker_dim[0],n_ch*ker_dim[1]);
  480. kernel->k_l2l->BuildMatrix(&equiv_surf[0], n_eq,
  481. &check_surf[0], n_ch, &(M_e2c[0][0]));
  482. Real_t eps=1.0;
  483. while(eps+(Real_t)1.0>1.0) eps*=0.5;
  484. M=M_e2c.pinv(sqrt(eps)); //check 2 equivalent
  485. break;
  486. }
  487. case S2U_Type:
  488. {
  489. break;
  490. }
  491. case U2U_Type:
  492. {
  493. if(MultipoleOrder()==0) break;
  494. const int* ker_dim=kernel->k_m2m->ker_dim;
  495. // Coord of upward check surface
  496. Real_t c[3]={0,0,0};
  497. std::vector<Real_t> check_surf=u_check_surf(MultipoleOrder(),c,level);
  498. size_t n_uc=check_surf.size()/3;
  499. // Coord of child's upward equivalent surface
  500. Real_t s=pow(0.5,(level+2));
  501. int* coord=interac_list.RelativeCoord(type,mat_indx);
  502. Real_t child_coord[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  503. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),child_coord,level+1);
  504. size_t n_ue=equiv_surf.size()/3;
  505. // Evaluate potential at check surface due to equivalent surface.
  506. Matrix<Real_t> M_ce2c(n_ue*ker_dim[0],n_uc*ker_dim[1]);
  507. kernel->k_m2m->BuildMatrix(&equiv_surf[0], n_ue,
  508. &check_surf[0], n_uc, &(M_ce2c[0][0]));
  509. Matrix<Real_t>& M_c2e = Precomp(level, UC2UE_Type, 0);
  510. M=M_ce2c*M_c2e;
  511. break;
  512. }
  513. case D2D_Type:
  514. {
  515. if(MultipoleOrder()==0) break;
  516. const int* ker_dim=kernel->k_l2l->ker_dim;
  517. // Coord of downward check surface
  518. Real_t s=pow(0.5,level+1);
  519. int* coord=interac_list.RelativeCoord(type,mat_indx);
  520. Real_t c[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  521. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  522. size_t n_dc=check_surf.size()/3;
  523. // Coord of parent's downward equivalent surface
  524. Real_t parent_coord[3]={0,0,0};
  525. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),parent_coord,level-1);
  526. size_t n_de=equiv_surf.size()/3;
  527. // Evaluate potential at check surface due to equivalent surface.
  528. Matrix<Real_t> M_pe2c(n_de*ker_dim[0],n_dc*ker_dim[1]);
  529. kernel->k_l2l->BuildMatrix(&equiv_surf[0], n_de,
  530. &check_surf[0], n_dc, &(M_pe2c[0][0]));
  531. Matrix<Real_t>& M_c2e=Precomp(level,DC2DE_Type,0);
  532. M=M_pe2c*M_c2e;
  533. break;
  534. }
  535. case D2T_Type:
  536. {
  537. if(MultipoleOrder()==0) break;
  538. const int* ker_dim=kernel->k_l2t->ker_dim;
  539. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  540. // Coord of target points
  541. Real_t r=pow(0.5,level);
  542. size_t n_trg=rel_trg_coord.size()/3;
  543. std::vector<Real_t> trg_coord(n_trg*3);
  544. for(size_t i=0;i<n_trg*COORD_DIM;i++) trg_coord[i]=rel_trg_coord[i]*r;
  545. // Coord of downward equivalent surface
  546. Real_t c[3]={0,0,0};
  547. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  548. size_t n_eq=equiv_surf.size()/3;
  549. // Evaluate potential at target points due to equivalent surface.
  550. {
  551. M .Resize(n_eq*ker_dim [0], n_trg*ker_dim [1]);
  552. kernel->k_l2t->BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  553. }
  554. break;
  555. }
  556. case U0_Type:
  557. {
  558. break;
  559. }
  560. case U1_Type:
  561. {
  562. break;
  563. }
  564. case U2_Type:
  565. {
  566. break;
  567. }
  568. case V_Type:
  569. {
  570. if(MultipoleOrder()==0) break;
  571. const int* ker_dim=kernel->k_m2l->ker_dim;
  572. int n1=MultipoleOrder()*2;
  573. int n3 =n1*n1*n1;
  574. int n3_=n1*n1*(n1/2+1);
  575. //Compute the matrix.
  576. Real_t s=pow(0.5,level);
  577. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  578. Real_t coord_diff[3]={coord2[0]*s,coord2[1]*s,coord2[2]*s};
  579. //Evaluate potential.
  580. std::vector<Real_t> r_trg(COORD_DIM,0.0);
  581. std::vector<Real_t> conv_poten(n3*ker_dim[0]*ker_dim[1]);
  582. std::vector<Real_t> conv_coord=conv_grid(MultipoleOrder(),coord_diff,level);
  583. kernel->k_m2l->BuildMatrix(&conv_coord[0],n3,&r_trg[0],1,&conv_poten[0]);
  584. //Rearrange data.
  585. Matrix<Real_t> M_conv(n3,ker_dim[0]*ker_dim[1],&conv_poten[0],false);
  586. M_conv=M_conv.Transpose();
  587. //Compute FFTW plan.
  588. int nnn[3]={n1,n1,n1};
  589. Real_t *fftw_in, *fftw_out;
  590. fftw_in = mem::aligned_new<Real_t>( n3 *ker_dim[0]*ker_dim[1]*sizeof(Real_t));
  591. fftw_out = mem::aligned_new<Real_t>(2*n3_*ker_dim[0]*ker_dim[1]*sizeof(Real_t));
  592. #pragma omp critical (FFTW_PLAN)
  593. {
  594. if (!vprecomp_fft_flag){
  595. vprecomp_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM, nnn, ker_dim[0]*ker_dim[1],
  596. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*) fftw_out, NULL, 1, n3_, FFTW_ESTIMATE);
  597. vprecomp_fft_flag=true;
  598. }
  599. }
  600. //Compute FFT.
  601. mem::memcopy(fftw_in, &conv_poten[0], n3*ker_dim[0]*ker_dim[1]*sizeof(Real_t));
  602. FFTW_t<Real_t>::fft_execute_dft_r2c(vprecomp_fftplan, (Real_t*)fftw_in, (typename FFTW_t<Real_t>::cplx*)(fftw_out));
  603. Matrix<Real_t> M_(2*n3_*ker_dim[0]*ker_dim[1],1,(Real_t*)fftw_out,false);
  604. M=M_;
  605. //Free memory.
  606. mem::aligned_delete<Real_t>(fftw_in);
  607. mem::aligned_delete<Real_t>(fftw_out);
  608. break;
  609. }
  610. case V1_Type:
  611. {
  612. if(MultipoleOrder()==0) break;
  613. const int* ker_dim=kernel->k_m2l->ker_dim;
  614. size_t mat_cnt =interac_list.ListCount( V_Type);
  615. for(size_t k=0;k<mat_cnt;k++) Precomp(level, V_Type, k);
  616. const size_t chld_cnt=1UL<<COORD_DIM;
  617. size_t n1=MultipoleOrder()*2;
  618. size_t M_dim=n1*n1*(n1/2+1);
  619. size_t n3=n1*n1*n1;
  620. Vector<Real_t> zero_vec(M_dim*ker_dim[0]*ker_dim[1]*2);
  621. zero_vec.SetZero();
  622. Vector<Real_t*> M_ptr(chld_cnt*chld_cnt);
  623. for(size_t i=0;i<chld_cnt*chld_cnt;i++) M_ptr[i]=&zero_vec[0];
  624. int* rel_coord_=interac_list.RelativeCoord(V1_Type, mat_indx);
  625. for(int j1=0;j1<chld_cnt;j1++)
  626. for(int j2=0;j2<chld_cnt;j2++){
  627. int rel_coord[3]={rel_coord_[0]*2-(j1/1)%2+(j2/1)%2,
  628. rel_coord_[1]*2-(j1/2)%2+(j2/2)%2,
  629. rel_coord_[2]*2-(j1/4)%2+(j2/4)%2};
  630. for(size_t k=0;k<mat_cnt;k++){
  631. int* ref_coord=interac_list.RelativeCoord(V_Type, k);
  632. if(ref_coord[0]==rel_coord[0] &&
  633. ref_coord[1]==rel_coord[1] &&
  634. ref_coord[2]==rel_coord[2]){
  635. Matrix<Real_t>& M = this->mat->Mat(level, V_Type, k);
  636. M_ptr[j2*chld_cnt+j1]=&M[0][0];
  637. break;
  638. }
  639. }
  640. }
  641. // Build matrix ker_dim0 x ker_dim1 x M_dim x 8 x 8
  642. M.Resize(ker_dim[0]*ker_dim[1]*M_dim, 2*chld_cnt*chld_cnt);
  643. for(int j=0;j<ker_dim[0]*ker_dim[1]*M_dim;j++){
  644. for(size_t k=0;k<chld_cnt*chld_cnt;k++){
  645. M[j][k*2+0]=M_ptr[k][j*2+0]/n3;
  646. M[j][k*2+1]=M_ptr[k][j*2+1]/n3;
  647. }
  648. }
  649. break;
  650. }
  651. case W_Type:
  652. {
  653. if(MultipoleOrder()==0) break;
  654. const int* ker_dim=kernel->k_m2t->ker_dim;
  655. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  656. // Coord of target points
  657. Real_t s=pow(0.5,level);
  658. size_t n_trg=rel_trg_coord.size()/3;
  659. std::vector<Real_t> trg_coord(n_trg*3);
  660. for(size_t j=0;j<n_trg*COORD_DIM;j++) trg_coord[j]=rel_trg_coord[j]*s;
  661. // Coord of downward equivalent surface
  662. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  663. Real_t c[3]={(coord2[0]+1)*s*0.25,(coord2[1]+1)*s*0.25,(coord2[2]+1)*s*0.25};
  664. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),c,level+1);
  665. size_t n_eq=equiv_surf.size()/3;
  666. // Evaluate potential at target points due to equivalent surface.
  667. {
  668. M .Resize(n_eq*ker_dim [0],n_trg*ker_dim [1]);
  669. kernel->k_m2t->BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  670. }
  671. break;
  672. }
  673. case X_Type:
  674. {
  675. break;
  676. }
  677. case BC_Type:
  678. {
  679. if(!this->Homogen() || MultipoleOrder()==0) break;
  680. if(kernel->k_m2l->ker_dim[1]!=kernel->k_m2m->ker_dim[1]) break;
  681. if(kernel->k_m2l->ker_dim[0]!=kernel->k_l2l->ker_dim[0]) break;
  682. const int* ker_dim=kernel->k_m2l->ker_dim;
  683. size_t mat_cnt_m2m=interac_list.ListCount(U2U_Type);
  684. size_t n_surf=(6*(MultipoleOrder()-1)*(MultipoleOrder()-1)+2); //Total number of points.
  685. if((M.Dim(0)!=n_surf*ker_dim[0] || M.Dim(1)!=n_surf*ker_dim[1]) && level==0){
  686. Matrix<Real_t> M_m2m[BC_LEVELS+1];
  687. Matrix<Real_t> M_m2l[BC_LEVELS+1];
  688. Matrix<Real_t> M_l2l[BC_LEVELS+1];
  689. Matrix<Real_t> M_zero_avg(n_surf*ker_dim[0],n_surf*ker_dim[0]);
  690. { // Set average multipole charge to zero. (improves stability for large BC_LEVELS)
  691. M_zero_avg.SetZero();
  692. for(size_t i=0;i<n_surf*ker_dim[0];i++)
  693. M_zero_avg[i][i]+=1;
  694. for(size_t i=0;i<n_surf;i++)
  695. for(size_t j=0;j<n_surf;j++)
  696. for(size_t k=0;k<ker_dim[0];k++)
  697. M_zero_avg[i*ker_dim[0]+k][j*ker_dim[0]+k]-=1.0/n_surf;
  698. }
  699. for(int level=0; level>=-BC_LEVELS; level--){
  700. // Compute M_l2l
  701. {
  702. this->Precomp(level, D2D_Type, 0);
  703. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, D2D_Type, 0);
  704. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, D2D_Type, 0);
  705. M_l2l[-level] = Pr * this->Precomp(level, D2D_Type, this->interac_list.InteracClass(D2D_Type, 0)) * Pc;
  706. assert(M_l2l[-level].Dim(0)>0 && M_l2l[-level].Dim(1)>0);
  707. }
  708. // Compute M_m2m
  709. for(size_t mat_indx=0; mat_indx<mat_cnt_m2m; mat_indx++){
  710. this->Precomp(level, U2U_Type, mat_indx);
  711. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, U2U_Type, mat_indx);
  712. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, U2U_Type, mat_indx);
  713. Matrix<Real_t> M = Pr * this->Precomp(level, U2U_Type, this->interac_list.InteracClass(U2U_Type, mat_indx)) * Pc;
  714. assert(M.Dim(0)>0 && M.Dim(1)>0);
  715. if(mat_indx==0) M_m2m[-level] = M_zero_avg*M;
  716. else M_m2m[-level] += M_zero_avg*M;
  717. }
  718. // Compute M_m2l
  719. if(!Homogen() || level==0){
  720. Real_t s=(1UL<<(-level));
  721. Real_t ue_coord[3]={0,0,0};
  722. Real_t dc_coord[3]={0,0,0};
  723. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  724. std::vector<Real_t> trg_coord=d_check_surf(MultipoleOrder(), dc_coord, level);
  725. Matrix<Real_t> M_ue2dc(n_surf*ker_dim[0], n_surf*ker_dim[1]);
  726. M_ue2dc.SetZero();
  727. for(int x0=-2;x0<4;x0++)
  728. for(int x1=-2;x1<4;x1++)
  729. for(int x2=-2;x2<4;x2++)
  730. if(abs(x0)>1 || abs(x1)>1 || abs(x2)>1){
  731. ue_coord[0]=x0*s; ue_coord[1]=x1*s; ue_coord[2]=x2*s;
  732. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  733. Matrix<Real_t> M_tmp(n_surf*ker_dim[0], n_surf*ker_dim[1]);
  734. kernel->k_m2l->BuildMatrix(&src_coord[0], n_surf,
  735. &trg_coord[0], n_surf, &(M_tmp[0][0]));
  736. M_ue2dc+=M_tmp;
  737. }
  738. // Shift by constant.
  739. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  740. std::vector<Real_t> avg(ker_dim[1],0);
  741. for(size_t j=0; j<M_ue2dc.Dim(1); j+=ker_dim[1])
  742. for(int k=0; k<ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  743. for(int k=0; k<ker_dim[1]; k++) avg[k]/=n_surf;
  744. for(size_t j=0; j<M_ue2dc.Dim(1); j+=ker_dim[1])
  745. for(int k=0; k<ker_dim[1]; k++) M_ue2dc[i][j+k]-=avg[k];
  746. }
  747. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  748. M_m2l[-level]=M_ue2dc*M_dc2de;
  749. }else M_m2l[-level]=M_m2l[-level-1];
  750. }
  751. for(int level=-BC_LEVELS;level<=0;level++){
  752. if(level==-BC_LEVELS) M = M_m2l[-level];
  753. else M = M_m2l[-level] + M_m2m[-level]*M*M_l2l[-level];
  754. { // Shift by constant. (improves stability for large BC_LEVELS)
  755. Matrix<Real_t> M_de2dc(n_surf*ker_dim[0], n_surf*ker_dim[1]);
  756. { // M_de2dc TODO: For homogeneous kernels, compute only once.
  757. // Coord of downward check surface
  758. Real_t c[3]={0,0,0};
  759. int level_=(Homogen()?0:level);
  760. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level_);
  761. size_t n_ch=check_surf.size()/3;
  762. // Coord of downward equivalent surface
  763. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level_);
  764. size_t n_eq=equiv_surf.size()/3;
  765. // Evaluate potential at check surface due to equivalent surface.
  766. kernel->k_m2l->BuildMatrix(&equiv_surf[0], n_eq,
  767. &check_surf[0], n_ch, &(M_de2dc[0][0]));
  768. }
  769. Matrix<Real_t> M_ue2dc=M*M_de2dc;
  770. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  771. std::vector<Real_t> avg(ker_dim[1],0);
  772. for(size_t j=0; j<M_ue2dc.Dim(1); j+=ker_dim[1])
  773. for(int k=0; k<ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  774. for(int k=0; k<ker_dim[1]; k++) avg[k]/=n_surf;
  775. for(size_t j=0; j<M_ue2dc.Dim(1); j+=ker_dim[1])
  776. for(int k=0; k<ker_dim[1]; k++) M_ue2dc[i][j+k]-=avg[k];
  777. }
  778. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  779. M=M_ue2dc*M_dc2de;
  780. }
  781. }
  782. { // ax+by+cz+d correction.
  783. std::vector<Real_t> corner_pts;
  784. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(0);
  785. corner_pts.push_back(1); corner_pts.push_back(0); corner_pts.push_back(0);
  786. corner_pts.push_back(0); corner_pts.push_back(1); corner_pts.push_back(0);
  787. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(1);
  788. size_t n_corner=corner_pts.size()/3;
  789. // Coord of downward equivalent surface
  790. Real_t c[3]={0,0,0};
  791. std::vector<Real_t> up_equiv_surf=u_equiv_surf(MultipoleOrder(),c,0);
  792. std::vector<Real_t> dn_equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  793. std::vector<Real_t> dn_check_surf=d_check_surf(MultipoleOrder(),c,0);
  794. Matrix<Real_t> M_err;
  795. { // Evaluate potential at corner due to upward and dnward equivalent surface.
  796. { // Error from local expansion.
  797. Matrix<Real_t> M_e2pt(n_surf*ker_dim[0],n_corner*ker_dim[1]);
  798. kernel->k_m2l->BuildMatrix(&dn_equiv_surf[0], n_surf,
  799. &corner_pts[0], n_corner, &(M_e2pt[0][0]));
  800. M_err=M*M_e2pt;
  801. }
  802. for(size_t k=0;k<4;k++){ // Error from colleagues of root.
