123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843 |
- /**
- * \file fmm_pts.txx
- * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
- * \date 3-07-2011
- * \brief This file contains the implementation of the FMM_Pts class.
- */
- #include <omp.h>
- #include <cmath>
- #include <cstdlib>
- #include <cassert>
- #include <sstream>
- #include <iostream>
- #include <stdint.h>
- #include <set>
- #ifdef PVFMM_HAVE_SYS_STAT_H
- #include <sys/stat.h>
- #endif
- #ifdef __SSE__
- #include <xmmintrin.h>
- #endif
- #ifdef __SSE2__
- #include <emmintrin.h>
- #endif
- #ifdef __SSE3__
- #include <pmmintrin.h>
- #endif
- #ifdef __AVX__
- #include <immintrin.h>
- #endif
- #if defined(__MIC__)
- #include <immintrin.h>
- #endif
- #include <profile.hpp>
- namespace pvfmm{
- /**
- * \brief Returns the coordinates of points on the surface of a cube.
- * \param[in] p Number of points on an edge of the cube is (n+1)
- * \param[in] c Coordinates to the centre of the cube (3D array).
- * \param[in] alpha Scaling factor for the size of the cube.
- * \param[in] depth Depth of the cube in the octree.
- * \return Vector with coordinates of points on the surface of the cube in the
- * format [x0 y0 z0 x1 y1 z1 .... ].
- */
- template <class Real_t>
- std::vector<Real_t> surface(int p, Real_t* c, Real_t alpha, int depth){
- size_t n_=(6*(p-1)*(p-1)+2); //Total number of points.
- std::vector<Real_t> coord(n_*3);
- coord[0]=coord[1]=coord[2]=-1.0;
- size_t cnt=1;
- for(int i=0;i<p-1;i++)
- for(int j=0;j<p-1;j++){
- coord[cnt*3 ]=-1.0;
- coord[cnt*3+1]=(2.0*(i+1)-p+1)/(p-1);
- coord[cnt*3+2]=(2.0*j-p+1)/(p-1);
- cnt++;
- }
- for(int i=0;i<p-1;i++)
- for(int j=0;j<p-1;j++){
- coord[cnt*3 ]=(2.0*i-p+1)/(p-1);
- coord[cnt*3+1]=-1.0;
- coord[cnt*3+2]=(2.0*(j+1)-p+1)/(p-1);
- cnt++;
- }
- for(int i=0;i<p-1;i++)
- for(int j=0;j<p-1;j++){
- coord[cnt*3 ]=(2.0*(i+1)-p+1)/(p-1);
- coord[cnt*3+1]=(2.0*j-p+1)/(p-1);
- coord[cnt*3+2]=-1.0;
- cnt++;
- }
- for(size_t i=0;i<(n_/2)*3;i++)
- coord[cnt*3+i]=-coord[i];
- Real_t r = 0.5*pow(0.5,depth);
- Real_t b = alpha*r;
- for(size_t i=0;i<n_;i++){
- coord[i*3+0]=(coord[i*3+0]+1.0)*b+c[0];
- coord[i*3+1]=(coord[i*3+1]+1.0)*b+c[1];
- coord[i*3+2]=(coord[i*3+2]+1.0)*b+c[2];
- }
- return coord;
- }
- /**
- * \brief Returns the coordinates of points on the upward check surface of cube.
- * \see surface()
- */
- template <class Real_t>
- std::vector<Real_t> u_check_surf(int p, Real_t* c, int depth){
- Real_t r=0.5*pow(0.5,depth);
- Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
- return surface(p,coord,(Real_t)RAD1,depth);
- }
- /**
- * \brief Returns the coordinates of points on the upward equivalent surface of cube.
- * \see surface()
- */
- template <class Real_t>
- std::vector<Real_t> u_equiv_surf(int p, Real_t* c, int depth){
- Real_t r=0.5*pow(0.5,depth);
- Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
- return surface(p,coord,(Real_t)RAD0,depth);
- }
- /**
- * \brief Returns the coordinates of points on the downward check surface of cube.
- * \see surface()
- */
- template <class Real_t>
- std::vector<Real_t> d_check_surf(int p, Real_t* c, int depth){
- Real_t r=0.5*pow(0.5,depth);
- Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
- return surface(p,coord,(Real_t)RAD0,depth);
- }
- /**
- * \brief Returns the coordinates of points on the downward equivalent surface of cube.
- * \see surface()
- */
- template <class Real_t>
- std::vector<Real_t> d_equiv_surf(int p, Real_t* c, int depth){
- Real_t r=0.5*pow(0.5,depth);
- Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
- return surface(p,coord,(Real_t)RAD1,depth);
- }
- /**
- * \brief Defines the 3D grid for convolution in FFT acceleration of V-list.
- * \see surface()
- */
- template <class Real_t>
- std::vector<Real_t> conv_grid(int p, Real_t* c, int depth){
- Real_t r=pow(0.5,depth);
- Real_t a=r*RAD0;
- Real_t coord[3]={c[0],c[1],c[2]};
- int n1=p*2;
- int n2=(int)pow((Real_t)n1,2);
- int n3=(int)pow((Real_t)n1,3);
- std::vector<Real_t> grid(n3*3);
- for(int i=0;i<n1;i++)
- for(int j=0;j<n1;j++)
- for(int k=0;k<n1;k++){
- grid[(i+n1*j+n2*k)*3+0]=(i-p)*a/(p-1)+coord[0];
- grid[(i+n1*j+n2*k)*3+1]=(j-p)*a/(p-1)+coord[1];
- grid[(i+n1*j+n2*k)*3+2]=(k-p)*a/(p-1)+coord[2];
- }
- return grid;
- }
- template <class Real_t>
- void FMM_Data<Real_t>::Clear(){
- upward_equiv.Resize(0);
- }
- template <class Real_t>
- PackedData FMM_Data<Real_t>::PackMultipole(void* buff_ptr){
- PackedData p0; p0.data=buff_ptr;
- p0.length=upward_equiv.Dim()*sizeof(Real_t);
- if(p0.length==0) return p0;
- if(p0.data==NULL) p0.data=(char*)&upward_equiv[0];
- else mem::memcopy(p0.data,&upward_equiv[0],p0.length);
- return p0;
- }
- template <class Real_t>
- void FMM_Data<Real_t>::AddMultipole(PackedData p0){
- Real_t* data=(Real_t*)p0.data;
- size_t n=p0.length/sizeof(Real_t);
- assert(upward_equiv.Dim()==n);
- Matrix<Real_t> v0(1,n,&upward_equiv[0],false);
- Matrix<Real_t> v1(1,n,data,false);
- v0+=v1;
- }
- template <class Real_t>
- void FMM_Data<Real_t>::InitMultipole(PackedData p0, bool own_data){
- Real_t* data=(Real_t*)p0.data;
- size_t n=p0.length/sizeof(Real_t);
- if(n==0) return;
- if(own_data){
- upward_equiv=Vector<Real_t>(n, &data[0], false);
- }else{
- upward_equiv.ReInit(n, &data[0], false);
- }
- }
- template <class FMMNode>
- FMM_Pts<FMMNode>::~FMM_Pts() {
- if(mat!=NULL){
- // int rank;
- // MPI_Comm_rank(comm,&rank);
- // if(rank==0) mat->Save2File("Precomp.data");
- delete mat;
- mat=NULL;
- }
- if(vprecomp_fft_flag) FFTW_t<Real_t>::fft_destroy_plan(vprecomp_fftplan);
- #ifdef __INTEL_OFFLOAD0
- #pragma offload target(mic:0)
- #endif
- {
- if(vlist_fft_flag ) FFTW_t<Real_t>::fft_destroy_plan(vlist_fftplan );
- if(vlist_ifft_flag) FFTW_t<Real_t>::fft_destroy_plan(vlist_ifftplan);
- vlist_fft_flag =false;
- vlist_ifft_flag=false;
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::Initialize(int mult_order, const MPI_Comm& comm_, const Kernel<Real_t>* kernel_){
- Profile::Tic("InitFMM_Pts",&comm_,true);{
- bool verbose=false;
- #ifndef NDEBUG
- #ifdef __VERBOSE__
- int rank;
- MPI_Comm_rank(comm_,&rank);
- if(!rank) verbose=true;
- #endif
- #endif
- if(kernel_) kernel_->Initialize(verbose);
- multipole_order=mult_order;
- comm=comm_;
- kernel=kernel_;
- assert(kernel!=NULL);
- mat=new PrecompMat<Real_t>(Homogen(), MAX_DEPTH+1);
- if(this->mat_fname.size()==0){
- std::stringstream st;
- st<<PVFMM_PRECOMP_DATA_PATH;
- if(!st.str().size()){ // look in PVFMM_DIR
- char* pvfmm_dir = getenv ("PVFMM_DIR");
- if(pvfmm_dir) st<<pvfmm_dir<<'/';
- }
- #ifndef STAT_MACROS_BROKEN
- if(st.str().size()){ // check if the path is a directory
- struct stat stat_buff;
- if(stat(st.str().c_str(), &stat_buff) || !S_ISDIR(stat_buff.st_mode)){
- std::cout<<"error: path not found: "<<st.str()<<'\n';
- exit(0);
- }
- }
- #endif
- st<<"Precomp_"<<kernel->ker_name.c_str()<<"_m"<<mult_order;
- if(sizeof(Real_t)==8) st<<"";
- else if(sizeof(Real_t)==4) st<<"_f";
- else st<<"_t"<<sizeof(Real_t);
- st<<".data";
- this->mat_fname=st.str();
- }
- this->mat->LoadFile(mat_fname.c_str(), this->comm);
- interac_list.Initialize(COORD_DIM, this->mat);
- Profile::Tic("PrecompUC2UE",&comm,false,4);
- this->PrecompAll(UC2UE_Type);
- Profile::Toc();
- Profile::Tic("PrecompDC2DE",&comm,false,4);
- this->PrecompAll(DC2DE_Type);
- Profile::Toc();
- Profile::Tic("PrecompBC",&comm,false,4);
- { /*
- int type=BC_Type;
- for(int l=0;l<MAX_DEPTH;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount((Mat_Type)type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, (Mat_Type)type, indx);
- M.Resize(0,0);
- } // */
- }
- this->PrecompAll(BC_Type,0);
- Profile::Toc();
- Profile::Tic("PrecompU2U",&comm,false,4);
- this->PrecompAll(U2U_Type);
- Profile::Toc();
- Profile::Tic("PrecompD2D",&comm,false,4);
- this->PrecompAll(D2D_Type);
- Profile::Toc();
- Profile::Tic("PrecompV",&comm,false,4);
- this->PrecompAll(V_Type);
- Profile::Toc();
- Profile::Tic("PrecompV1",&comm,false,4);
- this->PrecompAll(V1_Type);
- Profile::Toc();
- }Profile::Toc();
- }
- template <class Real_t>
- Permutation<Real_t> equiv_surf_perm(size_t m, size_t p_indx, const Permutation<Real_t>& ker_perm, const Vector<Real_t>* scal_exp=NULL){
- Real_t eps=1e-10;
- int dof=ker_perm.Dim();
- Real_t c[3]={-0.5,-0.5,-0.5};
- std::vector<Real_t> trg_coord=d_check_surf(m,c,0);
- int n_trg=trg_coord.size()/3;
- Permutation<Real_t> P=Permutation<Real_t>(n_trg*dof);
- if(p_indx==ReflecX || p_indx==ReflecY || p_indx==ReflecZ){ // Set P.perm
- for(int i=0;i<n_trg;i++)
- for(int j=0;j<n_trg;j++){
- if(fabs(trg_coord[i*3+0]-trg_coord[j*3+0]*(p_indx==ReflecX?-1.0:1.0))<eps)
- if(fabs(trg_coord[i*3+1]-trg_coord[j*3+1]*(p_indx==ReflecY?-1.0:1.0))<eps)
- if(fabs(trg_coord[i*3+2]-trg_coord[j*3+2]*(p_indx==ReflecZ?-1.0:1.0))<eps){
- for(int k=0;k<dof;k++){
- P.perm[j*dof+k]=i*dof+ker_perm.perm[k];
- }
- }
- }
- }else if(p_indx==SwapXY || p_indx==SwapXZ){
- for(int i=0;i<n_trg;i++)
- for(int j=0;j<n_trg;j++){
- if(fabs(trg_coord[i*3+0]-trg_coord[j*3+(p_indx==SwapXY?1:2)])<eps)
- if(fabs(trg_coord[i*3+1]-trg_coord[j*3+(p_indx==SwapXY?0:1)])<eps)
- if(fabs(trg_coord[i*3+2]-trg_coord[j*3+(p_indx==SwapXY?2:0)])<eps){
- for(int k=0;k<dof;k++){
- P.perm[j*dof+k]=i*dof+ker_perm.perm[k];
- }
- }
- }
- }else{
- for(int j=0;j<n_trg;j++){
- for(int k=0;k<dof;k++){
- P.perm[j*dof+k]=j*dof+ker_perm.perm[k];
- }
- }
- }
- if(scal_exp && p_indx==Scaling){ // Set level-by-level scaling
- assert(dof==scal_exp->Dim());
- Vector<Real_t> scal(scal_exp->Dim());
- for(size_t i=0;i<scal.Dim();i++){
- scal[i]=pow(2.0,(*scal_exp)[i]);
- }
- for(int j=0;j<n_trg;j++){
- for(int i=0;i<dof;i++){
- P.scal[j*dof+i]*=scal[i];
- }
- }
- }
- { // Set P.scal
- for(int j=0;j<n_trg;j++){
- for(int i=0;i<dof;i++){
- P.scal[j*dof+i]*=ker_perm.scal[i];
- }
- }
- }
- return P;
- }
- template <class FMMNode>
- Permutation<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::PrecompPerm(Mat_Type type, Perm_Type perm_indx){
- //Check if the matrix already exists.
- Permutation<Real_t>& P_ = mat->Perm((Mat_Type)type, perm_indx);
- if(P_.Dim()!=0) return P_;
- size_t m=this->MultipoleOrder();
- size_t p_indx=perm_indx % C_Perm;
- //Compute the matrix.
- Permutation<Real_t> P;
- switch (type){
- case UC2UE_Type:
- {
- break;
- }
- case DC2DE_Type:
- {
- break;
- }
- case S2U_Type:
- {
- break;
- }
- case U2U_Type:
- {
- Vector<Real_t> scal_exp;
- Permutation<Real_t> ker_perm;
- if(perm_indx<C_Perm){ // Source permutation
- ker_perm=kernel->k_m2m->perm_vec[0 +p_indx];
- scal_exp=kernel->k_m2m->src_scal;
- }else{ // Target permutation
- ker_perm=kernel->k_m2m->perm_vec[0 +p_indx];
- scal_exp=kernel->k_m2m->src_scal;
- for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]=-scal_exp[i];
- }
- P=equiv_surf_perm(m, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
- break;
- }
- case D2D_Type:
- {
- Vector<Real_t> scal_exp;
- Permutation<Real_t> ker_perm;
- if(perm_indx<C_Perm){ // Source permutation
- ker_perm=kernel->k_l2l->perm_vec[0 +p_indx];
- scal_exp=kernel->k_l2l->src_scal;
- }else{ // Target permutation
- ker_perm=kernel->k_l2l->perm_vec[0 +p_indx];
- scal_exp=kernel->k_l2l->src_scal;
- for(size_t i=0;i<scal_exp.Dim();i++) scal_exp[i]=-scal_exp[i];
- }
- P=equiv_surf_perm(m, p_indx, ker_perm, (this->Homogen()?&scal_exp:NULL));
- break;
- }
- case D2T_Type:
- {
- break;
- }
- case U0_Type:
- {
- break;
- }
- case U1_Type:
- {
- break;
- }
- case U2_Type:
- {
- break;
- }
- case V_Type:
- {
- break;
- }
- case V1_Type:
- {
- break;
- }
- case W_Type:
- {
- break;
- }
- case X_Type:
- {
- break;
- }
- case BC_Type:
- {
- break;
- }
- default:
- break;
- }
- //Save the matrix for future use.
- #pragma omp critical (PRECOMP_MATRIX_PTS)
- {
- if(P_.Dim()==0) P_=P;
- }
- return P_;
- }
- template <class FMMNode>
- Matrix<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::Precomp(int level, Mat_Type type, size_t mat_indx){
- if(this->Homogen()) level=0;
- //Check if the matrix already exists.
- Matrix<Real_t>& M_ = this->mat->Mat(level, type, mat_indx);
- if(M_.Dim(0)!=0 && M_.Dim(1)!=0) return M_;
- else{ //Compute matrix from symmetry class (if possible).
- size_t class_indx = this->interac_list.InteracClass(type, mat_indx);
- if(class_indx!=mat_indx){
- Matrix<Real_t>& M0 = this->Precomp(level, type, class_indx);
- if(M0.Dim(0)==0 || M0.Dim(1)==0) return M_;
- for(size_t i=0;i<Perm_Count;i++) this->PrecompPerm(type, (Perm_Type) i);
- Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, type, mat_indx);
- Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, type, mat_indx);
- if(Pr.Dim()>0 && Pc.Dim()>0 && M0.Dim(0)>0 && M0.Dim(1)>0) return M_;
- }
- }
- //Compute the matrix.
- Matrix<Real_t> M;
- //int omp_p=omp_get_max_threads();
- switch (type){
- case UC2UE_Type:
- {
- if(MultipoleOrder()==0) break;
- const int* ker_dim=kernel->k_m2m->ker_dim;
- // Coord of upward check surface
- Real_t c[3]={0,0,0};
- std::vector<Real_t> uc_coord=u_check_surf(MultipoleOrder(),c,level);
- size_t n_uc=uc_coord.size()/3;
- // Coord of upward equivalent surface
- std::vector<Real_t> ue_coord=u_equiv_surf(MultipoleOrder(),c,level);
- size_t n_ue=ue_coord.size()/3;
- // Evaluate potential at check surface due to equivalent surface.
- Matrix<Real_t> M_e2c(n_ue*ker_dim[0],n_uc*ker_dim[1]);
- kernel->k_m2m->BuildMatrix(&ue_coord[0], n_ue,
- &uc_coord[0], n_uc, &(M_e2c[0][0]));
- Real_t eps=1.0;
- while(eps+(Real_t)1.0>1.0) eps*=0.5;
- M=M_e2c.pinv(sqrt(eps)); //check 2 equivalent
- break;
- }
- case DC2DE_Type:
- {
- if(MultipoleOrder()==0) break;
- const int* ker_dim=kernel->k_l2l->ker_dim;
- // Coord of downward check surface
- Real_t c[3]={0,0,0};
- std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
- size_t n_ch=check_surf.size()/3;
- // Coord of downward equivalent surface
- std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
- size_t n_eq=equiv_surf.size()/3;
- // Evaluate potential at check surface due to equivalent surface.
