kernel.txx 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611
  1. /**
  2. * \file kernel.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 12-20-2011
  5. * \brief This file contains the implementation of the struct Kernel and also the
  6. * implementation of various kernels for FMM.
  7. */
  8. #include <cmath>
  9. #include <cstdlib>
  10. #include <vector>
  11. #include <mem_mgr.hpp>
  12. #include <profile.hpp>
  13. #include <vector.hpp>
  14. #include <matrix.hpp>
  15. #include <precomp_mat.hpp>
  16. #ifdef __SSE__
  17. #include <xmmintrin.h>
  18. #endif
  19. #ifdef __SSE2__
  20. #include <emmintrin.h>
  21. #endif
  22. #ifdef __SSE3__
  23. #include <pmmintrin.h>
  24. #endif
  25. #ifdef __AVX__
  26. #include <immintrin.h>
  27. #endif
  28. #if defined(__MIC__)
  29. #include <immintrin.h>
  30. #endif
  31. namespace pvfmm{
  32. /**
  33. * \brief Constructor.
  34. */
  35. template <class T>
  36. Kernel<T>::Kernel(Ker_t poten, Ker_t dbl_poten, const char* name, int dim_, std::pair<int,int> k_dim,
  37. size_t dev_poten, size_t dev_dbl_poten){
  38. dim=dim_;
  39. ker_dim[0]=k_dim.first;
  40. ker_dim[1]=k_dim.second;
  41. ker_poten=poten;
  42. dbl_layer_poten=dbl_poten;
  43. ker_name=std::string(name);
  44. dev_ker_poten=dev_poten;
  45. dev_dbl_layer_poten=dev_dbl_poten;
  46. k_s2m=NULL;
  47. k_s2l=NULL;
  48. k_s2t=NULL;
  49. k_m2m=NULL;
  50. k_m2l=NULL;
  51. k_m2t=NULL;
  52. k_l2l=NULL;
  53. k_l2t=NULL;
  54. homogen=false;
  55. init=false;
  56. }
  57. /**
  58. * \brief Initialize the kernel.
  59. */
  60. template <class T>
  61. void Kernel<T>::Initialize(bool verbose) const{
  62. if(init) return;
  63. init=true;
  64. T eps=1.0;
  65. while(eps+(T)1.0>1.0) eps*=0.5;
  66. { // Determine scal
  67. homogen=true;
  68. Matrix<T> M_scal(ker_dim[0],ker_dim[1]);
  69. size_t N=1024;
  70. T eps_=N*eps;
  71. T src_coord[3]={0,0,0};
  72. std::vector<T> trg_coord1(N*COORD_DIM);
  73. std::vector<T> trg_coord2(N*COORD_DIM);
  74. for(size_t i=0;i<N;i++){
  75. T x,y,z,r;
  76. do{
  77. x=(drand48()-0.5);
  78. y=(drand48()-0.5);
  79. z=(drand48()-0.5);
  80. r=sqrt(x*x+y*y+z*z);
  81. }while(r<0.25);
  82. trg_coord1[i*COORD_DIM+0]=x;
  83. trg_coord1[i*COORD_DIM+1]=y;
  84. trg_coord1[i*COORD_DIM+2]=z;
  85. }
  86. for(size_t i=0;i<N*COORD_DIM;i++){
  87. trg_coord2[i]=trg_coord1[i]*0.5;
  88. }
  89. T max_val=0;
  90. Matrix<T> M1(N,ker_dim[0]*ker_dim[1]);
  91. Matrix<T> M2(N,ker_dim[0]*ker_dim[1]);
  92. for(size_t i=0;i<N;i++){
  93. BuildMatrix(&src_coord [ 0], 1,
  94. &trg_coord1[i*COORD_DIM], 1, &(M1[i][0]));
  95. BuildMatrix(&src_coord [ 0], 1,
  96. &trg_coord2[i*COORD_DIM], 1, &(M2[i][0]));
  97. for(size_t j=0;j<ker_dim[0]*ker_dim[1];j++){
  98. max_val=std::max<T>(max_val,M1[i][j]);
  99. max_val=std::max<T>(max_val,M2[i][j]);
  100. }
  101. }
  102. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++){
  103. T dot11=0, dot12=0, dot22=0;
  104. for(size_t j=0;j<N;j++){
  105. dot11+=M1[j][i]*M1[j][i];
  106. dot12+=M1[j][i]*M2[j][i];
  107. dot22+=M2[j][i]*M2[j][i];
  108. }
  109. if(dot11>max_val*max_val*eps_ &&
  110. dot22>max_val*max_val*eps_ ){
  111. T s=dot12/dot11;
  112. M_scal[0][i]=log(s)/log(2.0);
  113. T err=sqrt(0.5*(dot22/dot11)/(s*s)-0.5);
  114. if(err>eps_){
  115. homogen=false;
  116. M_scal[0][i]=0.0;
  117. }
  118. assert(M_scal[0][i]>=0.0); // Kernel function must decay
  119. }else M_scal[0][i]=-1;
  120. }
  121. src_scal.Resize(ker_dim[0]); src_scal.SetZero();
  122. trg_scal.Resize(ker_dim[1]); trg_scal.SetZero();
  123. if(homogen){
  124. Matrix<T> b(ker_dim[0]*ker_dim[1]+1,1); b.SetZero();
  125. mem::memcopy(&b[0][0],&M_scal[0][0],ker_dim[0]*ker_dim[1]*sizeof(T));
  126. Matrix<T> M(ker_dim[0]*ker_dim[1]+1,ker_dim[0]+ker_dim[1]); M.SetZero();
  127. M[ker_dim[0]*ker_dim[1]][0]=1;
  128. for(size_t i0=0;i0<ker_dim[0];i0++)
  129. for(size_t i1=0;i1<ker_dim[1];i1++){
  130. size_t j=i0*ker_dim[1]+i1;
  131. if(b[j][0]>=0){
  132. M[j][ 0+ i0]=1;
  133. M[j][i1+ker_dim[0]]=1;
  134. }
  135. }
  136. Matrix<T> x=M.pinv()*b;
  137. for(size_t i=0;i<ker_dim[0];i++){
  138. src_scal[i]=x[i][0];
  139. }
  140. for(size_t i=0;i<ker_dim[1];i++){
  141. trg_scal[i]=x[ker_dim[0]+i][0];
  142. }
  143. for(size_t i0=0;i0<ker_dim[0];i0++)
  144. for(size_t i1=0;i1<ker_dim[1];i1++){
  145. if(M_scal[i0][i1]>=0){
  146. if(fabs(src_scal[i0]+trg_scal[i1]-M_scal[i0][i1])>eps_){
  147. homogen=false;
  148. }
  149. }
  150. }
  151. }
  152. if(!homogen){
  153. src_scal.SetZero();
  154. trg_scal.SetZero();
  155. //std::cout<<ker_name<<" not-scale-invariant\n";
  156. }
  157. }
  158. { // Determine symmetry
  159. perm_vec.Resize(Perm_Count);
  160. size_t N=1024;
  161. T eps_=N*eps;
  162. T src_coord[3]={0,0,0};
  163. std::vector<T> trg_coord1(N*COORD_DIM);
  164. std::vector<T> trg_coord2(N*COORD_DIM);
  165. for(size_t i=0;i<N;i++){
  166. T x,y,z,r;
  167. do{
  168. x=(drand48()-0.5);
  169. y=(drand48()-0.5);
  170. z=(drand48()-0.5);
  171. r=sqrt(x*x+y*y+z*z);
  172. }while(r<0.25);
  173. trg_coord1[i*COORD_DIM+0]=x;
  174. trg_coord1[i*COORD_DIM+1]=y;
  175. trg_coord1[i*COORD_DIM+2]=z;
  176. }
  177. for(size_t p_type=0;p_type<C_Perm;p_type++){ // For each symmetry transform
  178. switch(p_type){ // Set trg_coord2
  179. case ReflecX:
  180. for(size_t i=0;i<N;i++){
  181. trg_coord2[i*COORD_DIM+0]=-trg_coord1[i*COORD_DIM+0];
  182. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+1];
  183. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+2];
  184. }
  185. break;
  186. case ReflecY:
  187. for(size_t i=0;i<N;i++){
  188. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+0];
  189. trg_coord2[i*COORD_DIM+1]=-trg_coord1[i*COORD_DIM+1];
  190. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+2];
  191. }
  192. break;
  193. case ReflecZ:
  194. for(size_t i=0;i<N;i++){
  195. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+0];
  196. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+1];
  197. trg_coord2[i*COORD_DIM+2]=-trg_coord1[i*COORD_DIM+2];
  198. }
  199. break;
  200. case SwapXY:
  201. for(size_t i=0;i<N;i++){
  202. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+1];
  203. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+0];
  204. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+2];
  205. }
  206. break;
  207. case SwapXZ:
  208. for(size_t i=0;i<N;i++){
  209. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+2];
  210. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+1];
  211. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+0];
  212. }
  213. break;
  214. default:
  215. for(size_t i=0;i<N;i++){
  216. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+0];
  217. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+1];
  218. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+2];
  219. }
  220. }
  221. Matrix<long long> M11, M22;
  222. {
  223. Matrix<T> M1(N,ker_dim[0]*ker_dim[1]); M1.SetZero();
  224. Matrix<T> M2(N,ker_dim[0]*ker_dim[1]); M2.SetZero();
  225. for(size_t i=0;i<N;i++){
  226. BuildMatrix(&src_coord [ 0], 1,
  227. &trg_coord1[i*COORD_DIM], 1, &(M1[i][0]));
  228. BuildMatrix(&src_coord [ 0], 1,
  229. &trg_coord2[i*COORD_DIM], 1, &(M2[i][0]));
  230. }
  231. Matrix<T> dot11(ker_dim[0]*ker_dim[1],ker_dim[0]*ker_dim[1]);dot11.SetZero();
  232. Matrix<T> dot12(ker_dim[0]*ker_dim[1],ker_dim[0]*ker_dim[1]);dot12.SetZero();
  233. Matrix<T> dot22(ker_dim[0]*ker_dim[1],ker_dim[0]*ker_dim[1]);dot22.SetZero();
  234. std::vector<T> norm1(ker_dim[0]*ker_dim[1]);
  235. std::vector<T> norm2(ker_dim[0]*ker_dim[1]);
  236. {
  237. for(size_t k=0;k<N;k++)
  238. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++)
  239. for(size_t j=0;j<ker_dim[0]*ker_dim[1];j++){
  240. dot11[i][j]+=M1[k][i]*M1[k][j];
  241. dot12[i][j]+=M1[k][i]*M2[k][j];
  242. dot22[i][j]+=M2[k][i]*M2[k][j];
  243. }
  244. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++){
  245. norm1[i]=sqrt(dot11[i][i]);
  246. norm2[i]=sqrt(dot22[i][i]);
  247. }
  248. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++)
  249. for(size_t j=0;j<ker_dim[0]*ker_dim[1];j++){
  250. dot11[i][j]/=(norm1[i]*norm1[j]);
  251. dot12[i][j]/=(norm1[i]*norm2[j]);
  252. dot22[i][j]/=(norm2[i]*norm2[j]);
  253. }
  254. }
  255. long long flag=1;
  256. M11.Resize(ker_dim[0],ker_dim[1]); M11.SetZero();
  257. M22.Resize(ker_dim[0],ker_dim[1]); M22.SetZero();
  258. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++){
  259. if(norm1[i]>eps_ && M11[0][i]==0){
  260. for(size_t j=0;j<ker_dim[0]*ker_dim[1];j++){
  261. if(fabs(norm1[i]-norm1[j])<eps_ && fabs(fabs(dot11[i][j])-1.0)<eps_){
  262. M11[0][j]=(dot11[i][j]>0?flag:-flag);
  263. }
  264. if(fabs(norm1[i]-norm2[j])<eps_ && fabs(fabs(dot12[i][j])-1.0)<eps_){
  265. M22[0][j]=(dot12[i][j]>0?flag:-flag);
  266. }
  267. }
  268. flag++;
  269. }
  270. }
  271. }
  272. Matrix<long long> P1, P2;
  273. { // P1
  274. Matrix<long long>& P=P1;
  275. Matrix<long long> M1=M11;
  276. Matrix<long long> M2=M22;
  277. for(size_t i=0;i<M1.Dim(0);i++){
  278. for(size_t j=0;j<M1.Dim(1);j++){
  279. if(M1[i][j]<0) M1[i][j]=-M1[i][j];
  280. if(M2[i][j]<0) M2[i][j]=-M2[i][j];
  281. }
  282. std::sort(&M1[i][0],&M1[i][M1.Dim(1)]);
  283. std::sort(&M2[i][0],&M2[i][M2.Dim(1)]);
  284. }
  285. P.Resize(M1.Dim(0),M1.Dim(0));
  286. for(size_t i=0;i<M1.Dim(0);i++)
  287. for(size_t j=0;j<M1.Dim(0);j++){
  288. P[i][j]=1;
  289. for(size_t k=0;k<M1.Dim(1);k++)
  290. if(M1[i][k]!=M2[j][k]){
  291. P[i][j]=0;
  292. break;
  293. }
  294. }
  295. }
  296. { // P2
  297. Matrix<long long>& P=P2;
  298. Matrix<long long> M1=M11.Transpose();
  299. Matrix<long long> M2=M22.Transpose();
  300. for(size_t i=0;i<M1.Dim(0);i++){
  301. for(size_t j=0;j<M1.Dim(1);j++){
  302. if(M1[i][j]<0) M1[i][j]=-M1[i][j];
  303. if(M2[i][j]<0) M2[i][j]=-M2[i][j];
  304. }