  803. for(int j0=-1;j0<=1;j0++)
  804. for(int j1=-1;j1<=1;j1++)
  805. for(int j2=-1;j2<=1;j2++){
  806. Real_t pt_coord[3]={corner_pts[k*COORD_DIM+0]-j0,
  807. corner_pts[k*COORD_DIM+1]-j1,
  808. corner_pts[k*COORD_DIM+2]-j2};
  809. if(fabs(pt_coord[0]-0.5)>1.0 || fabs(pt_coord[1]-0.5)>1.0 || fabs(pt_coord[2]-0.5)>1.0){
  810. Matrix<Real_t> M_e2pt(n_surf*ker_dim[0],ker_dim[1]);
  811. kernel->k_m2l->BuildMatrix(&up_equiv_surf[0], n_surf,
  812. &pt_coord[0], 1, &(M_e2pt[0][0]));
  813. for(size_t i=0;i<M_e2pt.Dim(0);i++)
  814. for(size_t j=0;j<M_e2pt.Dim(1);j++)
  815. M_err[i][k*ker_dim[1]+j]+=M_e2pt[i][j];
  816. }
  817. }
  818. }
  819. }
  820. Matrix<Real_t> M_grad(M_err.Dim(0),n_surf*ker_dim[1]);
  821. for(size_t i=0;i<M_err.Dim(0);i++)
  822. for(size_t k=0;k<ker_dim[1];k++)
  823. for(size_t j=0;j<n_surf;j++){
  824. M_grad[i][j*ker_dim[1]+k]=(M_err[i][0*ker_dim[1]+k] )*1.0 +
  825. (M_err[i][1*ker_dim[1]+k]-M_err[i][0*ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+0]+
  826. (M_err[i][2*ker_dim[1]+k]-M_err[i][0*ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+1]+
  827. (M_err[i][3*ker_dim[1]+k]-M_err[i][0*ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+2];
  828. }
  829. Matrix<Real_t>& M_dc2de = Precomp(0, DC2DE_Type, 0);
  830. M-=M_grad*M_dc2de;
  831. }
  832. { // Free memory
  833. Mat_Type type=D2D_Type;
  834. for(int l=-BC_LEVELS;l<0;l++)
  835. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  836. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  837. M.Resize(0,0);
  838. }
  839. type=U2U_Type;
  840. for(int l=-BC_LEVELS;l<0;l++)
  841. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  842. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  843. M.Resize(0,0);
  844. }
  845. type=DC2DE_Type;
  846. for(int l=-BC_LEVELS;l<0;l++)
  847. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  848. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  849. M.Resize(0,0);
  850. }
  851. type=UC2UE_Type;
  852. for(int l=-BC_LEVELS;l<0;l++)
  853. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  854. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  855. M.Resize(0,0);
  856. }
  857. }
  858. }
  859. break;
  860. }
  861. default:
  862. break;
  863. }
  864. //Save the matrix for future use.
  865. #pragma omp critical (PRECOMP_MATRIX_PTS)
  866. if(M_.Dim(0)==0 && M_.Dim(1)==0){
  867. M_=M;
  868. /*
  869. M_.Resize(M.Dim(0),M.Dim(1));
  870. int dof=ker_dim[0]*ker_dim[1];
  871. for(int j=0;j<dof;j++){
  872. size_t a=(M.Dim(0)*M.Dim(1)* j )/dof;
  873. size_t b=(M.Dim(0)*M.Dim(1)*(j+1))/dof;
  874. #pragma omp parallel for // NUMA
  875. for(int tid=0;tid<omp_p;tid++){
  876. size_t a_=a+((b-a)* tid )/omp_p;
  877. size_t b_=a+((b-a)*(tid+1))/omp_p;
  878. mem::memcopy(&M_[0][a_], &M[0][a_], (b_-a_)*sizeof(Real_t));
  879. }
  880. }
  881. */
  882. }
  883. return M_;
  884. }
  885. template <class FMMNode>
  886. void FMM_Pts<FMMNode>::PrecompAll(Mat_Type type, int level){
  887. if(level==-1){
  888. for(int l=0;l<MAX_DEPTH;l++){
  889. PrecompAll(type, l);
  890. }
  891. return;
  892. }
  893. //Compute basic permutations.
  894. for(size_t i=0;i<Perm_Count;i++)
  895. this->PrecompPerm(type, (Perm_Type) i);
  896. {
  897. //Allocate matrices.
  898. size_t mat_cnt=interac_list.ListCount((Mat_Type)type);
  899. mat->Mat(level, (Mat_Type)type, mat_cnt-1);
  900. { // Compute InteracClass matrices.
  901. std::vector<size_t> indx_lst;
  902. for(size_t i=0; i<mat_cnt; i++){
  903. if(interac_list.InteracClass((Mat_Type)type,i)==i)
  904. indx_lst.push_back(i);
  905. }
  906. //Compute Transformations.
  907. //#pragma omp parallel for //lets use fine grained parallelism
  908. for(size_t i=0; i<indx_lst.size(); i++){
  909. Precomp(level, (Mat_Type)type, indx_lst[i]);
  910. }
  911. }
  912. //#pragma omp parallel for //lets use fine grained parallelism
  913. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
  914. Matrix<Real_t>& M0=interac_list.ClassMat(level,(Mat_Type)type,mat_indx);
  915. Permutation<Real_t>& pr=interac_list.Perm_R(level, (Mat_Type)type, mat_indx);
  916. Permutation<Real_t>& pc=interac_list.Perm_C(level, (Mat_Type)type, mat_indx);
  917. if(pr.Dim()!=M0.Dim(0) || pc.Dim()!=M0.Dim(1)) Precomp(level, (Mat_Type)type, mat_indx);
  918. }
  919. }
  920. }
  921. template <class FMMNode>
  922. void FMM_Pts<FMMNode>::CollectNodeData(FMMTree_t* tree, std::vector<FMMNode*>& node, std::vector<Matrix<Real_t> >& buff_list, std::vector<Vector<FMMNode_t*> >& n_list, std::vector<std::vector<Vector<Real_t>* > > vec_list){
  923. if(buff_list.size()<7) buff_list.resize(7);
  924. if( n_list.size()<7) n_list.resize(7);
  925. if( vec_list.size()<7) vec_list.resize(7);
  926. int omp_p=omp_get_max_threads();
  927. if(node.size()==0) return;
  928. {// 0. upward_equiv
  929. int indx=0;
  930. size_t vec_sz;
  931. { // Set vec_sz
  932. Matrix<Real_t>& M_uc2ue = this->interac_list.ClassMat(0, UC2UE_Type, 0);
  933. vec_sz=M_uc2ue.Dim(1);
  934. }
  935. std::vector< FMMNode* > node_lst;
  936. {// Construct node_lst
  937. node_lst.clear();
  938. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  939. FMMNode_t* r_node=NULL;
  940. for(size_t i=0;i<node.size();i++){
  941. if(!node[i]->IsLeaf())
  942. node_lst_[node[i]->Depth()].push_back(node[i]);
  943. if(node[i]->Depth()==0) r_node=node[i];
  944. }
  945. size_t chld_cnt=1UL<<COORD_DIM;
  946. for(int i=0;i<=MAX_DEPTH;i++){
  947. for(size_t j=0;j<node_lst_[i].size();j++){
  948. for(size_t k=0;k<chld_cnt;k++){
  949. FMMNode_t* node=(FMMNode_t*)node_lst_[i][j]->Child(k);
  950. node_lst.push_back(node);
  951. }
  952. }
  953. }
  954. if(r_node!=NULL) node_lst.push_back(r_node);
  955. n_list[indx]=node_lst;
  956. }
  957. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  958. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  959. FMMNode_t* node=node_lst[i];
  960. Vector<Real_t>& data_vec=node->FMMData()->upward_equiv;
  961. if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz);
  962. vec_lst.push_back(&data_vec);
  963. }
  964. }
  965. {// 1. dnward_equiv
  966. int indx=1;
  967. size_t vec_sz;
  968. { // Set vec_sz
  969. Matrix<Real_t>& M_dc2de = this->interac_list.ClassMat(0, DC2DE_Type, 0);
  970. vec_sz=M_dc2de.Dim(1);
  971. }
  972. std::vector< FMMNode* > node_lst;
  973. {// Construct node_lst
  974. node_lst.clear();
  975. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  976. FMMNode_t* r_node=NULL;
  977. for(size_t i=0;i<node.size();i++){
  978. if(!node[i]->IsLeaf())
  979. node_lst_[node[i]->Depth()].push_back(node[i]);
  980. if(node[i]->Depth()==0) r_node=node[i];
  981. }
  982. size_t chld_cnt=1UL<<COORD_DIM;
  983. for(int i=0;i<=MAX_DEPTH;i++){
  984. for(size_t j=0;j<node_lst_[i].size();j++){
  985. for(size_t k=0;k<chld_cnt;k++){
  986. FMMNode_t* node=(FMMNode_t*)node_lst_[i][j]->Child(k);
  987. node_lst.push_back(node);
  988. }
  989. }
  990. }
  991. if(r_node!=NULL) node_lst.push_back(r_node);
  992. n_list[indx]=node_lst;
  993. }
  994. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  995. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  996. FMMNode_t* node=node_lst[i];
  997. Vector<Real_t>& data_vec=node->FMMData()->dnward_equiv;
  998. if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz);
  999. vec_lst.push_back(&data_vec);
  1000. }
  1001. }
  1002. {// 2. upward_equiv_fft
  1003. int indx=2;
  1004. std::vector< FMMNode* > node_lst;
  1005. {
  1006. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  1007. for(size_t i=0;i<node.size();i++)
  1008. if(!node[i]->IsLeaf())
  1009. node_lst_[node[i]->Depth()].push_back(node[i]);
  1010. for(int i=0;i<=MAX_DEPTH;i++)
  1011. for(size_t j=0;j<node_lst_[i].size();j++)
  1012. node_lst.push_back(node_lst_[i][j]);
  1013. }
  1014. n_list[indx]=node_lst;
  1015. }
  1016. {// 3. dnward_check_fft
  1017. int indx=3;
  1018. std::vector< FMMNode* > node_lst;
  1019. {
  1020. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  1021. for(size_t i=0;i<node.size();i++)
  1022. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  1023. node_lst_[node[i]->Depth()].push_back(node[i]);
  1024. for(int i=0;i<=MAX_DEPTH;i++)
  1025. for(size_t j=0;j<node_lst_[i].size();j++)
  1026. node_lst.push_back(node_lst_[i][j]);
  1027. }
  1028. n_list[indx]=node_lst;
  1029. }
  1030. {// 4. src_val
  1031. int indx=4;
  1032. int src_dof=kernel->ker_dim[0];
  1033. int surf_dof=COORD_DIM+src_dof;
  1034. std::vector< FMMNode* > node_lst;
  1035. for(size_t i=0;i<node.size();i++){// Construct node_lst
  1036. if(node[i]->IsLeaf()){
  1037. node_lst.push_back(node[i]);
  1038. }
  1039. }
  1040. n_list[indx]=node_lst;
  1041. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  1042. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  1043. FMMNode_t* node=node_lst[i];
  1044. { // src_value
  1045. Vector<Real_t>& data_vec=node->src_value;
  1046. size_t vec_sz=(node->src_coord.Dim()/COORD_DIM)*src_dof;
  1047. if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz);
  1048. vec_lst.push_back(&data_vec);
  1049. }
  1050. { // surf_value
  1051. Vector<Real_t>& data_vec=node->surf_value;
  1052. size_t vec_sz=(node->surf_coord.Dim()/COORD_DIM)*surf_dof;
  1053. if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz);
  1054. vec_lst.push_back(&data_vec);
  1055. }
  1056. }
  1057. }
  1058. {// 5. trg_val
  1059. int indx=5;
  1060. int trg_dof=kernel->ker_dim[1];
  1061. std::vector< FMMNode* > node_lst;
  1062. for(size_t i=0;i<node.size();i++){// Construct node_lst
  1063. if(node[i]->IsLeaf() && !node[i]->IsGhost()){
  1064. node_lst.push_back(node[i]);
  1065. }
  1066. }
  1067. n_list[indx]=node_lst;
  1068. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  1069. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  1070. FMMNode_t* node=node_lst[i];
  1071. { // trg_value
  1072. Vector<Real_t>& data_vec=node->trg_value;
  1073. size_t vec_sz=(node->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1074. if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz);
  1075. vec_lst.push_back(&data_vec);
  1076. }
  1077. }
  1078. }
  1079. {// 6. pts_coord
  1080. int indx=6;
  1081. std::vector< FMMNode* > node_lst;
  1082. for(size_t i=0;i<node.size();i++){// Construct node_lst
  1083. if(node[i]->IsLeaf()){
  1084. node_lst.push_back(node[i]);
  1085. }
  1086. }
  1087. n_list[indx]=node_lst;
  1088. std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
  1089. for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
  1090. FMMNode_t* node=node_lst[i];
  1091. { // src_coord
  1092. Vector<Real_t>& data_vec=node->src_coord;
  1093. vec_lst.push_back(&data_vec);
  1094. }
  1095. { // surf_coord
  1096. Vector<Real_t>& data_vec=node->surf_coord;
  1097. vec_lst.push_back(&data_vec);
  1098. }
  1099. { // trg_coord
  1100. Vector<Real_t>& data_vec=node->trg_coord;
  1101. vec_lst.push_back(&data_vec);
  1102. }
  1103. }
  1104. { // check and equiv surfaces.
  1105. if(tree->upwd_check_surf.size()==0){
  1106. size_t m=MultipoleOrder();
  1107. tree->upwd_check_surf.resize(MAX_DEPTH);
  1108. tree->upwd_equiv_surf.resize(MAX_DEPTH);
  1109. tree->dnwd_check_surf.resize(MAX_DEPTH);
  1110. tree->dnwd_equiv_surf.resize(MAX_DEPTH);
  1111. for(size_t depth=0;depth<MAX_DEPTH;depth++){
  1112. Real_t c[3]={0.0,0.0,0.0};
  1113. tree->upwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
  1114. tree->upwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
  1115. tree->dnwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
  1116. tree->dnwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
  1117. tree->upwd_check_surf[depth]=u_check_surf(m,c,depth);
  1118. tree->upwd_equiv_surf[depth]=u_equiv_surf(m,c,depth);
  1119. tree->dnwd_check_surf[depth]=d_check_surf(m,c,depth);
  1120. tree->dnwd_equiv_surf[depth]=d_equiv_surf(m,c,depth);
  1121. }
  1122. }
  1123. for(size_t depth=0;depth<MAX_DEPTH;depth++){
  1124. vec_lst.push_back(&tree->upwd_check_surf[depth]);
  1125. vec_lst.push_back(&tree->upwd_equiv_surf[depth]);
  1126. vec_lst.push_back(&tree->dnwd_check_surf[depth]);
  1127. vec_lst.push_back(&tree->dnwd_equiv_surf[depth]);
  1128. }
  1129. }
  1130. }
  1131. // Create extra auxiliary buffer.
  1132. if(buff_list.size()<=vec_list.size()) buff_list.resize(vec_list.size()+1);
  1133. for(size_t indx=0;indx<vec_list.size();indx++){ // Resize buffer
  1134. Matrix<Real_t>& aux_buff=buff_list[vec_list.size()];
  1135. Matrix<Real_t>& buff=buff_list[indx];
  1136. std::vector<Vector<Real_t>*>& vec_lst= vec_list[indx];
  1137. bool keep_data=(indx==4 || indx==6);
  1138. size_t n_vec=vec_lst.size();
  1139. { // Continue if nothing to be done.
  1140. if(!n_vec) continue;
  1141. if(buff.Dim(0)*buff.Dim(1)>0){
  1142. bool init_buff=false;
  1143. Real_t* buff_start=&buff[0][0];
  1144. Real_t* buff_end=&buff[0][0]+buff.Dim(0)*buff.Dim(1);
  1145. #pragma omp parallel for reduction(||:init_buff)
  1146. for(size_t i=0;i<n_vec;i++){
  1147. if(&(*vec_lst[i])[0]<buff_start || &(*vec_lst[i])[0]>=buff_end){
  1148. init_buff=true;
  1149. }
  1150. }
  1151. if(!init_buff) continue;
  1152. }
  1153. }
  1154. std::vector<size_t> vec_size(n_vec);
  1155. std::vector<size_t> vec_disp(n_vec);
  1156. if(n_vec){ // Set vec_size and vec_disp
  1157. #pragma omp parallel for
  1158. for(size_t i=0;i<n_vec;i++){ // Set vec_size
  1159. vec_size[i]=vec_lst[i]->Dim();
  1160. }
  1161. vec_disp[0]=0;
  1162. omp_par::scan(&vec_size[0],&vec_disp[0],n_vec);
  1163. }
  1164. size_t buff_size=vec_size[n_vec-1]+vec_disp[n_vec-1];
  1165. if(keep_data){ // Copy to aux_buff
  1166. if(aux_buff.Dim(0)*aux_buff.Dim(1)<buff_size){ // Resize aux_buff
  1167. aux_buff.ReInit(1,buff_size*1.05);
  1168. }
  1169. #pragma omp parallel for schedule(dynamic)
  1170. for(size_t i=0;i<n_vec;i++){
  1171. mem::memcopy(&aux_buff[0][0]+vec_disp[i],&(*vec_lst[i])[0],vec_size[i]*sizeof(Real_t));
  1172. }
  1173. }
  1174. if(buff.Dim(0)*buff.Dim(1)<buff_size){ // Resize buff
  1175. buff.ReInit(1,buff_size*1.05);
  1176. }
  1177. if(keep_data){ // Copy to buff (from aux_buff)
  1178. #pragma omp parallel for
  1179. for(size_t tid=0;tid<omp_p;tid++){
  1180. size_t a=(buff_size*(tid+0))/omp_p;
  1181. size_t b=(buff_size*(tid+1))/omp_p;
  1182. mem::memcopy(&buff[0][0]+a,&aux_buff[0][0]+a,(b-a)*sizeof(Real_t));
  1183. }
  1184. }
  1185. #pragma omp parallel for
  1186. for(size_t i=0;i<n_vec;i++){ // ReInit vectors
  1187. vec_lst[i]->ReInit(vec_size[i],&buff[0][0]+vec_disp[i],false);
  1188. }
  1189. }
  1190. }
  1191. template <class FMMNode>
  1192. void FMM_Pts<FMMNode>::SetupPrecomp(SetupData<Real_t>& setup_data, bool device){
  1193. if(setup_data.precomp_data==NULL || setup_data.level>MAX_DEPTH) return;
  1194. Profile::Tic("SetupPrecomp",&this->comm,true,25);
  1195. { // Build precomp_data
  1196. size_t precomp_offset=0;
  1197. int level=setup_data.level;
  1198. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1199. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1200. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1201. Mat_Type& interac_type=interac_type_lst[type_indx];
  1202. this->PrecompAll(interac_type, level); // Compute matrices.
  1203. precomp_offset=this->mat->CompactData(level, interac_type, precomp_data, precomp_offset);
  1204. }
  1205. }
  1206. Profile::Toc();
  1207. if(device){ // Host2Device
  1208. Profile::Tic("Host2Device",&this->comm,false,25);
  1209. setup_data.precomp_data->AllocDevice(true);
  1210. Profile::Toc();
  1211. }
  1212. }
  1213. template <class FMMNode>
  1214. void FMM_Pts<FMMNode>::SetupInterac(SetupData<Real_t>& setup_data, bool device){
  1215. int level=setup_data.level;
  1216. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1217. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1218. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1219. Matrix<Real_t>& input_data=*setup_data. input_data;
  1220. Matrix<Real_t>& output_data=*setup_data.output_data;
  1221. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  1222. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  1223. size_t n_in =nodes_in .size();
  1224. size_t n_out=nodes_out.size();
  1225. // Setup precomputed data.
  1226. if(setup_data.precomp_data->Dim(0)*setup_data.precomp_data->Dim(1)==0) SetupPrecomp(setup_data,device);
  1227. // Build interac_data
  1228. Profile::Tic("Interac-Data",&this->comm,true,25);
  1229. Matrix<char>& interac_data=setup_data.interac_data;
  1230. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  1231. std::vector<size_t> interac_mat;
  1232. std::vector<size_t> interac_cnt;
  1233. std::vector<size_t> interac_blk;
  1234. std::vector<size_t> input_perm;
  1235. std::vector<size_t> output_perm;
  1236. size_t dof=0, M_dim0=0, M_dim1=0;
  1237. size_t precomp_offset=0;
  1238. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  1239. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1240. Mat_Type& interac_type=interac_type_lst[type_indx];
  1241. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  1242. Matrix<size_t> precomp_data_offset;
  1243. { // Load precomp_data for interac_type.