- Matrix<Real_t> M_e2c(n_eq*ker_dim[0],n_ch*ker_dim[1]);
- kernel->k_l2l->BuildMatrix(&equiv_surf[0], n_eq,
- &check_surf[0], n_ch, &(M_e2c[0][0]));
- Real_t eps=1.0;
- while(eps+(Real_t)1.0>1.0) eps*=0.5;
- M=M_e2c.pinv(sqrt(eps)); //check 2 equivalent
- break;
- }
- case S2U_Type:
- {
- break;
- }
- case U2U_Type:
- {
- if(MultipoleOrder()==0) break;
- const int* ker_dim=kernel->k_m2m->ker_dim;
- // Coord of upward check surface
- Real_t c[3]={0,0,0};
- std::vector<Real_t> check_surf=u_check_surf(MultipoleOrder(),c,level);
- size_t n_uc=check_surf.size()/3;
- // Coord of child's upward equivalent surface
- Real_t s=pow(0.5,(level+2));
- int* coord=interac_list.RelativeCoord(type,mat_indx);
- Real_t child_coord[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
- std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),child_coord,level+1);
- size_t n_ue=equiv_surf.size()/3;
- // Evaluate potential at check surface due to equivalent surface.
- Matrix<Real_t> M_ce2c(n_ue*ker_dim[0],n_uc*ker_dim[1]);
- kernel->k_m2m->BuildMatrix(&equiv_surf[0], n_ue,
- &check_surf[0], n_uc, &(M_ce2c[0][0]));
- Matrix<Real_t>& M_c2e = Precomp(level, UC2UE_Type, 0);
- M=M_ce2c*M_c2e;
- break;
- }
- case D2D_Type:
- {
- if(MultipoleOrder()==0) break;
- const int* ker_dim=kernel->k_l2l->ker_dim;
- // Coord of downward check surface
- Real_t s=pow(0.5,level+1);
- int* coord=interac_list.RelativeCoord(type,mat_indx);
- Real_t c[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
- std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
- size_t n_dc=check_surf.size()/3;
- // Coord of parent's downward equivalent surface
- Real_t parent_coord[3]={0,0,0};
- std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),parent_coord,level-1);
- size_t n_de=equiv_surf.size()/3;
- // Evaluate potential at check surface due to equivalent surface.
- Matrix<Real_t> M_pe2c(n_de*ker_dim[0],n_dc*ker_dim[1]);
- kernel->k_l2l->BuildMatrix(&equiv_surf[0], n_de,
- &check_surf[0], n_dc, &(M_pe2c[0][0]));
- Matrix<Real_t>& M_c2e=Precomp(level,DC2DE_Type,0);
- M=M_pe2c*M_c2e;
- break;
- }
- case D2T_Type:
- {
- if(MultipoleOrder()==0) break;
- const int* ker_dim=kernel->k_l2t->ker_dim;
- std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
- // Coord of target points
- Real_t r=pow(0.5,level);
- size_t n_trg=rel_trg_coord.size()/3;
- std::vector<Real_t> trg_coord(n_trg*3);
- for(size_t i=0;i<n_trg*COORD_DIM;i++) trg_coord[i]=rel_trg_coord[i]*r;
- // Coord of downward equivalent surface
- Real_t c[3]={0,0,0};
- std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
- size_t n_eq=equiv_surf.size()/3;
- // Evaluate potential at target points due to equivalent surface.
- {
- M .Resize(n_eq*ker_dim [0], n_trg*ker_dim [1]);
- kernel->k_l2t->BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
- }
- break;
- }
- case U0_Type:
- {
- break;
- }
- case U1_Type:
- {
- break;
- }
- case U2_Type:
- {
- break;
- }
- case V_Type:
- {
- if(MultipoleOrder()==0) break;
- const int* ker_dim=kernel->k_m2l->ker_dim;
- int n1=MultipoleOrder()*2;
- int n3 =n1*n1*n1;
- int n3_=n1*n1*(n1/2+1);
- //Compute the matrix.
- Real_t s=pow(0.5,level);
- int* coord2=interac_list.RelativeCoord(type,mat_indx);
- Real_t coord_diff[3]={coord2[0]*s,coord2[1]*s,coord2[2]*s};
- //Evaluate potential.
- std::vector<Real_t> r_trg(COORD_DIM,0.0);
- std::vector<Real_t> conv_poten(n3*ker_dim[0]*ker_dim[1]);
- std::vector<Real_t> conv_coord=conv_grid(MultipoleOrder(),coord_diff,level);
- kernel->k_m2l->BuildMatrix(&conv_coord[0],n3,&r_trg[0],1,&conv_poten[0]);
- //Rearrange data.
- Matrix<Real_t> M_conv(n3,ker_dim[0]*ker_dim[1],&conv_poten[0],false);
- M_conv=M_conv.Transpose();
- //Compute FFTW plan.
- int nnn[3]={n1,n1,n1};
- Real_t *fftw_in, *fftw_out;
- fftw_in = mem::aligned_new<Real_t>( n3 *ker_dim[0]*ker_dim[1]*sizeof(Real_t));
- fftw_out = mem::aligned_new<Real_t>(2*n3_*ker_dim[0]*ker_dim[1]*sizeof(Real_t));
- #pragma omp critical (FFTW_PLAN)
- {
- if (!vprecomp_fft_flag){
- vprecomp_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM, nnn, ker_dim[0]*ker_dim[1],
- (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*) fftw_out, NULL, 1, n3_, FFTW_ESTIMATE);
- vprecomp_fft_flag=true;
- }
- }
- //Compute FFT.
- mem::memcopy(fftw_in, &conv_poten[0], n3*ker_dim[0]*ker_dim[1]*sizeof(Real_t));
- FFTW_t<Real_t>::fft_execute_dft_r2c(vprecomp_fftplan, (Real_t*)fftw_in, (typename FFTW_t<Real_t>::cplx*)(fftw_out));
- Matrix<Real_t> M_(2*n3_*ker_dim[0]*ker_dim[1],1,(Real_t*)fftw_out,false);
- M=M_;
- //Free memory.
- mem::aligned_delete<Real_t>(fftw_in);
- mem::aligned_delete<Real_t>(fftw_out);
- break;
- }
- case V1_Type:
- {
- if(MultipoleOrder()==0) break;
- const int* ker_dim=kernel->k_m2l->ker_dim;
- size_t mat_cnt =interac_list.ListCount( V_Type);
- for(size_t k=0;k<mat_cnt;k++) Precomp(level, V_Type, k);
- const size_t chld_cnt=1UL<<COORD_DIM;
- size_t n1=MultipoleOrder()*2;
- size_t M_dim=n1*n1*(n1/2+1);
- size_t n3=n1*n1*n1;
- Vector<Real_t> zero_vec(M_dim*ker_dim[0]*ker_dim[1]*2);
- zero_vec.SetZero();
- Vector<Real_t*> M_ptr(chld_cnt*chld_cnt);
- for(size_t i=0;i<chld_cnt*chld_cnt;i++) M_ptr[i]=&zero_vec[0];
- int* rel_coord_=interac_list.RelativeCoord(V1_Type, mat_indx);
- for(int j1=0;j1<chld_cnt;j1++)
- for(int j2=0;j2<chld_cnt;j2++){
- int rel_coord[3]={rel_coord_[0]*2-(j1/1)%2+(j2/1)%2,
- rel_coord_[1]*2-(j1/2)%2+(j2/2)%2,
- rel_coord_[2]*2-(j1/4)%2+(j2/4)%2};
- for(size_t k=0;k<mat_cnt;k++){
- int* ref_coord=interac_list.RelativeCoord(V_Type, k);
- if(ref_coord[0]==rel_coord[0] &&
- ref_coord[1]==rel_coord[1] &&
- ref_coord[2]==rel_coord[2]){
- Matrix<Real_t>& M = this->mat->Mat(level, V_Type, k);
- M_ptr[j2*chld_cnt+j1]=&M[0][0];
- break;
- }
- }
- }
- // Build matrix ker_dim0 x ker_dim1 x M_dim x 8 x 8
- M.Resize(ker_dim[0]*ker_dim[1]*M_dim, 2*chld_cnt*chld_cnt);
- for(int j=0;j<ker_dim[0]*ker_dim[1]*M_dim;j++){
- for(size_t k=0;k<chld_cnt*chld_cnt;k++){
- M[j][k*2+0]=M_ptr[k][j*2+0]/n3;
- M[j][k*2+1]=M_ptr[k][j*2+1]/n3;
- }
- }
- break;
- }
- case W_Type:
- {
- if(MultipoleOrder()==0) break;
- const int* ker_dim=kernel->k_m2t->ker_dim;
- std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
- // Coord of target points
- Real_t s=pow(0.5,level);
- size_t n_trg=rel_trg_coord.size()/3;
- std::vector<Real_t> trg_coord(n_trg*3);
- for(size_t j=0;j<n_trg*COORD_DIM;j++) trg_coord[j]=rel_trg_coord[j]*s;
- // Coord of downward equivalent surface
- int* coord2=interac_list.RelativeCoord(type,mat_indx);
- Real_t c[3]={(coord2[0]+1)*s*0.25,(coord2[1]+1)*s*0.25,(coord2[2]+1)*s*0.25};
- std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),c,level+1);
- size_t n_eq=equiv_surf.size()/3;
- // Evaluate potential at target points due to equivalent surface.
- {
- M .Resize(n_eq*ker_dim [0],n_trg*ker_dim [1]);
- kernel->k_m2t->BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
- }
- break;
- }
- case X_Type:
- {
- break;
- }
- case BC_Type:
- {
- if(!this->Homogen() || MultipoleOrder()==0) break;
- if(kernel->k_m2l->ker_dim[1]!=kernel->k_m2m->ker_dim[1]) break;
- if(kernel->k_m2l->ker_dim[0]!=kernel->k_l2l->ker_dim[0]) break;
- const int* ker_dim=kernel->k_m2l->ker_dim;
- size_t mat_cnt_m2m=interac_list.ListCount(U2U_Type);
- size_t n_surf=(6*(MultipoleOrder()-1)*(MultipoleOrder()-1)+2); //Total number of points.
- if((M.Dim(0)!=n_surf*ker_dim[0] || M.Dim(1)!=n_surf*ker_dim[1]) && level==0){
- Matrix<Real_t> M_m2m[BC_LEVELS+1];
- Matrix<Real_t> M_m2l[BC_LEVELS+1];
- Matrix<Real_t> M_l2l[BC_LEVELS+1];
- Matrix<Real_t> M_zero_avg(n_surf*ker_dim[0],n_surf*ker_dim[0]);
- { // Set average multipole charge to zero. (improves stability for large BC_LEVELS)
- M_zero_avg.SetZero();
- for(size_t i=0;i<n_surf*ker_dim[0];i++)
- M_zero_avg[i][i]+=1;
- for(size_t i=0;i<n_surf;i++)
- for(size_t j=0;j<n_surf;j++)
- for(size_t k=0;k<ker_dim[0];k++)
- M_zero_avg[i*ker_dim[0]+k][j*ker_dim[0]+k]-=1.0/n_surf;
- }
- for(int level=0; level>=-BC_LEVELS; level--){
- // Compute M_l2l
- {
- this->Precomp(level, D2D_Type, 0);
- Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, D2D_Type, 0);
- Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, D2D_Type, 0);
- M_l2l[-level] = Pr * this->Precomp(level, D2D_Type, this->interac_list.InteracClass(D2D_Type, 0)) * Pc;
- assert(M_l2l[-level].Dim(0)>0 && M_l2l[-level].Dim(1)>0);
- }
- // Compute M_m2m
- for(size_t mat_indx=0; mat_indx<mat_cnt_m2m; mat_indx++){
- this->Precomp(level, U2U_Type, mat_indx);
- Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, U2U_Type, mat_indx);
- Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, U2U_Type, mat_indx);
- Matrix<Real_t> M = Pr * this->Precomp(level, U2U_Type, this->interac_list.InteracClass(U2U_Type, mat_indx)) * Pc;
- assert(M.Dim(0)>0 && M.Dim(1)>0);
- if(mat_indx==0) M_m2m[-level] = M_zero_avg*M;
- else M_m2m[-level] += M_zero_avg*M;
- }
- // Compute M_m2l
- if(!Homogen() || level==0){
- Real_t s=(1UL<<(-level));
- Real_t ue_coord[3]={0,0,0};
- Real_t dc_coord[3]={0,0,0};
- std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
- std::vector<Real_t> trg_coord=d_check_surf(MultipoleOrder(), dc_coord, level);
- Matrix<Real_t> M_ue2dc(n_surf*ker_dim[0], n_surf*ker_dim[1]);
- M_ue2dc.SetZero();
- for(int x0=-2;x0<4;x0++)
- for(int x1=-2;x1<4;x1++)
- for(int x2=-2;x2<4;x2++)
- if(abs(x0)>1 || abs(x1)>1 || abs(x2)>1){
- ue_coord[0]=x0*s; ue_coord[1]=x1*s; ue_coord[2]=x2*s;
- std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
- Matrix<Real_t> M_tmp(n_surf*ker_dim[0], n_surf*ker_dim[1]);
- kernel->k_m2l->BuildMatrix(&src_coord[0], n_surf,
- &trg_coord[0], n_surf, &(M_tmp[0][0]));
- M_ue2dc+=M_tmp;
- }
- // Shift by constant.
- for(size_t i=0;i<M_ue2dc.Dim(0);i++){
- std::vector<Real_t> avg(ker_dim[1],0);
- for(size_t j=0; j<M_ue2dc.Dim(1); j+=ker_dim[1])
- for(int k=0; k<ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
- for(int k=0; k<ker_dim[1]; k++) avg[k]/=n_surf;
- for(size_t j=0; j<M_ue2dc.Dim(1); j+=ker_dim[1])
- for(int k=0; k<ker_dim[1]; k++) M_ue2dc[i][j+k]-=avg[k];
- }
- Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
- M_m2l[-level]=M_ue2dc*M_dc2de;
- }else M_m2l[-level]=M_m2l[-level-1];
- }
- for(int level=-BC_LEVELS;level<=0;level++){
- if(level==-BC_LEVELS) M = M_m2l[-level];
- else M = M_m2l[-level] + M_m2m[-level]*M*M_l2l[-level];
- { // Shift by constant. (improves stability for large BC_LEVELS)
- Matrix<Real_t> M_de2dc(n_surf*ker_dim[0], n_surf*ker_dim[1]);
- { // M_de2dc TODO: For homogeneous kernels, compute only once.
- // Coord of downward check surface
- Real_t c[3]={0,0,0};
- int level_=(Homogen()?0:level);
- std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level_);
- size_t n_ch=check_surf.size()/3;
- // Coord of downward equivalent surface
- std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level_);
- size_t n_eq=equiv_surf.size()/3;
- // Evaluate potential at check surface due to equivalent surface.
- kernel->k_m2l->BuildMatrix(&equiv_surf[0], n_eq,
- &check_surf[0], n_ch, &(M_de2dc[0][0]));
- }
- Matrix<Real_t> M_ue2dc=M*M_de2dc;
- for(size_t i=0;i<M_ue2dc.Dim(0);i++){
- std::vector<Real_t> avg(ker_dim[1],0);
- for(size_t j=0; j<M_ue2dc.Dim(1); j+=ker_dim[1])
- for(int k=0; k<ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
- for(int k=0; k<ker_dim[1]; k++) avg[k]/=n_surf;
- for(size_t j=0; j<M_ue2dc.Dim(1); j+=ker_dim[1])
- for(int k=0; k<ker_dim[1]; k++) M_ue2dc[i][j+k]-=avg[k];
- }
- Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
- M=M_ue2dc*M_dc2de;
- }
- }
- { // ax+by+cz+d correction.
- std::vector<Real_t> corner_pts;
- corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(0);
- corner_pts.push_back(1); corner_pts.push_back(0); corner_pts.push_back(0);
- corner_pts.push_back(0); corner_pts.push_back(1); corner_pts.push_back(0);
- corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(1);
- size_t n_corner=corner_pts.size()/3;
- // Coord of downward equivalent surface
- Real_t c[3]={0,0,0};
- std::vector<Real_t> up_equiv_surf=u_equiv_surf(MultipoleOrder(),c,0);
- std::vector<Real_t> dn_equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
- std::vector<Real_t> dn_check_surf=d_check_surf(MultipoleOrder(),c,0);
- Matrix<Real_t> M_err;
- { // Evaluate potential at corner due to upward and dnward equivalent surface.
- { // Error from local expansion.
- Matrix<Real_t> M_e2pt(n_surf*ker_dim[0],n_corner*ker_dim[1]);
- kernel->k_m2l->BuildMatrix(&dn_equiv_surf[0], n_surf,
- &corner_pts[0], n_corner, &(M_e2pt[0][0]));
- M_err=M*M_e2pt;
- }
- for(size_t k=0;k<4;k++){ // Error from colleagues of root.
- for(int j0=-1;j0<=1;j0++)
- for(int j1=-1;j1<=1;j1++)
- for(int j2=-1;j2<=1;j2++){
- Real_t pt_coord[3]={corner_pts[k*COORD_DIM+0]-j0,
- corner_pts[k*COORD_DIM+1]-j1,
- corner_pts[k*COORD_DIM+2]-j2};
- if(fabs(pt_coord[0]-0.5)>1.0 || fabs(pt_coord[1]-0.5)>1.0 || fabs(pt_coord[2]-0.5)>1.0){
- Matrix<Real_t> M_e2pt(n_surf*ker_dim[0],ker_dim[1]);
- kernel->k_m2l->BuildMatrix(&up_equiv_surf[0], n_surf,
- &pt_coord[0], 1, &(M_e2pt[0][0]));
- for(size_t i=0;i<M_e2pt.Dim(0);i++)
- for(size_t j=0;j<M_e2pt.Dim(1);j++)
- M_err[i][k*ker_dim[1]+j]+=M_e2pt[i][j];
- }
- }
- }
- }
- Matrix<Real_t> M_grad(M_err.Dim(0),n_surf*ker_dim[1]);
- for(size_t i=0;i<M_err.Dim(0);i++)
- for(size_t k=0;k<ker_dim[1];k++)
- for(size_t j=0;j<n_surf;j++){
- M_grad[i][j*ker_dim[1]+k]=(M_err[i][0*ker_dim[1]+k] )*1.0 +
- (M_err[i][1*ker_dim[1]+k]-M_err[i][0*ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+0]+
- (M_err[i][2*ker_dim[1]+k]-M_err[i][0*ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+1]+
- (M_err[i][3*ker_dim[1]+k]-M_err[i][0*ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+2];
- }
- Matrix<Real_t>& M_dc2de = Precomp(0, DC2DE_Type, 0);
- M-=M_grad*M_dc2de;
- }
- { // Free memory
- Mat_Type type=D2D_Type;
- for(int l=-BC_LEVELS;l<0;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- type=U2U_Type;
- for(int l=-BC_LEVELS;l<0;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- type=DC2DE_Type;
- for(int l=-BC_LEVELS;l<0;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- type=UC2UE_Type;
- for(int l=-BC_LEVELS;l<0;l++)
- for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
- Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
- M.Resize(0,0);
- }
- }
- }
- break;
- }
- default:
- break;
- }
- //Save the matrix for future use.