  305. std::sort(&M1[i][0],&M1[i][M1.Dim(1)]);
  306. std::sort(&M2[i][0],&M2[i][M2.Dim(1)]);
  307. }
  308. P.Resize(M1.Dim(0),M1.Dim(0));
  309. for(size_t i=0;i<M1.Dim(0);i++)
  310. for(size_t j=0;j<M1.Dim(0);j++){
  311. P[i][j]=1;
  312. for(size_t k=0;k<M1.Dim(1);k++)
  313. if(M1[i][k]!=M2[j][k]){
  314. P[i][j]=0;
  315. break;
  316. }
  317. }
  318. }
  319. std::vector<Permutation<long long> > P1vec, P2vec;
  320. int dbg_cnt=0;
  321. { // P1vec
  322. Matrix<long long>& Pmat=P1;
  323. std::vector<Permutation<long long> >& Pvec=P1vec;
  324. Permutation<long long> P(Pmat.Dim(0));
  325. Vector<PERM_INT_T>& perm=P.perm;
  326. perm.SetZero();
  327. // First permutation
  328. for(size_t i=0;i<P.Dim();i++)
  329. for(size_t j=0;j<P.Dim();j++){
  330. if(Pmat[i][j]){
  331. perm[i]=j;
  332. break;
  333. }
  334. }
  335. Vector<PERM_INT_T> perm_tmp;
  336. while(true){ // Next permutation
  337. perm_tmp=perm;
  338. std::sort(&perm_tmp[0],&perm_tmp[0]+perm_tmp.Dim());
  339. for(size_t i=0;i<perm_tmp.Dim();i++){
  340. if(perm_tmp[i]!=i) break;
  341. if(i==perm_tmp.Dim()-1){
  342. Pvec.push_back(P);
  343. }
  344. }
  345. bool last=false;
  346. for(size_t i=0;i<P.Dim();i++){
  347. PERM_INT_T tmp=perm[i];
  348. for(size_t j=perm[i]+1;j<P.Dim();j++){
  349. if(Pmat[i][j]){
  350. perm[i]=j;
  351. break;
  352. }
  353. }
  354. if(perm[i]>tmp) break;
  355. for(size_t j=0;j<P.Dim();j++){
  356. if(Pmat[i][j]){
  357. perm[i]=j;
  358. break;
  359. }
  360. }
  361. if(i==P.Dim()-1) last=true;
  362. }
  363. if(last) break;
  364. }
  365. }
  366. { // P2vec
  367. Matrix<long long>& Pmat=P2;
  368. std::vector<Permutation<long long> >& Pvec=P2vec;
  369. Permutation<long long> P(Pmat.Dim(0));
  370. Vector<PERM_INT_T>& perm=P.perm;
  371. perm.SetZero();
  372. // First permutation
  373. for(size_t i=0;i<P.Dim();i++)
  374. for(size_t j=0;j<P.Dim();j++){
  375. if(Pmat[i][j]){
  376. perm[i]=j;
  377. break;
  378. }
  379. }
  380. Vector<PERM_INT_T> perm_tmp;
  381. while(true){ // Next permutation
  382. perm_tmp=perm;
  383. std::sort(&perm_tmp[0],&perm_tmp[0]+perm_tmp.Dim());
  384. for(size_t i=0;i<perm_tmp.Dim();i++){
  385. if(perm_tmp[i]!=i) break;
  386. if(i==perm_tmp.Dim()-1){
  387. Pvec.push_back(P);
  388. }
  389. }
  390. bool last=false;
  391. for(size_t i=0;i<P.Dim();i++){
  392. PERM_INT_T tmp=perm[i];
  393. for(size_t j=perm[i]+1;j<P.Dim();j++){
  394. if(Pmat[i][j]){
  395. perm[i]=j;
  396. break;
  397. }
  398. }
  399. if(perm[i]>tmp) break;
  400. for(size_t j=0;j<P.Dim();j++){
  401. if(Pmat[i][j]){
  402. perm[i]=j;
  403. break;
  404. }
  405. }
  406. if(i==P.Dim()-1) last=true;
  407. }
  408. if(last) break;
  409. }
  410. }
  411. { // Find pairs which acutally work (neglect scaling)
  412. std::vector<Permutation<long long> > P1vec_, P2vec_;
  413. Matrix<long long> M1=M11;
  414. Matrix<long long> M2=M22;
  415. for(size_t i=0;i<M1.Dim(0);i++){
  416. for(size_t j=0;j<M1.Dim(1);j++){
  417. if(M1[i][j]<0) M1[i][j]=-M1[i][j];
  418. if(M2[i][j]<0) M2[i][j]=-M2[i][j];
  419. }
  420. }
  421. Matrix<long long> M;
  422. for(size_t i=0;i<P1vec.size();i++)
  423. for(size_t j=0;j<P2vec.size();j++){
  424. M=P1vec[i]*M2*P2vec[j];
  425. for(size_t k=0;k<M.Dim(0)*M.Dim(1);k++){
  426. if(M[0][k]!=M1[0][k]) break;
  427. if(k==M.Dim(0)*M.Dim(1)-1){
  428. P1vec_.push_back(P1vec[i]);
  429. P2vec_.push_back(P2vec[j]);
  430. }
  431. }
  432. }
  433. P1vec=P1vec_;
  434. P2vec=P2vec_;
  435. }
  436. Permutation<T> P1_, P2_;
  437. { // Find pairs which acutally work
  438. for(size_t k=0;k<P1vec.size();k++){
  439. Permutation<long long> P1=P1vec[k];
  440. Permutation<long long> P2=P2vec[k];
  441. Matrix<long long> M1= M11 ;
  442. Matrix<long long> M2=P1*M22*P2;
  443. Matrix<T> M(M1.Dim(0)*M1.Dim(1)+1,M1.Dim(0)+M1.Dim(1));
  444. M.SetZero(); M[M1.Dim(0)*M1.Dim(1)][0]=1.0;
  445. for(size_t i=0;i<M1.Dim(0);i++)
  446. for(size_t j=0;j<M1.Dim(1);j++){
  447. size_t k=i*M1.Dim(1)+j;
  448. M[k][ i]= M1[i][j];
  449. M[k][M1.Dim(0)+j]=-M2[i][j];
  450. }
  451. M=M.pinv();
  452. { // Construct new permutation
  453. Permutation<long long> P1_(M1.Dim(0));
  454. Permutation<long long> P2_(M1.Dim(1));
  455. for(size_t i=0;i<M1.Dim(0);i++){
  456. P1_.scal[i]=(M[i][M1.Dim(0)*M1.Dim(1)]>0?1:-1);
  457. }
  458. for(size_t i=0;i<M1.Dim(1);i++){
  459. P2_.scal[i]=(M[M1.Dim(0)+i][M1.Dim(0)*M1.Dim(1)]>0?1:-1);
  460. }
  461. P1=P1_*P1 ;
  462. P2=P2 *P2_;
  463. }
  464. bool done=true;
  465. Matrix<long long> Merr=P1*M22*P2-M11;
  466. for(size_t i=0;i<Merr.Dim(0)*Merr.Dim(1);i++){
  467. if(Merr[0][i]){
  468. done=false;
  469. break;
  470. }
  471. }
  472. if(done){
  473. P1_=Permutation<T>(P1.Dim());
  474. P2_=Permutation<T>(P2.Dim());
  475. for(size_t i=0;i<P1.Dim();i++){
  476. P1_.perm[i]=P1.perm[i];
  477. P1_.scal[i]=P1.scal[i];
  478. }
  479. for(size_t i=0;i<P2.Dim();i++){
  480. P2_.perm[i]=P2.perm[i];
  481. P2_.scal[i]=P2.scal[i];
  482. }
  483. break;
  484. }
  485. }
  486. }
  487. //std::cout<<P1_<<'\n';
  488. //std::cout<<P2_<<'\n';
  489. perm_vec[p_type ]=P1_.Transpose();
  490. perm_vec[p_type+C_Perm]=P2_;
  491. }
  492. for(size_t i=0;i<2*C_Perm;i++){
  493. if(perm_vec[i].Dim()==0){
  494. perm_vec.Resize(0);
  495. std::cout<<"no-symmetry for: "<<ker_name<<'\n';
  496. break;
  497. }
  498. }
  499. }
  500. if(verbose){ // Display kernel information
  501. std::cout<<"\n";
  502. std::cout<<"Kernel Name : "<<ker_name<<'\n';
  503. std::cout<<"Precision : "<<(double)eps<<'\n';
  504. std::cout<<"Symmetry : "<<(perm_vec.Dim()>0?"yes":"no")<<'\n';
  505. std::cout<<"Scale Invariant: "<<(homogen?"yes":"no")<<'\n';
  506. if(homogen){
  507. std::cout<<"Scaling Matrix :\n";
  508. Matrix<T> Src(ker_dim[0],1);
  509. Matrix<T> Trg(1,ker_dim[1]);
  510. for(size_t i=0;i<ker_dim[0];i++) Src[i][0]=pow(2.0,src_scal[i]);
  511. for(size_t i=0;i<ker_dim[1];i++) Trg[0][i]=pow(2.0,trg_scal[i]);
  512. std::cout<<Src*Trg;
  513. }
  514. std::cout<<"Error : ";
  515. for(T rad=1.0; rad>1.0e-2; rad*=0.5){ // Accuracy of multipole expansion
  516. int m=8; // multipole order
  517. std::vector<T> equiv_surf;
  518. std::vector<T> check_surf;
  519. for(int i0=0;i0<m;i0++){
  520. for(int i1=0;i1<m;i1++){
  521. for(int i2=0;i2<m;i2++){
  522. if(i0== 0 || i1== 0 || i2== 0 ||
  523. i0==m-1 || i1==m-1 || i2==m-1){
  524. // Range: [-1/3,1/3]^3
  525. T x=((T)2*i0-(m-1))/(m-1)/3;
  526. T y=((T)2*i1-(m-1))/(m-1)/3;
  527. T z=((T)2*i2-(m-1))/(m-1)/3;
  528. equiv_surf.push_back(x*RAD0*rad);
  529. equiv_surf.push_back(y*RAD0*rad);
  530. equiv_surf.push_back(z*RAD0*rad);
  531. check_surf.push_back(x*RAD1*rad);
  532. check_surf.push_back(y*RAD1*rad);
  533. check_surf.push_back(z*RAD1*rad);
  534. }
  535. }
  536. }
  537. }
  538. size_t n_equiv=equiv_surf.size()/COORD_DIM;
  539. size_t n_check=equiv_surf.size()/COORD_DIM;
  540. size_t n_src=m;
  541. size_t n_trg=m;
  542. std::vector<T> src_coord;
  543. std::vector<T> trg_coord;
  544. for(size_t i=0;i<n_src*COORD_DIM;i++){
  545. src_coord.push_back((2*drand48()-1)/3*rad);
  546. }
  547. for(size_t i=0;i<n_trg;i++){
  548. T x,y,z,r;
  549. do{
  550. x=(drand48()-0.5);
  551. y=(drand48()-0.5);
  552. z=(drand48()-0.5);
  553. r=sqrt(x*x+y*y+z*z);
  554. }while(r==0.0);
  555. trg_coord.push_back(x/r*sqrt((T)COORD_DIM)*rad);
  556. trg_coord.push_back(y/r*sqrt((T)COORD_DIM)*rad);
  557. trg_coord.push_back(z/r*sqrt((T)COORD_DIM)*rad);
  558. }
  559. Matrix<T> M_s2c(n_src*ker_dim[0],n_check*ker_dim[1]);
  560. BuildMatrix( &src_coord[0], n_src,
  561. &check_surf[0], n_check, &(M_s2c[0][0]));
  562. Matrix<T> M_e2c(n_equiv*ker_dim[0],n_check*ker_dim[1]);
  563. BuildMatrix(&equiv_surf[0], n_equiv,
  564. &check_surf[0], n_check, &(M_e2c[0][0]));
  565. Matrix<T> M_c2e=M_e2c.pinv();
  566. Matrix<T> M_e2t(n_equiv*ker_dim[0],n_trg*ker_dim[1]);
  567. BuildMatrix(&equiv_surf[0], n_equiv,
  568. &trg_coord[0], n_trg , &(M_e2t[0][0]));
  569. Matrix<T> M_s2t(n_src*ker_dim[0],n_trg*ker_dim[1]);
  570. BuildMatrix( &src_coord[0], n_src,
  571. &trg_coord[0], n_trg , &(M_s2t[0][0]));
  572. Matrix<T> M=M_s2c*M_c2e*M_e2t-M_s2t;
  573. T max_error=0, max_value=0;
  574. for(size_t i=0;i<M.Dim(0);i++)
  575. for(size_t j=0;j<M.Dim(1);j++){
  576. max_error=std::max<T>(max_error,fabs(M [i][j]));
  577. max_value=std::max<T>(max_value,fabs(M_s2t[i][j]));
  578. }
  579. std::cout<<(double)(max_error/max_value)<<' ';
  580. if(homogen) break;
  581. }
  582. std::cout<<"\n";
  583. std::cout<<"\n";
  584. }
  585. { // Initialize auxiliary FMM kernels
  586. if(!k_s2m) k_s2m=this;
  587. if(!k_s2l) k_s2l=this;
  588. if(!k_s2t) k_s2t=this;
  589. if(!k_m2m) k_m2m=this;
  590. if(!k_m2l) k_m2l=this;
  591. if(!k_m2t) k_m2t=this;
  592. if(!k_l2l) k_l2l=this;
  593. if(!k_l2t) k_l2t=this;
  594. assert(k_s2t->ker_dim[0]==ker_dim[0]);
  595. assert(k_s2m->ker_dim[0]==k_s2l->ker_dim[0]);
  596. assert(k_s2m->ker_dim[0]==k_s2t->ker_dim[0]);
  597. assert(k_m2m->ker_dim[0]==k_m2l->ker_dim[0]);
  598. assert(k_m2m->ker_dim[0]==k_m2t->ker_dim[0]);
  599. assert(k_l2l->ker_dim[0]==k_l2t->ker_dim[0]);
  600. assert(k_s2t->ker_dim[1]==ker_dim[1]);
  601. assert(k_s2m->ker_dim[1]==k_m2m->ker_dim[1]);
  602. assert(k_s2l->ker_dim[1]==k_l2l->ker_dim[1]);
  603. assert(k_m2l->ker_dim[1]==k_l2l->ker_dim[1]);
  604. assert(k_s2t->ker_dim[1]==k_m2t->ker_dim[1]);
  605. assert(k_s2t->ker_dim[1]==k_l2t->ker_dim[1]);
  606. k_s2m->Initialize(verbose);
  607. k_s2l->Initialize(verbose);
  608. k_s2t->Initialize(verbose);
  609. k_m2m->Initialize(verbose);
  610. k_m2l->Initialize(verbose);
  611. k_m2t->Initialize(verbose);
  612. k_l2l->Initialize(verbose);
  613. k_l2t->Initialize(verbose);
  614. }
  615. }
  616. /**
  617. * \brief Compute the transformation matrix (on the source strength vector)
  618. * to get potential at target coordinates due to sources at the given
  619. * coordinates.