  1244. struct HeaderData{
  1245. size_t total_size;
  1246. size_t level;
  1247. size_t mat_cnt ;
  1248. size_t max_depth;
  1249. };
  1250. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1251. char* indx_ptr=precomp_data[0]+precomp_offset;
  1252. HeaderData& header=*(HeaderData*)indx_ptr;indx_ptr+=sizeof(HeaderData);
  1253. precomp_data_offset.ReInit(header.mat_cnt,(1+(2+2)*header.max_depth), (size_t*)indx_ptr, false);
  1254. precomp_offset+=header.total_size;
  1255. }
  1256. Matrix<FMMNode*> src_interac_list(n_in ,mat_cnt); src_interac_list.SetZero();
  1257. Matrix<FMMNode*> trg_interac_list(n_out,mat_cnt); trg_interac_list.SetZero();
  1258. { // Build trg_interac_list
  1259. #pragma omp parallel for
  1260. for(size_t i=0;i<n_out;i++){
  1261. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  1262. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  1263. mem::memcopy(&trg_interac_list[i][0], &lst[0], lst.size()*sizeof(FMMNode*));
  1264. assert(lst.size()==mat_cnt);
  1265. }
  1266. }
  1267. }
  1268. { // Build src_interac_list
  1269. #pragma omp parallel for
  1270. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  1271. #pragma omp parallel for
  1272. for(size_t i=0;i<n_out;i++){
  1273. for(size_t j=0;j<mat_cnt;j++)
  1274. if(trg_interac_list[i][j]!=NULL){
  1275. src_interac_list[trg_interac_list[i][j]->node_id][j]=(FMMNode*)nodes_out[i];
  1276. }
  1277. }
  1278. }
  1279. Matrix<size_t> interac_dsp(n_out,mat_cnt);
  1280. std::vector<size_t> interac_blk_dsp(1,0);
  1281. { // Determine dof, M_dim0, M_dim1
  1282. dof=1;
  1283. Matrix<Real_t>& M0 = this->interac_list.ClassMat(level, interac_type_lst[0], 0);
  1284. M_dim0=M0.Dim(0); M_dim1=M0.Dim(1);
  1285. }
  1286. { // Determine interaction blocks which fit in memory.
  1287. size_t vec_size=(M_dim0+M_dim1)*sizeof(Real_t)*dof;
  1288. for(size_t j=0;j<mat_cnt;j++){// Determine minimum buff_size
  1289. size_t vec_cnt=0;
  1290. for(size_t i=0;i<n_out;i++){
  1291. if(trg_interac_list[i][j]!=NULL) vec_cnt++;
  1292. }
  1293. if(buff_size<vec_cnt*vec_size)
  1294. buff_size=vec_cnt*vec_size;
  1295. }
  1296. size_t interac_dsp_=0;
  1297. for(size_t j=0;j<mat_cnt;j++){
  1298. for(size_t i=0;i<n_out;i++){
  1299. interac_dsp[i][j]=interac_dsp_;
  1300. if(trg_interac_list[i][j]!=NULL) interac_dsp_++;
  1301. }
  1302. if(interac_dsp_*vec_size>buff_size) // Comment to disable symmetries.
  1303. {
  1304. interac_blk.push_back(j-interac_blk_dsp.back());
  1305. interac_blk_dsp.push_back(j);
  1306. size_t offset=interac_dsp[0][j];
  1307. for(size_t i=0;i<n_out;i++) interac_dsp[i][j]-=offset;
  1308. interac_dsp_-=offset;
  1309. assert(interac_dsp_*vec_size<=buff_size); // Problem too big for buff_size.
  1310. }
  1311. interac_mat.push_back(precomp_data_offset[this->interac_list.InteracClass(interac_type,j)][0]);
  1312. interac_cnt.push_back(interac_dsp_-interac_dsp[0][j]);
  1313. }
  1314. interac_blk.push_back(mat_cnt-interac_blk_dsp.back());
  1315. interac_blk_dsp.push_back(mat_cnt);
  1316. }
  1317. { // Determine input_perm.
  1318. size_t vec_size=M_dim0*dof;
  1319. for(size_t i=0;i<n_out;i++) ((FMMNode*)nodes_out[i])->node_id=i;
  1320. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1321. for(size_t i=0;i<n_in ;i++){
  1322. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1323. FMMNode_t* trg_node=src_interac_list[i][j];
  1324. if(trg_node!=NULL){
  1325. size_t depth=(this->Homogen()?trg_node->Depth():0);
  1326. input_perm .push_back(precomp_data_offset[j][1+4*depth+0]); // prem
  1327. input_perm .push_back(precomp_data_offset[j][1+4*depth+1]); // scal
  1328. input_perm .push_back(interac_dsp[trg_node->node_id][j]*vec_size*sizeof(Real_t)); // trg_ptr
  1329. input_perm .push_back((size_t)(& input_vector[i][0][0]- input_data[0])); // src_ptr
  1330. assert(input_vector[i]->Dim()==vec_size);
  1331. }
  1332. }
  1333. }
  1334. }
  1335. }
  1336. { // Determine output_perm
  1337. size_t vec_size=M_dim1*dof;
  1338. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1339. for(size_t i=0;i<n_out;i++){
  1340. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1341. if(trg_interac_list[i][j]!=NULL){
  1342. size_t depth=(this->Homogen()?((FMMNode*)nodes_out[i])->Depth():0);
  1343. output_perm.push_back(precomp_data_offset[j][1+4*depth+2]); // prem
  1344. output_perm.push_back(precomp_data_offset[j][1+4*depth+3]); // scal
  1345. output_perm.push_back(interac_dsp[ i ][j]*vec_size*sizeof(Real_t)); // src_ptr
  1346. output_perm.push_back((size_t)(&output_vector[i][0][0]-output_data[0])); // trg_ptr
  1347. assert(output_vector[i]->Dim()==vec_size);
  1348. }
  1349. }
  1350. }
  1351. }
  1352. }
  1353. }
  1354. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.ReInit(buff_size);
  1355. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.ReInit(buff_size);
  1356. { // Set interac_data.
  1357. size_t data_size=sizeof(size_t)*4;
  1358. data_size+=sizeof(size_t)+interac_blk.size()*sizeof(size_t);
  1359. data_size+=sizeof(size_t)+interac_cnt.size()*sizeof(size_t);
  1360. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  1361. data_size+=sizeof(size_t)+ input_perm.size()*sizeof(size_t);
  1362. data_size+=sizeof(size_t)+output_perm.size()*sizeof(size_t);
  1363. if(interac_data.Dim(0)*interac_data.Dim(1)<sizeof(size_t)){
  1364. data_size+=sizeof(size_t);
  1365. interac_data.ReInit(1,data_size);
  1366. ((size_t*)&interac_data[0][0])[0]=sizeof(size_t);
  1367. }else{
  1368. size_t pts_data_size=*((size_t*)&interac_data[0][0]);
  1369. assert(interac_data.Dim(0)*interac_data.Dim(1)>=pts_data_size);
  1370. data_size+=pts_data_size;
  1371. if(data_size>interac_data.Dim(0)*interac_data.Dim(1)){ //Resize and copy interac_data.
  1372. Matrix< char> pts_interac_data=interac_data;
  1373. interac_data.ReInit(1,data_size);
  1374. mem::memcopy(&interac_data[0][0],&pts_interac_data[0][0],pts_data_size);
  1375. }
  1376. }
  1377. char* data_ptr=&interac_data[0][0];
  1378. data_ptr+=((size_t*)data_ptr)[0];
  1379. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  1380. ((size_t*)data_ptr)[0]= M_dim0; data_ptr+=sizeof(size_t);
  1381. ((size_t*)data_ptr)[0]= M_dim1; data_ptr+=sizeof(size_t);
  1382. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  1383. ((size_t*)data_ptr)[0]=interac_blk.size(); data_ptr+=sizeof(size_t);
  1384. mem::memcopy(data_ptr, &interac_blk[0], interac_blk.size()*sizeof(size_t));
  1385. data_ptr+=interac_blk.size()*sizeof(size_t);
  1386. ((size_t*)data_ptr)[0]=interac_cnt.size(); data_ptr+=sizeof(size_t);
  1387. mem::memcopy(data_ptr, &interac_cnt[0], interac_cnt.size()*sizeof(size_t));
  1388. data_ptr+=interac_cnt.size()*sizeof(size_t);
  1389. ((size_t*)data_ptr)[0]=interac_mat.size(); data_ptr+=sizeof(size_t);
  1390. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  1391. data_ptr+=interac_mat.size()*sizeof(size_t);
  1392. ((size_t*)data_ptr)[0]= input_perm.size(); data_ptr+=sizeof(size_t);
  1393. mem::memcopy(data_ptr, & input_perm[0], input_perm.size()*sizeof(size_t));
  1394. data_ptr+= input_perm.size()*sizeof(size_t);
  1395. ((size_t*)data_ptr)[0]=output_perm.size(); data_ptr+=sizeof(size_t);
  1396. mem::memcopy(data_ptr, &output_perm[0], output_perm.size()*sizeof(size_t));
  1397. data_ptr+=output_perm.size()*sizeof(size_t);
  1398. }
  1399. }
  1400. Profile::Toc();
  1401. if(device){ // Host2Device
  1402. Profile::Tic("Host2Device",&this->comm,false,25);
  1403. setup_data.interac_data .AllocDevice(true);
  1404. Profile::Toc();
  1405. }
  1406. }
  1407. #if defined(PVFMM_HAVE_CUDA)
  1408. #include <fmm_pts_gpu.hpp>
  1409. template <class Real_t, int SYNC>
  1410. void EvalListGPU(SetupData<Real_t>& setup_data, Vector<char>& dev_buffer, MPI_Comm& comm) {
  1411. cudaStream_t* stream = pvfmm::CUDA_Lock::acquire_stream();
  1412. Profile::Tic("Host2Device",&comm,false,25);
  1413. typename Matrix<char>::Device interac_data;
  1414. typename Vector<char>::Device buff;
  1415. typename Matrix<char>::Device precomp_data_d;
  1416. typename Matrix<char>::Device interac_data_d;
  1417. typename Matrix<Real_t>::Device input_data_d;
  1418. typename Matrix<Real_t>::Device output_data_d;
  1419. interac_data = setup_data.interac_data;
  1420. buff = dev_buffer. AllocDevice(false);
  1421. precomp_data_d= setup_data.precomp_data->AllocDevice(false);
  1422. interac_data_d= setup_data.interac_data. AllocDevice(false);
  1423. input_data_d = setup_data. input_data->AllocDevice(false);
  1424. output_data_d = setup_data. output_data->AllocDevice(false);
  1425. Profile::Toc();
  1426. Profile::Tic("DeviceComp",&comm,false,20);
  1427. { // Offloaded computation.
  1428. size_t data_size, M_dim0, M_dim1, dof;
  1429. Vector<size_t> interac_blk;
  1430. Vector<size_t> interac_cnt;
  1431. Vector<size_t> interac_mat;
  1432. Vector<size_t> input_perm_d;
  1433. Vector<size_t> output_perm_d;
  1434. { // Set interac_data.
  1435. char* data_ptr=&interac_data [0][0];
  1436. char* dev_ptr=&interac_data_d[0][0];
  1437. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size; dev_ptr += data_size;
  1438. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1439. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1440. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1441. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1442. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1443. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
  1444. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
  1445. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1446. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
  1447. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
  1448. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1449. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
  1450. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
  1451. input_perm_d.ReInit(((size_t*)data_ptr)[0],(size_t*)(dev_ptr+sizeof(size_t)),false);
  1452. data_ptr += sizeof(size_t) + sizeof(size_t)*input_perm_d.Dim();
  1453. dev_ptr += sizeof(size_t) + sizeof(size_t)*input_perm_d.Dim();
  1454. output_perm_d.ReInit(((size_t*)data_ptr)[0],(size_t*)(dev_ptr+sizeof(size_t)),false);
  1455. data_ptr += sizeof(size_t) + sizeof(size_t)*output_perm_d.Dim();
  1456. dev_ptr += sizeof(size_t) + sizeof(size_t)*output_perm_d.Dim();
  1457. }
  1458. { // interactions
  1459. size_t interac_indx = 0;
  1460. size_t interac_blk_dsp = 0;
  1461. cudaError_t error;
  1462. for (size_t k = 0; k < interac_blk.Dim(); k++) {
  1463. size_t vec_cnt=0;
  1464. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
  1465. if(vec_cnt==0){
  1466. //interac_indx += vec_cnt;
  1467. interac_blk_dsp += interac_blk[k];
  1468. continue;
  1469. }
  1470. char *buff_in_d =&buff[0];
  1471. char *buff_out_d =&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1472. { // Input permutation.
  1473. in_perm_gpu<Real_t>(&precomp_data_d[0][0], &input_data_d[0][0], buff_in_d,
  1474. &input_perm_d[interac_indx*4], vec_cnt, M_dim0, stream);
  1475. }
  1476. size_t vec_cnt0 = 0;
  1477. for (size_t j = interac_blk_dsp; j < interac_blk_dsp + interac_blk[k];) {
  1478. size_t vec_cnt1 = 0;
  1479. size_t interac_mat0 = interac_mat[j];
  1480. for (; j < interac_blk_dsp + interac_blk[k] && interac_mat[j] == interac_mat0; j++) vec_cnt1 += interac_cnt[j];
  1481. Matrix<Real_t> M_d(M_dim0, M_dim1, (Real_t*)(precomp_data_d.dev_ptr + interac_mat0), false);
  1482. Matrix<Real_t> Ms_d(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in_d + M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1483. Matrix<Real_t> Mt_d(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out_d + M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1484. Matrix<Real_t>::CUBLASGEMM(Mt_d, Ms_d, M_d);
  1485. vec_cnt0 += vec_cnt1;
  1486. }
  1487. { // Output permutation.
  1488. out_perm_gpu<Real_t>(&precomp_data_d[0][0], &output_data_d[0][0], buff_out_d,
  1489. &output_perm_d[interac_indx*4], vec_cnt, M_dim1, stream);
  1490. }
  1491. interac_indx += vec_cnt;
  1492. interac_blk_dsp += interac_blk[k];
  1493. }
  1494. }
  1495. }
  1496. Profile::Toc();
  1497. if(SYNC) CUDA_Lock::wait();
  1498. }
  1499. #endif
  1500. template <class FMMNode>
  1501. template <int SYNC>
  1502. void FMM_Pts<FMMNode>::EvalList(SetupData<Real_t>& setup_data, bool device){
  1503. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  1504. Profile::Tic("Host2Device",&this->comm,false,25);
  1505. Profile::Toc();
  1506. Profile::Tic("DeviceComp",&this->comm,false,20);
  1507. Profile::Toc();
  1508. return;
  1509. }
  1510. #if defined(PVFMM_HAVE_CUDA)
  1511. if (device) {
  1512. EvalListGPU<Real_t, SYNC>(setup_data, this->dev_buffer, this->comm);
  1513. return;
  1514. }
  1515. #endif
  1516. Profile::Tic("Host2Device",&this->comm,false,25);
  1517. typename Vector<char>::Device buff;
  1518. typename Matrix<char>::Device precomp_data;
  1519. typename Matrix<char>::Device interac_data;
  1520. typename Matrix<Real_t>::Device input_data;
  1521. typename Matrix<Real_t>::Device output_data;
  1522. if(device){
  1523. buff = this-> dev_buffer. AllocDevice(false);
  1524. precomp_data= setup_data.precomp_data->AllocDevice(false);
  1525. interac_data= setup_data.interac_data. AllocDevice(false);
  1526. input_data = setup_data. input_data->AllocDevice(false);
  1527. output_data = setup_data. output_data->AllocDevice(false);
  1528. }else{
  1529. buff = this-> cpu_buffer;
  1530. precomp_data=*setup_data.precomp_data;
  1531. interac_data= setup_data.interac_data;
  1532. input_data =*setup_data. input_data;
  1533. output_data =*setup_data. output_data;
  1534. }
  1535. Profile::Toc();
  1536. Profile::Tic("DeviceComp",&this->comm,false,20);
  1537. int lock_idx=-1;
  1538. int wait_lock_idx=-1;
  1539. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  1540. if(device) lock_idx=MIC_Lock::get_lock();
  1541. #ifdef __INTEL_OFFLOAD
  1542. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  1543. #endif
  1544. { // Offloaded computation.
  1545. // Set interac_data.
  1546. size_t data_size, M_dim0, M_dim1, dof;
  1547. Vector<size_t> interac_blk;
  1548. Vector<size_t> interac_cnt;
  1549. Vector<size_t> interac_mat;
  1550. Vector<size_t> input_perm;
  1551. Vector<size_t> output_perm;
  1552. { // Set interac_data.
  1553. char* data_ptr=&interac_data[0][0];
  1554. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size;
  1555. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1556. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1557. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1558. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1559. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1560. data_ptr+=sizeof(size_t)+interac_blk.Dim()*sizeof(size_t);
  1561. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1562. data_ptr+=sizeof(size_t)+interac_cnt.Dim()*sizeof(size_t);
  1563. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1564. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  1565. input_perm .ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1566. data_ptr+=sizeof(size_t)+ input_perm.Dim()*sizeof(size_t);
  1567. output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1568. data_ptr+=sizeof(size_t)+output_perm.Dim()*sizeof(size_t);
  1569. }
  1570. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  1571. //Compute interaction from Chebyshev source density.
  1572. { // interactions
  1573. int omp_p=omp_get_max_threads();
  1574. size_t interac_indx=0;
  1575. size_t interac_blk_dsp=0;
  1576. for(size_t k=0;k<interac_blk.Dim();k++){
  1577. size_t vec_cnt=0;
  1578. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
  1579. if(vec_cnt==0){
  1580. //interac_indx += vec_cnt;
  1581. interac_blk_dsp += interac_blk[k];
  1582. continue;
  1583. }
  1584. char* buff_in =&buff[0];
  1585. char* buff_out=&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1586. // Input permutation.