- #pragma omp critical (PRECOMP_MATRIX_PTS)
- if(M_.Dim(0)==0 && M_.Dim(1)==0){
- M_=M;
- /*
- M_.Resize(M.Dim(0),M.Dim(1));
- int dof=ker_dim[0]*ker_dim[1];
- for(int j=0;j<dof;j++){
- size_t a=(M.Dim(0)*M.Dim(1)* j )/dof;
- size_t b=(M.Dim(0)*M.Dim(1)*(j+1))/dof;
- #pragma omp parallel for // NUMA
- for(int tid=0;tid<omp_p;tid++){
- size_t a_=a+((b-a)* tid )/omp_p;
- size_t b_=a+((b-a)*(tid+1))/omp_p;
- mem::memcopy(&M_[0][a_], &M[0][a_], (b_-a_)*sizeof(Real_t));
- }
- }
- */
- }
- return M_;
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::PrecompAll(Mat_Type type, int level){
- if(level==-1){
- for(int l=0;l<MAX_DEPTH;l++){
- PrecompAll(type, l);
- }
- return;
- }
- //Compute basic permutations.
- for(size_t i=0;i<Perm_Count;i++)
- this->PrecompPerm(type, (Perm_Type) i);
- {
- //Allocate matrices.
- size_t mat_cnt=interac_list.ListCount((Mat_Type)type);
- mat->Mat(level, (Mat_Type)type, mat_cnt-1);
- { // Compute InteracClass matrices.
- std::vector<size_t> indx_lst;
- for(size_t i=0; i<mat_cnt; i++){
- if(interac_list.InteracClass((Mat_Type)type,i)==i)
- indx_lst.push_back(i);
- }
- //Compute Transformations.
- //#pragma omp parallel for //lets use fine grained parallelism
- for(size_t i=0; i<indx_lst.size(); i++){
- Precomp(level, (Mat_Type)type, indx_lst[i]);
- }
- }
- //#pragma omp parallel for //lets use fine grained parallelism
- for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
- Matrix<Real_t>& M0=interac_list.ClassMat(level,(Mat_Type)type,mat_indx);
- Permutation<Real_t>& pr=interac_list.Perm_R(level, (Mat_Type)type, mat_indx);
- Permutation<Real_t>& pc=interac_list.Perm_C(level, (Mat_Type)type, mat_indx);
- if(pr.Dim()!=M0.Dim(0) || pc.Dim()!=M0.Dim(1)) Precomp(level, (Mat_Type)type, mat_indx);
- }
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::CollectNodeData(FMMTree_t* tree, std::vector<FMMNode*>& node, std::vector<Matrix<Real_t> >& buff_list, std::vector<Vector<FMMNode_t*> >& n_list, std::vector<std::vector<Vector<Real_t>* > > vec_list){
- if(buff_list.size()<7) buff_list.resize(7);
- if( n_list.size()<7) n_list.resize(7);
- if( vec_list.size()<7) vec_list.resize(7);
- int omp_p=omp_get_max_threads();
- if(node.size()==0) return;
- {// 0. upward_equiv
- int indx=0;
- size_t vec_sz;
- { // Set vec_sz
- Matrix<Real_t>& M_uc2ue = this->interac_list.ClassMat(0, UC2UE_Type, 0);
- vec_sz=M_uc2ue.Dim(1);
- }
- std::vector< FMMNode* > node_lst;
- {// Construct node_lst
- node_lst.clear();
- std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
- FMMNode_t* r_node=NULL;
- for(size_t i=0;i<node.size();i++){
- if(!node[i]->IsLeaf())
- node_lst_[node[i]->Depth()].push_back(node[i]);
- if(node[i]->Depth()==0) r_node=node[i];
- }
- size_t chld_cnt=1UL<<COORD_DIM;
- for(int i=0;i<=MAX_DEPTH;i++){
- for(size_t j=0;j<node_lst_[i].size();j++){
- for(size_t k=0;k<chld_cnt;k++){
- FMMNode_t* node=(FMMNode_t*)node_lst_[i][j]->Child(k);
- node_lst.push_back(node);
- }
- }
- }
- if(r_node!=NULL) node_lst.push_back(r_node);
- n_list[indx]=node_lst;
- }
- std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
- for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
- FMMNode_t* node=node_lst[i];
- Vector<Real_t>& data_vec=node->FMMData()->upward_equiv;
- if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz);
- vec_lst.push_back(&data_vec);
- }
- }
- {// 1. dnward_equiv
- int indx=1;
- size_t vec_sz;
- { // Set vec_sz
- Matrix<Real_t>& M_dc2de = this->interac_list.ClassMat(0, DC2DE_Type, 0);
- vec_sz=M_dc2de.Dim(1);
- }
- std::vector< FMMNode* > node_lst;
- {// Construct node_lst
- node_lst.clear();
- std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
- FMMNode_t* r_node=NULL;
- for(size_t i=0;i<node.size();i++){
- if(!node[i]->IsLeaf())
- node_lst_[node[i]->Depth()].push_back(node[i]);
- if(node[i]->Depth()==0) r_node=node[i];
- }
- size_t chld_cnt=1UL<<COORD_DIM;
- for(int i=0;i<=MAX_DEPTH;i++){
- for(size_t j=0;j<node_lst_[i].size();j++){
- for(size_t k=0;k<chld_cnt;k++){
- FMMNode_t* node=(FMMNode_t*)node_lst_[i][j]->Child(k);
- node_lst.push_back(node);
- }
- }
- }
- if(r_node!=NULL) node_lst.push_back(r_node);
- n_list[indx]=node_lst;
- }
- std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
- for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
- FMMNode_t* node=node_lst[i];
- Vector<Real_t>& data_vec=node->FMMData()->dnward_equiv;
- if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz);
- vec_lst.push_back(&data_vec);
- }
- }
- {// 2. upward_equiv_fft
- int indx=2;
- std::vector< FMMNode* > node_lst;
- {
- std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
- for(size_t i=0;i<node.size();i++)
- if(!node[i]->IsLeaf())
- node_lst_[node[i]->Depth()].push_back(node[i]);
- for(int i=0;i<=MAX_DEPTH;i++)
- for(size_t j=0;j<node_lst_[i].size();j++)
- node_lst.push_back(node_lst_[i][j]);
- }
- n_list[indx]=node_lst;
- }
- {// 3. dnward_check_fft
- int indx=3;
- std::vector< FMMNode* > node_lst;
- {
- std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
- for(size_t i=0;i<node.size();i++)
- if(!node[i]->IsLeaf() && !node[i]->IsGhost())
- node_lst_[node[i]->Depth()].push_back(node[i]);
- for(int i=0;i<=MAX_DEPTH;i++)
- for(size_t j=0;j<node_lst_[i].size();j++)
- node_lst.push_back(node_lst_[i][j]);
- }
- n_list[indx]=node_lst;
- }
- {// 4. src_val
- int indx=4;
- int src_dof=kernel->ker_dim[0];
- int surf_dof=COORD_DIM+src_dof;
- std::vector< FMMNode* > node_lst;
- for(size_t i=0;i<node.size();i++){// Construct node_lst
- if(node[i]->IsLeaf()){
- node_lst.push_back(node[i]);
- }
- }
- n_list[indx]=node_lst;
- std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
- for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
- FMMNode_t* node=node_lst[i];
- { // src_value
- Vector<Real_t>& data_vec=node->src_value;
- size_t vec_sz=(node->src_coord.Dim()/COORD_DIM)*src_dof;
- if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz);
- vec_lst.push_back(&data_vec);
- }
- { // surf_value
- Vector<Real_t>& data_vec=node->surf_value;
- size_t vec_sz=(node->surf_coord.Dim()/COORD_DIM)*surf_dof;
- if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz);
- vec_lst.push_back(&data_vec);
- }
- }
- }
- {// 5. trg_val
- int indx=5;
- int trg_dof=kernel->ker_dim[1];
- std::vector< FMMNode* > node_lst;
- for(size_t i=0;i<node.size();i++){// Construct node_lst
- if(node[i]->IsLeaf() && !node[i]->IsGhost()){
- node_lst.push_back(node[i]);
- }
- }
- n_list[indx]=node_lst;
- std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
- for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
- FMMNode_t* node=node_lst[i];
- { // trg_value
- Vector<Real_t>& data_vec=node->trg_value;
- size_t vec_sz=(node->trg_coord.Dim()/COORD_DIM)*trg_dof;
- if(data_vec.Dim()!=vec_sz) data_vec.ReInit(vec_sz);
- vec_lst.push_back(&data_vec);
- }
- }
- }
- {// 6. pts_coord
- int indx=6;
- std::vector< FMMNode* > node_lst;
- for(size_t i=0;i<node.size();i++){// Construct node_lst
- if(node[i]->IsLeaf()){
- node_lst.push_back(node[i]);
- }
- }
- n_list[indx]=node_lst;
- std::vector<Vector<Real_t>*>& vec_lst=vec_list[indx];
- for(size_t i=0;i<node_lst.size();i++){ // Construct vec_lst
- FMMNode_t* node=node_lst[i];
- { // src_coord
- Vector<Real_t>& data_vec=node->src_coord;
- vec_lst.push_back(&data_vec);
- }
- { // surf_coord
- Vector<Real_t>& data_vec=node->surf_coord;
- vec_lst.push_back(&data_vec);
- }
- { // trg_coord
- Vector<Real_t>& data_vec=node->trg_coord;
- vec_lst.push_back(&data_vec);
- }
- }
- { // check and equiv surfaces.
- if(tree->upwd_check_surf.size()==0){
- size_t m=MultipoleOrder();
- tree->upwd_check_surf.resize(MAX_DEPTH);
- tree->upwd_equiv_surf.resize(MAX_DEPTH);
- tree->dnwd_check_surf.resize(MAX_DEPTH);
- tree->dnwd_equiv_surf.resize(MAX_DEPTH);
- for(size_t depth=0;depth<MAX_DEPTH;depth++){
- Real_t c[3]={0.0,0.0,0.0};
- tree->upwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
- tree->upwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
- tree->dnwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
- tree->dnwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM);
- tree->upwd_check_surf[depth]=u_check_surf(m,c,depth);
- tree->upwd_equiv_surf[depth]=u_equiv_surf(m,c,depth);
- tree->dnwd_check_surf[depth]=d_check_surf(m,c,depth);
- tree->dnwd_equiv_surf[depth]=d_equiv_surf(m,c,depth);
- }
- }
- for(size_t depth=0;depth<MAX_DEPTH;depth++){
- vec_lst.push_back(&tree->upwd_check_surf[depth]);
- vec_lst.push_back(&tree->upwd_equiv_surf[depth]);
- vec_lst.push_back(&tree->dnwd_check_surf[depth]);
- vec_lst.push_back(&tree->dnwd_equiv_surf[depth]);
- }
- }
- }
- // Create extra auxiliary buffer.
- if(buff_list.size()<=vec_list.size()) buff_list.resize(vec_list.size()+1);
- for(size_t indx=0;indx<vec_list.size();indx++){ // Resize buffer
- Matrix<Real_t>& aux_buff=buff_list[vec_list.size()];
- Matrix<Real_t>& buff=buff_list[indx];
- std::vector<Vector<Real_t>*>& vec_lst= vec_list[indx];
- bool keep_data=(indx==4 || indx==6);
- size_t n_vec=vec_lst.size();
- { // Continue if nothing to be done.
- if(!n_vec) continue;
- if(buff.Dim(0)*buff.Dim(1)>0){
- bool init_buff=false;
- Real_t* buff_start=&buff[0][0];
- Real_t* buff_end=&buff[0][0]+buff.Dim(0)*buff.Dim(1);
- #pragma omp parallel for reduction(||:init_buff)
- for(size_t i=0;i<n_vec;i++){
- if(&(*vec_lst[i])[0]<buff_start || &(*vec_lst[i])[0]>=buff_end){
- init_buff=true;
- }
- }
- if(!init_buff) continue;
- }
- }
- std::vector<size_t> vec_size(n_vec);
- std::vector<size_t> vec_disp(n_vec);
- if(n_vec){ // Set vec_size and vec_disp
- #pragma omp parallel for
- for(size_t i=0;i<n_vec;i++){ // Set vec_size
- vec_size[i]=vec_lst[i]->Dim();
- }
- vec_disp[0]=0;
- omp_par::scan(&vec_size[0],&vec_disp[0],n_vec);
- }
- size_t buff_size=vec_size[n_vec-1]+vec_disp[n_vec-1];
- if(keep_data){ // Copy to aux_buff
- if(aux_buff.Dim(0)*aux_buff.Dim(1)<buff_size){ // Resize aux_buff
- aux_buff.ReInit(1,buff_size*1.05);
- }
- #pragma omp parallel for schedule(dynamic)
- for(size_t i=0;i<n_vec;i++){
- mem::memcopy(&aux_buff[0][0]+vec_disp[i],&(*vec_lst[i])[0],vec_size[i]*sizeof(Real_t));
- }
- }
- if(buff.Dim(0)*buff.Dim(1)<buff_size){ // Resize buff
- buff.ReInit(1,buff_size*1.05);
- }
- if(keep_data){ // Copy to buff (from aux_buff)
- #pragma omp parallel for
- for(size_t tid=0;tid<omp_p;tid++){
- size_t a=(buff_size*(tid+0))/omp_p;
- size_t b=(buff_size*(tid+1))/omp_p;
- mem::memcopy(&buff[0][0]+a,&aux_buff[0][0]+a,(b-a)*sizeof(Real_t));
- }
- }
- #pragma omp parallel for
- for(size_t i=0;i<n_vec;i++){ // ReInit vectors
- vec_lst[i]->ReInit(vec_size[i],&buff[0][0]+vec_disp[i],false);
- }
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::SetupPrecomp(SetupData<Real_t>& setup_data, bool device){
- if(setup_data.precomp_data==NULL || setup_data.level>MAX_DEPTH) return;
- Profile::Tic("SetupPrecomp",&this->comm,true,25);
- { // Build precomp_data
- size_t precomp_offset=0;
- int level=setup_data.level;
- Matrix<char>& precomp_data=*setup_data.precomp_data;
- std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
- for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
- Mat_Type& interac_type=interac_type_lst[type_indx];
- this->PrecompAll(interac_type, level); // Compute matrices.
- precomp_offset=this->mat->CompactData(level, interac_type, precomp_data, precomp_offset);
- }
- }
- Profile::Toc();
- if(device){ // Host2Device
- Profile::Tic("Host2Device",&this->comm,false,25);
- setup_data.precomp_data->AllocDevice(true);
- Profile::Toc();
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::SetupInterac(SetupData<Real_t>& setup_data, bool device){
- int level=setup_data.level;
- std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- Matrix<Real_t>& input_data=*setup_data. input_data;
- Matrix<Real_t>& output_data=*setup_data.output_data;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
- size_t n_in =nodes_in .size();
- size_t n_out=nodes_out.size();
- // Setup precomputed data.
- if(setup_data.precomp_data->Dim(0)*setup_data.precomp_data->Dim(1)==0) SetupPrecomp(setup_data,device);
- // Build interac_data
- Profile::Tic("Interac-Data",&this->comm,true,25);
- Matrix<char>& interac_data=setup_data.interac_data;
- if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
- std::vector<size_t> interac_mat;
- std::vector<size_t> interac_cnt;
- std::vector<size_t> interac_blk;
- std::vector<size_t> input_perm;
- std::vector<size_t> output_perm;
- size_t dof=0, M_dim0=0, M_dim1=0;
- size_t precomp_offset=0;
- size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
- for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
- Mat_Type& interac_type=interac_type_lst[type_indx];
- size_t mat_cnt=this->interac_list.ListCount(interac_type);
- Matrix<size_t> precomp_data_offset;
- { // Load precomp_data for interac_type.
- struct HeaderData{
- size_t total_size;
- size_t level;
- size_t mat_cnt ;
- size_t max_depth;
- };
- Matrix<char>& precomp_data=*setup_data.precomp_data;
- char* indx_ptr=precomp_data[0]+precomp_offset;
- HeaderData& header=*(HeaderData*)indx_ptr;indx_ptr+=sizeof(HeaderData);
- precomp_data_offset.ReInit(header.mat_cnt,(1+(2+2)*header.max_depth), (size_t*)indx_ptr, false);
- precomp_offset+=header.total_size;
- }
- Matrix<FMMNode*> src_interac_list(n_in ,mat_cnt); src_interac_list.SetZero();
- Matrix<FMMNode*> trg_interac_list(n_out,mat_cnt); trg_interac_list.SetZero();
- { // Build trg_interac_list
- #pragma omp parallel for
- for(size_t i=0;i<n_out;i++){
- if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
- std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
- mem::memcopy(&trg_interac_list[i][0], &lst[0], lst.size()*sizeof(FMMNode*));
- assert(lst.size()==mat_cnt);
- }
- }
- }
- { // Build src_interac_list
- #pragma omp parallel for
- for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
- #pragma omp parallel for
- for(size_t i=0;i<n_out;i++){
- for(size_t j=0;j<mat_cnt;j++)
- if(trg_interac_list[i][j]!=NULL){
- src_interac_list[trg_interac_list[i][j]->node_id][j]=(FMMNode*)nodes_out[i];
- }
- }
- }
- Matrix<size_t> interac_dsp(n_out,mat_cnt);
- std::vector<size_t> interac_blk_dsp(1,0);
- { // Determine dof, M_dim0, M_dim1
- dof=1;
- Matrix<Real_t>& M0 = this->interac_list.ClassMat(level, interac_type_lst[0], 0);
- M_dim0=M0.Dim(0); M_dim1=M0.Dim(1);
- }
- { // Determine interaction blocks which fit in memory.
- size_t vec_size=(M_dim0+M_dim1)*sizeof(Real_t)*dof;
- for(size_t j=0;j<mat_cnt;j++){// Determine minimum buff_size
- size_t vec_cnt=0;
- for(size_t i=0;i<n_out;i++){
- if(trg_interac_list[i][j]!=NULL) vec_cnt++;
- }
- if(buff_size<vec_cnt*vec_size)
- buff_size=vec_cnt*vec_size;
- }
- size_t interac_dsp_=0;
- for(size_t j=0;j<mat_cnt;j++){
- for(size_t i=0;i<n_out;i++){
- interac_dsp[i][j]=interac_dsp_;
- if(trg_interac_list[i][j]!=NULL) interac_dsp_++;
- }
- if(interac_dsp_*vec_size>buff_size) // Comment to disable symmetries.
- {
- interac_blk.push_back(j-interac_blk_dsp.back());
- interac_blk_dsp.push_back(j);
- size_t offset=interac_dsp[0][j];
- for(size_t i=0;i<n_out;i++) interac_dsp[i][j]-=offset;
- interac_dsp_-=offset;
- assert(interac_dsp_*vec_size<=buff_size); // Problem too big for buff_size.