  620. * \param[in] r_src Coordinates of source points.
  621. * \param[in] src_cnt Number of source points.
  622. * \param[in] r_trg Coordinates of target points.
  623. * \param[in] trg_cnt Number of target points.
  624. * \param[out] k_out Output array with potential values.
  625. */
  626. template <class T>
  627. void Kernel<T>::BuildMatrix(T* r_src, int src_cnt,
  628. T* r_trg, int trg_cnt, T* k_out) const{
  629. int dim=3; //Only supporting 3D
  630. memset(k_out, 0, src_cnt*ker_dim[0]*trg_cnt*ker_dim[1]*sizeof(T));
  631. for(int i=0;i<src_cnt;i++) //TODO Optimize this.
  632. for(int j=0;j<ker_dim[0];j++){
  633. std::vector<T> v_src(ker_dim[0],0);
  634. v_src[j]=1.0;
  635. ker_poten(&r_src[i*dim], 1, &v_src[0], 1, r_trg, trg_cnt,
  636. &k_out[(i*ker_dim[0]+j)*trg_cnt*ker_dim[1]], NULL);
  637. }
  638. }
  639. ////////////////////////////////////////////////////////////////////////////////
  640. //////// LAPLACE KERNEL ////////
  641. ////////////////////////////////////////////////////////////////////////////////
  642. /**
  643. * \brief Green's function for the Poisson's equation. Kernel tensor
  644. * dimension = 1x1.
  645. */
  646. template <class T>
  647. void laplace_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  648. #ifndef __MIC__
  649. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(12*dof));
  650. #endif
  651. const T OOFP = 1.0/(4.0*const_pi<T>());
  652. for(int t=0;t<trg_cnt;t++){
  653. for(int i=0;i<dof;i++){
  654. T p=0;
  655. for(int s=0;s<src_cnt;s++){
  656. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  657. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  658. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  659. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  660. if (invR!=0) invR = 1.0/sqrt(invR);
  661. p += v_src[s*dof+i]*invR;
  662. }
  663. k_out[t*dof+i] += p*OOFP;
  664. }
  665. }
  666. }
  667. template <class T>
  668. void laplace_poten_(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  669. //void laplace_poten(T* r_src_, int src_cnt, T* v_src_, int dof, T* r_trg_, int trg_cnt, T* k_out_){
  670. // int dim=3; //Only supporting 3D
  671. // T* r_src=mem::aligned_malloc<T>(src_cnt*dim);
  672. // T* r_trg=mem::aligned_malloc<T>(trg_cnt*dim);
  673. // T* v_src=mem::aligned_malloc<T>(src_cnt );
  674. // T* k_out=mem::aligned_malloc<T>(trg_cnt );
  675. // mem::memcopy(r_src,r_src_,src_cnt*dim*sizeof(T));
  676. // mem::memcopy(r_trg,r_trg_,trg_cnt*dim*sizeof(T));
  677. // mem::memcopy(v_src,v_src_,src_cnt *sizeof(T));
  678. // mem::memcopy(k_out,k_out_,trg_cnt *sizeof(T));
  679. #define EVAL_BLKSZ 32
  680. #define MAX_DOF 100
  681. //Compute source to target interactions.
  682. const T OOFP = 1.0/(4.0*const_pi<T>());
  683. if(dof==1){
  684. for (int t_=0; t_<trg_cnt; t_+=EVAL_BLKSZ)
  685. for (int s_=0; s_<src_cnt; s_+=EVAL_BLKSZ){
  686. int src_blk=s_+EVAL_BLKSZ; src_blk=(src_blk>src_cnt?src_cnt:src_blk);
  687. int trg_blk=t_+EVAL_BLKSZ; trg_blk=(trg_blk>trg_cnt?trg_cnt:trg_blk);
  688. for(int t=t_;t<trg_blk;t++){
  689. T p=0;
  690. for(int s=s_;s<src_blk;s++){
  691. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  692. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  693. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  694. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  695. if (invR!=0) invR = 1.0/sqrt(invR);
  696. p += v_src[s]*invR;
  697. }
  698. k_out[t] += p*OOFP;
  699. }
  700. }
  701. }else if(dof==2){
  702. T p[MAX_DOF];
  703. for (int t_=0; t_<trg_cnt; t_+=EVAL_BLKSZ)
  704. for (int s_=0; s_<src_cnt; s_+=EVAL_BLKSZ){
  705. int src_blk=s_+EVAL_BLKSZ; src_blk=(src_blk>src_cnt?src_cnt:src_blk);
  706. int trg_blk=t_+EVAL_BLKSZ; trg_blk=(trg_blk>trg_cnt?trg_cnt:trg_blk);
  707. for(int t=t_;t<trg_blk;t++){
  708. p[0]=0; p[1]=0;
  709. for(int s=s_;s<src_blk;s++){
  710. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  711. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  712. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  713. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  714. if (invR!=0) invR = 1.0/sqrt(invR);
  715. p[0] += v_src[s*dof+0]*invR;
  716. p[1] += v_src[s*dof+1]*invR;
  717. }
  718. k_out[t*dof+0] += p[0]*OOFP;
  719. k_out[t*dof+1] += p[1]*OOFP;
  720. }
  721. }
  722. }else if(dof==3){
  723. T p[MAX_DOF];
  724. for (int t_=0; t_<trg_cnt; t_+=EVAL_BLKSZ)
  725. for (int s_=0; s_<src_cnt; s_+=EVAL_BLKSZ){
  726. int src_blk=s_+EVAL_BLKSZ; src_blk=(src_blk>src_cnt?src_cnt:src_blk);
  727. int trg_blk=t_+EVAL_BLKSZ; trg_blk=(trg_blk>trg_cnt?trg_cnt:trg_blk);
  728. for(int t=t_;t<trg_blk;t++){
  729. p[0]=0; p[1]=0; p[2]=0;
  730. for(int s=s_;s<src_blk;s++){
  731. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  732. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  733. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  734. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  735. if (invR!=0) invR = 1.0/sqrt(invR);
  736. p[0] += v_src[s*dof+0]*invR;
  737. p[1] += v_src[s*dof+1]*invR;
  738. p[2] += v_src[s*dof+2]*invR;
  739. }
  740. k_out[t*dof+0] += p[0]*OOFP;
  741. k_out[t*dof+1] += p[1]*OOFP;
  742. k_out[t*dof+2] += p[2]*OOFP;
  743. }
  744. }
  745. }else{
  746. T p[MAX_DOF];
  747. for (int t_=0; t_<trg_cnt; t_+=EVAL_BLKSZ)
  748. for (int s_=0; s_<src_cnt; s_+=EVAL_BLKSZ){
  749. int src_blk=s_+EVAL_BLKSZ; src_blk=(src_blk>src_cnt?src_cnt:src_blk);
  750. int trg_blk=t_+EVAL_BLKSZ; trg_blk=(trg_blk>trg_cnt?trg_cnt:trg_blk);
  751. for(int t=t_;t<trg_blk;t++){
  752. for(int i=0;i<dof;i++) p[i]=0;
  753. for(int s=s_;s<src_blk;s++){
  754. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  755. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  756. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  757. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  758. if (invR!=0) invR = 1.0/sqrt(invR);
  759. for(int i=0;i<dof;i++)
  760. p[i] += v_src[s*dof+i]*invR;
  761. }
  762. for(int i=0;i<dof;i++)
  763. k_out[t*dof+i] += p[i]*OOFP;
  764. }
  765. }
  766. }
  767. #ifndef __MIC__
  768. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(10+2*dof));
  769. #endif
  770. #undef MAX_DOF
  771. #undef EVAL_BLKSZ
  772. // for (int t=0; t<trg_cnt; t++)
  773. // k_out_[t] += k_out[t];
  774. // mem::aligned_free(r_src);
  775. // mem::aligned_free(r_trg);
  776. // mem::aligned_free(v_src);
  777. // mem::aligned_free(k_out);
  778. }
  779. // Laplace double layer potential.
  780. template <class T>
  781. void laplace_dbl_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  782. #ifndef __MIC__
  783. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(19*dof));
  784. #endif
  785. const T OOFP = -1.0/(4.0*const_pi<T>());
  786. for(int t=0;t<trg_cnt;t++){
  787. for(int i=0;i<dof;i++){
  788. T p=0;
  789. for(int s=0;s<src_cnt;s++){
  790. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  791. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  792. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  793. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  794. if (invR!=0) invR = 1.0/sqrt(invR);
  795. p = v_src[(s*dof+i)*4+3]*invR*invR*invR;
  796. k_out[t*dof+i] += p*OOFP*( dX_reg*v_src[(s*dof+i)*4+0] +
  797. dY_reg*v_src[(s*dof+i)*4+1] +
  798. dZ_reg*v_src[(s*dof+i)*4+2] );
  799. }
  800. }
  801. }
  802. }
  803. // Laplace grdient kernel.