  1587. #pragma omp parallel for
  1588. for(int tid=0;tid<omp_p;tid++){
  1589. size_t a=( tid *vec_cnt)/omp_p;
  1590. size_t b=((tid+1)*vec_cnt)/omp_p;
  1591. for(size_t i=a;i<b;i++){
  1592. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+input_perm[(interac_indx+i)*4+0]);
  1593. const Real_t* scal=( Real_t*)(precomp_data[0]+input_perm[(interac_indx+i)*4+1]);
  1594. const Real_t* v_in =( Real_t*)( input_data[0]+input_perm[(interac_indx+i)*4+3]);
  1595. Real_t* v_out=( Real_t*)( buff_in +input_perm[(interac_indx+i)*4+2]);
  1596. // TODO: Fix for dof>1
  1597. #ifdef __MIC__
  1598. {
  1599. __m512d v8;
  1600. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1601. size_t j_end =(((uintptr_t)(v_out+M_dim0) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1602. j_start/=sizeof(Real_t);
  1603. j_end /=sizeof(Real_t);
  1604. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1605. assert(((uintptr_t)(v_out+j_start))%64==0);
  1606. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1607. size_t j=0;
  1608. for(;j<j_start;j++ ){
  1609. v_out[j]=v_in[perm[j]]*scal[j];
  1610. }
  1611. for(;j<j_end ;j+=8){
  1612. v8=_mm512_setr_pd(
  1613. v_in[perm[j+0]]*scal[j+0],
  1614. v_in[perm[j+1]]*scal[j+1],
  1615. v_in[perm[j+2]]*scal[j+2],
  1616. v_in[perm[j+3]]*scal[j+3],
  1617. v_in[perm[j+4]]*scal[j+4],
  1618. v_in[perm[j+5]]*scal[j+5],
  1619. v_in[perm[j+6]]*scal[j+6],
  1620. v_in[perm[j+7]]*scal[j+7]);
  1621. _mm512_storenrngo_pd(v_out+j,v8);
  1622. }
  1623. for(;j<M_dim0 ;j++ ){
  1624. v_out[j]=v_in[perm[j]]*scal[j];
  1625. }
  1626. }
  1627. #else
  1628. for(size_t j=0;j<M_dim0;j++ ){
  1629. v_out[j]=v_in[perm[j]]*scal[j];
  1630. }
  1631. #endif
  1632. }
  1633. }
  1634. size_t vec_cnt0=0;
  1635. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];){
  1636. size_t vec_cnt1=0;
  1637. size_t interac_mat0=interac_mat[j];
  1638. for(;j<interac_blk_dsp+interac_blk[k] && interac_mat[j]==interac_mat0;j++) vec_cnt1+=interac_cnt[j];
  1639. Matrix<Real_t> M(M_dim0, M_dim1, (Real_t*)(precomp_data[0]+interac_mat0), false);
  1640. #ifdef __MIC__
  1641. {
  1642. Matrix<Real_t> Ms(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1643. Matrix<Real_t> Mt(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1644. Matrix<Real_t>::GEMM(Mt,Ms,M);
  1645. }
  1646. #else
  1647. #pragma omp parallel for
  1648. for(int tid=0;tid<omp_p;tid++){
  1649. size_t a=(dof*vec_cnt1*(tid ))/omp_p;
  1650. size_t b=(dof*vec_cnt1*(tid+1))/omp_p;
  1651. Matrix<Real_t> Ms(b-a, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t))+M_dim0*a, false);
  1652. Matrix<Real_t> Mt(b-a, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t))+M_dim1*a, false);
  1653. Matrix<Real_t>::GEMM(Mt,Ms,M);
  1654. }
  1655. #endif
  1656. vec_cnt0+=vec_cnt1;
  1657. }
  1658. // Output permutation.
  1659. #pragma omp parallel for
  1660. for(int tid=0;tid<omp_p;tid++){
  1661. size_t a=( tid *vec_cnt)/omp_p;
  1662. size_t b=((tid+1)*vec_cnt)/omp_p;
  1663. if(tid> 0 && a<vec_cnt){ // Find 'a' independent of other threads.
  1664. size_t out_ptr=output_perm[(interac_indx+a)*4+3];
  1665. if(tid> 0) while(a<vec_cnt && out_ptr==output_perm[(interac_indx+a)*4+3]) a++;
  1666. }
  1667. if(tid<omp_p-1 && b<vec_cnt){ // Find 'b' independent of other threads.
  1668. size_t out_ptr=output_perm[(interac_indx+b)*4+3];
  1669. if(tid<omp_p-1) while(b<vec_cnt && out_ptr==output_perm[(interac_indx+b)*4+3]) b++;
  1670. }
  1671. for(size_t i=a;i<b;i++){ // Compute permutations.
  1672. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+output_perm[(interac_indx+i)*4+0]);
  1673. const Real_t* scal=( Real_t*)(precomp_data[0]+output_perm[(interac_indx+i)*4+1]);
  1674. const Real_t* v_in =( Real_t*)( buff_out +output_perm[(interac_indx+i)*4+2]);
  1675. Real_t* v_out=( Real_t*)( output_data[0]+output_perm[(interac_indx+i)*4+3]);
  1676. // TODO: Fix for dof>1
  1677. #ifdef __MIC__
  1678. {
  1679. __m512d v8;
  1680. __m512d v_old;
  1681. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1682. size_t j_end =(((uintptr_t)(v_out+M_dim1) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1683. j_start/=sizeof(Real_t);
  1684. j_end /=sizeof(Real_t);
  1685. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1686. assert(((uintptr_t)(v_out+j_start))%64==0);
  1687. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1688. size_t j=0;
  1689. for(;j<j_start;j++ ){
  1690. v_out[j]+=v_in[perm[j]]*scal[j];
  1691. }
  1692. for(;j<j_end ;j+=8){
  1693. v_old=_mm512_load_pd(v_out+j);
  1694. v8=_mm512_setr_pd(
  1695. v_in[perm[j+0]]*scal[j+0],
  1696. v_in[perm[j+1]]*scal[j+1],
  1697. v_in[perm[j+2]]*scal[j+2],
  1698. v_in[perm[j+3]]*scal[j+3],
  1699. v_in[perm[j+4]]*scal[j+4],
  1700. v_in[perm[j+5]]*scal[j+5],
  1701. v_in[perm[j+6]]*scal[j+6],
  1702. v_in[perm[j+7]]*scal[j+7]);
  1703. v_old=_mm512_add_pd(v_old, v8);
  1704. _mm512_storenrngo_pd(v_out+j,v_old);
  1705. }
  1706. for(;j<M_dim1 ;j++ ){
  1707. v_out[j]+=v_in[perm[j]]*scal[j];
  1708. }
  1709. }
  1710. #else
  1711. for(size_t j=0;j<M_dim1;j++ ){
  1712. v_out[j]+=v_in[perm[j]]*scal[j];
  1713. }
  1714. #endif
  1715. }
  1716. }
  1717. interac_indx+=vec_cnt;
  1718. interac_blk_dsp+=interac_blk[k];
  1719. }
  1720. }
  1721. if(device) MIC_Lock::release_lock(lock_idx);
  1722. }
  1723. #ifdef __INTEL_OFFLOAD
  1724. if(SYNC){
  1725. #pragma offload if(device) target(mic:0)
  1726. {if(device) MIC_Lock::wait_lock(lock_idx);}
  1727. }
  1728. #endif
  1729. Profile::Toc();
  1730. }
  1731. template <class FMMNode>
  1732. void FMM_Pts<FMMNode>::Source2UpSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  1733. if(this->MultipoleOrder()==0) return;
  1734. { // Set setup_data
  1735. setup_data.level=level;
  1736. setup_data.kernel=kernel->k_s2m;
  1737. setup_data.interac_type.resize(1);
  1738. setup_data.interac_type[0]=S2U_Type;
  1739. setup_data. input_data=&buff[4];
  1740. setup_data.output_data=&buff[0];
  1741. setup_data. coord_data=&buff[6];
  1742. Vector<FMMNode_t*>& nodes_in =n_list[4];
  1743. Vector<FMMNode_t*>& nodes_out=n_list[0];
  1744. setup_data.nodes_in .clear();
  1745. setup_data.nodes_out.clear();
  1746. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  1747. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  1748. }
  1749. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1750. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1751. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  1752. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  1753. for(size_t i=0;i<nodes_in .size();i++){
  1754. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  1755. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  1756. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  1757. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  1758. }
  1759. for(size_t i=0;i<nodes_out.size();i++){
  1760. output_vector.push_back(&tree->upwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
  1761. output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
  1762. }
  1763. //Upward check to upward equivalent matrix.
  1764. Matrix<Real_t>& M_uc2ue = this->mat->Mat(level, UC2UE_Type, 0);
  1765. this->SetupInteracPts(setup_data, false, true, &M_uc2ue,device);
  1766. { // Resize device buffer
  1767. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  1768. if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
  1769. }
  1770. }
  1771. template <class FMMNode>
  1772. void FMM_Pts<FMMNode>::Source2Up(SetupData<Real_t>& setup_data, bool device){
  1773. //Add Source2Up contribution.
  1774. this->EvalListPts(setup_data, device);
  1775. }
  1776. template <class FMMNode>
  1777. void FMM_Pts<FMMNode>::Up2UpSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  1778. if(this->MultipoleOrder()==0) return;
  1779. { // Set setup_data
  1780. setup_data.level=level;
  1781. setup_data.kernel=kernel->k_m2m;
  1782. setup_data.interac_type.resize(1);
  1783. setup_data.interac_type[0]=U2U_Type;
  1784. setup_data. input_data=&buff[0];
  1785. setup_data.output_data=&buff[0];
  1786. Vector<FMMNode_t*>& nodes_in =n_list[0];
  1787. Vector<FMMNode_t*>& nodes_out=n_list[0];
  1788. setup_data.nodes_in .clear();
  1789. setup_data.nodes_out.clear();
  1790. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1) setup_data.nodes_in .push_back(nodes_in [i]);
  1791. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
  1792. }
  1793. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1794. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1795. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  1796. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  1797. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  1798. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
  1799. SetupInterac(setup_data,device);
  1800. }
  1801. template <class FMMNode>
  1802. void FMM_Pts<FMMNode>::Up2Up (SetupData<Real_t>& setup_data, bool device){
  1803. //Add Up2Up contribution.
  1804. EvalList(setup_data, device);
  1805. }
  1806. template <class FMMNode>
  1807. void FMM_Pts<FMMNode>::PeriodicBC(FMMNode* node){
  1808. if(!this->Homogen() || this->MultipoleOrder()==0) return;
  1809. Matrix<Real_t>& M = Precomp(0, BC_Type, 0);
  1810. assert(node->FMMData()->upward_equiv.Dim()>0);
  1811. int dof=1;
  1812. Vector<Real_t>& upward_equiv=node->FMMData()->upward_equiv;
  1813. Vector<Real_t>& dnward_equiv=node->FMMData()->dnward_equiv;
  1814. assert(upward_equiv.Dim()==M.Dim(0)*dof);
  1815. assert(dnward_equiv.Dim()==M.Dim(1)*dof);
  1816. Matrix<Real_t> d_equiv(dof,M.Dim(0),&dnward_equiv[0],false);
  1817. Matrix<Real_t> u_equiv(dof,M.Dim(1),&upward_equiv[0],false);
  1818. Matrix<Real_t>::GEMM(d_equiv,u_equiv,M);
  1819. }
  1820. template <class FMMNode>
  1821. void FMM_Pts<FMMNode>::FFT_UpEquiv(size_t dof, size_t m, size_t ker_dim0, Vector<size_t>& fft_vec, Vector<Real_t>& fft_scal,
  1822. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_){
  1823. size_t n1=m*2;
  1824. size_t n2=n1*n1;
  1825. size_t n3=n1*n2;
  1826. size_t n3_=n2*(n1/2+1);
  1827. size_t chld_cnt=1UL<<COORD_DIM;
  1828. size_t fftsize_in =2*n3_*chld_cnt*ker_dim0*dof;
  1829. int omp_p=omp_get_max_threads();
  1830. //Load permutation map.
  1831. size_t n=6*(m-1)*(m-1)+2;
  1832. static Vector<size_t> map;
  1833. { // Build map to reorder upward_equiv
  1834. size_t n_old=map.Dim();
  1835. if(n_old!=n){
  1836. Real_t c[3]={0,0,0};
  1837. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1838. map.Resize(surf.Dim()/COORD_DIM);
  1839. for(size_t i=0;i<map.Dim();i++)
  1840. map[i]=((size_t)(m-1-surf[i*3]+0.5))+((size_t)(m-1-surf[i*3+1]+0.5))*n1+((size_t)(m-1-surf[i*3+2]+0.5))*n2;
  1841. }
  1842. }
  1843. { // Build FFTW plan.
  1844. if(!vlist_fft_flag){
  1845. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1846. void *fftw_in, *fftw_out;
  1847. fftw_in = mem::aligned_new<Real_t>( n3 *ker_dim0*chld_cnt);
  1848. fftw_out = mem::aligned_new<Real_t>(2*n3_*ker_dim0*chld_cnt);
  1849. vlist_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM,nnn,ker_dim0*chld_cnt,
  1850. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*)(fftw_out),NULL, 1, n3_, FFTW_ESTIMATE);
  1851. mem::aligned_delete<Real_t>((Real_t*)fftw_in );
  1852. mem::aligned_delete<Real_t>((Real_t*)fftw_out);
  1853. vlist_fft_flag=true;
  1854. }
  1855. }
  1856. { // Offload section
  1857. size_t n_in = fft_vec.Dim();
  1858. #pragma omp parallel for
  1859. for(int pid=0; pid<omp_p; pid++){
  1860. size_t node_start=(n_in*(pid ))/omp_p;
  1861. size_t node_end =(n_in*(pid+1))/omp_p;
  1862. Vector<Real_t> buffer(fftsize_in, &buffer_[fftsize_in*pid], false);
  1863. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  1864. Vector<Real_t*> upward_equiv(chld_cnt);
  1865. for(size_t i=0;i<chld_cnt;i++) upward_equiv[i]=&input_data[0] + fft_vec[node_idx] + n*ker_dim0*dof*i;
  1866. Vector<Real_t> upward_equiv_fft(fftsize_in, &output_data[fftsize_in *node_idx], false);
  1867. upward_equiv_fft.SetZero();
  1868. // Rearrange upward equivalent data.
  1869. for(size_t k=0;k<n;k++){
  1870. size_t idx=map[k];
  1871. for(int j1=0;j1<dof;j1++)
  1872. for(int j0=0;j0<(int)chld_cnt;j0++)
  1873. for(int i=0;i<ker_dim0;i++)
  1874. upward_equiv_fft[idx+(j0+(i+j1*ker_dim0)*chld_cnt)*n3]=upward_equiv[j0][ker_dim0*(n*j1+k)+i]*fft_scal[ker_dim0*node_idx+i];
  1875. }
  1876. // Compute FFT.
  1877. for(int i=0;i<dof;i++)
  1878. FFTW_t<Real_t>::fft_execute_dft_r2c(vlist_fftplan, (Real_t*)&upward_equiv_fft[i* n3 *ker_dim0*chld_cnt],
  1879. (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim0*chld_cnt]);
  1880. //Compute flops.
  1881. #ifndef FFTW3_MKL
  1882. double add, mul, fma;
  1883. FFTW_t<Real_t>::fftw_flops(vlist_fftplan, &add, &mul, &fma);
  1884. #ifndef __INTEL_OFFLOAD0
  1885. Profile::Add_FLOP((long long)(add+mul+2*fma));
  1886. #endif
  1887. #endif
  1888. for(int i=0;i<ker_dim0*dof;i++)
  1889. for(size_t j=0;j<n3_;j++)
  1890. for(size_t k=0;k<chld_cnt;k++){
  1891. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+0]=buffer[2*(n3_*(chld_cnt*i+k)+j)+0];
  1892. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+1]=buffer[2*(n3_*(chld_cnt*i+k)+j)+1];
  1893. }
  1894. }
  1895. }
  1896. }
  1897. }
  1898. template <class FMMNode>
  1899. void FMM_Pts<FMMNode>::FFT_Check2Equiv(size_t dof, size_t m, size_t ker_dim1, Vector<size_t>& ifft_vec, Vector<Real_t>& ifft_scal,
  1900. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_, Matrix<Real_t>& M){
  1901. size_t n1=m*2;
  1902. size_t n2=n1*n1;
  1903. size_t n3=n1*n2;
  1904. size_t n3_=n2*(n1/2+1);
  1905. size_t chld_cnt=1UL<<COORD_DIM;
  1906. size_t fftsize_out=2*n3_*dof*ker_dim1*chld_cnt;
  1907. size_t ker_dim0=M.Dim(1)/(M.Dim(0)/ker_dim1);
  1908. int omp_p=omp_get_max_threads();
  1909. //Load permutation map.
  1910. size_t n=6*(m-1)*(m-1)+2;
  1911. static Vector<size_t> map;
  1912. { // Build map to reorder dnward_check
  1913. size_t n_old=map.Dim();
  1914. if(n_old!=n){
  1915. Real_t c[3]={0,0,0};
  1916. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1917. map.Resize(surf.Dim()/COORD_DIM);
  1918. for(size_t i=0;i<map.Dim();i++)
  1919. map[i]=((size_t)(m*2-0.5-surf[i*3]))+((size_t)(m*2-0.5-surf[i*3+1]))*n1+((size_t)(m*2-0.5-surf[i*3+2]))*n2;
  1920. //map;//.AllocDevice(true);
  1921. }
  1922. }
  1923. { // Build FFTW plan.
  1924. if(!vlist_ifft_flag){
  1925. //Build FFTW plan.
  1926. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1927. Real_t *fftw_in, *fftw_out;
  1928. fftw_in = mem::aligned_new<Real_t>(2*n3_*ker_dim1*chld_cnt);
  1929. fftw_out = mem::aligned_new<Real_t>( n3 *ker_dim1*chld_cnt);
  1930. vlist_ifftplan = FFTW_t<Real_t>::fft_plan_many_dft_c2r(COORD_DIM,nnn,ker_dim1*chld_cnt,
  1931. (typename FFTW_t<Real_t>::cplx*)fftw_in, NULL, 1, n3_, (Real_t*)(fftw_out),NULL, 1, n3, FFTW_ESTIMATE);
  1932. mem::aligned_delete<Real_t>(fftw_in);
  1933. mem::aligned_delete<Real_t>(fftw_out);
  1934. vlist_ifft_flag=true;
  1935. }
  1936. }
  1937. { // Offload section
  1938. assert(buffer_.Dim()>=(fftsize_out+M.Dim(1)*dof)*omp_p);
  1939. size_t n_out=ifft_vec.Dim();
  1940. #pragma omp parallel for
  1941. for(int pid=0; pid<omp_p; pid++){
  1942. size_t node_start=(n_out*(pid ))/omp_p;
  1943. size_t node_end =(n_out*(pid+1))/omp_p;
  1944. Vector<Real_t> buffer(fftsize_out+M.Dim(1)*dof, &buffer_[(fftsize_out+M.Dim(1)*dof)*pid], false);
  1945. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  1946. Vector<Real_t> dnward_check_fft(fftsize_out, &input_data[fftsize_out*node_idx], false);
  1947. //De-interleave data.
  1948. for(int i=0;i<ker_dim1*dof;i++)
  1949. for(size_t j=0;j<n3_;j++)
  1950. for(size_t k=0;k<chld_cnt;k++){
  1951. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+0]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+0];
  1952. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+1]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+1];
  1953. }
  1954. // Compute FFT.
  1955. for(int i=0;i<dof;i++)
  1956. FFTW_t<Real_t>::fft_execute_dft_c2r(vlist_ifftplan, (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim1*chld_cnt],
  1957. (Real_t*)&dnward_check_fft[i* n3 *ker_dim1*chld_cnt]);
  1958. //Compute flops.
  1959. #ifndef FFTW3_MKL
  1960. double add, mul, fma;
  1961. FFTW_t<Real_t>::fftw_flops(vlist_ifftplan, &add, &mul, &fma);
  1962. #ifndef __INTEL_OFFLOAD0
  1963. Profile::Add_FLOP((long long)(add+mul+2*fma));
  1964. #endif
  1965. #endif
  1966. // Rearrange downward check data.
  1967. for(size_t k=0;k<n;k++){
  1968. size_t idx=map[k];
  1969. for(int j1=0;j1<dof;j1++)
  1970. for(int j0=0;j0<(int)chld_cnt;j0++)
  1971. for(int i=0;i<ker_dim1;i++)
  1972. buffer[ker_dim1*(n*(dof*j0+j1)+k)+i]=dnward_check_fft[idx+(j1+(i+j0*ker_dim1)*dof)*n3];
  1973. }
  1974. // Compute check to equiv.