- }
- interac_mat.push_back(precomp_data_offset[this->interac_list.InteracClass(interac_type,j)][0]);
- interac_cnt.push_back(interac_dsp_-interac_dsp[0][j]);
- }
- interac_blk.push_back(mat_cnt-interac_blk_dsp.back());
- interac_blk_dsp.push_back(mat_cnt);
- }
- { // Determine input_perm.
- size_t vec_size=M_dim0*dof;
- for(size_t i=0;i<n_out;i++) ((FMMNode*)nodes_out[i])->node_id=i;
- for(size_t k=1;k<interac_blk_dsp.size();k++){
- for(size_t i=0;i<n_in ;i++){
- for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
- FMMNode_t* trg_node=src_interac_list[i][j];
- if(trg_node!=NULL){
- size_t depth=(this->Homogen()?trg_node->Depth():0);
- input_perm .push_back(precomp_data_offset[j][1+4*depth+0]); // prem
- input_perm .push_back(precomp_data_offset[j][1+4*depth+1]); // scal
- input_perm .push_back(interac_dsp[trg_node->node_id][j]*vec_size*sizeof(Real_t)); // trg_ptr
- input_perm .push_back((size_t)(& input_vector[i][0][0]- input_data[0])); // src_ptr
- assert(input_vector[i]->Dim()==vec_size);
- }
- }
- }
- }
- }
- { // Determine output_perm
- size_t vec_size=M_dim1*dof;
- for(size_t k=1;k<interac_blk_dsp.size();k++){
- for(size_t i=0;i<n_out;i++){
- for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
- if(trg_interac_list[i][j]!=NULL){
- size_t depth=(this->Homogen()?((FMMNode*)nodes_out[i])->Depth():0);
- output_perm.push_back(precomp_data_offset[j][1+4*depth+2]); // prem
- output_perm.push_back(precomp_data_offset[j][1+4*depth+3]); // scal
- output_perm.push_back(interac_dsp[ i ][j]*vec_size*sizeof(Real_t)); // src_ptr
- output_perm.push_back((size_t)(&output_vector[i][0][0]-output_data[0])); // trg_ptr
- assert(output_vector[i]->Dim()==vec_size);
- }
- }
- }
- }
- }
- }
- if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.ReInit(buff_size);
- if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.ReInit(buff_size);
- { // Set interac_data.
- size_t data_size=sizeof(size_t)*4;
- data_size+=sizeof(size_t)+interac_blk.size()*sizeof(size_t);
- data_size+=sizeof(size_t)+interac_cnt.size()*sizeof(size_t);
- data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
- data_size+=sizeof(size_t)+ input_perm.size()*sizeof(size_t);
- data_size+=sizeof(size_t)+output_perm.size()*sizeof(size_t);
- if(interac_data.Dim(0)*interac_data.Dim(1)<sizeof(size_t)){
- data_size+=sizeof(size_t);
- interac_data.ReInit(1,data_size);
- ((size_t*)&interac_data[0][0])[0]=sizeof(size_t);
- }else{
- size_t pts_data_size=*((size_t*)&interac_data[0][0]);
- assert(interac_data.Dim(0)*interac_data.Dim(1)>=pts_data_size);
- data_size+=pts_data_size;
- if(data_size>interac_data.Dim(0)*interac_data.Dim(1)){ //Resize and copy interac_data.
- Matrix< char> pts_interac_data=interac_data;
- interac_data.ReInit(1,data_size);
- mem::memcopy(&interac_data[0][0],&pts_interac_data[0][0],pts_data_size);
- }
- }
- char* data_ptr=&interac_data[0][0];
- data_ptr+=((size_t*)data_ptr)[0];
- ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= M_dim0; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= M_dim1; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]=interac_blk.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &interac_blk[0], interac_blk.size()*sizeof(size_t));
- data_ptr+=interac_blk.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=interac_cnt.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &interac_cnt[0], interac_cnt.size()*sizeof(size_t));
- data_ptr+=interac_cnt.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=interac_mat.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
- data_ptr+=interac_mat.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]= input_perm.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, & input_perm[0], input_perm.size()*sizeof(size_t));
- data_ptr+= input_perm.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=output_perm.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &output_perm[0], output_perm.size()*sizeof(size_t));
- data_ptr+=output_perm.size()*sizeof(size_t);
- }
- }
- Profile::Toc();
- if(device){ // Host2Device
- Profile::Tic("Host2Device",&this->comm,false,25);
- setup_data.interac_data .AllocDevice(true);
- Profile::Toc();
- }
- }
- #if defined(PVFMM_HAVE_CUDA)
- #include <fmm_pts_gpu.hpp>
- template <class Real_t, int SYNC>
- void EvalListGPU(SetupData<Real_t>& setup_data, Vector<char>& dev_buffer, MPI_Comm& comm) {
- cudaStream_t* stream = pvfmm::CUDA_Lock::acquire_stream();
- Profile::Tic("Host2Device",&comm,false,25);
- typename Matrix<char>::Device interac_data;
- typename Vector<char>::Device buff;
- typename Matrix<char>::Device precomp_data_d;
- typename Matrix<char>::Device interac_data_d;
- typename Matrix<Real_t>::Device input_data_d;
- typename Matrix<Real_t>::Device output_data_d;
- interac_data = setup_data.interac_data;
- buff = dev_buffer. AllocDevice(false);
- precomp_data_d= setup_data.precomp_data->AllocDevice(false);
- interac_data_d= setup_data.interac_data. AllocDevice(false);
- input_data_d = setup_data. input_data->AllocDevice(false);
- output_data_d = setup_data. output_data->AllocDevice(false);
- Profile::Toc();
- Profile::Tic("DeviceComp",&comm,false,20);
- { // Offloaded computation.
- size_t data_size, M_dim0, M_dim1, dof;
- Vector<size_t> interac_blk;
- Vector<size_t> interac_cnt;
- Vector<size_t> interac_mat;
- Vector<size_t> input_perm_d;
- Vector<size_t> output_perm_d;
- { // Set interac_data.
- char* data_ptr=&interac_data [0][0];
- char* dev_ptr=&interac_data_d[0][0];
- data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size; dev_ptr += data_size;
- data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
- M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
- M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
- dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
- interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
- dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
- interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
- dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
- interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
- dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
- input_perm_d.ReInit(((size_t*)data_ptr)[0],(size_t*)(dev_ptr+sizeof(size_t)),false);
- data_ptr += sizeof(size_t) + sizeof(size_t)*input_perm_d.Dim();
- dev_ptr += sizeof(size_t) + sizeof(size_t)*input_perm_d.Dim();
- output_perm_d.ReInit(((size_t*)data_ptr)[0],(size_t*)(dev_ptr+sizeof(size_t)),false);
- data_ptr += sizeof(size_t) + sizeof(size_t)*output_perm_d.Dim();
- dev_ptr += sizeof(size_t) + sizeof(size_t)*output_perm_d.Dim();
- }
- { // interactions
- size_t interac_indx = 0;
- size_t interac_blk_dsp = 0;
- cudaError_t error;
- for (size_t k = 0; k < interac_blk.Dim(); k++) {
- size_t vec_cnt=0;
- for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
- if(vec_cnt==0){
- //interac_indx += vec_cnt;
- interac_blk_dsp += interac_blk[k];
- continue;
- }
- char *buff_in_d =&buff[0];
- char *buff_out_d =&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
- { // Input permutation.
- in_perm_gpu<Real_t>(&precomp_data_d[0][0], &input_data_d[0][0], buff_in_d,
- &input_perm_d[interac_indx*4], vec_cnt, M_dim0, stream);
- }
- size_t vec_cnt0 = 0;
- for (size_t j = interac_blk_dsp; j < interac_blk_dsp + interac_blk[k];) {
- size_t vec_cnt1 = 0;
- size_t interac_mat0 = interac_mat[j];
- for (; j < interac_blk_dsp + interac_blk[k] && interac_mat[j] == interac_mat0; j++) vec_cnt1 += interac_cnt[j];
- Matrix<Real_t> M_d(M_dim0, M_dim1, (Real_t*)(precomp_data_d.dev_ptr + interac_mat0), false);
- Matrix<Real_t> Ms_d(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in_d + M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
- Matrix<Real_t> Mt_d(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out_d + M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
- Matrix<Real_t>::CUBLASGEMM(Mt_d, Ms_d, M_d);
- vec_cnt0 += vec_cnt1;
- }
- { // Output permutation.
- out_perm_gpu<Real_t>(&precomp_data_d[0][0], &output_data_d[0][0], buff_out_d,
- &output_perm_d[interac_indx*4], vec_cnt, M_dim1, stream);
- }
- interac_indx += vec_cnt;
- interac_blk_dsp += interac_blk[k];
- }
- }
- }
- Profile::Toc();
- if(SYNC) CUDA_Lock::wait();
- }
- #endif
- template <class FMMNode>
- template <int SYNC>
- void FMM_Pts<FMMNode>::EvalList(SetupData<Real_t>& setup_data, bool device){
- if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
- Profile::Tic("Host2Device",&this->comm,false,25);
- Profile::Toc();
- Profile::Tic("DeviceComp",&this->comm,false,20);
- Profile::Toc();
- return;
- }
- #if defined(PVFMM_HAVE_CUDA)
- if (device) {
- EvalListGPU<Real_t, SYNC>(setup_data, this->dev_buffer, this->comm);
- return;
- }
- #endif
- Profile::Tic("Host2Device",&this->comm,false,25);
- typename Vector<char>::Device buff;
- typename Matrix<char>::Device precomp_data;
- typename Matrix<char>::Device interac_data;
- typename Matrix<Real_t>::Device input_data;
- typename Matrix<Real_t>::Device output_data;
- if(device){
- buff = this-> dev_buffer. AllocDevice(false);
- precomp_data= setup_data.precomp_data->AllocDevice(false);
- interac_data= setup_data.interac_data. AllocDevice(false);
- input_data = setup_data. input_data->AllocDevice(false);
- output_data = setup_data. output_data->AllocDevice(false);
- }else{
- buff = this-> cpu_buffer;
- precomp_data=*setup_data.precomp_data;
- interac_data= setup_data.interac_data;
- input_data =*setup_data. input_data;
- output_data =*setup_data. output_data;
- }
- Profile::Toc();
- Profile::Tic("DeviceComp",&this->comm,false,20);
- int lock_idx=-1;
- int wait_lock_idx=-1;
- if(device) wait_lock_idx=MIC_Lock::curr_lock();
- if(device) lock_idx=MIC_Lock::get_lock();
- #ifdef __INTEL_OFFLOAD
- #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
- #endif
- { // Offloaded computation.
- // Set interac_data.
- size_t data_size, M_dim0, M_dim1, dof;
- Vector<size_t> interac_blk;
- Vector<size_t> interac_cnt;
- Vector<size_t> interac_mat;
- Vector<size_t> input_perm;
- Vector<size_t> output_perm;
- { // Set interac_data.
- char* data_ptr=&interac_data[0][0];
- data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size;
- data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+interac_blk.Dim()*sizeof(size_t);
- interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+interac_cnt.Dim()*sizeof(size_t);
- interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
- input_perm .ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+ input_perm.Dim()*sizeof(size_t);
- output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+output_perm.Dim()*sizeof(size_t);
- }
- if(device) MIC_Lock::wait_lock(wait_lock_idx);
- //Compute interaction from Chebyshev source density.
- { // interactions
- int omp_p=omp_get_max_threads();
- size_t interac_indx=0;
- size_t interac_blk_dsp=0;
- for(size_t k=0;k<interac_blk.Dim();k++){
- size_t vec_cnt=0;
- for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
- if(vec_cnt==0){
- //interac_indx += vec_cnt;
- interac_blk_dsp += interac_blk[k];
- continue;
- }
- char* buff_in =&buff[0];
- char* buff_out=&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
- // Input permutation.
- #pragma omp parallel for
- for(int tid=0;tid<omp_p;tid++){
- size_t a=( tid *vec_cnt)/omp_p;
- size_t b=((tid+1)*vec_cnt)/omp_p;
- for(size_t i=a;i<b;i++){
- const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+input_perm[(interac_indx+i)*4+0]);
- const Real_t* scal=( Real_t*)(precomp_data[0]+input_perm[(interac_indx+i)*4+1]);
- const Real_t* v_in =( Real_t*)( input_data[0]+input_perm[(interac_indx+i)*4+3]);
- Real_t* v_out=( Real_t*)( buff_in +input_perm[(interac_indx+i)*4+2]);
- // TODO: Fix for dof>1
- #ifdef __MIC__
- {
- __m512d v8;
- size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
- size_t j_end =(((uintptr_t)(v_out+M_dim0) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
- j_start/=sizeof(Real_t);
- j_end /=sizeof(Real_t);
- assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
- assert(((uintptr_t)(v_out+j_start))%64==0);
- assert(((uintptr_t)(v_out+j_end ))%64==0);
- size_t j=0;
- for(;j<j_start;j++ ){
- v_out[j]=v_in[perm[j]]*scal[j];
- }
- for(;j<j_end ;j+=8){
- v8=_mm512_setr_pd(
- v_in[perm[j+0]]*scal[j+0],
- v_in[perm[j+1]]*scal[j+1],
- v_in[perm[j+2]]*scal[j+2],
- v_in[perm[j+3]]*scal[j+3],
- v_in[perm[j+4]]*scal[j+4],
- v_in[perm[j+5]]*scal[j+5],
- v_in[perm[j+6]]*scal[j+6],
- v_in[perm[j+7]]*scal[j+7]);
- _mm512_storenrngo_pd(v_out+j,v8);
- }
- for(;j<M_dim0 ;j++ ){
- v_out[j]=v_in[perm[j]]*scal[j];
- }
- }
- #else
- for(size_t j=0;j<M_dim0;j++ ){
- v_out[j]=v_in[perm[j]]*scal[j];
- }
- #endif
- }
- }
- size_t vec_cnt0=0;
- for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];){
- size_t vec_cnt1=0;
- size_t interac_mat0=interac_mat[j];
- for(;j<interac_blk_dsp+interac_blk[k] && interac_mat[j]==interac_mat0;j++) vec_cnt1+=interac_cnt[j];
- Matrix<Real_t> M(M_dim0, M_dim1, (Real_t*)(precomp_data[0]+interac_mat0), false);
- #ifdef __MIC__
- {
- Matrix<Real_t> Ms(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
- Matrix<Real_t> Mt(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
- Matrix<Real_t>::GEMM(Mt,Ms,M);
- }
- #else
- #pragma omp parallel for
- for(int tid=0;tid<omp_p;tid++){
- size_t a=(dof*vec_cnt1*(tid ))/omp_p;
- size_t b=(dof*vec_cnt1*(tid+1))/omp_p;
- Matrix<Real_t> Ms(b-a, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t))+M_dim0*a, false);
- Matrix<Real_t> Mt(b-a, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t))+M_dim1*a, false);
- Matrix<Real_t>::GEMM(Mt,Ms,M);
- }
- #endif
- vec_cnt0+=vec_cnt1;
- }
- // Output permutation.
- #pragma omp parallel for
- for(int tid=0;tid<omp_p;tid++){
- size_t a=( tid *vec_cnt)/omp_p;
- size_t b=((tid+1)*vec_cnt)/omp_p;
- if(tid> 0 && a<vec_cnt){ // Find 'a' independent of other threads.
- size_t out_ptr=output_perm[(interac_indx+a)*4+3];
- if(tid> 0) while(a<vec_cnt && out_ptr==output_perm[(interac_indx+a)*4+3]) a++;
- }
- if(tid<omp_p-1 && b<vec_cnt){ // Find 'b' independent of other threads.
- size_t out_ptr=output_perm[(interac_indx+b)*4+3];
- if(tid<omp_p-1) while(b<vec_cnt && out_ptr==output_perm[(interac_indx+b)*4+3]) b++;
- }
- for(size_t i=a;i<b;i++){ // Compute permutations.
- const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+output_perm[(interac_indx+i)*4+0]);
- const Real_t* scal=( Real_t*)(precomp_data[0]+output_perm[(interac_indx+i)*4+1]);
- const Real_t* v_in =( Real_t*)( buff_out +output_perm[(interac_indx+i)*4+2]);
- Real_t* v_out=( Real_t*)( output_data[0]+output_perm[(interac_indx+i)*4+3]);
- // TODO: Fix for dof>1
- #ifdef __MIC__
- {
- __m512d v8;
- __m512d v_old;
- size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
- size_t j_end =(((uintptr_t)(v_out+M_dim1) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
- j_start/=sizeof(Real_t);
- j_end /=sizeof(Real_t);
- assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
- assert(((uintptr_t)(v_out+j_start))%64==0);
- assert(((uintptr_t)(v_out+j_end ))%64==0);
- size_t j=0;
- for(;j<j_start;j++ ){
- v_out[j]+=v_in[perm[j]]*scal[j];
- }
- for(;j<j_end ;j+=8){
- v_old=_mm512_load_pd(v_out+j);
- v8=_mm512_setr_pd(
- v_in[perm[j+0]]*scal[j+0],
- v_in[perm[j+1]]*scal[j+1],
- v_in[perm[j+2]]*scal[j+2],
- v_in[perm[j+3]]*scal[j+3],
- v_in[perm[j+4]]*scal[j+4],
- v_in[perm[j+5]]*scal[j+5],
- v_in[perm[j+6]]*scal[j+6],
- v_in[perm[j+7]]*scal[j+7]);
- v_old=_mm512_add_pd(v_old, v8);
- _mm512_storenrngo_pd(v_out+j,v_old);
- }
- for(;j<M_dim1 ;j++ ){
- v_out[j]+=v_in[perm[j]]*scal[j];
- }
- }
- #else
- for(size_t j=0;j<M_dim1;j++ ){
- v_out[j]+=v_in[perm[j]]*scal[j];
- }
- #endif
- }
- }
- interac_indx+=vec_cnt;
- interac_blk_dsp+=interac_blk[k];
- }
- }
- if(device) MIC_Lock::release_lock(lock_idx);
- }
- #ifdef __INTEL_OFFLOAD
- if(SYNC){
- #pragma offload if(device) target(mic:0)
- {if(device) MIC_Lock::wait_lock(lock_idx);}
- }
- #endif
- Profile::Toc();
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::Source2UpSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- if(this->MultipoleOrder()==0) return;
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=kernel->k_s2m;
- setup_data.interac_type.resize(1);
- setup_data.interac_type[0]=S2U_Type;
- setup_data. input_data=&buff[4];
- setup_data.output_data=&buff[0];
- setup_data. coord_data=&buff[6];
- Vector<FMMNode_t*>& nodes_in =n_list[4];
- Vector<FMMNode_t*>& nodes_out=n_list[0];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++){
- input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
- input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
- input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
- input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
- }
- for(size_t i=0;i<nodes_out.size();i++){
- output_vector.push_back(&tree->upwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
- output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
- }
- //Upward check to upward equivalent matrix.