  804. template <class T>
  805. void laplace_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  806. #ifndef __MIC__
  807. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(10+12*dof));
  808. #endif
  809. const T OOFP = -1.0/(4.0*const_pi<T>());
  810. if(dof==1){
  811. for(int t=0;t<trg_cnt;t++){
  812. T p=0;
  813. for(int s=0;s<src_cnt;s++){
  814. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  815. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  816. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  817. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  818. if (invR!=0) invR = 1.0/sqrt(invR);
  819. p = v_src[s]*invR*invR*invR;
  820. k_out[(t)*3+0] += p*OOFP*dX_reg;
  821. k_out[(t)*3+1] += p*OOFP*dY_reg;
  822. k_out[(t)*3+2] += p*OOFP*dZ_reg;
  823. }
  824. }
  825. }else if(dof==2){
  826. for(int t=0;t<trg_cnt;t++){
  827. T p=0;
  828. for(int s=0;s<src_cnt;s++){
  829. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  830. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  831. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  832. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  833. if (invR!=0) invR = 1.0/sqrt(invR);
  834. p = v_src[s*dof+0]*invR*invR*invR;
  835. k_out[(t*dof+0)*3+0] += p*OOFP*dX_reg;
  836. k_out[(t*dof+0)*3+1] += p*OOFP*dY_reg;
  837. k_out[(t*dof+0)*3+2] += p*OOFP*dZ_reg;
  838. p = v_src[s*dof+1]*invR*invR*invR;
  839. k_out[(t*dof+1)*3+0] += p*OOFP*dX_reg;
  840. k_out[(t*dof+1)*3+1] += p*OOFP*dY_reg;
  841. k_out[(t*dof+1)*3+2] += p*OOFP*dZ_reg;
  842. }
  843. }
  844. }else if(dof==3){
  845. for(int t=0;t<trg_cnt;t++){
  846. T p=0;
  847. for(int s=0;s<src_cnt;s++){
  848. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  849. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  850. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  851. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  852. if (invR!=0) invR = 1.0/sqrt(invR);
  853. p = v_src[s*dof+0]*invR*invR*invR;
  854. k_out[(t*dof+0)*3+0] += p*OOFP*dX_reg;
  855. k_out[(t*dof+0)*3+1] += p*OOFP*dY_reg;
  856. k_out[(t*dof+0)*3+2] += p*OOFP*dZ_reg;
  857. p = v_src[s*dof+1]*invR*invR*invR;
  858. k_out[(t*dof+1)*3+0] += p*OOFP*dX_reg;
  859. k_out[(t*dof+1)*3+1] += p*OOFP*dY_reg;
  860. k_out[(t*dof+1)*3+2] += p*OOFP*dZ_reg;
  861. p = v_src[s*dof+2]*invR*invR*invR;
  862. k_out[(t*dof+2)*3+0] += p*OOFP*dX_reg;
  863. k_out[(t*dof+2)*3+1] += p*OOFP*dY_reg;
  864. k_out[(t*dof+2)*3+2] += p*OOFP*dZ_reg;
  865. }
  866. }
  867. }else{
  868. for(int t=0;t<trg_cnt;t++){
  869. for(int i=0;i<dof;i++){
  870. T p=0;
  871. for(int s=0;s<src_cnt;s++){
  872. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  873. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  874. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  875. T invR = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  876. if (invR!=0) invR = 1.0/sqrt(invR);
  877. p = v_src[s*dof+i]*invR*invR*invR;
  878. k_out[(t*dof+i)*3+0] += p*OOFP*dX_reg;
  879. k_out[(t*dof+i)*3+1] += p*OOFP*dY_reg;
  880. k_out[(t*dof+i)*3+2] += p*OOFP*dZ_reg;
  881. }
  882. }
  883. }
  884. }
  885. }
  886. #ifndef __MIC__
  887. #ifdef USE_SSE
  888. namespace
  889. {
  890. #define IDEAL_ALIGNMENT 16
  891. #define SIMD_LEN (int)(IDEAL_ALIGNMENT / sizeof(double))
  892. #define DECL_SIMD_ALIGNED __declspec(align(IDEAL_ALIGNMENT))
  893. void laplaceSSE(
  894. const int ns,
  895. const int nt,
  896. const double *sx,
  897. const double *sy,
  898. const double *sz,
  899. const double *tx,
  900. const double *ty,
  901. const double *tz,
  902. const double *srcDen,
  903. double *trgVal)
  904. {
  905. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  906. abort();
  907. double OOFP = 1.0/(4.0*const_pi<double>());
  908. __m128d temp;
  909. double aux_arr[SIMD_LEN+1];
  910. double *tempval;
  911. // if aux_arr is misaligned
  912. if (size_t(aux_arr)%IDEAL_ALIGNMENT) tempval = aux_arr + 1;
  913. else tempval = aux_arr;
  914. if (size_t(tempval)%IDEAL_ALIGNMENT) abort();
  915. /*! One over four pi */
  916. __m128d oofp = _mm_set1_pd (OOFP);
  917. __m128d half = _mm_set1_pd (0.5);
  918. __m128d opf = _mm_set1_pd (1.5);
  919. __m128d zero = _mm_setzero_pd ();
  920. // loop over sources
  921. int i = 0;
  922. for (; i < nt; i++) {
  923. temp = _mm_setzero_pd();
  924. __m128d txi = _mm_load1_pd (&tx[i]);
  925. __m128d tyi = _mm_load1_pd (&ty[i]);
  926. __m128d tzi = _mm_load1_pd (&tz[i]);
  927. int j = 0;
  928. // Load and calculate in groups of SIMD_LEN
  929. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  930. __m128d sxj = _mm_load_pd (&sx[j]);
  931. __m128d syj = _mm_load_pd (&sy[j]);
  932. __m128d szj = _mm_load_pd (&sz[j]);
  933. __m128d sden = _mm_set_pd (srcDen[j+1], srcDen[j]);
  934. __m128d dX, dY, dZ;
  935. __m128d dR2;
  936. __m128d S;
  937. dX = _mm_sub_pd(txi , sxj);
  938. dY = _mm_sub_pd(tyi , syj);
  939. dZ = _mm_sub_pd(tzi , szj);
  940. sxj = _mm_mul_pd(dX, dX);
  941. syj = _mm_mul_pd(dY, dY);
  942. szj = _mm_mul_pd(dZ, dZ);
  943. dR2 = _mm_add_pd(sxj, syj);
  944. dR2 = _mm_add_pd(szj, dR2);
  945. __m128d reqzero = _mm_cmpeq_pd (dR2, zero);
  946. __m128d xhalf = _mm_mul_pd (half, dR2);
  947. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  948. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  949. __m128d S_d = _mm_cvtps_pd(S_s);
  950. // To handle the condition when src and trg coincide
  951. S_d = _mm_andnot_pd (reqzero, S_d);
  952. S = _mm_mul_pd (S_d, S_d);
  953. S = _mm_mul_pd (S, xhalf);
  954. S = _mm_sub_pd (opf, S);
  955. S = _mm_mul_pd (S, S_d);
  956. sden = _mm_mul_pd (sden, S);
  957. temp = _mm_add_pd (sden, temp);
  958. }
  959. temp = _mm_mul_pd (temp, oofp);
  960. _mm_store_pd(tempval, temp);
  961. for (int k = 0; k < SIMD_LEN; k++) {
  962. trgVal[i] += tempval[k];
  963. }
  964. for (; j < ns; j++) {
  965. double x = tx[i] - sx[j];
  966. double y = ty[i] - sy[j];
  967. double z = tz[i] - sz[j];
  968. double r2 = x*x + y*y + z*z;
  969. double r = sqrt(r2);
  970. double invdr;
  971. if (r == 0)
  972. invdr = 0;
  973. else
  974. invdr = 1/r;
  975. double den = srcDen[j];
  976. trgVal[i] += den*invdr*OOFP;
  977. }
  978. }
  979. return;
  980. }
  981. void laplaceDblSSE(
  982. const int ns,
  983. const int nt,
  984. const double *sx,
  985. const double *sy,
  986. const double *sz,
  987. const double *tx,
  988. const double *ty,
  989. const double *tz,
  990. const double *srcDen,
  991. double *trgVal)
  992. {
  993. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  994. abort();
  995. double OOFP = 1.0/(4.0*const_pi<double>());
  996. __m128d temp;
  997. double aux_arr[SIMD_LEN+1];
  998. double *tempval;
  999. // if aux_arr is misaligned
  1000. if (size_t(aux_arr)%IDEAL_ALIGNMENT) tempval = aux_arr + 1;
  1001. else tempval = aux_arr;
  1002. if (size_t(tempval)%IDEAL_ALIGNMENT) abort();
  1003. /*! One over four pi */
  1004. __m128d oofp = _mm_set1_pd (OOFP);
  1005. __m128d half = _mm_set1_pd (0.5);
  1006. __m128d opf = _mm_set1_pd (1.5);
  1007. __m128d zero = _mm_setzero_pd ();
  1008. // loop over sources
  1009. int i = 0;
  1010. for (; i < nt; i++) {
  1011. temp = _mm_setzero_pd();
  1012. __m128d txi = _mm_load1_pd (&tx[i]);
  1013. __m128d tyi = _mm_load1_pd (&ty[i]);
  1014. __m128d tzi = _mm_load1_pd (&tz[i]);
  1015. int j = 0;
  1016. // Load and calculate in groups of SIMD_LEN
  1017. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1018. __m128d sxj = _mm_load_pd (&sx[j]);
  1019. __m128d syj = _mm_load_pd (&sy[j]);
  1020. __m128d szj = _mm_load_pd (&sz[j]);
  1021. __m128d snormx = _mm_set_pd (srcDen[(j+1)*4+0], srcDen[j*4+0]);
  1022. __m128d snormy = _mm_set_pd (srcDen[(j+1)*4+1], srcDen[j*4+1]);
  1023. __m128d snormz = _mm_set_pd (srcDen[(j+1)*4+2], srcDen[j*4+2]);
  1024. __m128d sden = _mm_set_pd (srcDen[(j+1)*4+3], srcDen[j*4+3]);
  1025. __m128d dX, dY, dZ;
  1026. __m128d dR2;
  1027. __m128d S;
  1028. __m128d S2;
  1029. __m128d S3;
  1030. dX = _mm_sub_pd(txi , sxj);
  1031. dY = _mm_sub_pd(tyi , syj);
  1032. dZ = _mm_sub_pd(tzi , szj);
  1033. sxj = _mm_mul_pd(dX, dX);
  1034. syj = _mm_mul_pd(dY, dY);
  1035. szj = _mm_mul_pd(dZ, dZ);
  1036. dR2 = _mm_add_pd(sxj, syj);
  1037. dR2 = _mm_add_pd(szj, dR2);
  1038. __m128d reqzero = _mm_cmpeq_pd (dR2, zero);
  1039. __m128d xhalf = _mm_mul_pd (half, dR2);
  1040. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1041. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1042. __m128d S_d = _mm_cvtps_pd(S_s);
  1043. // To handle the condition when src and trg coincide
  1044. S_d = _mm_andnot_pd (reqzero, S_d);
  1045. S = _mm_mul_pd (S_d, S_d);
  1046. S = _mm_mul_pd (S, xhalf);
  1047. S = _mm_sub_pd (opf, S);
  1048. S = _mm_mul_pd (S, S_d);
  1049. S2 = _mm_mul_pd (S, S);
  1050. S3 = _mm_mul_pd (S2, S);
  1051. __m128d S3_sden=_mm_mul_pd(S3, sden);
  1052. __m128d dot_sum = _mm_add_pd(_mm_mul_pd(snormx,dX),_mm_mul_pd(snormy,dY));
  1053. dot_sum = _mm_add_pd(dot_sum,_mm_mul_pd(snormz,dZ));
  1054. temp = _mm_add_pd(_mm_mul_pd(S3_sden,dot_sum),temp);
  1055. }
  1056. temp = _mm_mul_pd (temp, oofp);
  1057. _mm_store_pd(tempval, temp);
  1058. for (int k = 0; k < SIMD_LEN; k++) {
  1059. trgVal[i] += tempval[k];
  1060. }
  1061. for (; j < ns; j++) {
  1062. double x = tx[i] - sx[j];
  1063. double y = ty[i] - sy[j];
  1064. double z = tz[i] - sz[j];
  1065. double r2 = x*x + y*y + z*z;
  1066. double r = sqrt(r2);
  1067. double invdr;
  1068. if (r == 0)
  1069. invdr = 0;
  1070. else
  1071. invdr = 1/r;
  1072. double invdr2=invdr*invdr;
  1073. double invdr3=invdr2*invdr;
  1074. double dot_sum = x*srcDen[j*4+0] + y*srcDen[j*4+1] + z*srcDen[j*4+2];
  1075. trgVal[i] += OOFP*invdr3*x*srcDen[j*4+3]*dot_sum;
  1076. }
  1077. }
  1078. return;
  1079. }