  1975. for(size_t j=0;j<chld_cnt;j++){
  1976. Matrix<Real_t> d_check(dof,M.Dim(0),&buffer[n*ker_dim1*dof*j],false);
  1977. Matrix<Real_t> d_equiv(dof,M.Dim(1),&buffer[ fftsize_out],false);
  1978. Matrix<Real_t>::GEMM(d_equiv,d_check,M,0.0);
  1979. for(size_t i=0;i<dof*M.Dim(1);i+=ker_dim0){
  1980. for(size_t j=0;j<ker_dim0;j++){
  1981. d_equiv[0][i+j]*=ifft_scal[ker_dim0*node_idx+j];
  1982. }
  1983. }
  1984. { // Add to equiv density
  1985. Matrix<Real_t> d_equiv_(dof,M.Dim(1),&output_data[0] + ifft_vec[node_idx] + M.Dim(1)*dof*j,false);
  1986. d_equiv_+=d_equiv;
  1987. }
  1988. }
  1989. }
  1990. }
  1991. }
  1992. }
  1993. template<class Real_t>
  1994. inline void matmult_8x8x2(Real_t*& M_, Real_t*& IN0, Real_t*& IN1, Real_t*& OUT0, Real_t*& OUT1){
  1995. // Generic code.
  1996. Real_t out_reg000, out_reg001, out_reg010, out_reg011;
  1997. Real_t out_reg100, out_reg101, out_reg110, out_reg111;
  1998. Real_t in_reg000, in_reg001, in_reg010, in_reg011;
  1999. Real_t in_reg100, in_reg101, in_reg110, in_reg111;
  2000. Real_t m_reg000, m_reg001, m_reg010, m_reg011;
  2001. Real_t m_reg100, m_reg101, m_reg110, m_reg111;
  2002. //#pragma unroll
  2003. for(int i1=0;i1<8;i1+=2){
  2004. Real_t* IN0_=IN0;
  2005. Real_t* IN1_=IN1;
  2006. out_reg000=OUT0[ 0]; out_reg001=OUT0[ 1];
  2007. out_reg010=OUT0[ 2]; out_reg011=OUT0[ 3];
  2008. out_reg100=OUT1[ 0]; out_reg101=OUT1[ 1];
  2009. out_reg110=OUT1[ 2]; out_reg111=OUT1[ 3];
  2010. //#pragma unroll
  2011. for(int i2=0;i2<8;i2+=2){
  2012. m_reg000=M_[ 0]; m_reg001=M_[ 1];
  2013. m_reg010=M_[ 2]; m_reg011=M_[ 3];
  2014. m_reg100=M_[16]; m_reg101=M_[17];
  2015. m_reg110=M_[18]; m_reg111=M_[19];
  2016. in_reg000=IN0_[0]; in_reg001=IN0_[1];
  2017. in_reg010=IN0_[2]; in_reg011=IN0_[3];
  2018. in_reg100=IN1_[0]; in_reg101=IN1_[1];
  2019. in_reg110=IN1_[2]; in_reg111=IN1_[3];
  2020. out_reg000 += m_reg000*in_reg000 - m_reg001*in_reg001;
  2021. out_reg001 += m_reg000*in_reg001 + m_reg001*in_reg000;
  2022. out_reg010 += m_reg010*in_reg000 - m_reg011*in_reg001;
  2023. out_reg011 += m_reg010*in_reg001 + m_reg011*in_reg000;
  2024. out_reg000 += m_reg100*in_reg010 - m_reg101*in_reg011;
  2025. out_reg001 += m_reg100*in_reg011 + m_reg101*in_reg010;
  2026. out_reg010 += m_reg110*in_reg010 - m_reg111*in_reg011;
  2027. out_reg011 += m_reg110*in_reg011 + m_reg111*in_reg010;
  2028. out_reg100 += m_reg000*in_reg100 - m_reg001*in_reg101;
  2029. out_reg101 += m_reg000*in_reg101 + m_reg001*in_reg100;
  2030. out_reg110 += m_reg010*in_reg100 - m_reg011*in_reg101;
  2031. out_reg111 += m_reg010*in_reg101 + m_reg011*in_reg100;
  2032. out_reg100 += m_reg100*in_reg110 - m_reg101*in_reg111;
  2033. out_reg101 += m_reg100*in_reg111 + m_reg101*in_reg110;
  2034. out_reg110 += m_reg110*in_reg110 - m_reg111*in_reg111;
  2035. out_reg111 += m_reg110*in_reg111 + m_reg111*in_reg110;
  2036. M_+=32; // Jump to (column+2).
  2037. IN0_+=4;
  2038. IN1_+=4;
  2039. }
  2040. OUT0[ 0]=out_reg000; OUT0[ 1]=out_reg001;
  2041. OUT0[ 2]=out_reg010; OUT0[ 3]=out_reg011;
  2042. OUT1[ 0]=out_reg100; OUT1[ 1]=out_reg101;
  2043. OUT1[ 2]=out_reg110; OUT1[ 3]=out_reg111;
  2044. M_+=4-64*2; // Jump back to first column (row+2).
  2045. OUT0+=4;
  2046. OUT1+=4;
  2047. }
  2048. }
  2049. #if defined(__AVX__) || defined(__SSE3__)
  2050. template<>
  2051. inline void matmult_8x8x2<double>(double*& M_, double*& IN0, double*& IN1, double*& OUT0, double*& OUT1){
  2052. #ifdef __AVX__ //AVX code.
  2053. __m256d out00,out01,out10,out11;
  2054. __m256d out20,out21,out30,out31;
  2055. double* in0__ = IN0;
  2056. double* in1__ = IN1;
  2057. out00 = _mm256_load_pd(OUT0);
  2058. out01 = _mm256_load_pd(OUT1);
  2059. out10 = _mm256_load_pd(OUT0+4);
  2060. out11 = _mm256_load_pd(OUT1+4);
  2061. out20 = _mm256_load_pd(OUT0+8);
  2062. out21 = _mm256_load_pd(OUT1+8);
  2063. out30 = _mm256_load_pd(OUT0+12);
  2064. out31 = _mm256_load_pd(OUT1+12);
  2065. for(int i2=0;i2<8;i2+=2){
  2066. __m256d m00;
  2067. __m256d ot00;
  2068. __m256d mt0,mtt0;
  2069. __m256d in00,in00_r,in01,in01_r;
  2070. in00 = _mm256_broadcast_pd((const __m128d*)in0__);
  2071. in00_r = _mm256_permute_pd(in00,5);
  2072. in01 = _mm256_broadcast_pd((const __m128d*)in1__);
  2073. in01_r = _mm256_permute_pd(in01,5);
  2074. m00 = _mm256_load_pd(M_);
  2075. mt0 = _mm256_unpacklo_pd(m00,m00);
  2076. ot00 = _mm256_mul_pd(mt0,in00);
  2077. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2078. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2079. ot00 = _mm256_mul_pd(mt0,in01);
  2080. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2081. m00 = _mm256_load_pd(M_+4);
  2082. mt0 = _mm256_unpacklo_pd(m00,m00);
  2083. ot00 = _mm256_mul_pd(mt0,in00);
  2084. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2085. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2086. ot00 = _mm256_mul_pd(mt0,in01);
  2087. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2088. m00 = _mm256_load_pd(M_+8);
  2089. mt0 = _mm256_unpacklo_pd(m00,m00);
  2090. ot00 = _mm256_mul_pd(mt0,in00);
  2091. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2092. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2093. ot00 = _mm256_mul_pd(mt0,in01);
  2094. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2095. m00 = _mm256_load_pd(M_+12);
  2096. mt0 = _mm256_unpacklo_pd(m00,m00);
  2097. ot00 = _mm256_mul_pd(mt0,in00);
  2098. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2099. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2100. ot00 = _mm256_mul_pd(mt0,in01);
  2101. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2102. in00 = _mm256_broadcast_pd((const __m128d*) (in0__+2));
  2103. in00_r = _mm256_permute_pd(in00,5);
  2104. in01 = _mm256_broadcast_pd((const __m128d*) (in1__+2));
  2105. in01_r = _mm256_permute_pd(in01,5);
  2106. m00 = _mm256_load_pd(M_+16);
  2107. mt0 = _mm256_unpacklo_pd(m00,m00);
  2108. ot00 = _mm256_mul_pd(mt0,in00);
  2109. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2110. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2111. ot00 = _mm256_mul_pd(mt0,in01);
  2112. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2113. m00 = _mm256_load_pd(M_+20);
  2114. mt0 = _mm256_unpacklo_pd(m00,m00);
  2115. ot00 = _mm256_mul_pd(mt0,in00);
  2116. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2117. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2118. ot00 = _mm256_mul_pd(mt0,in01);
  2119. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2120. m00 = _mm256_load_pd(M_+24);
  2121. mt0 = _mm256_unpacklo_pd(m00,m00);
  2122. ot00 = _mm256_mul_pd(mt0,in00);
  2123. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2124. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2125. ot00 = _mm256_mul_pd(mt0,in01);
  2126. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2127. m00 = _mm256_load_pd(M_+28);
  2128. mt0 = _mm256_unpacklo_pd(m00,m00);
  2129. ot00 = _mm256_mul_pd(mt0,in00);
  2130. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2131. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2132. ot00 = _mm256_mul_pd(mt0,in01);
  2133. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2134. M_ += 32;
  2135. in0__ += 4;
  2136. in1__ += 4;
  2137. }
  2138. _mm256_store_pd(OUT0,out00);
  2139. _mm256_store_pd(OUT1,out01);
  2140. _mm256_store_pd(OUT0+4,out10);
  2141. _mm256_store_pd(OUT1+4,out11);
  2142. _mm256_store_pd(OUT0+8,out20);
  2143. _mm256_store_pd(OUT1+8,out21);
  2144. _mm256_store_pd(OUT0+12,out30);
  2145. _mm256_store_pd(OUT1+12,out31);
  2146. #elif defined __SSE3__ // SSE code.
  2147. __m128d out00, out01, out10, out11;
  2148. __m128d in00, in01, in10, in11;
  2149. __m128d m00, m01, m10, m11;
  2150. //#pragma unroll
  2151. for(int i1=0;i1<8;i1+=2){
  2152. double* IN0_=IN0;
  2153. double* IN1_=IN1;
  2154. out00 =_mm_load_pd (OUT0 );
  2155. out10 =_mm_load_pd (OUT0+2);
  2156. out01 =_mm_load_pd (OUT1 );
  2157. out11 =_mm_load_pd (OUT1+2);
  2158. //#pragma unroll
  2159. for(int i2=0;i2<8;i2+=2){
  2160. m00 =_mm_load1_pd (M_ );
  2161. m10 =_mm_load1_pd (M_+ 2);
  2162. m01 =_mm_load1_pd (M_+16);
  2163. m11 =_mm_load1_pd (M_+18);
  2164. in00 =_mm_load_pd (IN0_ );
  2165. in10 =_mm_load_pd (IN0_+2);
  2166. in01 =_mm_load_pd (IN1_ );
  2167. in11 =_mm_load_pd (IN1_+2);
  2168. out00 = _mm_add_pd (out00, _mm_mul_pd(m00 , in00 ));
  2169. out00 = _mm_add_pd (out00, _mm_mul_pd(m01 , in10 ));
  2170. out01 = _mm_add_pd (out01, _mm_mul_pd(m00 , in01 ));
  2171. out01 = _mm_add_pd (out01, _mm_mul_pd(m01 , in11 ));
  2172. out10 = _mm_add_pd (out10, _mm_mul_pd(m10 , in00 ));
  2173. out10 = _mm_add_pd (out10, _mm_mul_pd(m11 , in10 ));
  2174. out11 = _mm_add_pd (out11, _mm_mul_pd(m10 , in01 ));
  2175. out11 = _mm_add_pd (out11, _mm_mul_pd(m11 , in11 ));
  2176. m00 =_mm_load1_pd (M_+ 1);
  2177. m10 =_mm_load1_pd (M_+ 2+1);
  2178. m01 =_mm_load1_pd (M_+16+1);
  2179. m11 =_mm_load1_pd (M_+18+1);
  2180. in00 =_mm_shuffle_pd (in00,in00,_MM_SHUFFLE2(0,1));
  2181. in01 =_mm_shuffle_pd (in01,in01,_MM_SHUFFLE2(0,1));
  2182. in10 =_mm_shuffle_pd (in10,in10,_MM_SHUFFLE2(0,1));
  2183. in11 =_mm_shuffle_pd (in11,in11,_MM_SHUFFLE2(0,1));
  2184. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m00, in00));
  2185. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m01, in10));
  2186. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m00, in01));
  2187. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m01, in11));
  2188. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m10, in00));
  2189. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m11, in10));
  2190. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m10, in01));
  2191. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m11, in11));
  2192. M_+=32; // Jump to (column+2).
  2193. IN0_+=4;
  2194. IN1_+=4;
  2195. }
  2196. _mm_store_pd (OUT0 ,out00);
  2197. _mm_store_pd (OUT0+2,out10);
  2198. _mm_store_pd (OUT1 ,out01);
  2199. _mm_store_pd (OUT1+2,out11);
  2200. M_+=4-64*2; // Jump back to first column (row+2).
  2201. OUT0+=4;
  2202. OUT1+=4;
  2203. }
  2204. #endif
  2205. }
  2206. #endif
  2207. #if defined(__SSE3__)
  2208. template<>
  2209. inline void matmult_8x8x2<float>(float*& M_, float*& IN0, float*& IN1, float*& OUT0, float*& OUT1){
  2210. #if defined __SSE3__ // SSE code.
  2211. __m128 out00,out01,out10,out11;
  2212. __m128 out20,out21,out30,out31;
  2213. float* in0__ = IN0;
  2214. float* in1__ = IN1;
  2215. out00 = _mm_load_ps(OUT0);
  2216. out01 = _mm_load_ps(OUT1);
  2217. out10 = _mm_load_ps(OUT0+4);
  2218. out11 = _mm_load_ps(OUT1+4);
  2219. out20 = _mm_load_ps(OUT0+8);
  2220. out21 = _mm_load_ps(OUT1+8);
  2221. out30 = _mm_load_ps(OUT0+12);
  2222. out31 = _mm_load_ps(OUT1+12);
  2223. for(int i2=0;i2<8;i2+=2){
  2224. __m128 m00;
  2225. __m128 ot00;
  2226. __m128 mt0,mtt0;
  2227. __m128 in00,in00_r,in01,in01_r;
  2228. in00 = _mm_castpd_ps(_mm_load_pd1((const double*)in0__));
  2229. in00_r = _mm_shuffle_ps(in00,in00,_MM_SHUFFLE(2,3,0,1));
  2230. in01 = _mm_castpd_ps(_mm_load_pd1((const double*)in1__));
  2231. in01_r = _mm_shuffle_ps(in01,in01,_MM_SHUFFLE(2,3,0,1));
  2232. m00 = _mm_load_ps(M_);
  2233. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2234. out00= _mm_add_ps (out00,_mm_mul_ps( mt0,in00 ));
  2235. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2236. out00= _mm_addsub_ps(out00,_mm_mul_ps(mtt0,in00_r));
  2237. out01 = _mm_add_ps (out01,_mm_mul_ps( mt0,in01 ));
  2238. out01 = _mm_addsub_ps(out01,_mm_mul_ps(mtt0,in01_r));
  2239. m00 = _mm_load_ps(M_+4);
  2240. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2241. out10= _mm_add_ps (out10,_mm_mul_ps( mt0,in00 ));
  2242. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2243. out10= _mm_addsub_ps(out10,_mm_mul_ps(mtt0,in00_r));
  2244. out11 = _mm_add_ps (out11,_mm_mul_ps( mt0,in01 ));
  2245. out11 = _mm_addsub_ps(out11,_mm_mul_ps(mtt0,in01_r));
  2246. m00 = _mm_load_ps(M_+8);
  2247. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2248. out20= _mm_add_ps (out20,_mm_mul_ps( mt0,in00 ));
  2249. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2250. out20= _mm_addsub_ps(out20,_mm_mul_ps(mtt0,in00_r));
  2251. out21 = _mm_add_ps (out21,_mm_mul_ps( mt0,in01 ));
  2252. out21 = _mm_addsub_ps(out21,_mm_mul_ps(mtt0,in01_r));
  2253. m00 = _mm_load_ps(M_+12);
  2254. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2255. out30= _mm_add_ps (out30,_mm_mul_ps( mt0, in00));
  2256. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2257. out30= _mm_addsub_ps(out30,_mm_mul_ps(mtt0,in00_r));
  2258. out31 = _mm_add_ps (out31,_mm_mul_ps( mt0,in01 ));
  2259. out31 = _mm_addsub_ps(out31,_mm_mul_ps(mtt0,in01_r));
  2260. in00 = _mm_castpd_ps(_mm_load_pd1((const double*) (in0__+2)));
  2261. in00_r = _mm_shuffle_ps(in00,in00,_MM_SHUFFLE(2,3,0,1));
  2262. in01 = _mm_castpd_ps(_mm_load_pd1((const double*) (in1__+2)));
  2263. in01_r = _mm_shuffle_ps(in01,in01,_MM_SHUFFLE(2,3,0,1));
  2264. m00 = _mm_load_ps(M_+16);
  2265. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2266. out00= _mm_add_ps (out00,_mm_mul_ps( mt0,in00 ));
  2267. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2268. out00= _mm_addsub_ps(out00,_mm_mul_ps(mtt0,in00_r));
  2269. out01 = _mm_add_ps (out01,_mm_mul_ps( mt0,in01 ));
  2270. out01 = _mm_addsub_ps(out01,_mm_mul_ps(mtt0,in01_r));
  2271. m00 = _mm_load_ps(M_+20);
  2272. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2273. out10= _mm_add_ps (out10,_mm_mul_ps( mt0,in00 ));
  2274. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2275. out10= _mm_addsub_ps(out10,_mm_mul_ps(mtt0,in00_r));
  2276. out11 = _mm_add_ps (out11,_mm_mul_ps( mt0,in01 ));
  2277. out11 = _mm_addsub_ps(out11,_mm_mul_ps(mtt0,in01_r));
  2278. m00 = _mm_load_ps(M_+24);
  2279. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2280. out20= _mm_add_ps (out20,_mm_mul_ps( mt0,in00 ));
  2281. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2282. out20= _mm_addsub_ps(out20,_mm_mul_ps(mtt0,in00_r));
  2283. out21 = _mm_add_ps (out21,_mm_mul_ps( mt0,in01 ));
  2284. out21 = _mm_addsub_ps(out21,_mm_mul_ps(mtt0,in01_r));
  2285. m00 = _mm_load_ps(M_+28);
  2286. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2287. out30= _mm_add_ps (out30,_mm_mul_ps( mt0,in00 ));
  2288. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2289. out30= _mm_addsub_ps(out30,_mm_mul_ps(mtt0,in00_r));
  2290. out31 = _mm_add_ps (out31,_mm_mul_ps( mt0,in01 ));
  2291. out31 = _mm_addsub_ps(out31,_mm_mul_ps(mtt0,in01_r));
  2292. M_ += 32;
  2293. in0__ += 4;
  2294. in1__ += 4;
  2295. }
  2296. _mm_store_ps(OUT0,out00);
  2297. _mm_store_ps(OUT1,out01);
  2298. _mm_store_ps(OUT0+4,out10);
  2299. _mm_store_ps(OUT1+4,out11);
  2300. _mm_store_ps(OUT0+8,out20);
  2301. _mm_store_ps(OUT1+8,out21);
  2302. _mm_store_ps(OUT0+12,out30);
  2303. _mm_store_ps(OUT1+12,out31);
  2304. #endif
  2305. }
  2306. #endif
  2307. template <class Real_t>
  2308. void VListHadamard(size_t dof, size_t M_dim, size_t ker_dim0, size_t ker_dim1, Vector<size_t>& interac_dsp,
  2309. Vector<size_t>& interac_vec, Vector<Real_t*>& precomp_mat, Vector<Real_t>& fft_in, Vector<Real_t>& fft_out){
  2310. size_t chld_cnt=1UL<<COORD_DIM;
  2311. size_t fftsize_in =M_dim*ker_dim0*chld_cnt*2;
  2312. size_t fftsize_out=M_dim*ker_dim1*chld_cnt*2;
  2313. Real_t* zero_vec0=mem::aligned_new<Real_t>(fftsize_in );
  2314. Real_t* zero_vec1=mem::aligned_new<Real_t>(fftsize_out);
  2315. size_t n_out=fft_out.Dim()/fftsize_out;
  2316. // Set buff_out to zero.