- Matrix<Real_t>& M_uc2ue = this->mat->Mat(level, UC2UE_Type, 0);
- this->SetupInteracPts(setup_data, false, true, &M_uc2ue,device);
- { // Resize device buffer
- size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
- if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::Source2Up(SetupData<Real_t>& setup_data, bool device){
- //Add Source2Up contribution.
- this->EvalListPts(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::Up2UpSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- if(this->MultipoleOrder()==0) return;
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=kernel->k_m2m;
- setup_data.interac_type.resize(1);
- setup_data.interac_type[0]=U2U_Type;
- setup_data. input_data=&buff[0];
- setup_data.output_data=&buff[0];
- Vector<FMMNode_t*>& nodes_in =n_list[0];
- Vector<FMMNode_t*>& nodes_out=n_list[0];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
- for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
- SetupInterac(setup_data,device);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::Up2Up (SetupData<Real_t>& setup_data, bool device){
- //Add Up2Up contribution.
- EvalList(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::PeriodicBC(FMMNode* node){
- if(!this->Homogen() || this->MultipoleOrder()==0) return;
- Matrix<Real_t>& M = Precomp(0, BC_Type, 0);
- assert(node->FMMData()->upward_equiv.Dim()>0);
- int dof=1;
- Vector<Real_t>& upward_equiv=node->FMMData()->upward_equiv;
- Vector<Real_t>& dnward_equiv=node->FMMData()->dnward_equiv;
- assert(upward_equiv.Dim()==M.Dim(0)*dof);
- assert(dnward_equiv.Dim()==M.Dim(1)*dof);
- Matrix<Real_t> d_equiv(dof,M.Dim(0),&dnward_equiv[0],false);
- Matrix<Real_t> u_equiv(dof,M.Dim(1),&upward_equiv[0],false);
- Matrix<Real_t>::GEMM(d_equiv,u_equiv,M);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::FFT_UpEquiv(size_t dof, size_t m, size_t ker_dim0, Vector<size_t>& fft_vec, Vector<Real_t>& fft_scal,
- Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_){
- size_t n1=m*2;
- size_t n2=n1*n1;
- size_t n3=n1*n2;
- size_t n3_=n2*(n1/2+1);
- size_t chld_cnt=1UL<<COORD_DIM;
- size_t fftsize_in =2*n3_*chld_cnt*ker_dim0*dof;
- int omp_p=omp_get_max_threads();
- //Load permutation map.
- size_t n=6*(m-1)*(m-1)+2;
- static Vector<size_t> map;
- { // Build map to reorder upward_equiv
- size_t n_old=map.Dim();
- if(n_old!=n){
- Real_t c[3]={0,0,0};
- Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
- map.Resize(surf.Dim()/COORD_DIM);
- for(size_t i=0;i<map.Dim();i++)
- map[i]=((size_t)(m-1-surf[i*3]+0.5))+((size_t)(m-1-surf[i*3+1]+0.5))*n1+((size_t)(m-1-surf[i*3+2]+0.5))*n2;
- }
- }
- { // Build FFTW plan.
- if(!vlist_fft_flag){
- int nnn[3]={(int)n1,(int)n1,(int)n1};
- void *fftw_in, *fftw_out;
- fftw_in = mem::aligned_new<Real_t>( n3 *ker_dim0*chld_cnt);
- fftw_out = mem::aligned_new<Real_t>(2*n3_*ker_dim0*chld_cnt);
- vlist_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM,nnn,ker_dim0*chld_cnt,
- (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*)(fftw_out),NULL, 1, n3_, FFTW_ESTIMATE);
- mem::aligned_delete<Real_t>((Real_t*)fftw_in );
- mem::aligned_delete<Real_t>((Real_t*)fftw_out);
- vlist_fft_flag=true;
- }
- }
- { // Offload section
- size_t n_in = fft_vec.Dim();
- #pragma omp parallel for
- for(int pid=0; pid<omp_p; pid++){
- size_t node_start=(n_in*(pid ))/omp_p;
- size_t node_end =(n_in*(pid+1))/omp_p;
- Vector<Real_t> buffer(fftsize_in, &buffer_[fftsize_in*pid], false);
- for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
- Vector<Real_t*> upward_equiv(chld_cnt);
- for(size_t i=0;i<chld_cnt;i++) upward_equiv[i]=&input_data[0] + fft_vec[node_idx] + n*ker_dim0*dof*i;
- Vector<Real_t> upward_equiv_fft(fftsize_in, &output_data[fftsize_in *node_idx], false);
- upward_equiv_fft.SetZero();
- // Rearrange upward equivalent data.
- for(size_t k=0;k<n;k++){
- size_t idx=map[k];
- for(int j1=0;j1<dof;j1++)
- for(int j0=0;j0<(int)chld_cnt;j0++)
- for(int i=0;i<ker_dim0;i++)
- upward_equiv_fft[idx+(j0+(i+j1*ker_dim0)*chld_cnt)*n3]=upward_equiv[j0][ker_dim0*(n*j1+k)+i]*fft_scal[ker_dim0*node_idx+i];
- }
- // Compute FFT.
- for(int i=0;i<dof;i++)
- FFTW_t<Real_t>::fft_execute_dft_r2c(vlist_fftplan, (Real_t*)&upward_equiv_fft[i* n3 *ker_dim0*chld_cnt],
- (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim0*chld_cnt]);
- //Compute flops.
- #ifndef FFTW3_MKL
- double add, mul, fma;
- FFTW_t<Real_t>::fftw_flops(vlist_fftplan, &add, &mul, &fma);
- #ifndef __INTEL_OFFLOAD0
- Profile::Add_FLOP((long long)(add+mul+2*fma));
- #endif
- #endif
- for(int i=0;i<ker_dim0*dof;i++)
- for(size_t j=0;j<n3_;j++)
- for(size_t k=0;k<chld_cnt;k++){
- upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+0]=buffer[2*(n3_*(chld_cnt*i+k)+j)+0];
- upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+1]=buffer[2*(n3_*(chld_cnt*i+k)+j)+1];
- }
- }
- }
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::FFT_Check2Equiv(size_t dof, size_t m, size_t ker_dim1, Vector<size_t>& ifft_vec, Vector<Real_t>& ifft_scal,
- Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_, Matrix<Real_t>& M){
- size_t n1=m*2;
- size_t n2=n1*n1;
- size_t n3=n1*n2;
- size_t n3_=n2*(n1/2+1);
- size_t chld_cnt=1UL<<COORD_DIM;
- size_t fftsize_out=2*n3_*dof*ker_dim1*chld_cnt;
- size_t ker_dim0=M.Dim(1)/(M.Dim(0)/ker_dim1);
- int omp_p=omp_get_max_threads();
- //Load permutation map.
- size_t n=6*(m-1)*(m-1)+2;
- static Vector<size_t> map;
- { // Build map to reorder dnward_check
- size_t n_old=map.Dim();
- if(n_old!=n){
- Real_t c[3]={0,0,0};
- Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
- map.Resize(surf.Dim()/COORD_DIM);
- for(size_t i=0;i<map.Dim();i++)
- map[i]=((size_t)(m*2-0.5-surf[i*3]))+((size_t)(m*2-0.5-surf[i*3+1]))*n1+((size_t)(m*2-0.5-surf[i*3+2]))*n2;
- //map;//.AllocDevice(true);
- }
- }
- { // Build FFTW plan.
- if(!vlist_ifft_flag){
- //Build FFTW plan.
- int nnn[3]={(int)n1,(int)n1,(int)n1};
- Real_t *fftw_in, *fftw_out;
- fftw_in = mem::aligned_new<Real_t>(2*n3_*ker_dim1*chld_cnt);
- fftw_out = mem::aligned_new<Real_t>( n3 *ker_dim1*chld_cnt);
- vlist_ifftplan = FFTW_t<Real_t>::fft_plan_many_dft_c2r(COORD_DIM,nnn,ker_dim1*chld_cnt,
- (typename FFTW_t<Real_t>::cplx*)fftw_in, NULL, 1, n3_, (Real_t*)(fftw_out),NULL, 1, n3, FFTW_ESTIMATE);
- mem::aligned_delete<Real_t>(fftw_in);
- mem::aligned_delete<Real_t>(fftw_out);
- vlist_ifft_flag=true;
- }
- }
- { // Offload section
- assert(buffer_.Dim()>=(fftsize_out+M.Dim(1)*dof)*omp_p);
- size_t n_out=ifft_vec.Dim();
- #pragma omp parallel for
- for(int pid=0; pid<omp_p; pid++){
- size_t node_start=(n_out*(pid ))/omp_p;
- size_t node_end =(n_out*(pid+1))/omp_p;
- Vector<Real_t> buffer(fftsize_out+M.Dim(1)*dof, &buffer_[(fftsize_out+M.Dim(1)*dof)*pid], false);
- for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
- Vector<Real_t> dnward_check_fft(fftsize_out, &input_data[fftsize_out*node_idx], false);
- //De-interleave data.
- for(int i=0;i<ker_dim1*dof;i++)
- for(size_t j=0;j<n3_;j++)
- for(size_t k=0;k<chld_cnt;k++){
- buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+0]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+0];
- buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+1]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+1];
- }
- // Compute FFT.
- for(int i=0;i<dof;i++)
- FFTW_t<Real_t>::fft_execute_dft_c2r(vlist_ifftplan, (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim1*chld_cnt],
- (Real_t*)&dnward_check_fft[i* n3 *ker_dim1*chld_cnt]);
- //Compute flops.
- #ifndef FFTW3_MKL
- double add, mul, fma;
- FFTW_t<Real_t>::fftw_flops(vlist_ifftplan, &add, &mul, &fma);
- #ifndef __INTEL_OFFLOAD0
- Profile::Add_FLOP((long long)(add+mul+2*fma));
- #endif
- #endif
- // Rearrange downward check data.
- for(size_t k=0;k<n;k++){
- size_t idx=map[k];
- for(int j1=0;j1<dof;j1++)
- for(int j0=0;j0<(int)chld_cnt;j0++)
- for(int i=0;i<ker_dim1;i++)
- buffer[ker_dim1*(n*(dof*j0+j1)+k)+i]=dnward_check_fft[idx+(j1+(i+j0*ker_dim1)*dof)*n3];
- }
- // Compute check to equiv.
- for(size_t j=0;j<chld_cnt;j++){
- Matrix<Real_t> d_check(dof,M.Dim(0),&buffer[n*ker_dim1*dof*j],false);
- Matrix<Real_t> d_equiv(dof,M.Dim(1),&buffer[ fftsize_out],false);
- Matrix<Real_t>::GEMM(d_equiv,d_check,M,0.0);
- for(size_t i=0;i<dof*M.Dim(1);i+=ker_dim0){
- for(size_t j=0;j<ker_dim0;j++){
- d_equiv[0][i+j]*=ifft_scal[ker_dim0*node_idx+j];
- }
- }
- { // Add to equiv density
- Matrix<Real_t> d_equiv_(dof,M.Dim(1),&output_data[0] + ifft_vec[node_idx] + M.Dim(1)*dof*j,false);
- d_equiv_+=d_equiv;
- }
- }
- }
- }
- }
- }
- template<class Real_t>
- inline void matmult_8x8x2(Real_t*& M_, Real_t*& IN0, Real_t*& IN1, Real_t*& OUT0, Real_t*& OUT1){
- // Generic code.
- Real_t out_reg000, out_reg001, out_reg010, out_reg011;
- Real_t out_reg100, out_reg101, out_reg110, out_reg111;
- Real_t in_reg000, in_reg001, in_reg010, in_reg011;
- Real_t in_reg100, in_reg101, in_reg110, in_reg111;
- Real_t m_reg000, m_reg001, m_reg010, m_reg011;
- Real_t m_reg100, m_reg101, m_reg110, m_reg111;
- //#pragma unroll
- for(int i1=0;i1<8;i1+=2){
- Real_t* IN0_=IN0;
- Real_t* IN1_=IN1;
- out_reg000=OUT0[ 0]; out_reg001=OUT0[ 1];
- out_reg010=OUT0[ 2]; out_reg011=OUT0[ 3];
- out_reg100=OUT1[ 0]; out_reg101=OUT1[ 1];
- out_reg110=OUT1[ 2]; out_reg111=OUT1[ 3];
- //#pragma unroll
- for(int i2=0;i2<8;i2+=2){
- m_reg000=M_[ 0]; m_reg001=M_[ 1];
- m_reg010=M_[ 2]; m_reg011=M_[ 3];
- m_reg100=M_[16]; m_reg101=M_[17];
- m_reg110=M_[18]; m_reg111=M_[19];
- in_reg000=IN0_[0]; in_reg001=IN0_[1];
- in_reg010=IN0_[2]; in_reg011=IN0_[3];
- in_reg100=IN1_[0]; in_reg101=IN1_[1];
- in_reg110=IN1_[2]; in_reg111=IN1_[3];
- out_reg000 += m_reg000*in_reg000 - m_reg001*in_reg001;
- out_reg001 += m_reg000*in_reg001 + m_reg001*in_reg000;
- out_reg010 += m_reg010*in_reg000 - m_reg011*in_reg001;
- out_reg011 += m_reg010*in_reg001 + m_reg011*in_reg000;
- out_reg000 += m_reg100*in_reg010 - m_reg101*in_reg011;
- out_reg001 += m_reg100*in_reg011 + m_reg101*in_reg010;
- out_reg010 += m_reg110*in_reg010 - m_reg111*in_reg011;
- out_reg011 += m_reg110*in_reg011 + m_reg111*in_reg010;
- out_reg100 += m_reg000*in_reg100 - m_reg001*in_reg101;
- out_reg101 += m_reg000*in_reg101 + m_reg001*in_reg100;
- out_reg110 += m_reg010*in_reg100 - m_reg011*in_reg101;
- out_reg111 += m_reg010*in_reg101 + m_reg011*in_reg100;
- out_reg100 += m_reg100*in_reg110 - m_reg101*in_reg111;
- out_reg101 += m_reg100*in_reg111 + m_reg101*in_reg110;
- out_reg110 += m_reg110*in_reg110 - m_reg111*in_reg111;
- out_reg111 += m_reg110*in_reg111 + m_reg111*in_reg110;
- M_+=32; // Jump to (column+2).
- IN0_+=4;
- IN1_+=4;
- }
- OUT0[ 0]=out_reg000; OUT0[ 1]=out_reg001;
- OUT0[ 2]=out_reg010; OUT0[ 3]=out_reg011;
- OUT1[ 0]=out_reg100; OUT1[ 1]=out_reg101;
- OUT1[ 2]=out_reg110; OUT1[ 3]=out_reg111;
- M_+=4-64*2; // Jump back to first column (row+2).
- OUT0+=4;
- OUT1+=4;
- }
- }
- #if defined(__AVX__) || defined(__SSE3__)
- template<>
- inline void matmult_8x8x2<double>(double*& M_, double*& IN0, double*& IN1, double*& OUT0, double*& OUT1){
- #ifdef __AVX__ //AVX code.
- __m256d out00,out01,out10,out11;
- __m256d out20,out21,out30,out31;
- double* in0__ = IN0;
- double* in1__ = IN1;
- out00 = _mm256_load_pd(OUT0);
- out01 = _mm256_load_pd(OUT1);
- out10 = _mm256_load_pd(OUT0+4);
- out11 = _mm256_load_pd(OUT1+4);
- out20 = _mm256_load_pd(OUT0+8);
- out21 = _mm256_load_pd(OUT1+8);
- out30 = _mm256_load_pd(OUT0+12);
- out31 = _mm256_load_pd(OUT1+12);
- for(int i2=0;i2<8;i2+=2){
- __m256d m00;
- __m256d ot00;
- __m256d mt0,mtt0;
- __m256d in00,in00_r,in01,in01_r;
- in00 = _mm256_broadcast_pd((const __m128d*)in0__);
- in00_r = _mm256_permute_pd(in00,5);
- in01 = _mm256_broadcast_pd((const __m128d*)in1__);
- in01_r = _mm256_permute_pd(in01,5);
- m00 = _mm256_load_pd(M_);
- mt0 = _mm256_unpacklo_pd(m00,m00);
- ot00 = _mm256_mul_pd(mt0,in00);
- mtt0 = _mm256_unpackhi_pd(m00,m00);
- out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
- ot00 = _mm256_mul_pd(mt0,in01);
- out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
- m00 = _mm256_load_pd(M_+4);
- mt0 = _mm256_unpacklo_pd(m00,m00);
- ot00 = _mm256_mul_pd(mt0,in00);
- mtt0 = _mm256_unpackhi_pd(m00,m00);
- out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
- ot00 = _mm256_mul_pd(mt0,in01);
- out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
- m00 = _mm256_load_pd(M_+8);
- mt0 = _mm256_unpacklo_pd(m00,m00);
- ot00 = _mm256_mul_pd(mt0,in00);
- mtt0 = _mm256_unpackhi_pd(m00,m00);
- out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
- ot00 = _mm256_mul_pd(mt0,in01);
- out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
- m00 = _mm256_load_pd(M_+12);
- mt0 = _mm256_unpacklo_pd(m00,m00);
- ot00 = _mm256_mul_pd(mt0,in00);
- mtt0 = _mm256_unpackhi_pd(m00,m00);
- out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
- ot00 = _mm256_mul_pd(mt0,in01);
- out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
- in00 = _mm256_broadcast_pd((const __m128d*) (in0__+2));
- in00_r = _mm256_permute_pd(in00,5);
- in01 = _mm256_broadcast_pd((const __m128d*) (in1__+2));
- in01_r = _mm256_permute_pd(in01,5);
- m00 = _mm256_load_pd(M_+16);
- mt0 = _mm256_unpacklo_pd(m00,m00);
- ot00 = _mm256_mul_pd(mt0,in00);
- mtt0 = _mm256_unpackhi_pd(m00,m00);
- out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
- ot00 = _mm256_mul_pd(mt0,in01);
- out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
- m00 = _mm256_load_pd(M_+20);
- mt0 = _mm256_unpacklo_pd(m00,m00);
- ot00 = _mm256_mul_pd(mt0,in00);
- mtt0 = _mm256_unpackhi_pd(m00,m00);
- out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
- ot00 = _mm256_mul_pd(mt0,in01);
- out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
- m00 = _mm256_load_pd(M_+24);
- mt0 = _mm256_unpacklo_pd(m00,m00);
- ot00 = _mm256_mul_pd(mt0,in00);
- mtt0 = _mm256_unpackhi_pd(m00,m00);
- out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
- ot00 = _mm256_mul_pd(mt0,in01);
- out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
- m00 = _mm256_load_pd(M_+28);
- mt0 = _mm256_unpacklo_pd(m00,m00);
- ot00 = _mm256_mul_pd(mt0,in00);
- mtt0 = _mm256_unpackhi_pd(m00,m00);
- out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
- ot00 = _mm256_mul_pd(mt0,in01);
- out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
- M_ += 32;
- in0__ += 4;
- in1__ += 4;
- }
- _mm256_store_pd(OUT0,out00);
- _mm256_store_pd(OUT1,out01);
- _mm256_store_pd(OUT0+4,out10);
- _mm256_store_pd(OUT1+4,out11);
- _mm256_store_pd(OUT0+8,out20);
- _mm256_store_pd(OUT1+8,out21);
- _mm256_store_pd(OUT0+12,out30);
- _mm256_store_pd(OUT1+12,out31);
- #elif defined __SSE3__ // SSE code.