  1080. void laplaceGradSSE(
  1081. const int ns,
  1082. const int nt,
  1083. const double *sx,
  1084. const double *sy,
  1085. const double *sz,
  1086. const double *tx,
  1087. const double *ty,
  1088. const double *tz,
  1089. const double *srcDen,
  1090. double *trgVal)
  1091. {
  1092. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1093. abort();
  1094. double OOFP = 1.0/(4.0*const_pi<double>());
  1095. __m128d tempx; __m128d tempy; __m128d tempz;
  1096. double aux_arr[3*SIMD_LEN+1];
  1097. double *tempvalx, *tempvaly, *tempvalz;
  1098. // if aux_arr is misaligned
  1099. if (size_t(aux_arr)%IDEAL_ALIGNMENT) tempvalx = aux_arr + 1;
  1100. else tempvalx = aux_arr;
  1101. if (size_t(tempvalx)%IDEAL_ALIGNMENT) abort();
  1102. tempvaly=tempvalx+SIMD_LEN;
  1103. tempvalz=tempvaly+SIMD_LEN;
  1104. /*! One over four pi */
  1105. __m128d oofp = _mm_set1_pd (OOFP);
  1106. __m128d half = _mm_set1_pd (0.5);
  1107. __m128d opf = _mm_set1_pd (1.5);
  1108. __m128d zero = _mm_setzero_pd ();
  1109. // loop over sources
  1110. int i = 0;
  1111. for (; i < nt; i++) {
  1112. tempx = _mm_setzero_pd();
  1113. tempy = _mm_setzero_pd();
  1114. tempz = _mm_setzero_pd();
  1115. __m128d txi = _mm_load1_pd (&tx[i]);
  1116. __m128d tyi = _mm_load1_pd (&ty[i]);
  1117. __m128d tzi = _mm_load1_pd (&tz[i]);
  1118. int j = 0;
  1119. // Load and calculate in groups of SIMD_LEN
  1120. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1121. __m128d sxj = _mm_load_pd (&sx[j]);
  1122. __m128d syj = _mm_load_pd (&sy[j]);
  1123. __m128d szj = _mm_load_pd (&sz[j]);
  1124. __m128d sden = _mm_set_pd (srcDen[j+1], srcDen[j]);
  1125. __m128d dX, dY, dZ;
  1126. __m128d dR2;
  1127. __m128d S;
  1128. __m128d S2;
  1129. __m128d S3;
  1130. dX = _mm_sub_pd(txi , sxj);
  1131. dY = _mm_sub_pd(tyi , syj);
  1132. dZ = _mm_sub_pd(tzi , szj);
  1133. sxj = _mm_mul_pd(dX, dX);
  1134. syj = _mm_mul_pd(dY, dY);
  1135. szj = _mm_mul_pd(dZ, dZ);
  1136. dR2 = _mm_add_pd(sxj, syj);
  1137. dR2 = _mm_add_pd(szj, dR2);
  1138. __m128d reqzero = _mm_cmpeq_pd (dR2, zero);
  1139. __m128d xhalf = _mm_mul_pd (half, dR2);
  1140. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1141. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1142. __m128d S_d = _mm_cvtps_pd(S_s);
  1143. // To handle the condition when src and trg coincide
  1144. S_d = _mm_andnot_pd (reqzero, S_d);
  1145. S = _mm_mul_pd (S_d, S_d);
  1146. S = _mm_mul_pd (S, xhalf);
  1147. S = _mm_sub_pd (opf, S);
  1148. S = _mm_mul_pd (S, S_d);
  1149. S2 = _mm_mul_pd (S, S);
  1150. S3 = _mm_mul_pd (S2, S);
  1151. __m128d S3_sden=_mm_mul_pd(S3, sden);
  1152. tempx = _mm_add_pd(_mm_mul_pd(S3_sden,dX),tempx);
  1153. tempy = _mm_add_pd(_mm_mul_pd(S3_sden,dY),tempy);
  1154. tempz = _mm_add_pd(_mm_mul_pd(S3_sden,dZ),tempz);
  1155. }
  1156. tempx = _mm_mul_pd (tempx, oofp);
  1157. tempy = _mm_mul_pd (tempy, oofp);
  1158. tempz = _mm_mul_pd (tempz, oofp);
  1159. _mm_store_pd(tempvalx, tempx);
  1160. _mm_store_pd(tempvaly, tempy);
  1161. _mm_store_pd(tempvalz, tempz);
  1162. for (int k = 0; k < SIMD_LEN; k++) {
  1163. trgVal[i*3 ] += tempvalx[k];
  1164. trgVal[i*3+1] += tempvaly[k];
  1165. trgVal[i*3+2] += tempvalz[k];
  1166. }
  1167. for (; j < ns; j++) {
  1168. double x = tx[i] - sx[j];
  1169. double y = ty[i] - sy[j];
  1170. double z = tz[i] - sz[j];
  1171. double r2 = x*x + y*y + z*z;
  1172. double r = sqrt(r2);
  1173. double invdr;
  1174. if (r == 0)
  1175. invdr = 0;
  1176. else
  1177. invdr = 1/r;
  1178. double invdr2=invdr*invdr;
  1179. double invdr3=invdr2*invdr;
  1180. trgVal[i*3 ] += OOFP*invdr3*x*srcDen[j];
  1181. trgVal[i*3+1] += OOFP*invdr3*y*srcDen[j];
  1182. trgVal[i*3+2] += OOFP*invdr3*z*srcDen[j];
  1183. }
  1184. }
  1185. return;
  1186. }
  1187. #undef SIMD_LEN
  1188. #define X(s,k) (s)[(k)*COORD_DIM]
  1189. #define Y(s,k) (s)[(k)*COORD_DIM+1]
  1190. #define Z(s,k) (s)[(k)*COORD_DIM+2]
  1191. void laplaceSSEShuffle(const int ns, const int nt, float const src[], float const trg[], float const den[], float pot[], mem::MemoryManager* mem_mgr=NULL)
  1192. {
  1193. // TODO
  1194. }
  1195. void laplaceSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  1196. {
  1197. double* buff=NULL;
  1198. buff=mem::aligned_new<double>((ns+1+nt)*3,mem_mgr);
  1199. double* buff_=buff;
  1200. pvfmm::Vector<double> xs(ns+1,buff_,false); buff_+=ns+1;
  1201. pvfmm::Vector<double> ys(ns+1,buff_,false); buff_+=ns+1;
  1202. pvfmm::Vector<double> zs(ns+1,buff_,false); buff_+=ns+1;
  1203. pvfmm::Vector<double> xt(nt ,buff_,false); buff_+=nt ;
  1204. pvfmm::Vector<double> yt(nt ,buff_,false); buff_+=nt ;
  1205. pvfmm::Vector<double> zt(nt ,buff_,false); buff_+=nt ;
  1206. //std::vector<double> xs(ns+1);
  1207. //std::vector<double> ys(ns+1);
  1208. //std::vector<double> zs(ns+1);
  1209. //std::vector<double> xt(nt );
  1210. //std::vector<double> yt(nt );
  1211. //std::vector<double> zt(nt );
  1212. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1213. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  1214. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1215. //1. reshuffle memory
  1216. for (int k =0;k<ns;k++){
  1217. xs[k+x_shift]=X(src,k);
  1218. ys[k+y_shift]=Y(src,k);
  1219. zs[k+z_shift]=Z(src,k);
  1220. }
  1221. for (int k=0;k<nt;k++){
  1222. xt[k]=X(trg,k);
  1223. yt[k]=Y(trg,k);
  1224. zt[k]=Z(trg,k);
  1225. }
  1226. //2. perform caclulation
  1227. laplaceSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  1228. mem::aligned_delete<double>(buff,mem_mgr);
  1229. return;
  1230. }
  1231. void laplaceDblSSEShuffle(const int ns, const int nt, float const src[], float const trg[], float const den[], float pot[], mem::MemoryManager* mem_mgr=NULL)
  1232. {
  1233. // TODO
  1234. }
  1235. void laplaceDblSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  1236. {
  1237. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  1238. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  1239. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  1240. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1241. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  1242. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1243. //1. reshuffle memory
  1244. for (int k =0;k<ns;k++){
  1245. xs[k+x_shift]=X(src,k);
  1246. ys[k+y_shift]=Y(src,k);
  1247. zs[k+z_shift]=Z(src,k);
  1248. }
  1249. for (int k=0;k<nt;k++){
  1250. xt[k]=X(trg,k);
  1251. yt[k]=Y(trg,k);
  1252. zt[k]=Z(trg,k);
  1253. }
  1254. //2. perform caclulation
  1255. laplaceDblSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  1256. return;
  1257. }
  1258. void laplaceGradSSEShuffle(const int ns, const int nt, float const src[], float const trg[], float const den[], float pot[], mem::MemoryManager* mem_mgr=NULL)
  1259. {
  1260. // TODO
  1261. }
  1262. void laplaceGradSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  1263. {
  1264. int tid=omp_get_thread_num();
  1265. static std::vector<std::vector<double> > xs_(100); static std::vector<std::vector<double> > xt_(100);
  1266. static std::vector<std::vector<double> > ys_(100); static std::vector<std::vector<double> > yt_(100);
  1267. static std::vector<std::vector<double> > zs_(100); static std::vector<std::vector<double> > zt_(100);
  1268. std::vector<double>& xs=xs_[tid]; std::vector<double>& xt=xt_[tid];
  1269. std::vector<double>& ys=ys_[tid]; std::vector<double>& yt=yt_[tid];
  1270. std::vector<double>& zs=zs_[tid]; std::vector<double>& zt=zt_[tid];
  1271. xs.resize(ns+1); xt.resize(nt);
  1272. ys.resize(ns+1); yt.resize(nt);
  1273. zs.resize(ns+1); zt.resize(nt);
  1274. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1275. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  1276. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  1277. //1. reshuffle memory
  1278. for (int k =0;k<ns;k++){
  1279. xs[k+x_shift]=X(src,k);
  1280. ys[k+y_shift]=Y(src,k);
  1281. zs[k+z_shift]=Z(src,k);
  1282. }
  1283. for (int k=0;k<nt;k++){
  1284. xt[k]=X(trg,k);
  1285. yt[k]=Y(trg,k);
  1286. zt[k]=Z(trg,k);
  1287. }
  1288. //2. perform caclulation
  1289. laplaceGradSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  1290. return;
  1291. }
  1292. #undef X
  1293. #undef Y
  1294. #undef Z
  1295. #undef IDEAL_ALIGNMENT
  1296. #undef DECL_SIMD_ALIGNED
  1297. }
  1298. template <>
  1299. void laplace_poten<double>(double* r_src, int src_cnt, double* v_src, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  1300. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(12*dof));
  1301. if(dof==1){
  1302. laplaceSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src, k_out, mem_mgr);
  1303. return;
  1304. }
  1305. }
  1306. template <>
  1307. void laplace_dbl_poten<double>(double* r_src, int src_cnt, double* v_src, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  1308. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(19*dof));
  1309. if(dof==1){
  1310. laplaceDblSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src, k_out, mem_mgr);
  1311. return;
  1312. }
  1313. }
  1314. template <>
  1315. void laplace_grad<double>(double* r_src, int src_cnt, double* v_src, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  1316. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(10+12*dof));
  1317. if(dof==1){
  1318. laplaceGradSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src, k_out, mem_mgr);
  1319. return;
  1320. }
  1321. }
  1322. #endif
  1323. #endif
  1324. ////////////////////////////////////////////////////////////////////////////////
  1325. //////// STOKES KERNEL ////////
  1326. ////////////////////////////////////////////////////////////////////////////////
  1327. /**
  1328. * \brief Green's function for the Stokes's equation. Kernel tensor
  1329. * dimension = 3x3.