  2317. #pragma omp parallel for
  2318. for(size_t k=0;k<n_out;k++){
  2319. Vector<Real_t> dnward_check_fft(fftsize_out, &fft_out[k*fftsize_out], false);
  2320. dnward_check_fft.SetZero();
  2321. }
  2322. // Build list of interaction pairs (in, out vectors).
  2323. size_t mat_cnt=precomp_mat.Dim();
  2324. size_t blk1_cnt=interac_dsp.Dim()/mat_cnt;
  2325. const size_t V_BLK_SIZE=V_BLK_CACHE*64/sizeof(Real_t);
  2326. Real_t** IN_ =mem::aligned_new<Real_t*>(2*V_BLK_SIZE*blk1_cnt*mat_cnt);
  2327. Real_t** OUT_=mem::aligned_new<Real_t*>(2*V_BLK_SIZE*blk1_cnt*mat_cnt);
  2328. #pragma omp parallel for
  2329. for(size_t interac_blk1=0; interac_blk1<blk1_cnt*mat_cnt; interac_blk1++){
  2330. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2331. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2332. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2333. for(size_t j=0;j<interac_cnt;j++){
  2334. IN_ [2*V_BLK_SIZE*interac_blk1 +j]=&fft_in [interac_vec[(interac_dsp0+j)*2+0]];
  2335. OUT_[2*V_BLK_SIZE*interac_blk1 +j]=&fft_out[interac_vec[(interac_dsp0+j)*2+1]];
  2336. }
  2337. IN_ [2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec0;
  2338. OUT_[2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec1;
  2339. }
  2340. int omp_p=omp_get_max_threads();
  2341. #pragma omp parallel for
  2342. for(int pid=0; pid<omp_p; pid++){
  2343. size_t a=( pid *M_dim)/omp_p;
  2344. size_t b=((pid+1)*M_dim)/omp_p;
  2345. for(int in_dim=0;in_dim<ker_dim0;in_dim++)
  2346. for(int ot_dim=0;ot_dim<ker_dim1;ot_dim++)
  2347. for(size_t blk1=0; blk1<blk1_cnt; blk1++)
  2348. for(size_t k=a; k< b; k++)
  2349. for(size_t mat_indx=0; mat_indx< mat_cnt;mat_indx++){
  2350. size_t interac_blk1 = blk1*mat_cnt+mat_indx;
  2351. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2352. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2353. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2354. Real_t** IN = IN_ + 2*V_BLK_SIZE*interac_blk1;
  2355. Real_t** OUT= OUT_+ 2*V_BLK_SIZE*interac_blk1;
  2356. Real_t* M = precomp_mat[mat_indx] + k*chld_cnt*chld_cnt*2 + (ot_dim+in_dim*ker_dim1)*M_dim*128;
  2357. {
  2358. for(size_t j=0;j<interac_cnt;j+=2){
  2359. Real_t* M_ = M;
  2360. Real_t* IN0 = IN [j+0] + (in_dim*M_dim+k)*chld_cnt*2;
  2361. Real_t* IN1 = IN [j+1] + (in_dim*M_dim+k)*chld_cnt*2;
  2362. Real_t* OUT0 = OUT[j+0] + (ot_dim*M_dim+k)*chld_cnt*2;
  2363. Real_t* OUT1 = OUT[j+1] + (ot_dim*M_dim+k)*chld_cnt*2;
  2364. #ifdef __SSE__
  2365. if (j+2 < interac_cnt) { // Prefetch
  2366. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2367. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2368. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2369. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2370. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2371. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2372. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2373. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2374. }
  2375. #endif
  2376. matmult_8x8x2(M_, IN0, IN1, OUT0, OUT1);
  2377. }
  2378. }
  2379. }
  2380. }
  2381. // Compute flops.
  2382. {
  2383. Profile::Add_FLOP(8*8*8*(interac_vec.Dim()/2)*M_dim*ker_dim0*ker_dim1*dof);
  2384. }
  2385. // Free memory
  2386. mem::aligned_delete<Real_t*>(IN_ );
  2387. mem::aligned_delete<Real_t*>(OUT_);
  2388. mem::aligned_delete<Real_t>(zero_vec0);
  2389. mem::aligned_delete<Real_t>(zero_vec1);
  2390. }
  2391. template <class FMMNode>
  2392. void FMM_Pts<FMMNode>::V_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2393. if(this->MultipoleOrder()==0) return;
  2394. if(level==0) return;
  2395. { // Set setup_data
  2396. setup_data.level=level;
  2397. setup_data.kernel=kernel->k_m2l;
  2398. setup_data.interac_type.resize(1);
  2399. setup_data.interac_type[0]=V1_Type;
  2400. setup_data. input_data=&buff[0];
  2401. setup_data.output_data=&buff[1];
  2402. Vector<FMMNode_t*>& nodes_in =n_list[2];
  2403. Vector<FMMNode_t*>& nodes_out=n_list[3];
  2404. setup_data.nodes_in .clear();
  2405. setup_data.nodes_out.clear();
  2406. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2407. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level-1 || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2408. }
  2409. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2410. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2411. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2412. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2413. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_in [i])->Child(0))->FMMData())->upward_equiv);
  2414. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_out[i])->Child(0))->FMMData())->dnward_equiv);
  2415. /////////////////////////////////////////////////////////////////////////////
  2416. Real_t eps=1e-10;
  2417. size_t n_in =nodes_in .size();
  2418. size_t n_out=nodes_out.size();
  2419. // Setup precomputed data.
  2420. if(setup_data.precomp_data->Dim(0)*setup_data.precomp_data->Dim(1)==0) SetupPrecomp(setup_data,device);
  2421. // Build interac_data
  2422. Profile::Tic("Interac-Data",&this->comm,true,25);
  2423. Matrix<char>& interac_data=setup_data.interac_data;
  2424. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  2425. size_t precomp_offset=0;
  2426. Mat_Type& interac_type=setup_data.interac_type[0];
  2427. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2428. Matrix<size_t> precomp_data_offset;
  2429. std::vector<size_t> interac_mat;
  2430. { // Load precomp_data for interac_type.
  2431. struct HeaderData{
  2432. size_t total_size;
  2433. size_t level;
  2434. size_t mat_cnt ;
  2435. size_t max_depth;
  2436. };
  2437. Matrix<char>& precomp_data=*setup_data.precomp_data;
  2438. char* indx_ptr=precomp_data[0]+precomp_offset;
  2439. HeaderData& header=*(HeaderData*)indx_ptr;indx_ptr+=sizeof(HeaderData);
  2440. precomp_data_offset.ReInit(header.mat_cnt,1+(2+2)*header.max_depth, (size_t*)indx_ptr, false);
  2441. precomp_offset+=header.total_size;
  2442. for(size_t mat_id=0;mat_id<mat_cnt;mat_id++){
  2443. Matrix<Real_t>& M0 = this->mat->Mat(level, interac_type, mat_id);
  2444. assert(M0.Dim(0)>0 && M0.Dim(1)>0); UNUSED(M0);
  2445. interac_mat.push_back(precomp_data_offset[mat_id][0]);
  2446. }
  2447. }
  2448. size_t dof;
  2449. size_t m=MultipoleOrder();
  2450. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2451. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2452. size_t fftsize;
  2453. {
  2454. size_t n1=m*2;
  2455. size_t n2=n1*n1;
  2456. size_t n3_=n2*(n1/2+1);
  2457. size_t chld_cnt=1UL<<COORD_DIM;
  2458. fftsize=2*n3_*chld_cnt;
  2459. dof=1;
  2460. }
  2461. int omp_p=omp_get_max_threads();
  2462. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2463. size_t n_blk0=2*fftsize*dof*(ker_dim0*n_in +ker_dim1*n_out)*sizeof(Real_t)/buff_size;
  2464. if(n_blk0==0) n_blk0=1;
  2465. std::vector<std::vector<size_t> > fft_vec(n_blk0);
  2466. std::vector<std::vector<size_t> > ifft_vec(n_blk0);
  2467. std::vector<std::vector<Real_t> > fft_scl(n_blk0);
  2468. std::vector<std::vector<Real_t> > ifft_scl(n_blk0);
  2469. std::vector<std::vector<size_t> > interac_vec(n_blk0);
  2470. std::vector<std::vector<size_t> > interac_dsp(n_blk0);
  2471. {
  2472. Matrix<Real_t>& input_data=*setup_data. input_data;
  2473. Matrix<Real_t>& output_data=*setup_data.output_data;
  2474. std::vector<std::vector<FMMNode*> > nodes_blk_in (n_blk0);
  2475. std::vector<std::vector<FMMNode*> > nodes_blk_out(n_blk0);
  2476. Vector<Real_t> src_scal;
  2477. Vector<Real_t> trg_scal;
  2478. { // Set src_scal and trg_scal.
  2479. Vector<Real_t>& src_scal_m2l=this->kernel->k_m2l->src_scal;
  2480. Vector<Real_t>& trg_scal_m2l=this->kernel->k_m2l->trg_scal;
  2481. Vector<Real_t>& src_scal_l2l=this->kernel->k_l2l->src_scal;
  2482. Vector<Real_t>& trg_scal_l2l=this->kernel->k_l2l->trg_scal;
  2483. src_scal=src_scal_m2l;
  2484. trg_scal=src_scal_l2l;
  2485. size_t scal_dim0=src_scal.Dim();
  2486. size_t scal_dim1=trg_scal.Dim();
  2487. Real_t scal_diff=0;
  2488. assert(trg_scal_m2l.Dim()==trg_scal_l2l.Dim());
  2489. if(trg_scal_m2l.Dim()){
  2490. scal_diff=(trg_scal_m2l[0]-trg_scal_l2l[0]);
  2491. for(size_t i=1;i<trg_scal_m2l.Dim();i++){
  2492. assert(fabs(scal_diff-(trg_scal_m2l[1]-trg_scal_l2l[1]))<eps);
  2493. }
  2494. }
  2495. for(size_t i=0;i<trg_scal.Dim();i++){
  2496. trg_scal[i]=scal_diff-trg_scal[i];
  2497. }
  2498. }
  2499. for(size_t i=0;i<n_in;i++) ((FMMNode*)nodes_in[i])->node_id=i;
  2500. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2501. size_t blk0_start=(n_out* blk0 )/n_blk0;
  2502. size_t blk0_end =(n_out*(blk0+1))/n_blk0;
  2503. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2504. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2505. { // Build node list for blk0.
  2506. std::set<void*> nodes_in;
  2507. for(size_t i=blk0_start;i<blk0_end;i++){
  2508. nodes_out_.push_back((FMMNode*)nodes_out[i]);
  2509. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2510. for(size_t k=0;k<mat_cnt;k++) if(lst[k]!=NULL) nodes_in.insert(lst[k]);
  2511. }
  2512. for(std::set<void*>::iterator node=nodes_in.begin(); node != nodes_in.end(); node++){
  2513. nodes_in_.push_back((FMMNode*)*node);
  2514. }
  2515. size_t input_dim=nodes_in_ .size()*ker_dim0*dof*fftsize;
  2516. size_t output_dim=nodes_out_.size()*ker_dim1*dof*fftsize;
  2517. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2518. if(buff_size<(input_dim + output_dim + buffer_dim)*sizeof(Real_t))
  2519. buff_size=(input_dim + output_dim + buffer_dim)*sizeof(Real_t);
  2520. }
  2521. { // Set fft vectors.
  2522. for(size_t i=0;i<nodes_in_ .size();i++) fft_vec[blk0].push_back((size_t)(& input_vector[nodes_in_[i]->node_id][0][0]- input_data[0]));
  2523. for(size_t i=0;i<nodes_out_.size();i++)ifft_vec[blk0].push_back((size_t)(&output_vector[blk0_start + i ][0][0]-output_data[0]));
  2524. size_t scal_dim0=src_scal.Dim();
  2525. size_t scal_dim1=trg_scal.Dim();
  2526. fft_scl [blk0].resize(nodes_in_ .size()*scal_dim0);
  2527. ifft_scl[blk0].resize(nodes_out_.size()*scal_dim1);
  2528. for(size_t i=0;i<nodes_in_ .size();i++){
  2529. size_t depth=nodes_in_[i]->Depth()+1;
  2530. for(size_t j=0;j<scal_dim0;j++){
  2531. fft_scl[blk0][i*scal_dim0+j]=pow(2.0, src_scal[j]*depth);
  2532. }
  2533. }
  2534. for(size_t i=0;i<nodes_out_.size();i++){
  2535. size_t depth=nodes_out_[i]->Depth()+1;
  2536. for(size_t j=0;j<scal_dim1;j++){
  2537. ifft_scl[blk0][i*scal_dim1+j]=pow(2.0, trg_scal[j]*depth);
  2538. }
  2539. }
  2540. }
  2541. }
  2542. for(size_t blk0=0;blk0<n_blk0;blk0++){ // Hadamard interactions.
  2543. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2544. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2545. for(size_t i=0;i<nodes_in_.size();i++) nodes_in_[i]->node_id=i;
  2546. { // Next blocking level.
  2547. size_t n_blk1=nodes_out_.size()*(2)*sizeof(Real_t)/(64*V_BLK_CACHE);
  2548. if(n_blk1==0) n_blk1=1;
  2549. size_t interac_dsp_=0;
  2550. for(size_t blk1=0;blk1<n_blk1;blk1++){
  2551. size_t blk1_start=(nodes_out_.size()* blk1 )/n_blk1;
  2552. size_t blk1_end =(nodes_out_.size()*(blk1+1))/n_blk1;
  2553. for(size_t k=0;k<mat_cnt;k++){
  2554. for(size_t i=blk1_start;i<blk1_end;i++){
  2555. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out_[i])->interac_list[interac_type];
  2556. if(lst[k]!=NULL){
  2557. interac_vec[blk0].push_back(lst[k]->node_id*fftsize*ker_dim0*dof);
  2558. interac_vec[blk0].push_back( i *fftsize*ker_dim1*dof);
  2559. interac_dsp_++;
  2560. }
  2561. }
  2562. interac_dsp[blk0].push_back(interac_dsp_);
  2563. }
  2564. }
  2565. }
  2566. }
  2567. }
  2568. { // Set interac_data.
  2569. size_t data_size=sizeof(size_t)*6; // buff_size, m, dof, ker_dim0, ker_dim1, n_blk0
  2570. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2571. data_size+=sizeof(size_t)+ fft_vec[blk0].size()*sizeof(size_t);
  2572. data_size+=sizeof(size_t)+ ifft_vec[blk0].size()*sizeof(size_t);
  2573. data_size+=sizeof(size_t)+ fft_scl[blk0].size()*sizeof(Real_t);
  2574. data_size+=sizeof(size_t)+ ifft_scl[blk0].size()*sizeof(Real_t);
  2575. data_size+=sizeof(size_t)+interac_vec[blk0].size()*sizeof(size_t);
  2576. data_size+=sizeof(size_t)+interac_dsp[blk0].size()*sizeof(size_t);
  2577. }
  2578. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  2579. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2580. interac_data.ReInit(1,data_size);
  2581. char* data_ptr=&interac_data[0][0];
  2582. ((size_t*)data_ptr)[0]=buff_size; data_ptr+=sizeof(size_t);
  2583. ((size_t*)data_ptr)[0]= m; data_ptr+=sizeof(size_t);
  2584. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2585. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2586. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2587. ((size_t*)data_ptr)[0]= n_blk0; data_ptr+=sizeof(size_t);
  2588. ((size_t*)data_ptr)[0]= interac_mat.size(); data_ptr+=sizeof(size_t);
  2589. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  2590. data_ptr+=interac_mat.size()*sizeof(size_t);
  2591. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2592. ((size_t*)data_ptr)[0]= fft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2593. mem::memcopy(data_ptr, & fft_vec[blk0][0], fft_vec[blk0].size()*sizeof(size_t));
  2594. data_ptr+= fft_vec[blk0].size()*sizeof(size_t);
  2595. ((size_t*)data_ptr)[0]=ifft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2596. mem::memcopy(data_ptr, &ifft_vec[blk0][0], ifft_vec[blk0].size()*sizeof(size_t));
  2597. data_ptr+=ifft_vec[blk0].size()*sizeof(size_t);
  2598. ((size_t*)data_ptr)[0]= fft_scl[blk0].size(); data_ptr+=sizeof(size_t);
  2599. mem::memcopy(data_ptr, & fft_scl[blk0][0], fft_scl[blk0].size()*sizeof(Real_t));
  2600. data_ptr+= fft_scl[blk0].size()*sizeof(Real_t);
  2601. ((size_t*)data_ptr)[0]=ifft_scl[blk0].size(); data_ptr+=sizeof(size_t);
  2602. mem::memcopy(data_ptr, &ifft_scl[blk0][0], ifft_scl[blk0].size()*sizeof(Real_t));
  2603. data_ptr+=ifft_scl[blk0].size()*sizeof(Real_t);
  2604. ((size_t*)data_ptr)[0]=interac_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2605. mem::memcopy(data_ptr, &interac_vec[blk0][0], interac_vec[blk0].size()*sizeof(size_t));
  2606. data_ptr+=interac_vec[blk0].size()*sizeof(size_t);
  2607. ((size_t*)data_ptr)[0]=interac_dsp[blk0].size(); data_ptr+=sizeof(size_t);
  2608. mem::memcopy(data_ptr, &interac_dsp[blk0][0], interac_dsp[blk0].size()*sizeof(size_t));
  2609. data_ptr+=interac_dsp[blk0].size()*sizeof(size_t);
  2610. }
  2611. }
  2612. }
  2613. Profile::Toc();
  2614. if(device){ // Host2Device
  2615. Profile::Tic("Host2Device",&this->comm,false,25);
  2616. setup_data.interac_data. AllocDevice(true);
  2617. Profile::Toc();
  2618. }
  2619. }
  2620. template <class FMMNode>
  2621. void FMM_Pts<FMMNode>::V_List (SetupData<Real_t>& setup_data, bool device){
  2622. assert(!device); //Can not run on accelerator yet.