- __m128d out00, out01, out10, out11;
- __m128d in00, in01, in10, in11;
- __m128d m00, m01, m10, m11;
- //#pragma unroll
- for(int i1=0;i1<8;i1+=2){
- double* IN0_=IN0;
- double* IN1_=IN1;
- out00 =_mm_load_pd (OUT0 );
- out10 =_mm_load_pd (OUT0+2);
- out01 =_mm_load_pd (OUT1 );
- out11 =_mm_load_pd (OUT1+2);
- //#pragma unroll
- for(int i2=0;i2<8;i2+=2){
- m00 =_mm_load1_pd (M_ );
- m10 =_mm_load1_pd (M_+ 2);
- m01 =_mm_load1_pd (M_+16);
- m11 =_mm_load1_pd (M_+18);
- in00 =_mm_load_pd (IN0_ );
- in10 =_mm_load_pd (IN0_+2);
- in01 =_mm_load_pd (IN1_ );
- in11 =_mm_load_pd (IN1_+2);
- out00 = _mm_add_pd (out00, _mm_mul_pd(m00 , in00 ));
- out00 = _mm_add_pd (out00, _mm_mul_pd(m01 , in10 ));
- out01 = _mm_add_pd (out01, _mm_mul_pd(m00 , in01 ));
- out01 = _mm_add_pd (out01, _mm_mul_pd(m01 , in11 ));
- out10 = _mm_add_pd (out10, _mm_mul_pd(m10 , in00 ));
- out10 = _mm_add_pd (out10, _mm_mul_pd(m11 , in10 ));
- out11 = _mm_add_pd (out11, _mm_mul_pd(m10 , in01 ));
- out11 = _mm_add_pd (out11, _mm_mul_pd(m11 , in11 ));
- m00 =_mm_load1_pd (M_+ 1);
- m10 =_mm_load1_pd (M_+ 2+1);
- m01 =_mm_load1_pd (M_+16+1);
- m11 =_mm_load1_pd (M_+18+1);
- in00 =_mm_shuffle_pd (in00,in00,_MM_SHUFFLE2(0,1));
- in01 =_mm_shuffle_pd (in01,in01,_MM_SHUFFLE2(0,1));
- in10 =_mm_shuffle_pd (in10,in10,_MM_SHUFFLE2(0,1));
- in11 =_mm_shuffle_pd (in11,in11,_MM_SHUFFLE2(0,1));
- out00 = _mm_addsub_pd(out00, _mm_mul_pd(m00, in00));
- out00 = _mm_addsub_pd(out00, _mm_mul_pd(m01, in10));
- out01 = _mm_addsub_pd(out01, _mm_mul_pd(m00, in01));
- out01 = _mm_addsub_pd(out01, _mm_mul_pd(m01, in11));
- out10 = _mm_addsub_pd(out10, _mm_mul_pd(m10, in00));
- out10 = _mm_addsub_pd(out10, _mm_mul_pd(m11, in10));
- out11 = _mm_addsub_pd(out11, _mm_mul_pd(m10, in01));
- out11 = _mm_addsub_pd(out11, _mm_mul_pd(m11, in11));
- M_+=32; // Jump to (column+2).
- IN0_+=4;
- IN1_+=4;
- }
- _mm_store_pd (OUT0 ,out00);
- _mm_store_pd (OUT0+2,out10);
- _mm_store_pd (OUT1 ,out01);
- _mm_store_pd (OUT1+2,out11);
- M_+=4-64*2; // Jump back to first column (row+2).
- OUT0+=4;
- OUT1+=4;
- }
- #endif
- }
- #endif
- #if defined(__SSE3__)
- template<>
- inline void matmult_8x8x2<float>(float*& M_, float*& IN0, float*& IN1, float*& OUT0, float*& OUT1){
- #if defined __SSE3__ // SSE code.
- __m128 out00,out01,out10,out11;
- __m128 out20,out21,out30,out31;
- float* in0__ = IN0;
- float* in1__ = IN1;
- out00 = _mm_load_ps(OUT0);
- out01 = _mm_load_ps(OUT1);
- out10 = _mm_load_ps(OUT0+4);
- out11 = _mm_load_ps(OUT1+4);
- out20 = _mm_load_ps(OUT0+8);
- out21 = _mm_load_ps(OUT1+8);
- out30 = _mm_load_ps(OUT0+12);
- out31 = _mm_load_ps(OUT1+12);
- for(int i2=0;i2<8;i2+=2){
- __m128 m00;
- __m128 ot00;
- __m128 mt0,mtt0;
- __m128 in00,in00_r,in01,in01_r;
- in00 = _mm_castpd_ps(_mm_load_pd1((const double*)in0__));
- in00_r = _mm_shuffle_ps(in00,in00,_MM_SHUFFLE(2,3,0,1));
- in01 = _mm_castpd_ps(_mm_load_pd1((const double*)in1__));
- in01_r = _mm_shuffle_ps(in01,in01,_MM_SHUFFLE(2,3,0,1));
- m00 = _mm_load_ps(M_);
- mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
- out00= _mm_add_ps (out00,_mm_mul_ps( mt0,in00 ));
- mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
- out00= _mm_addsub_ps(out00,_mm_mul_ps(mtt0,in00_r));
- out01 = _mm_add_ps (out01,_mm_mul_ps( mt0,in01 ));
- out01 = _mm_addsub_ps(out01,_mm_mul_ps(mtt0,in01_r));
- m00 = _mm_load_ps(M_+4);
- mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
- out10= _mm_add_ps (out10,_mm_mul_ps( mt0,in00 ));
- mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
- out10= _mm_addsub_ps(out10,_mm_mul_ps(mtt0,in00_r));
- out11 = _mm_add_ps (out11,_mm_mul_ps( mt0,in01 ));
- out11 = _mm_addsub_ps(out11,_mm_mul_ps(mtt0,in01_r));
- m00 = _mm_load_ps(M_+8);
- mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
- out20= _mm_add_ps (out20,_mm_mul_ps( mt0,in00 ));
- mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
- out20= _mm_addsub_ps(out20,_mm_mul_ps(mtt0,in00_r));
- out21 = _mm_add_ps (out21,_mm_mul_ps( mt0,in01 ));
- out21 = _mm_addsub_ps(out21,_mm_mul_ps(mtt0,in01_r));
- m00 = _mm_load_ps(M_+12);
- mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
- out30= _mm_add_ps (out30,_mm_mul_ps( mt0, in00));
- mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
- out30= _mm_addsub_ps(out30,_mm_mul_ps(mtt0,in00_r));
- out31 = _mm_add_ps (out31,_mm_mul_ps( mt0,in01 ));
- out31 = _mm_addsub_ps(out31,_mm_mul_ps(mtt0,in01_r));
- in00 = _mm_castpd_ps(_mm_load_pd1((const double*) (in0__+2)));
- in00_r = _mm_shuffle_ps(in00,in00,_MM_SHUFFLE(2,3,0,1));
- in01 = _mm_castpd_ps(_mm_load_pd1((const double*) (in1__+2)));
- in01_r = _mm_shuffle_ps(in01,in01,_MM_SHUFFLE(2,3,0,1));
- m00 = _mm_load_ps(M_+16);
- mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
- out00= _mm_add_ps (out00,_mm_mul_ps( mt0,in00 ));
- mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
- out00= _mm_addsub_ps(out00,_mm_mul_ps(mtt0,in00_r));
- out01 = _mm_add_ps (out01,_mm_mul_ps( mt0,in01 ));
- out01 = _mm_addsub_ps(out01,_mm_mul_ps(mtt0,in01_r));
- m00 = _mm_load_ps(M_+20);
- mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
- out10= _mm_add_ps (out10,_mm_mul_ps( mt0,in00 ));
- mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
- out10= _mm_addsub_ps(out10,_mm_mul_ps(mtt0,in00_r));
- out11 = _mm_add_ps (out11,_mm_mul_ps( mt0,in01 ));
- out11 = _mm_addsub_ps(out11,_mm_mul_ps(mtt0,in01_r));
- m00 = _mm_load_ps(M_+24);
- mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
- out20= _mm_add_ps (out20,_mm_mul_ps( mt0,in00 ));
- mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
- out20= _mm_addsub_ps(out20,_mm_mul_ps(mtt0,in00_r));
- out21 = _mm_add_ps (out21,_mm_mul_ps( mt0,in01 ));
- out21 = _mm_addsub_ps(out21,_mm_mul_ps(mtt0,in01_r));
- m00 = _mm_load_ps(M_+28);
- mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
- out30= _mm_add_ps (out30,_mm_mul_ps( mt0,in00 ));
- mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
- out30= _mm_addsub_ps(out30,_mm_mul_ps(mtt0,in00_r));
- out31 = _mm_add_ps (out31,_mm_mul_ps( mt0,in01 ));
- out31 = _mm_addsub_ps(out31,_mm_mul_ps(mtt0,in01_r));
- M_ += 32;
- in0__ += 4;
- in1__ += 4;
- }
- _mm_store_ps(OUT0,out00);
- _mm_store_ps(OUT1,out01);
- _mm_store_ps(OUT0+4,out10);
- _mm_store_ps(OUT1+4,out11);
- _mm_store_ps(OUT0+8,out20);
- _mm_store_ps(OUT1+8,out21);
- _mm_store_ps(OUT0+12,out30);
- _mm_store_ps(OUT1+12,out31);
- #endif
- }
- #endif
- template <class Real_t>
- void VListHadamard(size_t dof, size_t M_dim, size_t ker_dim0, size_t ker_dim1, Vector<size_t>& interac_dsp,
- Vector<size_t>& interac_vec, Vector<Real_t*>& precomp_mat, Vector<Real_t>& fft_in, Vector<Real_t>& fft_out){
- size_t chld_cnt=1UL<<COORD_DIM;
- size_t fftsize_in =M_dim*ker_dim0*chld_cnt*2;
- size_t fftsize_out=M_dim*ker_dim1*chld_cnt*2;
- Real_t* zero_vec0=mem::aligned_new<Real_t>(fftsize_in );
- Real_t* zero_vec1=mem::aligned_new<Real_t>(fftsize_out);
- size_t n_out=fft_out.Dim()/fftsize_out;
- // Set buff_out to zero.
- #pragma omp parallel for
- for(size_t k=0;k<n_out;k++){
- Vector<Real_t> dnward_check_fft(fftsize_out, &fft_out[k*fftsize_out], false);
- dnward_check_fft.SetZero();
- }
- // Build list of interaction pairs (in, out vectors).
- size_t mat_cnt=precomp_mat.Dim();
- size_t blk1_cnt=interac_dsp.Dim()/mat_cnt;
- const size_t V_BLK_SIZE=V_BLK_CACHE*64/sizeof(Real_t);
- Real_t** IN_ =mem::aligned_new<Real_t*>(2*V_BLK_SIZE*blk1_cnt*mat_cnt);
- Real_t** OUT_=mem::aligned_new<Real_t*>(2*V_BLK_SIZE*blk1_cnt*mat_cnt);
- #pragma omp parallel for
- for(size_t interac_blk1=0; interac_blk1<blk1_cnt*mat_cnt; interac_blk1++){
- size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
- size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
- size_t interac_cnt = interac_dsp1-interac_dsp0;
- for(size_t j=0;j<interac_cnt;j++){
- IN_ [2*V_BLK_SIZE*interac_blk1 +j]=&fft_in [interac_vec[(interac_dsp0+j)*2+0]];
- OUT_[2*V_BLK_SIZE*interac_blk1 +j]=&fft_out[interac_vec[(interac_dsp0+j)*2+1]];
- }
- IN_ [2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec0;
- OUT_[2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec1;
- }
- int omp_p=omp_get_max_threads();
- #pragma omp parallel for
- for(int pid=0; pid<omp_p; pid++){
- size_t a=( pid *M_dim)/omp_p;
- size_t b=((pid+1)*M_dim)/omp_p;
- for(int in_dim=0;in_dim<ker_dim0;in_dim++)
- for(int ot_dim=0;ot_dim<ker_dim1;ot_dim++)
- for(size_t blk1=0; blk1<blk1_cnt; blk1++)
- for(size_t k=a; k< b; k++)
- for(size_t mat_indx=0; mat_indx< mat_cnt;mat_indx++){
- size_t interac_blk1 = blk1*mat_cnt+mat_indx;
- size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
- size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
- size_t interac_cnt = interac_dsp1-interac_dsp0;
- Real_t** IN = IN_ + 2*V_BLK_SIZE*interac_blk1;
- Real_t** OUT= OUT_+ 2*V_BLK_SIZE*interac_blk1;
- Real_t* M = precomp_mat[mat_indx] + k*chld_cnt*chld_cnt*2 + (ot_dim+in_dim*ker_dim1)*M_dim*128;
- {
- for(size_t j=0;j<interac_cnt;j+=2){
- Real_t* M_ = M;
- Real_t* IN0 = IN [j+0] + (in_dim*M_dim+k)*chld_cnt*2;
- Real_t* IN1 = IN [j+1] + (in_dim*M_dim+k)*chld_cnt*2;
- Real_t* OUT0 = OUT[j+0] + (ot_dim*M_dim+k)*chld_cnt*2;
- Real_t* OUT1 = OUT[j+1] + (ot_dim*M_dim+k)*chld_cnt*2;
- #ifdef __SSE__
- if (j+2 < interac_cnt) { // Prefetch
- _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
- _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
- _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
- _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
- _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
- _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
- _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
- _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
- }
- #endif
- matmult_8x8x2(M_, IN0, IN1, OUT0, OUT1);
- }
- }
- }
- }
- // Compute flops.
- {
- Profile::Add_FLOP(8*8*8*(interac_vec.Dim()/2)*M_dim*ker_dim0*ker_dim1*dof);
- }
- // Free memory
- mem::aligned_delete<Real_t*>(IN_ );
- mem::aligned_delete<Real_t*>(OUT_);
- mem::aligned_delete<Real_t>(zero_vec0);
- mem::aligned_delete<Real_t>(zero_vec1);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::V_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- if(this->MultipoleOrder()==0) return;
- if(level==0) return;
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=kernel->k_m2l;
- setup_data.interac_type.resize(1);
- setup_data.interac_type[0]=V1_Type;
- setup_data. input_data=&buff[0];
- setup_data.output_data=&buff[1];
- Vector<FMMNode_t*>& nodes_in =n_list[2];
- Vector<FMMNode_t*>& nodes_out=n_list[3];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level-1 || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_in [i])->Child(0))->FMMData())->upward_equiv);
- for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_out[i])->Child(0))->FMMData())->dnward_equiv);
- /////////////////////////////////////////////////////////////////////////////
- Real_t eps=1e-10;
- size_t n_in =nodes_in .size();
- size_t n_out=nodes_out.size();
- // Setup precomputed data.
- if(setup_data.precomp_data->Dim(0)*setup_data.precomp_data->Dim(1)==0) SetupPrecomp(setup_data,device);
- // Build interac_data
- Profile::Tic("Interac-Data",&this->comm,true,25);
- Matrix<char>& interac_data=setup_data.interac_data;
- if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
- size_t precomp_offset=0;
- Mat_Type& interac_type=setup_data.interac_type[0];
- size_t mat_cnt=this->interac_list.ListCount(interac_type);
- Matrix<size_t> precomp_data_offset;
- std::vector<size_t> interac_mat;
- { // Load precomp_data for interac_type.
- struct HeaderData{
- size_t total_size;
- size_t level;
- size_t mat_cnt ;
- size_t max_depth;
- };
- Matrix<char>& precomp_data=*setup_data.precomp_data;
- char* indx_ptr=precomp_data[0]+precomp_offset;
- HeaderData& header=*(HeaderData*)indx_ptr;indx_ptr+=sizeof(HeaderData);
- precomp_data_offset.ReInit(header.mat_cnt,1+(2+2)*header.max_depth, (size_t*)indx_ptr, false);
- precomp_offset+=header.total_size;
- for(size_t mat_id=0;mat_id<mat_cnt;mat_id++){
- Matrix<Real_t>& M0 = this->mat->Mat(level, interac_type, mat_id);
- assert(M0.Dim(0)>0 && M0.Dim(1)>0); UNUSED(M0);
- interac_mat.push_back(precomp_data_offset[mat_id][0]);
- }
- }
- size_t dof;
- size_t m=MultipoleOrder();
- size_t ker_dim0=setup_data.kernel->ker_dim[0];
- size_t ker_dim1=setup_data.kernel->ker_dim[1];
- size_t fftsize;
- {
- size_t n1=m*2;
- size_t n2=n1*n1;
- size_t n3_=n2*(n1/2+1);
- size_t chld_cnt=1UL<<COORD_DIM;
- fftsize=2*n3_*chld_cnt;
- dof=1;
- }
- int omp_p=omp_get_max_threads();
- size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
- size_t n_blk0=2*fftsize*dof*(ker_dim0*n_in +ker_dim1*n_out)*sizeof(Real_t)/buff_size;
- if(n_blk0==0) n_blk0=1;
- std::vector<std::vector<size_t> > fft_vec(n_blk0);
- std::vector<std::vector<size_t> > ifft_vec(n_blk0);
- std::vector<std::vector<Real_t> > fft_scl(n_blk0);
- std::vector<std::vector<Real_t> > ifft_scl(n_blk0);
- std::vector<std::vector<size_t> > interac_vec(n_blk0);
- std::vector<std::vector<size_t> > interac_dsp(n_blk0);
- {
- Matrix<Real_t>& input_data=*setup_data. input_data;
- Matrix<Real_t>& output_data=*setup_data.output_data;
- std::vector<std::vector<FMMNode*> > nodes_blk_in (n_blk0);
- std::vector<std::vector<FMMNode*> > nodes_blk_out(n_blk0);
- Vector<Real_t> src_scal;
- Vector<Real_t> trg_scal;
- { // Set src_scal and trg_scal.