  1330. */
  1331. template <class T>
  1332. void stokes_vel(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1333. #ifndef __MIC__
  1334. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(28*dof));
  1335. #endif
  1336. const T mu=1.0;
  1337. const T OOEPMU = 1.0/(8.0*const_pi<T>()*mu);
  1338. for(int t=0;t<trg_cnt;t++){
  1339. for(int i=0;i<dof;i++){
  1340. T p[3]={0,0,0};
  1341. for(int s=0;s<src_cnt;s++){
  1342. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1343. r_trg[3*t+1]-r_src[3*s+1],
  1344. r_trg[3*t+2]-r_src[3*s+2]};
  1345. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1346. if (R!=0){
  1347. T invR2=1.0/R;
  1348. T invR=sqrt(invR2);
  1349. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1350. v_src_[(s*dof+i)*3+1],
  1351. v_src_[(s*dof+i)*3+2]};
  1352. T inner_prod=(v_src[0]*dR[0] +
  1353. v_src[1]*dR[1] +
  1354. v_src[2]*dR[2])* invR2;
  1355. p[0] += (v_src[0] + dR[0]*inner_prod)*invR;
  1356. p[1] += (v_src[1] + dR[1]*inner_prod)*invR;
  1357. p[2] += (v_src[2] + dR[2]*inner_prod)*invR;
  1358. }
  1359. }
  1360. k_out[(t*dof+i)*3+0] += p[0]*OOEPMU;
  1361. k_out[(t*dof+i)*3+1] += p[1]*OOEPMU;
  1362. k_out[(t*dof+i)*3+2] += p[2]*OOEPMU;
  1363. }
  1364. }
  1365. }
  1366. template <class T>
  1367. void stokes_sym_dip(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1368. #ifndef __MIC__
  1369. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(47*dof));
  1370. #endif
  1371. const T mu=1.0;
  1372. const T OOEPMU = -1.0/(8.0*const_pi<T>()*mu);
  1373. for(int t=0;t<trg_cnt;t++){
  1374. for(int i=0;i<dof;i++){
  1375. T p[3]={0,0,0};
  1376. for(int s=0;s<src_cnt;s++){
  1377. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1378. r_trg[3*t+1]-r_src[3*s+1],
  1379. r_trg[3*t+2]-r_src[3*s+2]};
  1380. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1381. if (R!=0){
  1382. T invR2=1.0/R;
  1383. T invR=sqrt(invR2);
  1384. T invR3=invR2*invR;
  1385. T* f=&v_src[(s*dof+i)*6+0];
  1386. T* n=&v_src[(s*dof+i)*6+3];
  1387. T r_dot_n=(n[0]*dR[0]+n[1]*dR[1]+n[2]*dR[2]);
  1388. T r_dot_f=(f[0]*dR[0]+f[1]*dR[1]+f[2]*dR[2]);
  1389. T n_dot_f=(f[0]* n[0]+f[1]* n[1]+f[2]* n[2]);
  1390. p[0] += dR[0]*(n_dot_f - 3*r_dot_n*r_dot_f*invR2)*invR3;
  1391. p[1] += dR[1]*(n_dot_f - 3*r_dot_n*r_dot_f*invR2)*invR3;
  1392. p[2] += dR[2]*(n_dot_f - 3*r_dot_n*r_dot_f*invR2)*invR3;
  1393. }
  1394. }
  1395. k_out[(t*dof+i)*3+0] += p[0]*OOEPMU;
  1396. k_out[(t*dof+i)*3+1] += p[1]*OOEPMU;
  1397. k_out[(t*dof+i)*3+2] += p[2]*OOEPMU;
  1398. }
  1399. }
  1400. }
  1401. template <class T>
  1402. void stokes_press(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1403. #ifndef __MIC__
  1404. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(17*dof));
  1405. #endif
  1406. const T OOFP = 1.0/(4.0*const_pi<T>());
  1407. for(int t=0;t<trg_cnt;t++){
  1408. for(int i=0;i<dof;i++){
  1409. T p=0;
  1410. for(int s=0;s<src_cnt;s++){
  1411. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1412. r_trg[3*t+1]-r_src[3*s+1],
  1413. r_trg[3*t+2]-r_src[3*s+2]};
  1414. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1415. if (R!=0){
  1416. T invR2=1.0/R;
  1417. T invR=sqrt(invR2);
  1418. T invR3=invR2*invR;
  1419. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1420. v_src_[(s*dof+i)*3+1],
  1421. v_src_[(s*dof+i)*3+2]};
  1422. T inner_prod=(v_src[0]*dR[0] +
  1423. v_src[1]*dR[1] +
  1424. v_src[2]*dR[2])* invR3;
  1425. p += inner_prod;
  1426. }
  1427. }
  1428. k_out[t*dof+i] += p*OOFP;
  1429. }
  1430. }
  1431. }
  1432. template <class T>
  1433. void stokes_stress(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1434. #ifndef __MIC__
  1435. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(45*dof));
  1436. #endif
  1437. const T TOFP = -3.0/(4.0*const_pi<T>());
  1438. for(int t=0;t<trg_cnt;t++){
  1439. for(int i=0;i<dof;i++){
  1440. T p[9]={0,0,0,
  1441. 0,0,0,
  1442. 0,0,0};
  1443. for(int s=0;s<src_cnt;s++){
  1444. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1445. r_trg[3*t+1]-r_src[3*s+1],
  1446. r_trg[3*t+2]-r_src[3*s+2]};
  1447. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1448. if (R!=0){
  1449. T invR2=1.0/R;
  1450. T invR=sqrt(invR2);
  1451. T invR3=invR2*invR;
  1452. T invR5=invR3*invR2;
  1453. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1454. v_src_[(s*dof+i)*3+1],
  1455. v_src_[(s*dof+i)*3+2]};
  1456. T inner_prod=(v_src[0]*dR[0] +
  1457. v_src[1]*dR[1] +
  1458. v_src[2]*dR[2])* invR5;
  1459. p[0] += inner_prod*dR[0]*dR[0]; p[1] += inner_prod*dR[1]*dR[0]; p[2] += inner_prod*dR[2]*dR[0];
  1460. p[3] += inner_prod*dR[0]*dR[1]; p[4] += inner_prod*dR[1]*dR[1]; p[5] += inner_prod*dR[2]*dR[1];
  1461. p[6] += inner_prod*dR[0]*dR[2]; p[7] += inner_prod*dR[1]*dR[2]; p[8] += inner_prod*dR[2]*dR[2];
  1462. }
  1463. }
  1464. k_out[(t*dof+i)*9+0] += p[0]*TOFP;
  1465. k_out[(t*dof+i)*9+1] += p[1]*TOFP;
  1466. k_out[(t*dof+i)*9+2] += p[2]*TOFP;
  1467. k_out[(t*dof+i)*9+3] += p[3]*TOFP;
  1468. k_out[(t*dof+i)*9+4] += p[4]*TOFP;
  1469. k_out[(t*dof+i)*9+5] += p[5]*TOFP;
  1470. k_out[(t*dof+i)*9+6] += p[6]*TOFP;
  1471. k_out[(t*dof+i)*9+7] += p[7]*TOFP;
  1472. k_out[(t*dof+i)*9+8] += p[8]*TOFP;
  1473. }
  1474. }
  1475. }
  1476. template <class T>
  1477. void stokes_grad(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1478. #ifndef __MIC__
  1479. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(89*dof));
  1480. #endif
  1481. const T mu=1.0;
  1482. const T OOEPMU = 1.0/(8.0*const_pi<T>()*mu);
  1483. for(int t=0;t<trg_cnt;t++){
  1484. for(int i=0;i<dof;i++){
  1485. T p[9]={0,0,0,
  1486. 0,0,0,
  1487. 0,0,0};
  1488. for(int s=0;s<src_cnt;s++){
  1489. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1490. r_trg[3*t+1]-r_src[3*s+1],
  1491. r_trg[3*t+2]-r_src[3*s+2]};
  1492. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1493. if (R!=0){
  1494. T invR2=1.0/R;
  1495. T invR=sqrt(invR2);
  1496. T invR3=invR2*invR;
  1497. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1498. v_src_[(s*dof+i)*3+1],
  1499. v_src_[(s*dof+i)*3+2]};
  1500. T inner_prod=(v_src[0]*dR[0] +
  1501. v_src[1]*dR[1] +
  1502. v_src[2]*dR[2]);
  1503. p[0] += ( inner_prod*(1-3*dR[0]*dR[0]*invR2))*invR3; //6
  1504. p[1] += (dR[1]*v_src[0]-v_src[1]*dR[0]+inner_prod*( -3*dR[1]*dR[0]*invR2))*invR3; //9
  1505. p[2] += (dR[2]*v_src[0]-v_src[2]*dR[0]+inner_prod*( -3*dR[2]*dR[0]*invR2))*invR3;
  1506. p[3] += (dR[0]*v_src[1]-v_src[0]*dR[1]+inner_prod*( -3*dR[0]*dR[1]*invR2))*invR3;
  1507. p[4] += ( inner_prod*(1-3*dR[1]*dR[1]*invR2))*invR3;
  1508. p[5] += (dR[2]*v_src[1]-v_src[2]*dR[1]+inner_prod*( -3*dR[2]*dR[1]*invR2))*invR3;
  1509. p[6] += (dR[0]*v_src[2]-v_src[0]*dR[2]+inner_prod*( -3*dR[0]*dR[2]*invR2))*invR3;
  1510. p[7] += (dR[1]*v_src[2]-v_src[1]*dR[2]+inner_prod*( -3*dR[1]*dR[2]*invR2))*invR3;
  1511. p[8] += ( inner_prod*(1-3*dR[2]*dR[2]*invR2))*invR3;
  1512. }
  1513. }
  1514. k_out[(t*dof+i)*9+0] += p[0]*OOEPMU;
  1515. k_out[(t*dof+i)*9+1] += p[1]*OOEPMU;
  1516. k_out[(t*dof+i)*9+2] += p[2]*OOEPMU;
  1517. k_out[(t*dof+i)*9+3] += p[3]*OOEPMU;
  1518. k_out[(t*dof+i)*9+4] += p[4]*OOEPMU;
  1519. k_out[(t*dof+i)*9+5] += p[5]*OOEPMU;
  1520. k_out[(t*dof+i)*9+6] += p[6]*OOEPMU;
  1521. k_out[(t*dof+i)*9+7] += p[7]*OOEPMU;
  1522. k_out[(t*dof+i)*9+8] += p[8]*OOEPMU;
  1523. }
  1524. }
  1525. }
  1526. #ifndef __MIC__
  1527. #ifdef USE_SSE
  1528. namespace
  1529. {
  1530. #define IDEAL_ALIGNMENT 16
  1531. #define SIMD_LEN (int)(IDEAL_ALIGNMENT / sizeof(double))
  1532. #define DECL_SIMD_ALIGNED __declspec(align(IDEAL_ALIGNMENT))
  1533. void stokesDirectVecSSE(
  1534. const int ns,
  1535. const int nt,
  1536. const double *sx,
  1537. const double *sy,
  1538. const double *sz,
  1539. const double *tx,
  1540. const double *ty,
  1541. const double *tz,
  1542. const double *srcDen,
  1543. double *trgVal,
  1544. const double cof )
  1545. {
  1546. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1547. abort();
  1548. double mu = cof;
  1549. double OOEP = 1.0/(8.0*const_pi<double>());
  1550. __m128d tempx;
  1551. __m128d tempy;
  1552. __m128d tempz;
  1553. double oomeu = 1/mu;
  1554. double aux_arr[3*SIMD_LEN+1];
  1555. double *tempvalx;
  1556. double *tempvaly;
  1557. double *tempvalz;
  1558. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1559. {
  1560. tempvalx = aux_arr + 1;
  1561. if (size_t(tempvalx)%IDEAL_ALIGNMENT)
  1562. abort();
  1563. }
  1564. else
  1565. tempvalx = aux_arr;
  1566. tempvaly=tempvalx+SIMD_LEN;
  1567. tempvalz=tempvaly+SIMD_LEN;
  1568. /*! One over eight pi */
  1569. __m128d ooep = _mm_set1_pd (OOEP);
  1570. __m128d half = _mm_set1_pd (0.5);
  1571. __m128d opf = _mm_set1_pd (1.5);
  1572. __m128d zero = _mm_setzero_pd ();
  1573. __m128d oomu = _mm_set1_pd (1/mu);
  1574. // loop over sources
  1575. int i = 0;
  1576. for (; i < nt; i++) {
  1577. tempx = _mm_setzero_pd();
  1578. tempy = _mm_setzero_pd();
  1579. tempz = _mm_setzero_pd();
  1580. __m128d txi = _mm_load1_pd (&tx[i]);
  1581. __m128d tyi = _mm_load1_pd (&ty[i]);
  1582. __m128d tzi = _mm_load1_pd (&tz[i]);
  1583. int j = 0;
  1584. // Load and calculate in groups of SIMD_LEN
  1585. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1586. __m128d sxj = _mm_load_pd (&sx[j]);
  1587. __m128d syj = _mm_load_pd (&sy[j]);
  1588. __m128d szj = _mm_load_pd (&sz[j]);
  1589. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1590. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1591. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1592. __m128d dX, dY, dZ;
  1593. __m128d dR2;
  1594. __m128d S;
  1595. dX = _mm_sub_pd(txi , sxj);
  1596. dY = _mm_sub_pd(tyi , syj);
  1597. dZ = _mm_sub_pd(tzi , szj);
  1598. sxj = _mm_mul_pd(dX, dX);
  1599. syj = _mm_mul_pd(dY, dY);
  1600. szj = _mm_mul_pd(dZ, dZ);
  1601. dR2 = _mm_add_pd(sxj, syj);
  1602. dR2 = _mm_add_pd(szj, dR2);
  1603. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  1604. __m128d xhalf = _mm_mul_pd (half, dR2);