  2623. int np;
  2624. MPI_Comm_size(comm,&np);
  2625. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2626. if(np>1) Profile::Tic("Host2Device",&this->comm,false,25);
  2627. if(np>1) Profile::Toc();
  2628. return;
  2629. }
  2630. Profile::Tic("Host2Device",&this->comm,false,25);
  2631. int level=setup_data.level;
  2632. size_t buff_size=*((size_t*)&setup_data.interac_data[0][0]);
  2633. typename Matrix<Real_t>::Device M_d;
  2634. typename Vector<char>::Device buff;
  2635. typename Matrix<char>::Device precomp_data;
  2636. typename Matrix<char>::Device interac_data;
  2637. typename Matrix<Real_t>::Device input_data;
  2638. typename Matrix<Real_t>::Device output_data;
  2639. Matrix<Real_t>& M = this->mat->Mat(level, DC2DE_Type, 0);
  2640. if(device){
  2641. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.ReInit(buff_size);
  2642. M_d = M. AllocDevice(false);
  2643. buff = this-> dev_buffer. AllocDevice(false);
  2644. precomp_data= setup_data.precomp_data->AllocDevice(false);
  2645. interac_data= setup_data.interac_data. AllocDevice(false);
  2646. input_data = setup_data. input_data->AllocDevice(false);
  2647. output_data = setup_data. output_data->AllocDevice(false);
  2648. }else{
  2649. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.ReInit(buff_size);
  2650. M_d = M;
  2651. buff = this-> cpu_buffer;
  2652. precomp_data=*setup_data.precomp_data;
  2653. interac_data= setup_data.interac_data;
  2654. input_data =*setup_data. input_data;
  2655. output_data =*setup_data. output_data;
  2656. }
  2657. Profile::Toc();
  2658. { // Offloaded computation.
  2659. // Set interac_data.
  2660. size_t m, dof, ker_dim0, ker_dim1, n_blk0;
  2661. std::vector<Vector<size_t> > fft_vec;
  2662. std::vector<Vector<size_t> > ifft_vec;
  2663. std::vector<Vector<Real_t> > fft_scl;
  2664. std::vector<Vector<Real_t> > ifft_scl;
  2665. std::vector<Vector<size_t> > interac_vec;
  2666. std::vector<Vector<size_t> > interac_dsp;
  2667. Vector<Real_t*> precomp_mat;
  2668. { // Set interac_data.
  2669. char* data_ptr=&interac_data[0][0];
  2670. buff_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2671. m =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2672. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2673. ker_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2674. ker_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2675. n_blk0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2676. fft_vec .resize(n_blk0);
  2677. ifft_vec.resize(n_blk0);
  2678. fft_scl .resize(n_blk0);
  2679. ifft_scl.resize(n_blk0);
  2680. interac_vec.resize(n_blk0);
  2681. interac_dsp.resize(n_blk0);
  2682. Vector<size_t> interac_mat;
  2683. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2684. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  2685. precomp_mat.Resize(interac_mat.Dim());
  2686. for(size_t i=0;i<interac_mat.Dim();i++){
  2687. precomp_mat[i]=(Real_t*)(precomp_data[0]+interac_mat[i]);
  2688. }
  2689. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2690. fft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2691. data_ptr+=sizeof(size_t)+fft_vec[blk0].Dim()*sizeof(size_t);
  2692. ifft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2693. data_ptr+=sizeof(size_t)+ifft_vec[blk0].Dim()*sizeof(size_t);
  2694. fft_scl[blk0].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2695. data_ptr+=sizeof(size_t)+fft_scl[blk0].Dim()*sizeof(Real_t);
  2696. ifft_scl[blk0].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2697. data_ptr+=sizeof(size_t)+ifft_scl[blk0].Dim()*sizeof(Real_t);
  2698. interac_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2699. data_ptr+=sizeof(size_t)+interac_vec[blk0].Dim()*sizeof(size_t);
  2700. interac_dsp[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2701. data_ptr+=sizeof(size_t)+interac_dsp[blk0].Dim()*sizeof(size_t);
  2702. }
  2703. }
  2704. int omp_p=omp_get_max_threads();
  2705. size_t M_dim, fftsize;
  2706. {
  2707. size_t n1=m*2;
  2708. size_t n2=n1*n1;
  2709. size_t n3_=n2*(n1/2+1);
  2710. size_t chld_cnt=1UL<<COORD_DIM;
  2711. fftsize=2*n3_*chld_cnt;
  2712. M_dim=n3_;
  2713. }
  2714. for(size_t blk0=0;blk0<n_blk0;blk0++){ // interactions
  2715. size_t n_in = fft_vec[blk0].Dim();
  2716. size_t n_out=ifft_vec[blk0].Dim();
  2717. size_t input_dim=n_in *ker_dim0*dof*fftsize;
  2718. size_t output_dim=n_out*ker_dim1*dof*fftsize;
  2719. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2720. Vector<Real_t> fft_in ( input_dim, (Real_t*)&buff[ 0 ],false);
  2721. Vector<Real_t> fft_out(output_dim, (Real_t*)&buff[ input_dim *sizeof(Real_t)],false);
  2722. Vector<Real_t> buffer(buffer_dim, (Real_t*)&buff[(input_dim+output_dim)*sizeof(Real_t)],false);
  2723. { // FFT
  2724. if(np==1) Profile::Tic("FFT",&comm,false,100);
  2725. Vector<Real_t> input_data_( input_data.dim[0]* input_data.dim[1], input_data[0], false);
  2726. FFT_UpEquiv(dof, m, ker_dim0, fft_vec[blk0], fft_scl[blk0], input_data_, fft_in, buffer);
  2727. if(np==1) Profile::Toc();
  2728. }
  2729. { // Hadamard
  2730. #ifdef PVFMM_HAVE_PAPI
  2731. #ifdef __VERBOSE__
  2732. std::cout << "Starting counters new\n";
  2733. if (PAPI_start(EventSet) != PAPI_OK) std::cout << "handle_error3" << std::endl;
  2734. #endif
  2735. #endif
  2736. if(np==1) Profile::Tic("HadamardProduct",&comm,false,100);
  2737. VListHadamard<Real_t>(dof, M_dim, ker_dim0, ker_dim1, interac_dsp[blk0], interac_vec[blk0], precomp_mat, fft_in, fft_out);
  2738. if(np==1) Profile::Toc();
  2739. #ifdef PVFMM_HAVE_PAPI
  2740. #ifdef __VERBOSE__
  2741. if (PAPI_stop(EventSet, values) != PAPI_OK) std::cout << "handle_error4" << std::endl;
  2742. std::cout << "Stopping counters\n";
  2743. #endif
  2744. #endif
  2745. }
  2746. { // IFFT
  2747. if(np==1) Profile::Tic("IFFT",&comm,false,100);
  2748. Matrix<Real_t> M(M_d.dim[0],M_d.dim[1],M_d[0],false);
  2749. Vector<Real_t> output_data_(output_data.dim[0]*output_data.dim[1], output_data[0], false);
  2750. FFT_Check2Equiv(dof, m, ker_dim1, ifft_vec[blk0], ifft_scl[blk0], fft_out, output_data_, buffer, M);
  2751. if(np==1) Profile::Toc();
  2752. }
  2753. }
  2754. }
  2755. }
  2756. template <class FMMNode>
  2757. void FMM_Pts<FMMNode>::Down2DownSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2758. if(this->MultipoleOrder()==0) return;
  2759. { // Set setup_data
  2760. setup_data.level=level;
  2761. setup_data.kernel=kernel->k_l2l;
  2762. setup_data.interac_type.resize(1);
  2763. setup_data.interac_type[0]=D2D_Type;
  2764. setup_data. input_data=&buff[1];
  2765. setup_data.output_data=&buff[1];
  2766. Vector<FMMNode_t*>& nodes_in =n_list[1];
  2767. Vector<FMMNode_t*>& nodes_out=n_list[1];
  2768. setup_data.nodes_in .clear();
  2769. setup_data.nodes_out.clear();
  2770. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2771. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
  2772. }
  2773. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2774. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2775. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2776. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2777. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  2778. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  2779. SetupInterac(setup_data,device);
  2780. }
  2781. template <class FMMNode>
  2782. void FMM_Pts<FMMNode>::Down2Down (SetupData<Real_t>& setup_data, bool device){
  2783. //Add Down2Down contribution.
  2784. EvalList(setup_data, device);
  2785. }
  2786. template <class FMMNode>
  2787. void FMM_Pts<FMMNode>::SetupInteracPts(SetupData<Real_t>& setup_data, bool shift_src, bool shift_trg, Matrix<Real_t>* M, bool device){
  2788. int level=setup_data.level;
  2789. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  2790. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2791. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2792. Matrix<Real_t>& output_data=*setup_data.output_data;
  2793. Matrix<Real_t>& input_data=*setup_data. input_data;
  2794. Matrix<Real_t>& coord_data=*setup_data. coord_data;
  2795. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  2796. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  2797. size_t n_in =nodes_in .size();
  2798. size_t n_out=nodes_out.size();
  2799. //setup_data.precomp_data=NULL;
  2800. // Build interac_data
  2801. Profile::Tic("Interac-Data",&this->comm,true,25);
  2802. Matrix<char>& interac_data=setup_data.interac_data;
  2803. if(n_out>0 && n_in >0){
  2804. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2805. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2806. size_t dof=1;
  2807. #pragma omp parallel for
  2808. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  2809. std::vector<size_t> trg_interac_cnt(n_out,0);
  2810. std::vector<size_t> trg_coord(n_out);
  2811. std::vector<size_t> trg_value(n_out);
  2812. std::vector<size_t> trg_cnt(n_out);
  2813. size_t scal_dim0=0;
  2814. size_t scal_dim1=0;
  2815. Vector<Real_t> scal_exp0;
  2816. Vector<Real_t> scal_exp1;
  2817. { // Set src_scal_exp, trg_scal_exp
  2818. Mat_Type& interac_type=interac_type_lst[0];
  2819. if(interac_type==S2U_Type) scal_exp0=this->kernel->k_m2m->trg_scal;
  2820. if(interac_type==S2U_Type) scal_exp1=this->kernel->k_m2m->src_scal;
  2821. if(interac_type== X_Type) scal_exp0=this->kernel->k_l2l->trg_scal;
  2822. if(interac_type== X_Type) scal_exp1=this->kernel->k_l2l->src_scal;
  2823. scal_dim0=scal_exp0.Dim();
  2824. scal_dim1=scal_exp1.Dim();
  2825. }
  2826. std::vector<Real_t> scal0(n_out*scal_dim0,0);
  2827. std::vector<Real_t> scal1(n_out*scal_dim1,0);
  2828. { // Set trg data
  2829. Mat_Type& interac_type=interac_type_lst[0];
  2830. #pragma omp parallel for
  2831. for(size_t i=0;i<n_out;i++){
  2832. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2833. trg_cnt [i]=output_vector[i*2+0]->Dim()/COORD_DIM;
  2834. trg_coord[i]=(size_t)(&output_vector[i*2+0][0][0]- coord_data[0]);
  2835. trg_value[i]=(size_t)(&output_vector[i*2+1][0][0]-output_data[0]);
  2836. size_t depth=((FMMNode*)nodes_out[i])->Depth();
  2837. Real_t* scal0_=&scal0[i*scal_dim0];
  2838. Real_t* scal1_=&scal1[i*scal_dim1];
  2839. for(size_t j=0;j<scal_dim0;j++){
  2840. if(!this->Homogen()) scal0_[j]=1.0;
  2841. else if(interac_type==S2U_Type) scal0_[j]=pow(0.5, scal_exp0[j]*depth);
  2842. else if(interac_type== X_Type) scal0_[j]=pow(0.5, scal_exp0[j]*depth);
  2843. }
  2844. for(size_t j=0;j<scal_dim1;j++){
  2845. if(!this->Homogen()) scal1_[j]=1.0;
  2846. else if(interac_type==S2U_Type) scal1_[j]=pow(0.5, scal_exp1[j]*depth);
  2847. else if(interac_type== X_Type) scal1_[j]=pow(0.5, scal_exp1[j]*depth);
  2848. }
  2849. }
  2850. }
  2851. }
  2852. std::vector<std::vector<size_t> > src_cnt(n_out);
  2853. std::vector<std::vector<size_t> > src_coord(n_out);
  2854. std::vector<std::vector<size_t> > src_value(n_out);
  2855. std::vector<std::vector<Real_t> > shift_coord(n_out);
  2856. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  2857. Mat_Type& interac_type=interac_type_lst[type_indx];
  2858. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2859. #pragma omp parallel for
  2860. for(size_t i=0;i<n_out;i++){ // For each target node.
  2861. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2862. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2863. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++) if(lst[mat_indx]!=NULL){ // For each direction.
  2864. size_t j=lst[mat_indx]->node_id;
  2865. if(input_vector[j*4+0]->Dim()>0 || input_vector[j*4+2]->Dim()>0){
  2866. trg_interac_cnt[i]++;
  2867. { // Determine shift for periodic boundary condition
  2868. Real_t* sc=lst[mat_indx]->Coord();
  2869. Real_t* tc=((FMMNode*)nodes_out[i])->Coord();
  2870. int* rel_coord=this->interac_list.RelativeCoord(interac_type, mat_indx);
  2871. shift_coord[i].push_back((tc[0]>sc[0] && rel_coord[0]>0? 1.0:
  2872. (tc[0]<sc[0] && rel_coord[0]<0?-1.0:0.0)) +
  2873. (shift_src?sc[0]:0) - (shift_trg?tc[0]:0) );
  2874. shift_coord[i].push_back((tc[1]>sc[1] && rel_coord[1]>0? 1.0:
  2875. (tc[1]<sc[1] && rel_coord[1]<0?-1.0:0.0)) +
  2876. (shift_src?sc[1]:0) - (shift_trg?tc[1]:0) );
  2877. shift_coord[i].push_back((tc[2]>sc[2] && rel_coord[2]>0? 1.0:
  2878. (tc[2]<sc[2] && rel_coord[2]<0?-1.0:0.0)) +
  2879. (shift_src?sc[2]:0) - (shift_trg?tc[2]:0) );
  2880. }
  2881. { // Set src data
  2882. if(input_vector[j*4+0]!=NULL){
  2883. src_cnt [i].push_back(input_vector[j*4+0]->Dim()/COORD_DIM);
  2884. src_coord[i].push_back((size_t)(& input_vector[j*4+0][0][0]- coord_data[0]));
  2885. src_value[i].push_back((size_t)(& input_vector[j*4+1][0][0]- input_data[0]));
  2886. }else{
  2887. src_cnt [i].push_back(0);
  2888. src_coord[i].push_back(0);
  2889. src_value[i].push_back(0);
  2890. }
  2891. if(input_vector[j*4+2]!=NULL){
  2892. src_cnt [i].push_back(input_vector[j*4+2]->Dim()/COORD_DIM);
  2893. src_coord[i].push_back((size_t)(& input_vector[j*4+2][0][0]- coord_data[0]));
  2894. src_value[i].push_back((size_t)(& input_vector[j*4+3][0][0]- input_data[0]));
  2895. }else{
  2896. src_cnt [i].push_back(0);
  2897. src_coord[i].push_back(0);
  2898. src_value[i].push_back(0);
  2899. }
  2900. }
  2901. }
  2902. }
  2903. }
  2904. }
  2905. }
  2906. { // Set interac_data.