- Vector<Real_t>& src_scal_m2l=this->kernel->k_m2l->src_scal;
- Vector<Real_t>& trg_scal_m2l=this->kernel->k_m2l->trg_scal;
- Vector<Real_t>& src_scal_l2l=this->kernel->k_l2l->src_scal;
- Vector<Real_t>& trg_scal_l2l=this->kernel->k_l2l->trg_scal;
- src_scal=src_scal_m2l;
- trg_scal=src_scal_l2l;
- size_t scal_dim0=src_scal.Dim();
- size_t scal_dim1=trg_scal.Dim();
- Real_t scal_diff=0;
- assert(trg_scal_m2l.Dim()==trg_scal_l2l.Dim());
- if(trg_scal_m2l.Dim()){
- scal_diff=(trg_scal_m2l[0]-trg_scal_l2l[0]);
- for(size_t i=1;i<trg_scal_m2l.Dim();i++){
- assert(fabs(scal_diff-(trg_scal_m2l[1]-trg_scal_l2l[1]))<eps);
- }
- }
- for(size_t i=0;i<trg_scal.Dim();i++){
- trg_scal[i]=scal_diff-trg_scal[i];
- }
- }
- for(size_t i=0;i<n_in;i++) ((FMMNode*)nodes_in[i])->node_id=i;
- for(size_t blk0=0;blk0<n_blk0;blk0++){
- size_t blk0_start=(n_out* blk0 )/n_blk0;
- size_t blk0_end =(n_out*(blk0+1))/n_blk0;
- std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
- std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
- { // Build node list for blk0.
- std::set<void*> nodes_in;
- for(size_t i=blk0_start;i<blk0_end;i++){
- nodes_out_.push_back((FMMNode*)nodes_out[i]);
- std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
- for(size_t k=0;k<mat_cnt;k++) if(lst[k]!=NULL) nodes_in.insert(lst[k]);
- }
- for(std::set<void*>::iterator node=nodes_in.begin(); node != nodes_in.end(); node++){
- nodes_in_.push_back((FMMNode*)*node);
- }
- size_t input_dim=nodes_in_ .size()*ker_dim0*dof*fftsize;
- size_t output_dim=nodes_out_.size()*ker_dim1*dof*fftsize;
- size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
- if(buff_size<(input_dim + output_dim + buffer_dim)*sizeof(Real_t))
- buff_size=(input_dim + output_dim + buffer_dim)*sizeof(Real_t);
- }
- { // Set fft vectors.
- for(size_t i=0;i<nodes_in_ .size();i++) fft_vec[blk0].push_back((size_t)(& input_vector[nodes_in_[i]->node_id][0][0]- input_data[0]));
- for(size_t i=0;i<nodes_out_.size();i++)ifft_vec[blk0].push_back((size_t)(&output_vector[blk0_start + i ][0][0]-output_data[0]));
- size_t scal_dim0=src_scal.Dim();
- size_t scal_dim1=trg_scal.Dim();
- fft_scl [blk0].resize(nodes_in_ .size()*scal_dim0);
- ifft_scl[blk0].resize(nodes_out_.size()*scal_dim1);
- for(size_t i=0;i<nodes_in_ .size();i++){
- size_t depth=nodes_in_[i]->Depth()+1;
- for(size_t j=0;j<scal_dim0;j++){
- fft_scl[blk0][i*scal_dim0+j]=pow(2.0, src_scal[j]*depth);
- }
- }
- for(size_t i=0;i<nodes_out_.size();i++){
- size_t depth=nodes_out_[i]->Depth()+1;
- for(size_t j=0;j<scal_dim1;j++){
- ifft_scl[blk0][i*scal_dim1+j]=pow(2.0, trg_scal[j]*depth);
- }
- }
- }
- }
- for(size_t blk0=0;blk0<n_blk0;blk0++){ // Hadamard interactions.
- std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
- std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
- for(size_t i=0;i<nodes_in_.size();i++) nodes_in_[i]->node_id=i;
- { // Next blocking level.
- size_t n_blk1=nodes_out_.size()*(2)*sizeof(Real_t)/(64*V_BLK_CACHE);
- if(n_blk1==0) n_blk1=1;
- size_t interac_dsp_=0;
- for(size_t blk1=0;blk1<n_blk1;blk1++){
- size_t blk1_start=(nodes_out_.size()* blk1 )/n_blk1;
- size_t blk1_end =(nodes_out_.size()*(blk1+1))/n_blk1;
- for(size_t k=0;k<mat_cnt;k++){
- for(size_t i=blk1_start;i<blk1_end;i++){
- std::vector<FMMNode*>& lst=((FMMNode*)nodes_out_[i])->interac_list[interac_type];
- if(lst[k]!=NULL){
- interac_vec[blk0].push_back(lst[k]->node_id*fftsize*ker_dim0*dof);
- interac_vec[blk0].push_back( i *fftsize*ker_dim1*dof);
- interac_dsp_++;
- }
- }
- interac_dsp[blk0].push_back(interac_dsp_);
- }
- }
- }
- }
- }
- { // Set interac_data.
- size_t data_size=sizeof(size_t)*6; // buff_size, m, dof, ker_dim0, ker_dim1, n_blk0
- for(size_t blk0=0;blk0<n_blk0;blk0++){
- data_size+=sizeof(size_t)+ fft_vec[blk0].size()*sizeof(size_t);
- data_size+=sizeof(size_t)+ ifft_vec[blk0].size()*sizeof(size_t);
- data_size+=sizeof(size_t)+ fft_scl[blk0].size()*sizeof(Real_t);
- data_size+=sizeof(size_t)+ ifft_scl[blk0].size()*sizeof(Real_t);
- data_size+=sizeof(size_t)+interac_vec[blk0].size()*sizeof(size_t);
- data_size+=sizeof(size_t)+interac_dsp[blk0].size()*sizeof(size_t);
- }
- data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
- if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
- interac_data.ReInit(1,data_size);
- char* data_ptr=&interac_data[0][0];
- ((size_t*)data_ptr)[0]=buff_size; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= m; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= n_blk0; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= interac_mat.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
- data_ptr+=interac_mat.size()*sizeof(size_t);
- for(size_t blk0=0;blk0<n_blk0;blk0++){
- ((size_t*)data_ptr)[0]= fft_vec[blk0].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, & fft_vec[blk0][0], fft_vec[blk0].size()*sizeof(size_t));
- data_ptr+= fft_vec[blk0].size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=ifft_vec[blk0].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &ifft_vec[blk0][0], ifft_vec[blk0].size()*sizeof(size_t));
- data_ptr+=ifft_vec[blk0].size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]= fft_scl[blk0].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, & fft_scl[blk0][0], fft_scl[blk0].size()*sizeof(Real_t));
- data_ptr+= fft_scl[blk0].size()*sizeof(Real_t);
- ((size_t*)data_ptr)[0]=ifft_scl[blk0].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &ifft_scl[blk0][0], ifft_scl[blk0].size()*sizeof(Real_t));
- data_ptr+=ifft_scl[blk0].size()*sizeof(Real_t);
- ((size_t*)data_ptr)[0]=interac_vec[blk0].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &interac_vec[blk0][0], interac_vec[blk0].size()*sizeof(size_t));
- data_ptr+=interac_vec[blk0].size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=interac_dsp[blk0].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &interac_dsp[blk0][0], interac_dsp[blk0].size()*sizeof(size_t));
- data_ptr+=interac_dsp[blk0].size()*sizeof(size_t);
- }
- }
- }
- Profile::Toc();
- if(device){ // Host2Device
- Profile::Tic("Host2Device",&this->comm,false,25);
- setup_data.interac_data. AllocDevice(true);
- Profile::Toc();
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::V_List (SetupData<Real_t>& setup_data, bool device){
- assert(!device); //Can not run on accelerator yet.
- int np;
- MPI_Comm_size(comm,&np);
- if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
- if(np>1) Profile::Tic("Host2Device",&this->comm,false,25);
- if(np>1) Profile::Toc();
- return;
- }
- Profile::Tic("Host2Device",&this->comm,false,25);
- int level=setup_data.level;
- size_t buff_size=*((size_t*)&setup_data.interac_data[0][0]);
- typename Matrix<Real_t>::Device M_d;
- typename Vector<char>::Device buff;
- typename Matrix<char>::Device precomp_data;
- typename Matrix<char>::Device interac_data;
- typename Matrix<Real_t>::Device input_data;
- typename Matrix<Real_t>::Device output_data;
- Matrix<Real_t>& M = this->mat->Mat(level, DC2DE_Type, 0);
- if(device){
- if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.ReInit(buff_size);
- M_d = M. AllocDevice(false);
- buff = this-> dev_buffer. AllocDevice(false);
- precomp_data= setup_data.precomp_data->AllocDevice(false);
- interac_data= setup_data.interac_data. AllocDevice(false);
- input_data = setup_data. input_data->AllocDevice(false);
- output_data = setup_data. output_data->AllocDevice(false);
- }else{
- if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.ReInit(buff_size);
- M_d = M;
- buff = this-> cpu_buffer;
- precomp_data=*setup_data.precomp_data;
- interac_data= setup_data.interac_data;
- input_data =*setup_data. input_data;
- output_data =*setup_data. output_data;
- }
- Profile::Toc();
- { // Offloaded computation.
- // Set interac_data.
- size_t m, dof, ker_dim0, ker_dim1, n_blk0;
- std::vector<Vector<size_t> > fft_vec;
- std::vector<Vector<size_t> > ifft_vec;
- std::vector<Vector<Real_t> > fft_scl;
- std::vector<Vector<Real_t> > ifft_scl;
- std::vector<Vector<size_t> > interac_vec;
- std::vector<Vector<size_t> > interac_dsp;
- Vector<Real_t*> precomp_mat;
- { // Set interac_data.
- char* data_ptr=&interac_data[0][0];
- buff_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- m =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- ker_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- ker_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- n_blk0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- fft_vec .resize(n_blk0);
- ifft_vec.resize(n_blk0);
- fft_scl .resize(n_blk0);
- ifft_scl.resize(n_blk0);
- interac_vec.resize(n_blk0);
- interac_dsp.resize(n_blk0);
- Vector<size_t> interac_mat;
- interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
- precomp_mat.Resize(interac_mat.Dim());
- for(size_t i=0;i<interac_mat.Dim();i++){
- precomp_mat[i]=(Real_t*)(precomp_data[0]+interac_mat[i]);
- }
- for(size_t blk0=0;blk0<n_blk0;blk0++){
- fft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+fft_vec[blk0].Dim()*sizeof(size_t);
- ifft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+ifft_vec[blk0].Dim()*sizeof(size_t);
- fft_scl[blk0].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+fft_scl[blk0].Dim()*sizeof(Real_t);
- ifft_scl[blk0].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+ifft_scl[blk0].Dim()*sizeof(Real_t);
- interac_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+interac_vec[blk0].Dim()*sizeof(size_t);
- interac_dsp[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+interac_dsp[blk0].Dim()*sizeof(size_t);
- }
- }
- int omp_p=omp_get_max_threads();
- size_t M_dim, fftsize;
- {
- size_t n1=m*2;
- size_t n2=n1*n1;
- size_t n3_=n2*(n1/2+1);
- size_t chld_cnt=1UL<<COORD_DIM;
- fftsize=2*n3_*chld_cnt;
- M_dim=n3_;
- }
- for(size_t blk0=0;blk0<n_blk0;blk0++){ // interactions
- size_t n_in = fft_vec[blk0].Dim();
- size_t n_out=ifft_vec[blk0].Dim();
- size_t input_dim=n_in *ker_dim0*dof*fftsize;
- size_t output_dim=n_out*ker_dim1*dof*fftsize;
- size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
- Vector<Real_t> fft_in ( input_dim, (Real_t*)&buff[ 0 ],false);
- Vector<Real_t> fft_out(output_dim, (Real_t*)&buff[ input_dim *sizeof(Real_t)],false);
- Vector<Real_t> buffer(buffer_dim, (Real_t*)&buff[(input_dim+output_dim)*sizeof(Real_t)],false);
- { // FFT
- if(np==1) Profile::Tic("FFT",&comm,false,100);
- Vector<Real_t> input_data_( input_data.dim[0]* input_data.dim[1], input_data[0], false);
- FFT_UpEquiv(dof, m, ker_dim0, fft_vec[blk0], fft_scl[blk0], input_data_, fft_in, buffer);
- if(np==1) Profile::Toc();
- }
- { // Hadamard
- #ifdef PVFMM_HAVE_PAPI
- #ifdef __VERBOSE__
- std::cout << "Starting counters new\n";
- if (PAPI_start(EventSet) != PAPI_OK) std::cout << "handle_error3" << std::endl;
- #endif
- #endif
- if(np==1) Profile::Tic("HadamardProduct",&comm,false,100);
- VListHadamard<Real_t>(dof, M_dim, ker_dim0, ker_dim1, interac_dsp[blk0], interac_vec[blk0], precomp_mat, fft_in, fft_out);
- if(np==1) Profile::Toc();
- #ifdef PVFMM_HAVE_PAPI
- #ifdef __VERBOSE__
- if (PAPI_stop(EventSet, values) != PAPI_OK) std::cout << "handle_error4" << std::endl;
- std::cout << "Stopping counters\n";
- #endif
- #endif
- }
- { // IFFT
- if(np==1) Profile::Tic("IFFT",&comm,false,100);
- Matrix<Real_t> M(M_d.dim[0],M_d.dim[1],M_d[0],false);
- Vector<Real_t> output_data_(output_data.dim[0]*output_data.dim[1], output_data[0], false);
- FFT_Check2Equiv(dof, m, ker_dim1, ifft_vec[blk0], ifft_scl[blk0], fft_out, output_data_, buffer, M);
- if(np==1) Profile::Toc();
- }
- }
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::Down2DownSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- if(this->MultipoleOrder()==0) return;
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=kernel->k_l2l;
- setup_data.interac_type.resize(1);
- setup_data.interac_type[0]=D2D_Type;
- setup_data. input_data=&buff[1];
- setup_data.output_data=&buff[1];
- Vector<FMMNode_t*>& nodes_in =n_list[1];
- Vector<FMMNode_t*>& nodes_out=n_list[1];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
- for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
- SetupInterac(setup_data,device);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::Down2Down (SetupData<Real_t>& setup_data, bool device){
- //Add Down2Down contribution.
- EvalList(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::SetupInteracPts(SetupData<Real_t>& setup_data, bool shift_src, bool shift_trg, Matrix<Real_t>* M, bool device){
- int level=setup_data.level;
- std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- Matrix<Real_t>& output_data=*setup_data.output_data;
- Matrix<Real_t>& input_data=*setup_data. input_data;
- Matrix<Real_t>& coord_data=*setup_data. coord_data;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
- size_t n_in =nodes_in .size();
- size_t n_out=nodes_out.size();
- //setup_data.precomp_data=NULL;
- // Build interac_data
- Profile::Tic("Interac-Data",&this->comm,true,25);
- Matrix<char>& interac_data=setup_data.interac_data;
- if(n_out>0 && n_in >0){
- size_t ker_dim0=setup_data.kernel->ker_dim[0];
- size_t ker_dim1=setup_data.kernel->ker_dim[1];
- size_t dof=1;
- #pragma omp parallel for
- for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
- std::vector<size_t> trg_interac_cnt(n_out,0);
- std::vector<size_t> trg_coord(n_out);
- std::vector<size_t> trg_value(n_out);
- std::vector<size_t> trg_cnt(n_out);
- size_t scal_dim0=0;
- size_t scal_dim1=0;
- Vector<Real_t> scal_exp0;
- Vector<Real_t> scal_exp1;
- { // Set src_scal_exp, trg_scal_exp
- Mat_Type& interac_type=interac_type_lst[0];
- if(interac_type==S2U_Type) scal_exp0=this->kernel->k_m2m->trg_scal;
- if(interac_type==S2U_Type) scal_exp1=this->kernel->k_m2m->src_scal;
- if(interac_type== X_Type) scal_exp0=this->kernel->k_l2l->trg_scal;
- if(interac_type== X_Type) scal_exp1=this->kernel->k_l2l->src_scal;
- scal_dim0=scal_exp0.Dim();
- scal_dim1=scal_exp1.Dim();
- }
- std::vector<Real_t> scal0(n_out*scal_dim0,0);
- std::vector<Real_t> scal1(n_out*scal_dim1,0);
- { // Set trg data
- Mat_Type& interac_type=interac_type_lst[0];
- #pragma omp parallel for
- for(size_t i=0;i<n_out;i++){
- if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
- trg_cnt [i]=output_vector[i*2+0]->Dim()/COORD_DIM;
- trg_coord[i]=(size_t)(&output_vector[i*2+0][0][0]- coord_data[0]);
- trg_value[i]=(size_t)(&output_vector[i*2+1][0][0]-output_data[0]);
- size_t depth=((FMMNode*)nodes_out[i])->Depth();
- Real_t* scal0_=&scal0[i*scal_dim0];
- Real_t* scal1_=&scal1[i*scal_dim1];
- for(size_t j=0;j<scal_dim0;j++){
- if(!this->Homogen()) scal0_[j]=1.0;
- else if(interac_type==S2U_Type) scal0_[j]=pow(0.5, scal_exp0[j]*depth);
- else if(interac_type== X_Type) scal0_[j]=pow(0.5, scal_exp0[j]*depth);
- }
- for(size_t j=0;j<scal_dim1;j++){
- if(!this->Homogen()) scal1_[j]=1.0;
- else if(interac_type==S2U_Type) scal1_[j]=pow(0.5, scal_exp1[j]*depth);
- else if(interac_type== X_Type) scal1_[j]=pow(0.5, scal_exp1[j]*depth);
- }
- }
- }
- }
- std::vector<std::vector<size_t> > src_cnt(n_out);
- std::vector<std::vector<size_t> > src_coord(n_out);
- std::vector<std::vector<size_t> > src_value(n_out);
- std::vector<std::vector<Real_t> > shift_coord(n_out);
- for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
- Mat_Type& interac_type=interac_type_lst[type_indx];
- size_t mat_cnt=this->interac_list.ListCount(interac_type);
- #pragma omp parallel for
- for(size_t i=0;i<n_out;i++){ // For each target node.
- if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
- std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
- for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++) if(lst[mat_indx]!=NULL){ // For each direction.
- size_t j=lst[mat_indx]->node_id;
- if(input_vector[j*4+0]->Dim()>0 || input_vector[j*4+2]->Dim()>0){
- trg_interac_cnt[i]++;
- { // Determine shift for periodic boundary condition
- Real_t* sc=lst[mat_indx]->Coord();
- Real_t* tc=((FMMNode*)nodes_out[i])->Coord();
- int* rel_coord=this->interac_list.RelativeCoord(interac_type, mat_indx);
- shift_coord[i].push_back((tc[0]>sc[0] && rel_coord[0]>0? 1.0:
- (tc[0]<sc[0] && rel_coord[0]<0?-1.0:0.0)) +
- (shift_src?sc[0]:0) - (shift_trg?tc[0]:0) );
- shift_coord[i].push_back((tc[1]>sc[1] && rel_coord[1]>0? 1.0:
- (tc[1]<sc[1] && rel_coord[1]<0?-1.0:0.0)) +
- (shift_src?sc[1]:0) - (shift_trg?tc[1]:0) );
- shift_coord[i].push_back((tc[2]>sc[2] && rel_coord[2]>0? 1.0:
- (tc[2]<sc[2] && rel_coord[2]<0?-1.0:0.0)) +
- (shift_src?sc[2]:0) - (shift_trg?tc[2]:0) );
- }
- { // Set src data
- if(input_vector[j*4+0]!=NULL){
- src_cnt [i].push_back(input_vector[j*4+0]->Dim()/COORD_DIM);
- src_coord[i].push_back((size_t)(& input_vector[j*4+0][0][0]- coord_data[0]));
- src_value[i].push_back((size_t)(& input_vector[j*4+1][0][0]- input_data[0]));
- }else{
- src_cnt [i].push_back(0);
- src_coord[i].push_back(0);
- src_value[i].push_back(0);
- }
- if(input_vector[j*4+2]!=NULL){
- src_cnt [i].push_back(input_vector[j*4+2]->Dim()/COORD_DIM);
- src_coord[i].push_back((size_t)(& input_vector[j*4+2][0][0]- coord_data[0]));
- src_value[i].push_back((size_t)(& input_vector[j*4+3][0][0]- input_data[0]));
- }else{
- src_cnt [i].push_back(0);
- src_coord[i].push_back(0);
- src_value[i].push_back(0);
- }
- }
- }
- }
- }
- }
- }
- { // Set interac_data.