  1605. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1606. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1607. __m128d S_d = _mm_cvtps_pd(S_s);
  1608. // To handle the condition when src and trg coincide
  1609. S_d = _mm_andnot_pd (temp, S_d);
  1610. S = _mm_mul_pd (S_d, S_d);
  1611. S = _mm_mul_pd (S, xhalf);
  1612. S = _mm_sub_pd (opf, S);
  1613. S = _mm_mul_pd (S, S_d);
  1614. __m128d dotx = _mm_mul_pd (dX, sdenx);
  1615. __m128d doty = _mm_mul_pd (dY, sdeny);
  1616. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  1617. __m128d dot_sum = _mm_add_pd (dotx, doty);
  1618. dot_sum = _mm_add_pd (dot_sum, dotz);
  1619. dot_sum = _mm_mul_pd (dot_sum, S);
  1620. dot_sum = _mm_mul_pd (dot_sum, S);
  1621. dotx = _mm_mul_pd (dot_sum, dX);
  1622. doty = _mm_mul_pd (dot_sum, dY);
  1623. dotz = _mm_mul_pd (dot_sum, dZ);
  1624. sdenx = _mm_add_pd (sdenx, dotx);
  1625. sdeny = _mm_add_pd (sdeny, doty);
  1626. sdenz = _mm_add_pd (sdenz, dotz);
  1627. sdenx = _mm_mul_pd (sdenx, S);
  1628. sdeny = _mm_mul_pd (sdeny, S);
  1629. sdenz = _mm_mul_pd (sdenz, S);
  1630. tempx = _mm_add_pd (sdenx, tempx);
  1631. tempy = _mm_add_pd (sdeny, tempy);
  1632. tempz = _mm_add_pd (sdenz, tempz);
  1633. }
  1634. tempx = _mm_mul_pd (tempx, ooep);
  1635. tempy = _mm_mul_pd (tempy, ooep);
  1636. tempz = _mm_mul_pd (tempz, ooep);
  1637. tempx = _mm_mul_pd (tempx, oomu);
  1638. tempy = _mm_mul_pd (tempy, oomu);
  1639. tempz = _mm_mul_pd (tempz, oomu);
  1640. _mm_store_pd(tempvalx, tempx);
  1641. _mm_store_pd(tempvaly, tempy);
  1642. _mm_store_pd(tempvalz, tempz);
  1643. for (int k = 0; k < SIMD_LEN; k++) {
  1644. trgVal[i*3] += tempvalx[k];
  1645. trgVal[i*3+1] += tempvaly[k];
  1646. trgVal[i*3+2] += tempvalz[k];
  1647. }
  1648. for (; j < ns; j++) {
  1649. double x = tx[i] - sx[j];
  1650. double y = ty[i] - sy[j];
  1651. double z = tz[i] - sz[j];
  1652. double r2 = x*x + y*y + z*z;
  1653. double r = sqrt(r2);
  1654. double invdr;
  1655. if (r == 0)
  1656. invdr = 0;
  1657. else
  1658. invdr = 1/r;
  1659. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]) * invdr * invdr;
  1660. double denx = srcDen[j*3] + dot*x;
  1661. double deny = srcDen[j*3+1] + dot*y;
  1662. double denz = srcDen[j*3+2] + dot*z;
  1663. trgVal[i*3] += denx*invdr*OOEP*oomeu;
  1664. trgVal[i*3+1] += deny*invdr*OOEP*oomeu;
  1665. trgVal[i*3+2] += denz*invdr*OOEP*oomeu;
  1666. }
  1667. }
  1668. return;
  1669. }
  1670. void stokesPressureSSE(
  1671. const int ns,
  1672. const int nt,
  1673. const double *sx,
  1674. const double *sy,
  1675. const double *sz,
  1676. const double *tx,
  1677. const double *ty,
  1678. const double *tz,
  1679. const double *srcDen,
  1680. double *trgVal)
  1681. {
  1682. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1683. abort();
  1684. double OOFP = 1.0/(4.0*const_pi<double>());
  1685. __m128d temp_press;
  1686. double aux_arr[SIMD_LEN+1];
  1687. double *tempval_press;
  1688. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1689. {
  1690. tempval_press = aux_arr + 1;
  1691. if (size_t(tempval_press)%IDEAL_ALIGNMENT)
  1692. abort();
  1693. }
  1694. else
  1695. tempval_press = aux_arr;
  1696. /*! One over eight pi */
  1697. __m128d oofp = _mm_set1_pd (OOFP);
  1698. __m128d half = _mm_set1_pd (0.5);
  1699. __m128d opf = _mm_set1_pd (1.5);
  1700. __m128d zero = _mm_setzero_pd ();
  1701. // loop over sources
  1702. int i = 0;
  1703. for (; i < nt; i++) {
  1704. temp_press = _mm_setzero_pd();
  1705. __m128d txi = _mm_load1_pd (&tx[i]);
  1706. __m128d tyi = _mm_load1_pd (&ty[i]);
  1707. __m128d tzi = _mm_load1_pd (&tz[i]);
  1708. int j = 0;
  1709. // Load and calculate in groups of SIMD_LEN
  1710. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1711. __m128d sxj = _mm_load_pd (&sx[j]);
  1712. __m128d syj = _mm_load_pd (&sy[j]);
  1713. __m128d szj = _mm_load_pd (&sz[j]);
  1714. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1715. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1716. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1717. __m128d dX, dY, dZ;
  1718. __m128d dR2;
  1719. __m128d S;
  1720. dX = _mm_sub_pd(txi , sxj);
  1721. dY = _mm_sub_pd(tyi , syj);
  1722. dZ = _mm_sub_pd(tzi , szj);
  1723. sxj = _mm_mul_pd(dX, dX);
  1724. syj = _mm_mul_pd(dY, dY);
  1725. szj = _mm_mul_pd(dZ, dZ);
  1726. dR2 = _mm_add_pd(sxj, syj);
  1727. dR2 = _mm_add_pd(szj, dR2);
  1728. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  1729. __m128d xhalf = _mm_mul_pd (half, dR2);
  1730. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1731. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1732. __m128d S_d = _mm_cvtps_pd(S_s);
  1733. // To handle the condition when src and trg coincide
  1734. S_d = _mm_andnot_pd (temp, S_d);
  1735. S = _mm_mul_pd (S_d, S_d);
  1736. S = _mm_mul_pd (S, xhalf);
  1737. S = _mm_sub_pd (opf, S);
  1738. S = _mm_mul_pd (S, S_d);
  1739. __m128d dotx = _mm_mul_pd (dX, sdenx);
  1740. __m128d doty = _mm_mul_pd (dY, sdeny);
  1741. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  1742. __m128d dot_sum = _mm_add_pd (dotx, doty);
  1743. dot_sum = _mm_add_pd (dot_sum, dotz);
  1744. dot_sum = _mm_mul_pd (dot_sum, S);
  1745. dot_sum = _mm_mul_pd (dot_sum, S);
  1746. dot_sum = _mm_mul_pd (dot_sum, S);
  1747. temp_press = _mm_add_pd (dot_sum, temp_press);
  1748. }
  1749. temp_press = _mm_mul_pd (temp_press, oofp);
  1750. _mm_store_pd(tempval_press, temp_press);
  1751. for (int k = 0; k < SIMD_LEN; k++) {
  1752. trgVal[i] += tempval_press[k];
  1753. }
  1754. for (; j < ns; j++) {
  1755. double x = tx[i] - sx[j];
  1756. double y = ty[i] - sy[j];
  1757. double z = tz[i] - sz[j];
  1758. double r2 = x*x + y*y + z*z;
  1759. double r = sqrt(r2);
  1760. double invdr;
  1761. if (r == 0)
  1762. invdr = 0;
  1763. else
  1764. invdr = 1/r;
  1765. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]) * invdr * invdr * invdr;
  1766. trgVal[i] += dot*OOFP;
  1767. }
  1768. }
  1769. return;
  1770. }
  1771. void stokesStressSSE(
  1772. const int ns,
  1773. const int nt,
  1774. const double *sx,
  1775. const double *sy,
  1776. const double *sz,
  1777. const double *tx,
  1778. const double *ty,
  1779. const double *tz,
  1780. const double *srcDen,
  1781. double *trgVal)
  1782. {
  1783. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1784. abort();
  1785. double TOFP = -3.0/(4.0*const_pi<double>());
  1786. __m128d tempxx; __m128d tempxy; __m128d tempxz;
  1787. __m128d tempyx; __m128d tempyy; __m128d tempyz;
  1788. __m128d tempzx; __m128d tempzy; __m128d tempzz;
  1789. double aux_arr[9*SIMD_LEN+1];
  1790. double *tempvalxx, *tempvalxy, *tempvalxz;
  1791. double *tempvalyx, *tempvalyy, *tempvalyz;
  1792. double *tempvalzx, *tempvalzy, *tempvalzz;
  1793. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1794. {
  1795. tempvalxx = aux_arr + 1;
  1796. if (size_t(tempvalxx)%IDEAL_ALIGNMENT)
  1797. abort();
  1798. }
  1799. else
  1800. tempvalxx = aux_arr;
  1801. tempvalxy=tempvalxx+SIMD_LEN;
  1802. tempvalxz=tempvalxy+SIMD_LEN;
  1803. tempvalyx=tempvalxz+SIMD_LEN;
  1804. tempvalyy=tempvalyx+SIMD_LEN;
  1805. tempvalyz=tempvalyy+SIMD_LEN;
  1806. tempvalzx=tempvalyz+SIMD_LEN;
  1807. tempvalzy=tempvalzx+SIMD_LEN;
  1808. tempvalzz=tempvalzy+SIMD_LEN;
  1809. /*! One over eight pi */
  1810. __m128d tofp = _mm_set1_pd (TOFP);
  1811. __m128d half = _mm_set1_pd (0.5);
  1812. __m128d opf = _mm_set1_pd (1.5);
  1813. __m128d zero = _mm_setzero_pd ();
  1814. // loop over sources
  1815. int i = 0;
  1816. for (; i < nt; i++) {
  1817. tempxx = _mm_setzero_pd(); tempxy = _mm_setzero_pd(); tempxz = _mm_setzero_pd();
  1818. tempyx = _mm_setzero_pd(); tempyy = _mm_setzero_pd(); tempyz = _mm_setzero_pd();
  1819. tempzx = _mm_setzero_pd(); tempzy = _mm_setzero_pd(); tempzz = _mm_setzero_pd();
  1820. __m128d txi = _mm_load1_pd (&tx[i]);
  1821. __m128d tyi = _mm_load1_pd (&ty[i]);
  1822. __m128d tzi = _mm_load1_pd (&tz[i]);
  1823. int j = 0;
  1824. // Load and calculate in groups of SIMD_LEN
  1825. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1826. __m128d sxj = _mm_load_pd (&sx[j]);
  1827. __m128d syj = _mm_load_pd (&sy[j]);
  1828. __m128d szj = _mm_load_pd (&sz[j]);
  1829. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1830. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1831. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1832. __m128d dX, dY, dZ;
  1833. __m128d dR2;
  1834. __m128d S;
  1835. __m128d S2;
  1836. dX = _mm_sub_pd(txi , sxj);
  1837. dY = _mm_sub_pd(tyi , syj);
  1838. dZ = _mm_sub_pd(tzi , szj);
  1839. sxj = _mm_mul_pd(dX, dX);
  1840. syj = _mm_mul_pd(dY, dY);
  1841. szj = _mm_mul_pd(dZ, dZ);
  1842. dR2 = _mm_add_pd(sxj, syj);
  1843. dR2 = _mm_add_pd(szj, dR2);
  1844. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  1845. __m128d xhalf = _mm_mul_pd (half, dR2);
  1846. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1847. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1848. __m128d S_d = _mm_cvtps_pd(S_s);
  1849. // To handle the condition when src and trg coincide
  1850. S_d = _mm_andnot_pd (temp, S_d);
  1851. S = _mm_mul_pd (S_d, S_d);
  1852. S = _mm_mul_pd (S, xhalf);
  1853. S = _mm_sub_pd (opf, S);
  1854. S = _mm_mul_pd (S, S_d);
  1855. S2 = _mm_mul_pd (S, S);
  1856. __m128d dotx = _mm_mul_pd (dX, sdenx);
  1857. __m128d doty = _mm_mul_pd (dY, sdeny);
  1858. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  1859. __m128d dot_sum = _mm_add_pd (dotx, doty);
  1860. dot_sum = _mm_add_pd (dot_sum, dotz);
  1861. dot_sum = _mm_mul_pd (dot_sum, S);
  1862. dot_sum = _mm_mul_pd (dot_sum, S2);
  1863. dot_sum = _mm_mul_pd (dot_sum, S2);
  1864. dotx = _mm_mul_pd (dot_sum, dX);
  1865. doty = _mm_mul_pd (dot_sum, dY);
  1866. dotz = _mm_mul_pd (dot_sum, dZ);
  1867. tempxx = _mm_add_pd (_mm_mul_pd(dotx,dX), tempxx);
  1868. tempxy = _mm_add_pd (_mm_mul_pd(dotx,dY), tempxy);
  1869. tempxz = _mm_add_pd (_mm_mul_pd(dotx,dZ), tempxz);
  1870. tempyx = _mm_add_pd (_mm_mul_pd(doty,dX), tempyx);