  2907. size_t data_size=sizeof(size_t)*6;
  2908. data_size+=sizeof(size_t)+trg_interac_cnt.size()*sizeof(size_t);
  2909. data_size+=sizeof(size_t)+trg_coord.size()*sizeof(size_t);
  2910. data_size+=sizeof(size_t)+trg_value.size()*sizeof(size_t);
  2911. data_size+=sizeof(size_t)+trg_cnt .size()*sizeof(size_t);
  2912. data_size+=sizeof(size_t)+scal0 .size()*sizeof(Real_t);
  2913. data_size+=sizeof(size_t)+scal1 .size()*sizeof(Real_t);
  2914. data_size+=sizeof(size_t)*2+(M!=NULL?M->Dim(0)*M->Dim(1)*sizeof(Real_t):0);
  2915. for(size_t i=0;i<n_out;i++){
  2916. data_size+=sizeof(size_t)+src_cnt [i].size()*sizeof(size_t);
  2917. data_size+=sizeof(size_t)+src_coord[i].size()*sizeof(size_t);
  2918. data_size+=sizeof(size_t)+src_value[i].size()*sizeof(size_t);
  2919. data_size+=sizeof(size_t)+shift_coord[i].size()*sizeof(Real_t);
  2920. }
  2921. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2922. interac_data.ReInit(1,data_size);
  2923. char* data_ptr=&interac_data[0][0];
  2924. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  2925. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2926. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2927. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2928. ((size_t*)data_ptr)[0]=scal_dim0; data_ptr+=sizeof(size_t);
  2929. ((size_t*)data_ptr)[0]=scal_dim1; data_ptr+=sizeof(size_t);
  2930. ((size_t*)data_ptr)[0]=trg_interac_cnt.size(); data_ptr+=sizeof(size_t);
  2931. mem::memcopy(data_ptr, &trg_interac_cnt[0], trg_interac_cnt.size()*sizeof(size_t));
  2932. data_ptr+=trg_interac_cnt.size()*sizeof(size_t);
  2933. ((size_t*)data_ptr)[0]=trg_coord.size(); data_ptr+=sizeof(size_t);
  2934. mem::memcopy(data_ptr, &trg_coord[0], trg_coord.size()*sizeof(size_t));
  2935. data_ptr+=trg_coord.size()*sizeof(size_t);
  2936. ((size_t*)data_ptr)[0]=trg_value.size(); data_ptr+=sizeof(size_t);
  2937. mem::memcopy(data_ptr, &trg_value[0], trg_value.size()*sizeof(size_t));
  2938. data_ptr+=trg_value.size()*sizeof(size_t);
  2939. ((size_t*)data_ptr)[0]=trg_cnt.size(); data_ptr+=sizeof(size_t);
  2940. mem::memcopy(data_ptr, &trg_cnt[0], trg_cnt.size()*sizeof(size_t));
  2941. data_ptr+=trg_cnt.size()*sizeof(size_t);
  2942. ((size_t*)data_ptr)[0]=scal0.size(); data_ptr+=sizeof(size_t);
  2943. mem::memcopy(data_ptr, &scal0[0], scal0.size()*sizeof(Real_t));
  2944. data_ptr+=scal0.size()*sizeof(Real_t);
  2945. ((size_t*)data_ptr)[0]=scal1.size(); data_ptr+=sizeof(size_t);
  2946. mem::memcopy(data_ptr, &scal1[0], scal1.size()*sizeof(Real_t));
  2947. data_ptr+=scal1.size()*sizeof(Real_t);
  2948. if(M!=NULL){
  2949. ((size_t*)data_ptr)[0]=M->Dim(0); data_ptr+=sizeof(size_t);
  2950. ((size_t*)data_ptr)[0]=M->Dim(1); data_ptr+=sizeof(size_t);
  2951. mem::memcopy(data_ptr, M[0][0], M->Dim(0)*M->Dim(1)*sizeof(Real_t));
  2952. data_ptr+=M->Dim(0)*M->Dim(1)*sizeof(Real_t);
  2953. }else{
  2954. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2955. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2956. }
  2957. for(size_t i=0;i<n_out;i++){
  2958. ((size_t*)data_ptr)[0]=src_cnt[i].size(); data_ptr+=sizeof(size_t);
  2959. mem::memcopy(data_ptr, &src_cnt[i][0], src_cnt[i].size()*sizeof(size_t));
  2960. data_ptr+=src_cnt[i].size()*sizeof(size_t);
  2961. ((size_t*)data_ptr)[0]=src_coord[i].size(); data_ptr+=sizeof(size_t);
  2962. mem::memcopy(data_ptr, &src_coord[i][0], src_coord[i].size()*sizeof(size_t));
  2963. data_ptr+=src_coord[i].size()*sizeof(size_t);
  2964. ((size_t*)data_ptr)[0]=src_value[i].size(); data_ptr+=sizeof(size_t);
  2965. mem::memcopy(data_ptr, &src_value[i][0], src_value[i].size()*sizeof(size_t));
  2966. data_ptr+=src_value[i].size()*sizeof(size_t);
  2967. ((size_t*)data_ptr)[0]=shift_coord[i].size(); data_ptr+=sizeof(size_t);
  2968. mem::memcopy(data_ptr, &shift_coord[i][0], shift_coord[i].size()*sizeof(Real_t));
  2969. data_ptr+=shift_coord[i].size()*sizeof(Real_t);
  2970. }
  2971. }
  2972. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2973. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.ReInit(buff_size);
  2974. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.ReInit(buff_size);
  2975. }
  2976. Profile::Toc();
  2977. if(device){ // Host2Device
  2978. Profile::Tic("Host2Device",&this->comm,false,25);
  2979. setup_data.interac_data .AllocDevice(true);
  2980. Profile::Toc();
  2981. }
  2982. }
  2983. template <class FMMNode>
  2984. template <int SYNC>
  2985. void FMM_Pts<FMMNode>::EvalListPts(SetupData<Real_t>& setup_data, bool device){
  2986. if(setup_data.kernel->ker_dim[0]*setup_data.kernel->ker_dim[1]==0) return;
  2987. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2988. Profile::Tic("Host2Device",&this->comm,false,25);
  2989. Profile::Toc();
  2990. Profile::Tic("DeviceComp",&this->comm,false,20);
  2991. Profile::Toc();
  2992. return;
  2993. }
  2994. bool have_gpu=false;
  2995. #if defined(PVFMM_HAVE_CUDA)
  2996. have_gpu=true;
  2997. #endif
  2998. Profile::Tic("Host2Device",&this->comm,false,25);
  2999. typename Vector<char>::Device buff;
  3000. //typename Matrix<char>::Device precomp_data;
  3001. typename Matrix<char>::Device interac_data;
  3002. typename Matrix<Real_t>::Device coord_data;
  3003. typename Matrix<Real_t>::Device input_data;
  3004. typename Matrix<Real_t>::Device output_data;
  3005. if(device && !have_gpu){
  3006. buff = this-> dev_buffer. AllocDevice(false);
  3007. interac_data= setup_data.interac_data. AllocDevice(false);
  3008. //if(setup_data.precomp_data!=NULL) precomp_data= setup_data.precomp_data->AllocDevice(false);
  3009. if(setup_data. coord_data!=NULL) coord_data = setup_data. coord_data->AllocDevice(false);
  3010. if(setup_data. input_data!=NULL) input_data = setup_data. input_data->AllocDevice(false);
  3011. if(setup_data. output_data!=NULL) output_data = setup_data. output_data->AllocDevice(false);
  3012. }else{
  3013. buff = this-> cpu_buffer;
  3014. interac_data= setup_data.interac_data;
  3015. //if(setup_data.precomp_data!=NULL) precomp_data=*setup_data.precomp_data;
  3016. if(setup_data. coord_data!=NULL) coord_data =*setup_data. coord_data;
  3017. if(setup_data. input_data!=NULL) input_data =*setup_data. input_data;
  3018. if(setup_data. output_data!=NULL) output_data =*setup_data. output_data;
  3019. }
  3020. Profile::Toc();
  3021. size_t ptr_single_layer_kernel=(size_t)setup_data.kernel->ker_poten;
  3022. size_t ptr_double_layer_kernel=(size_t)setup_data.kernel->dbl_layer_poten;
  3023. Profile::Tic("DeviceComp",&this->comm,false,20);
  3024. int lock_idx=-1;
  3025. int wait_lock_idx=-1;
  3026. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  3027. if(device) lock_idx=MIC_Lock::get_lock();
  3028. #ifdef __INTEL_OFFLOAD
  3029. if(device) ptr_single_layer_kernel=setup_data.kernel->dev_ker_poten;
  3030. if(device) ptr_double_layer_kernel=setup_data.kernel->dev_dbl_layer_poten;
  3031. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  3032. #endif
  3033. { // Offloaded computation.
  3034. // Set interac_data.
  3035. size_t data_size;
  3036. size_t ker_dim0;
  3037. size_t ker_dim1;
  3038. size_t dof, n_out;
  3039. size_t scal_dim0;
  3040. size_t scal_dim1;
  3041. Vector<size_t> trg_interac_cnt;
  3042. Vector<size_t> trg_coord;
  3043. Vector<size_t> trg_value;
  3044. Vector<size_t> trg_cnt;
  3045. Vector<Real_t> scal0;
  3046. Vector<Real_t> scal1;
  3047. Matrix<Real_t> M;
  3048. Vector< Vector<size_t> > src_cnt;
  3049. Vector< Vector<size_t> > src_coord;
  3050. Vector< Vector<size_t> > src_value;
  3051. Vector< Vector<Real_t> > shift_coord;
  3052. { // Set interac_data.
  3053. char* data_ptr=&interac_data[0][0];
  3054. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  3055. ker_dim0=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  3056. ker_dim1=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  3057. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  3058. scal_dim0=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  3059. scal_dim1=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  3060. trg_interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  3061. data_ptr+=sizeof(size_t)+trg_interac_cnt.Dim()*sizeof(size_t);
  3062. n_out=trg_interac_cnt.Dim();
  3063. trg_coord.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  3064. data_ptr+=sizeof(size_t)+trg_coord.Dim()*sizeof(size_t);
  3065. trg_value.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  3066. data_ptr+=sizeof(size_t)+trg_value.Dim()*sizeof(size_t);
  3067. trg_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  3068. data_ptr+=sizeof(size_t)+trg_cnt.Dim()*sizeof(size_t);
  3069. scal0.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  3070. data_ptr+=sizeof(size_t)+scal0.Dim()*sizeof(Real_t);
  3071. scal1.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  3072. data_ptr+=sizeof(size_t)+scal1.Dim()*sizeof(Real_t);
  3073. M.ReInit(((size_t*)data_ptr)[0],((size_t*)data_ptr)[1],(Real_t*)(data_ptr+2*sizeof(size_t)),false);
  3074. data_ptr+=sizeof(size_t)*2+M.Dim(0)*M.Dim(1)*sizeof(Real_t);
  3075. src_cnt.Resize(n_out);
  3076. src_coord.Resize(n_out);
  3077. src_value.Resize(n_out);
  3078. shift_coord.Resize(n_out);
  3079. for(size_t i=0;i<n_out;i++){
  3080. src_cnt[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  3081. data_ptr+=sizeof(size_t)+src_cnt[i].Dim()*sizeof(size_t);
  3082. src_coord[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  3083. data_ptr+=sizeof(size_t)+src_coord[i].Dim()*sizeof(size_t);
  3084. src_value[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  3085. data_ptr+=sizeof(size_t)+src_value[i].Dim()*sizeof(size_t);
  3086. shift_coord[i].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  3087. data_ptr+=sizeof(size_t)+shift_coord[i].Dim()*sizeof(Real_t);
  3088. }
  3089. }
  3090. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  3091. //Compute interaction from point sources.
  3092. { // interactions
  3093. typename Kernel<Real_t>::Ker_t single_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_single_layer_kernel;
  3094. typename Kernel<Real_t>::Ker_t double_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_double_layer_kernel;
  3095. int omp_p=omp_get_max_threads();
  3096. Vector<Real_t*> thread_buff(omp_p);
  3097. size_t thread_buff_size=buff.dim/sizeof(Real_t)/omp_p;
  3098. for(int i=0;i<omp_p;i++) thread_buff[i]=(Real_t*)&buff[i*thread_buff_size*sizeof(Real_t)];
  3099. #pragma omp parallel for schedule(dynamic)
  3100. for(size_t i=0;i<n_out;i++)
  3101. if(trg_interac_cnt[i]>0 && trg_cnt[i]>0){
  3102. int thread_id=omp_get_thread_num();
  3103. Real_t* s_coord=thread_buff[thread_id];
  3104. Real_t* t_value=output_data[0]+trg_value[i];
  3105. if(M.Dim(0)>0 && M.Dim(1)>0){
  3106. s_coord+=dof*M.Dim(0);
  3107. t_value=thread_buff[thread_id];
  3108. for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]=0;
  3109. }
  3110. size_t interac_cnt=0;
  3111. for(size_t j=0;j<trg_interac_cnt[i];j++){
  3112. if(ptr_single_layer_kernel!=(size_t)NULL){// Single layer kernel
  3113. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+0];
  3114. assert(thread_buff_size>=dof*M.Dim(0)+dof*M.Dim(1)+src_cnt[i][2*j+0]*COORD_DIM);
  3115. for(size_t k1=0;k1<src_cnt[i][2*j+0];k1++){ // Compute shifted source coordinates.
  3116. for(size_t k0=0;k0<COORD_DIM;k0++){
  3117. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  3118. }
  3119. }
  3120. single_layer_kernel( s_coord , src_cnt[i][2*j+0], input_data[0]+src_value[i][2*j+0], dof,
  3121. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value, NULL);
  3122. interac_cnt+=src_cnt[i][2*j+0]*trg_cnt[i];
  3123. }else if(src_cnt[i][2*j+0]!=0 && trg_cnt[i]!=0){
  3124. assert(ptr_single_layer_kernel); // Single-layer kernel not implemented
  3125. }
  3126. if(ptr_double_layer_kernel!=(size_t)NULL){// Double layer kernel
  3127. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+1];
  3128. assert(thread_buff_size>=dof*M.Dim(0)+dof*M.Dim(1)+src_cnt[i][2*j+1]*COORD_DIM);
  3129. for(size_t k1=0;k1<src_cnt[i][2*j+1];k1++){ // Compute shifted source coordinates.
  3130. for(size_t k0=0;k0<COORD_DIM;k0++){
  3131. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  3132. }
  3133. }
  3134. double_layer_kernel( s_coord , src_cnt[i][2*j+1], input_data[0]+src_value[i][2*j+1], dof,
  3135. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value, NULL);
  3136. interac_cnt+=src_cnt[i][2*j+1]*trg_cnt[i];
  3137. }else if(src_cnt[i][2*j+1]!=0 && trg_cnt[i]!=0){
  3138. assert(ptr_double_layer_kernel); // Double-layer kernel not implemented
  3139. }
  3140. }
  3141. if(M.Dim(0)>0 && M.Dim(1)>0 && interac_cnt>0){
  3142. assert(trg_cnt[i]*scal_dim0==M.Dim(0));
  3143. assert(trg_cnt[i]*scal_dim1==M.Dim(1));
  3144. {// Scaling (scal_dim0)
  3145. Real_t* s=&scal0[i*scal_dim0];
  3146. for(size_t j=0;j<dof*M.Dim(0);j+=scal_dim0){
  3147. for(size_t k=0;k<scal_dim0;k++){
  3148. t_value[j+k]*=s[k];
  3149. }
  3150. }
  3151. }
  3152. Matrix<Real_t> in_vec(dof, M.Dim(0), t_value, false);
  3153. Matrix<Real_t> tmp_vec(dof, M.Dim(1),dof*M.Dim(0)+t_value, false);
  3154. Matrix<Real_t>::GEMM(tmp_vec, in_vec, M, 0.0);
  3155. Matrix<Real_t> out_vec(dof, M.Dim(1), output_data[0]+trg_value[i], false);
  3156. {// Scaling (scal_dim1)
  3157. Real_t* s=&scal1[i*scal_dim1];
  3158. for(size_t j=0;j<dof*M.Dim(1);j+=scal_dim1){
  3159. for(size_t k=0;k<scal_dim1;k++){
  3160. out_vec[0][j+k]+=tmp_vec[0][j+k]*s[k];
  3161. }
  3162. }
  3163. }
  3164. }
  3165. }
  3166. }
  3167. if(device) MIC_Lock::release_lock(lock_idx);
  3168. }
  3169. #ifdef __INTEL_OFFLOAD
  3170. if(SYNC){
  3171. #pragma offload if(device) target(mic:0)
  3172. {if(device) MIC_Lock::wait_lock(lock_idx);}
  3173. }
  3174. #endif
  3175. Profile::Toc();
  3176. }
  3177. template <class FMMNode>
  3178. void FMM_Pts<FMMNode>::X_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3179. if(this->MultipoleOrder()==0) return;
  3180. { // Set setup_data
  3181. setup_data.level=level;
  3182. setup_data.kernel=kernel->k_s2l;
  3183. setup_data.interac_type.resize(1);
  3184. setup_data.interac_type[0]=X_Type;
  3185. setup_data. input_data=&buff[4];
  3186. setup_data.output_data=&buff[1];
  3187. setup_data. coord_data=&buff[6];
  3188. Vector<FMMNode_t*>& nodes_in =n_list[4];
  3189. Vector<FMMNode_t*>& nodes_out=n_list[1];
  3190. setup_data.nodes_in .clear();
  3191. setup_data.nodes_out.clear();
  3192. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3193. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3194. }
  3195. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3196. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3197. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3198. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3199. for(size_t i=0;i<nodes_in .size();i++){
  3200. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  3201. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  3202. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  3203. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  3204. }
  3205. for(size_t i=0;i<nodes_out.size();i++){
  3206. output_vector.push_back(&tree->dnwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
  3207. output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  3208. }
  3209. //Downward check to downward equivalent matrix.
  3210. Matrix<Real_t>& M_dc2de = this->mat->Mat(level, DC2DE_Type, 0);
  3211. this->SetupInteracPts(setup_data, false, true, &M_dc2de,device);
  3212. { // Resize device buffer
  3213. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3214. if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
  3215. }
  3216. }
  3217. template <class FMMNode>
  3218. void FMM_Pts<FMMNode>::X_List (SetupData<Real_t>& setup_data, bool device){
  3219. //Add X_List contribution.
  3220. this->EvalListPts(setup_data, device);
  3221. }
  3222. template <class FMMNode>
  3223. void FMM_Pts<FMMNode>::W_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3224. if(this->MultipoleOrder()==0) return;
  3225. { // Set setup_data
  3226. setup_data.level=level;
  3227. setup_data.kernel=kernel->k_m2t;
  3228. setup_data.interac_type.resize(1);
  3229. setup_data.interac_type[0]=W_Type;
  3230. setup_data. input_data=&buff[0];
  3231. setup_data.output_data=&buff[5];
  3232. setup_data. coord_data=&buff[6];
  3233. Vector<FMMNode_t*>& nodes_in =n_list[0];
  3234. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3235. setup_data.nodes_in .clear();
  3236. setup_data.nodes_out.clear();
  3237. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3238. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3239. }
  3240. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3241. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3242. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3243. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3244. for(size_t i=0;i<nodes_in .size();i++){
  3245. input_vector .push_back(&tree->upwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  3246. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  3247. input_vector .push_back(NULL);
  3248. input_vector .push_back(NULL);
  3249. }
  3250. for(size_t i=0;i<nodes_out.size();i++){
  3251. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3252. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3253. }
  3254. this->SetupInteracPts(setup_data, true, false, NULL, device);
  3255. { // Resize device buffer
  3256. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3257. if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
  3258. }
  3259. }
  3260. template <class FMMNode>
  3261. void FMM_Pts<FMMNode>::W_List (SetupData<Real_t>& setup_data, bool device){
  3262. //Add W_List contribution.
  3263. this->EvalListPts(setup_data, device);
  3264. }
  3265. template <class FMMNode>
  3266. void FMM_Pts<FMMNode>::U_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3267. { // Set setup_data
  3268. setup_data.level=level;
  3269. setup_data.kernel=kernel->k_s2t;
  3270. setup_data.interac_type.resize(3);
  3271. setup_data.interac_type[0]=U0_Type;
  3272. setup_data.interac_type[1]=U1_Type;
  3273. setup_data.interac_type[2]=U2_Type;
  3274. setup_data. input_data=&buff[4];
  3275. setup_data.output_data=&buff[5];
  3276. setup_data. coord_data=&buff[6];
  3277. Vector<FMMNode_t*>& nodes_in =n_list[4];
  3278. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3279. setup_data.nodes_in .clear();
  3280. setup_data.nodes_out.clear();
  3281. for(size_t i=0;i<nodes_in .Dim();i++) if((level-1<=nodes_in [i]->Depth() && nodes_in [i]->Depth()<=level+1) || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3282. for(size_t i=0;i<nodes_out.Dim();i++) if(( nodes_out[i]->Depth()==level ) || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3283. }
  3284. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3285. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3286. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3287. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3288. for(size_t i=0;i<nodes_in .size();i++){
  3289. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  3290. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  3291. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  3292. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  3293. }
  3294. for(size_t i=0;i<nodes_out.size();i++){
  3295. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3296. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3297. }
  3298. this->SetupInteracPts(setup_data, false, false, NULL, device);
  3299. { // Resize device buffer
  3300. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3301. if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
  3302. }
  3303. }
  3304. template <class FMMNode>
  3305. void FMM_Pts<FMMNode>::U_List (SetupData<Real_t>& setup_data, bool device){
  3306. //Add U_List contribution.
  3307. this->EvalListPts(setup_data, device);
  3308. }
  3309. template <class FMMNode>
  3310. void FMM_Pts<FMMNode>::Down2TargetSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3311. if(this->MultipoleOrder()==0) return;
  3312. { // Set setup_data
  3313. setup_data.level=level;
  3314. setup_data.kernel=kernel->k_l2t;
  3315. setup_data.interac_type.resize(1);
  3316. setup_data.interac_type[0]=D2T_Type;
  3317. setup_data. input_data=&buff[1];
  3318. setup_data.output_data=&buff[5];
  3319. setup_data. coord_data=&buff[6];
  3320. Vector<FMMNode_t*>& nodes_in =n_list[1];
  3321. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3322. setup_data.nodes_in .clear();
  3323. setup_data.nodes_out.clear();
  3324. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3325. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3326. }
  3327. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3328. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3329. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3330. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3331. for(size_t i=0;i<nodes_in .size();i++){
  3332. input_vector .push_back(&tree->dnwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  3333. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  3334. input_vector .push_back(NULL);
  3335. input_vector .push_back(NULL);
  3336. }
  3337. for(size_t i=0;i<nodes_out.size();i++){
  3338. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3339. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3340. }
  3341. this->SetupInteracPts(setup_data, true, false, NULL, device);
  3342. { // Resize device buffer
  3343. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3344. if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
  3345. }
  3346. }
  3347. template <class FMMNode>
  3348. void FMM_Pts<FMMNode>::Down2Target(SetupData<Real_t>& setup_data, bool device){
  3349. //Add Down2Target contribution.
  3350. this->EvalListPts(setup_data, device);
  3351. }
  3352. template <class FMMNode>
  3353. void FMM_Pts<FMMNode>::PostProcessing(std::vector<FMMNode_t*>& nodes){
  3354. }
  3355. template <class FMMNode>
  3356. void FMM_Pts<FMMNode>::CopyOutput(FMMNode** nodes, size_t n){
  3357. }
  3358. }//end namespace