- size_t data_size=sizeof(size_t)*6;
- data_size+=sizeof(size_t)+trg_interac_cnt.size()*sizeof(size_t);
- data_size+=sizeof(size_t)+trg_coord.size()*sizeof(size_t);
- data_size+=sizeof(size_t)+trg_value.size()*sizeof(size_t);
- data_size+=sizeof(size_t)+trg_cnt .size()*sizeof(size_t);
- data_size+=sizeof(size_t)+scal0 .size()*sizeof(Real_t);
- data_size+=sizeof(size_t)+scal1 .size()*sizeof(Real_t);
- data_size+=sizeof(size_t)*2+(M!=NULL?M->Dim(0)*M->Dim(1)*sizeof(Real_t):0);
- for(size_t i=0;i<n_out;i++){
- data_size+=sizeof(size_t)+src_cnt [i].size()*sizeof(size_t);
- data_size+=sizeof(size_t)+src_coord[i].size()*sizeof(size_t);
- data_size+=sizeof(size_t)+src_value[i].size()*sizeof(size_t);
- data_size+=sizeof(size_t)+shift_coord[i].size()*sizeof(Real_t);
- }
- if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
- interac_data.ReInit(1,data_size);
- char* data_ptr=&interac_data[0][0];
- ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]=scal_dim0; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]=scal_dim1; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]=trg_interac_cnt.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &trg_interac_cnt[0], trg_interac_cnt.size()*sizeof(size_t));
- data_ptr+=trg_interac_cnt.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=trg_coord.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &trg_coord[0], trg_coord.size()*sizeof(size_t));
- data_ptr+=trg_coord.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=trg_value.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &trg_value[0], trg_value.size()*sizeof(size_t));
- data_ptr+=trg_value.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=trg_cnt.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &trg_cnt[0], trg_cnt.size()*sizeof(size_t));
- data_ptr+=trg_cnt.size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=scal0.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &scal0[0], scal0.size()*sizeof(Real_t));
- data_ptr+=scal0.size()*sizeof(Real_t);
- ((size_t*)data_ptr)[0]=scal1.size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &scal1[0], scal1.size()*sizeof(Real_t));
- data_ptr+=scal1.size()*sizeof(Real_t);
- if(M!=NULL){
- ((size_t*)data_ptr)[0]=M->Dim(0); data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]=M->Dim(1); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, M[0][0], M->Dim(0)*M->Dim(1)*sizeof(Real_t));
- data_ptr+=M->Dim(0)*M->Dim(1)*sizeof(Real_t);
- }else{
- ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
- ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
- }
- for(size_t i=0;i<n_out;i++){
- ((size_t*)data_ptr)[0]=src_cnt[i].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &src_cnt[i][0], src_cnt[i].size()*sizeof(size_t));
- data_ptr+=src_cnt[i].size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=src_coord[i].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &src_coord[i][0], src_coord[i].size()*sizeof(size_t));
- data_ptr+=src_coord[i].size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=src_value[i].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &src_value[i][0], src_value[i].size()*sizeof(size_t));
- data_ptr+=src_value[i].size()*sizeof(size_t);
- ((size_t*)data_ptr)[0]=shift_coord[i].size(); data_ptr+=sizeof(size_t);
- mem::memcopy(data_ptr, &shift_coord[i][0], shift_coord[i].size()*sizeof(Real_t));
- data_ptr+=shift_coord[i].size()*sizeof(Real_t);
- }
- }
- size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
- if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.ReInit(buff_size);
- if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.ReInit(buff_size);
- }
- Profile::Toc();
- if(device){ // Host2Device
- Profile::Tic("Host2Device",&this->comm,false,25);
- setup_data.interac_data .AllocDevice(true);
- Profile::Toc();
- }
- }
- template <class FMMNode>
- template <int SYNC>
- void FMM_Pts<FMMNode>::EvalListPts(SetupData<Real_t>& setup_data, bool device){
- if(setup_data.kernel->ker_dim[0]*setup_data.kernel->ker_dim[1]==0) return;
- if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
- Profile::Tic("Host2Device",&this->comm,false,25);
- Profile::Toc();
- Profile::Tic("DeviceComp",&this->comm,false,20);
- Profile::Toc();
- return;
- }
- bool have_gpu=false;
- #if defined(PVFMM_HAVE_CUDA)
- have_gpu=true;
- #endif
- Profile::Tic("Host2Device",&this->comm,false,25);
- typename Vector<char>::Device buff;
- //typename Matrix<char>::Device precomp_data;
- typename Matrix<char>::Device interac_data;
- typename Matrix<Real_t>::Device coord_data;
- typename Matrix<Real_t>::Device input_data;
- typename Matrix<Real_t>::Device output_data;
- if(device && !have_gpu){
- buff = this-> dev_buffer. AllocDevice(false);
- interac_data= setup_data.interac_data. AllocDevice(false);
- //if(setup_data.precomp_data!=NULL) precomp_data= setup_data.precomp_data->AllocDevice(false);
- if(setup_data. coord_data!=NULL) coord_data = setup_data. coord_data->AllocDevice(false);
- if(setup_data. input_data!=NULL) input_data = setup_data. input_data->AllocDevice(false);
- if(setup_data. output_data!=NULL) output_data = setup_data. output_data->AllocDevice(false);
- }else{
- buff = this-> cpu_buffer;
- interac_data= setup_data.interac_data;
- //if(setup_data.precomp_data!=NULL) precomp_data=*setup_data.precomp_data;
- if(setup_data. coord_data!=NULL) coord_data =*setup_data. coord_data;
- if(setup_data. input_data!=NULL) input_data =*setup_data. input_data;
- if(setup_data. output_data!=NULL) output_data =*setup_data. output_data;
- }
- Profile::Toc();
- size_t ptr_single_layer_kernel=(size_t)setup_data.kernel->ker_poten;
- size_t ptr_double_layer_kernel=(size_t)setup_data.kernel->dbl_layer_poten;
- Profile::Tic("DeviceComp",&this->comm,false,20);
- int lock_idx=-1;
- int wait_lock_idx=-1;
- if(device) wait_lock_idx=MIC_Lock::curr_lock();
- if(device) lock_idx=MIC_Lock::get_lock();
- #ifdef __INTEL_OFFLOAD
- if(device) ptr_single_layer_kernel=setup_data.kernel->dev_ker_poten;
- if(device) ptr_double_layer_kernel=setup_data.kernel->dev_dbl_layer_poten;
- #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
- #endif
- { // Offloaded computation.
- // Set interac_data.
- size_t data_size;
- size_t ker_dim0;
- size_t ker_dim1;
- size_t dof, n_out;
- size_t scal_dim0;
- size_t scal_dim1;
- Vector<size_t> trg_interac_cnt;
- Vector<size_t> trg_coord;
- Vector<size_t> trg_value;
- Vector<size_t> trg_cnt;
- Vector<Real_t> scal0;
- Vector<Real_t> scal1;
- Matrix<Real_t> M;
- Vector< Vector<size_t> > src_cnt;
- Vector< Vector<size_t> > src_coord;
- Vector< Vector<size_t> > src_value;
- Vector< Vector<Real_t> > shift_coord;
- { // Set interac_data.
- char* data_ptr=&interac_data[0][0];
- data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- ker_dim0=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- ker_dim1=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- scal_dim0=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- scal_dim1=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
- trg_interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+trg_interac_cnt.Dim()*sizeof(size_t);
- n_out=trg_interac_cnt.Dim();
- trg_coord.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+trg_coord.Dim()*sizeof(size_t);
- trg_value.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+trg_value.Dim()*sizeof(size_t);
- trg_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+trg_cnt.Dim()*sizeof(size_t);
- scal0.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+scal0.Dim()*sizeof(Real_t);
- scal1.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+scal1.Dim()*sizeof(Real_t);
- M.ReInit(((size_t*)data_ptr)[0],((size_t*)data_ptr)[1],(Real_t*)(data_ptr+2*sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)*2+M.Dim(0)*M.Dim(1)*sizeof(Real_t);
- src_cnt.Resize(n_out);
- src_coord.Resize(n_out);
- src_value.Resize(n_out);
- shift_coord.Resize(n_out);
- for(size_t i=0;i<n_out;i++){
- src_cnt[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+src_cnt[i].Dim()*sizeof(size_t);
- src_coord[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+src_coord[i].Dim()*sizeof(size_t);
- src_value[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+src_value[i].Dim()*sizeof(size_t);
- shift_coord[i].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
- data_ptr+=sizeof(size_t)+shift_coord[i].Dim()*sizeof(Real_t);
- }
- }
- if(device) MIC_Lock::wait_lock(wait_lock_idx);
- //Compute interaction from point sources.
- { // interactions
- typename Kernel<Real_t>::Ker_t single_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_single_layer_kernel;
- typename Kernel<Real_t>::Ker_t double_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_double_layer_kernel;
- int omp_p=omp_get_max_threads();
- Vector<Real_t*> thread_buff(omp_p);
- size_t thread_buff_size=buff.dim/sizeof(Real_t)/omp_p;
- for(int i=0;i<omp_p;i++) thread_buff[i]=(Real_t*)&buff[i*thread_buff_size*sizeof(Real_t)];
- #pragma omp parallel for schedule(dynamic)
- for(size_t i=0;i<n_out;i++)
- if(trg_interac_cnt[i]>0 && trg_cnt[i]>0){
- int thread_id=omp_get_thread_num();
- Real_t* s_coord=thread_buff[thread_id];
- Real_t* t_value=output_data[0]+trg_value[i];
- if(M.Dim(0)>0 && M.Dim(1)>0){
- s_coord+=dof*M.Dim(0);
- t_value=thread_buff[thread_id];
- for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]=0;
- }
- size_t interac_cnt=0;
- for(size_t j=0;j<trg_interac_cnt[i];j++){
- if(ptr_single_layer_kernel!=(size_t)NULL){// Single layer kernel
- Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+0];
- assert(thread_buff_size>=dof*M.Dim(0)+dof*M.Dim(1)+src_cnt[i][2*j+0]*COORD_DIM);
- for(size_t k1=0;k1<src_cnt[i][2*j+0];k1++){ // Compute shifted source coordinates.
- for(size_t k0=0;k0<COORD_DIM;k0++){
- s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
- }
- }
- single_layer_kernel( s_coord , src_cnt[i][2*j+0], input_data[0]+src_value[i][2*j+0], dof,
- coord_data[0]+trg_coord[i], trg_cnt[i] , t_value, NULL);
- interac_cnt+=src_cnt[i][2*j+0]*trg_cnt[i];
- }else if(src_cnt[i][2*j+0]!=0 && trg_cnt[i]!=0){
- assert(ptr_single_layer_kernel); // Single-layer kernel not implemented
- }
- if(ptr_double_layer_kernel!=(size_t)NULL){// Double layer kernel
- Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+1];
- assert(thread_buff_size>=dof*M.Dim(0)+dof*M.Dim(1)+src_cnt[i][2*j+1]*COORD_DIM);
- for(size_t k1=0;k1<src_cnt[i][2*j+1];k1++){ // Compute shifted source coordinates.
- for(size_t k0=0;k0<COORD_DIM;k0++){
- s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
- }
- }
- double_layer_kernel( s_coord , src_cnt[i][2*j+1], input_data[0]+src_value[i][2*j+1], dof,
- coord_data[0]+trg_coord[i], trg_cnt[i] , t_value, NULL);
- interac_cnt+=src_cnt[i][2*j+1]*trg_cnt[i];
- }else if(src_cnt[i][2*j+1]!=0 && trg_cnt[i]!=0){
- assert(ptr_double_layer_kernel); // Double-layer kernel not implemented
- }
- }
- if(M.Dim(0)>0 && M.Dim(1)>0 && interac_cnt>0){
- assert(trg_cnt[i]*scal_dim0==M.Dim(0));
- assert(trg_cnt[i]*scal_dim1==M.Dim(1));
- {// Scaling (scal_dim0)
- Real_t* s=&scal0[i*scal_dim0];
- for(size_t j=0;j<dof*M.Dim(0);j+=scal_dim0){
- for(size_t k=0;k<scal_dim0;k++){
- t_value[j+k]*=s[k];
- }
- }
- }
- Matrix<Real_t> in_vec(dof, M.Dim(0), t_value, false);
- Matrix<Real_t> tmp_vec(dof, M.Dim(1),dof*M.Dim(0)+t_value, false);
- Matrix<Real_t>::GEMM(tmp_vec, in_vec, M, 0.0);
- Matrix<Real_t> out_vec(dof, M.Dim(1), output_data[0]+trg_value[i], false);
- {// Scaling (scal_dim1)
- Real_t* s=&scal1[i*scal_dim1];
- for(size_t j=0;j<dof*M.Dim(1);j+=scal_dim1){
- for(size_t k=0;k<scal_dim1;k++){
- out_vec[0][j+k]+=tmp_vec[0][j+k]*s[k];
- }
- }
- }
- }
- }
- }
- if(device) MIC_Lock::release_lock(lock_idx);
- }
- #ifdef __INTEL_OFFLOAD
- if(SYNC){
- #pragma offload if(device) target(mic:0)
- {if(device) MIC_Lock::wait_lock(lock_idx);}
- }
- #endif
- Profile::Toc();
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::X_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- if(this->MultipoleOrder()==0) return;
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=kernel->k_s2l;
- setup_data.interac_type.resize(1);
- setup_data.interac_type[0]=X_Type;
- setup_data. input_data=&buff[4];
- setup_data.output_data=&buff[1];
- setup_data. coord_data=&buff[6];
- Vector<FMMNode_t*>& nodes_in =n_list[4];
- Vector<FMMNode_t*>& nodes_out=n_list[1];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++){
- input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
- input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
- input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
- input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
- }
- for(size_t i=0;i<nodes_out.size();i++){
- output_vector.push_back(&tree->dnwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
- output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
- }
- //Downward check to downward equivalent matrix.
- Matrix<Real_t>& M_dc2de = this->mat->Mat(level, DC2DE_Type, 0);
- this->SetupInteracPts(setup_data, false, true, &M_dc2de,device);
- { // Resize device buffer
- size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
- if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::X_List (SetupData<Real_t>& setup_data, bool device){
- //Add X_List contribution.
- this->EvalListPts(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::W_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- if(this->MultipoleOrder()==0) return;
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=kernel->k_m2t;
- setup_data.interac_type.resize(1);
- setup_data.interac_type[0]=W_Type;
- setup_data. input_data=&buff[0];
- setup_data.output_data=&buff[5];
- setup_data. coord_data=&buff[6];
- Vector<FMMNode_t*>& nodes_in =n_list[0];
- Vector<FMMNode_t*>& nodes_out=n_list[5];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++){
- input_vector .push_back(&tree->upwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
- input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
- input_vector .push_back(NULL);
- input_vector .push_back(NULL);
- }
- for(size_t i=0;i<nodes_out.size();i++){
- output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
- output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
- }
- this->SetupInteracPts(setup_data, true, false, NULL, device);
- { // Resize device buffer
- size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
- if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::W_List (SetupData<Real_t>& setup_data, bool device){
- //Add W_List contribution.
- this->EvalListPts(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::U_ListSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=kernel->k_s2t;
- setup_data.interac_type.resize(3);
- setup_data.interac_type[0]=U0_Type;
- setup_data.interac_type[1]=U1_Type;
- setup_data.interac_type[2]=U2_Type;
- setup_data. input_data=&buff[4];
- setup_data.output_data=&buff[5];
- setup_data. coord_data=&buff[6];
- Vector<FMMNode_t*>& nodes_in =n_list[4];
- Vector<FMMNode_t*>& nodes_out=n_list[5];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if((level-1<=nodes_in [i]->Depth() && nodes_in [i]->Depth()<=level+1) || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(( nodes_out[i]->Depth()==level ) || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++){
- input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
- input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
- input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
- input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
- }
- for(size_t i=0;i<nodes_out.size();i++){
- output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
- output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
- }
- this->SetupInteracPts(setup_data, false, false, NULL, device);
- { // Resize device buffer
- size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
- if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::U_List (SetupData<Real_t>& setup_data, bool device){
- //Add U_List contribution.
- this->EvalListPts(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::Down2TargetSetup(SetupData<Real_t>& setup_data, FMMTree_t* tree, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
- if(this->MultipoleOrder()==0) return;
- { // Set setup_data
- setup_data.level=level;
- setup_data.kernel=kernel->k_l2t;
- setup_data.interac_type.resize(1);
- setup_data.interac_type[0]=D2T_Type;
- setup_data. input_data=&buff[1];
- setup_data.output_data=&buff[5];
- setup_data. coord_data=&buff[6];
- Vector<FMMNode_t*>& nodes_in =n_list[1];
- Vector<FMMNode_t*>& nodes_out=n_list[5];
- setup_data.nodes_in .clear();
- setup_data.nodes_out.clear();
- for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
- for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
- }
- std::vector<void*>& nodes_in =setup_data.nodes_in ;
- std::vector<void*>& nodes_out=setup_data.nodes_out;
- std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
- std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
- for(size_t i=0;i<nodes_in .size();i++){
- input_vector .push_back(&tree->dnwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
- input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
- input_vector .push_back(NULL);
- input_vector .push_back(NULL);
- }
- for(size_t i=0;i<nodes_out.size();i++){
- output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
- output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
- }
- this->SetupInteracPts(setup_data, true, false, NULL, device);
- { // Resize device buffer
- size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
- if(this->dev_buffer.Dim()<n) this->dev_buffer.ReInit(n);
- }
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::Down2Target(SetupData<Real_t>& setup_data, bool device){
- //Add Down2Target contribution.
- this->EvalListPts(setup_data, device);
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::PostProcessing(std::vector<FMMNode_t*>& nodes){
- }
- template <class FMMNode>
- void FMM_Pts<FMMNode>::CopyOutput(FMMNode** nodes, size_t n){
- }
- }//end namespace
|