  1871. tempyy = _mm_add_pd (_mm_mul_pd(doty,dY), tempyy);
  1872. tempyz = _mm_add_pd (_mm_mul_pd(doty,dZ), tempyz);
  1873. tempzx = _mm_add_pd (_mm_mul_pd(dotz,dX), tempzx);
  1874. tempzy = _mm_add_pd (_mm_mul_pd(dotz,dY), tempzy);
  1875. tempzz = _mm_add_pd (_mm_mul_pd(dotz,dZ), tempzz);
  1876. }
  1877. tempxx = _mm_mul_pd (tempxx, tofp);
  1878. tempxy = _mm_mul_pd (tempxy, tofp);
  1879. tempxz = _mm_mul_pd (tempxz, tofp);
  1880. tempyx = _mm_mul_pd (tempyx, tofp);
  1881. tempyy = _mm_mul_pd (tempyy, tofp);
  1882. tempyz = _mm_mul_pd (tempyz, tofp);
  1883. tempzx = _mm_mul_pd (tempzx, tofp);
  1884. tempzy = _mm_mul_pd (tempzy, tofp);
  1885. tempzz = _mm_mul_pd (tempzz, tofp);
  1886. _mm_store_pd(tempvalxx, tempxx); _mm_store_pd(tempvalxy, tempxy); _mm_store_pd(tempvalxz, tempxz);
  1887. _mm_store_pd(tempvalyx, tempyx); _mm_store_pd(tempvalyy, tempyy); _mm_store_pd(tempvalyz, tempyz);
  1888. _mm_store_pd(tempvalzx, tempzx); _mm_store_pd(tempvalzy, tempzy); _mm_store_pd(tempvalzz, tempzz);
  1889. for (int k = 0; k < SIMD_LEN; k++) {
  1890. trgVal[i*9 ] += tempvalxx[k];
  1891. trgVal[i*9+1] += tempvalxy[k];
  1892. trgVal[i*9+2] += tempvalxz[k];
  1893. trgVal[i*9+3] += tempvalyx[k];
  1894. trgVal[i*9+4] += tempvalyy[k];
  1895. trgVal[i*9+5] += tempvalyz[k];
  1896. trgVal[i*9+6] += tempvalzx[k];
  1897. trgVal[i*9+7] += tempvalzy[k];
  1898. trgVal[i*9+8] += tempvalzz[k];
  1899. }
  1900. for (; j < ns; j++) {
  1901. double x = tx[i] - sx[j];
  1902. double y = ty[i] - sy[j];
  1903. double z = tz[i] - sz[j];
  1904. double r2 = x*x + y*y + z*z;
  1905. double r = sqrt(r2);
  1906. double invdr;
  1907. if (r == 0)
  1908. invdr = 0;
  1909. else
  1910. invdr = 1/r;
  1911. double invdr2=invdr*invdr;
  1912. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]) * invdr2 * invdr2 * invdr;
  1913. double denx = dot*x;
  1914. double deny = dot*y;
  1915. double denz = dot*z;
  1916. trgVal[i*9 ] += denx*x*TOFP;
  1917. trgVal[i*9+1] += denx*y*TOFP;
  1918. trgVal[i*9+2] += denx*z*TOFP;
  1919. trgVal[i*9+3] += deny*x*TOFP;
  1920. trgVal[i*9+4] += deny*y*TOFP;
  1921. trgVal[i*9+5] += deny*z*TOFP;
  1922. trgVal[i*9+6] += denz*x*TOFP;
  1923. trgVal[i*9+7] += denz*y*TOFP;
  1924. trgVal[i*9+8] += denz*z*TOFP;
  1925. }
  1926. }
  1927. return;
  1928. }
  1929. void stokesGradSSE(
  1930. const int ns,
  1931. const int nt,
  1932. const double *sx,
  1933. const double *sy,
  1934. const double *sz,
  1935. const double *tx,
  1936. const double *ty,
  1937. const double *tz,
  1938. const double *srcDen,
  1939. double *trgVal,
  1940. const double cof )
  1941. {
  1942. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1943. abort();
  1944. double mu = cof;
  1945. double OOEP = 1.0/(8.0*const_pi<double>());
  1946. __m128d tempxx; __m128d tempxy; __m128d tempxz;
  1947. __m128d tempyx; __m128d tempyy; __m128d tempyz;
  1948. __m128d tempzx; __m128d tempzy; __m128d tempzz;
  1949. double oomeu = 1/mu;
  1950. double aux_arr[9*SIMD_LEN+1];
  1951. double *tempvalxx, *tempvalxy, *tempvalxz;
  1952. double *tempvalyx, *tempvalyy, *tempvalyz;
  1953. double *tempvalzx, *tempvalzy, *tempvalzz;
  1954. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1955. {
  1956. tempvalxx = aux_arr + 1;
  1957. if (size_t(tempvalxx)%IDEAL_ALIGNMENT)
  1958. abort();
  1959. }
  1960. else
  1961. tempvalxx = aux_arr;
  1962. tempvalxy=tempvalxx+SIMD_LEN;
  1963. tempvalxz=tempvalxy+SIMD_LEN;
  1964. tempvalyx=tempvalxz+SIMD_LEN;
  1965. tempvalyy=tempvalyx+SIMD_LEN;
  1966. tempvalyz=tempvalyy+SIMD_LEN;
  1967. tempvalzx=tempvalyz+SIMD_LEN;
  1968. tempvalzy=tempvalzx+SIMD_LEN;
  1969. tempvalzz=tempvalzy+SIMD_LEN;
  1970. /*! One over eight pi */
  1971. __m128d ooep = _mm_set1_pd (OOEP);
  1972. __m128d half = _mm_set1_pd (0.5);
  1973. __m128d opf = _mm_set1_pd (1.5);
  1974. __m128d three = _mm_set1_pd (3.0);
  1975. __m128d zero = _mm_setzero_pd ();
  1976. __m128d oomu = _mm_set1_pd (1/mu);
  1977. __m128d ooepmu = _mm_mul_pd(ooep,oomu);
  1978. // loop over sources
  1979. int i = 0;
  1980. for (; i < nt; i++) {
  1981. tempxx = _mm_setzero_pd(); tempxy = _mm_setzero_pd(); tempxz = _mm_setzero_pd();
  1982. tempyx = _mm_setzero_pd(); tempyy = _mm_setzero_pd(); tempyz = _mm_setzero_pd();
  1983. tempzx = _mm_setzero_pd(); tempzy = _mm_setzero_pd(); tempzz = _mm_setzero_pd();
  1984. __m128d txi = _mm_load1_pd (&tx[i]);
  1985. __m128d tyi = _mm_load1_pd (&ty[i]);
  1986. __m128d tzi = _mm_load1_pd (&tz[i]);
  1987. int j = 0;
  1988. // Load and calculate in groups of SIMD_LEN
  1989. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1990. __m128d sxj = _mm_load_pd (&sx[j]);
  1991. __m128d syj = _mm_load_pd (&sy[j]);
  1992. __m128d szj = _mm_load_pd (&sz[j]);
  1993. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1994. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1995. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1996. __m128d dX, dY, dZ;
  1997. __m128d dR2;
  1998. __m128d S;
  1999. __m128d S2;
  2000. __m128d S3;
  2001. dX = _mm_sub_pd(txi , sxj);
  2002. dY = _mm_sub_pd(tyi , syj);
  2003. dZ = _mm_sub_pd(tzi , szj);
  2004. sxj = _mm_mul_pd(dX, dX);
  2005. syj = _mm_mul_pd(dY, dY);
  2006. szj = _mm_mul_pd(dZ, dZ);
  2007. dR2 = _mm_add_pd(sxj, syj);
  2008. dR2 = _mm_add_pd(szj, dR2);
  2009. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  2010. __m128d xhalf = _mm_mul_pd (half, dR2);
  2011. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  2012. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  2013. __m128d S_d = _mm_cvtps_pd(S_s);
  2014. // To handle the condition when src and trg coincide
  2015. S_d = _mm_andnot_pd (temp, S_d);
  2016. S = _mm_mul_pd (S_d, S_d);
  2017. S = _mm_mul_pd (S, xhalf);
  2018. S = _mm_sub_pd (opf, S);
  2019. S = _mm_mul_pd (S, S_d);
  2020. S2 = _mm_mul_pd (S, S);
  2021. S3 = _mm_mul_pd (S2, S);
  2022. __m128d dotx = _mm_mul_pd (dX, sdenx);
  2023. __m128d doty = _mm_mul_pd (dY, sdeny);
  2024. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  2025. __m128d dot_sum = _mm_add_pd (dotx, doty);
  2026. dot_sum = _mm_add_pd (dot_sum, dotz);
  2027. dot_sum = _mm_mul_pd (dot_sum, S2);
  2028. tempxx = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dX, sdenx), _mm_mul_pd(sdenx, dX)), _mm_mul_pd(dot_sum, _mm_sub_pd(dR2 , _mm_mul_pd(three, _mm_mul_pd(dX, dX)))))),tempxx);
  2029. tempxy = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dY, sdenx), _mm_mul_pd(sdeny, dX)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dY, dX)))))),tempxy);
  2030. tempxz = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dZ, sdenx), _mm_mul_pd(sdenz, dX)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dZ, dX)))))),tempxz);
  2031. tempyx = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dX, sdeny), _mm_mul_pd(sdenx, dY)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dX, dY)))))),tempyx);
  2032. tempyy = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dY, sdeny), _mm_mul_pd(sdeny, dY)), _mm_mul_pd(dot_sum, _mm_sub_pd(dR2 , _mm_mul_pd(three, _mm_mul_pd(dY, dY)))))),tempyy);
  2033. tempyz = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dZ, sdeny), _mm_mul_pd(sdenz, dY)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dZ, dY)))))),tempyz);
  2034. tempzx = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dX, sdenz), _mm_mul_pd(sdenx, dZ)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dX, dZ)))))),tempzx);
  2035. tempzy = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dY, sdenz), _mm_mul_pd(sdeny, dZ)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dY, dZ)))))),tempzy);
  2036. tempzz = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dZ, sdenz), _mm_mul_pd(sdenz, dZ)), _mm_mul_pd(dot_sum, _mm_sub_pd(dR2 , _mm_mul_pd(three, _mm_mul_pd(dZ, dZ)))))),tempzz);
  2037. }
  2038. tempxx = _mm_mul_pd (tempxx, ooepmu);
  2039. tempxy = _mm_mul_pd (tempxy, ooepmu);
  2040. tempxz = _mm_mul_pd (tempxz, ooepmu);
  2041. tempyx = _mm_mul_pd (tempyx, ooepmu);
  2042. tempyy = _mm_mul_pd (tempyy, ooepmu);
  2043. tempyz = _mm_mul_pd (tempyz, ooepmu);
  2044. tempzx = _mm_mul_pd (tempzx, ooepmu);
  2045. tempzy = _mm_mul_pd (tempzy, ooepmu);
  2046. tempzz = _mm_mul_pd (tempzz, ooepmu);
  2047. _mm_store_pd(tempvalxx, tempxx); _mm_store_pd(tempvalxy, tempxy); _mm_store_pd(tempvalxz, tempxz);
  2048. _mm_store_pd(tempvalyx, tempyx); _mm_store_pd(tempvalyy, tempyy); _mm_store_pd(tempvalyz, tempyz);
  2049. _mm_store_pd(tempvalzx, tempzx); _mm_store_pd(tempvalzy, tempzy); _mm_store_pd(tempvalzz, tempzz);
  2050. for (int k = 0; k < SIMD_LEN; k++) {
  2051. trgVal[i*9 ] += tempvalxx[k];
  2052. trgVal[i*9+1] += tempvalxy[k];
  2053. trgVal[i*9+2] += tempvalxz[k];
  2054. trgVal[i*9+3] += tempvalyx[k];
  2055. trgVal[i*9+4] += tempvalyy[k];
  2056. trgVal[i*9+5] += tempvalyz[k];
  2057. trgVal[i*9+6] += tempvalzx[k];
  2058. trgVal[i*9+7] += tempvalzy[k];
  2059. trgVal[i*9+8] += tempvalzz[k];
  2060. }
  2061. for (; j < ns; j++) {
  2062. double x = tx[i] - sx[j];
  2063. double y = ty[i] - sy[j];
  2064. double z = tz[i] - sz[j];
  2065. double r2 = x*x + y*y + z*z;
  2066. double r = sqrt(r2);
  2067. double invdr;
  2068. if (r == 0)
  2069. invdr = 0;
  2070. else
  2071. invdr = 1/r;
  2072. double invdr2=invdr*invdr;
  2073. double invdr3=invdr2*invdr;
  2074. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]);
  2075. trgVal[i*9 ] += OOEP*oomeu*invdr3*( x*srcDen[j*3 ] - srcDen[j*3 ]*x + dot*(1-3*x*x*invdr2) );
  2076. trgVal[i*9+1] += OOEP*oomeu*invdr3*( y*srcDen[j*3 ] - srcDen[j*3+1]*x + dot*(0-3*y*x*invdr2) );
  2077. trgVal[i*9+2] += OOEP*oomeu*invdr3*( z*srcDen[j*3 ] - srcDen[j*3+2]*x + dot*(0-3*z*x*invdr2) );
  2078. trgVal[i*9+3] += OOEP*oomeu*invdr3*( x*srcDen[j*3+1] - srcDen[j*3 ]*y + dot*(0-3*x*y*invdr2) );
  2079. trgVal[i*9+4] += OOEP*oomeu*invdr3*( y*srcDen[j*3+1] - srcDen[j*3+1]*y + dot*(1-3*y*y*invdr2) );
  2080. trgVal[i*9+5] += OOEP*oomeu*invdr3*( z*srcDen[j*3+1] - srcDen[j*3+2]*y + dot*(0-3*z*y*invdr2) );
  2081. trgVal[i*9+6] += OOEP*oomeu*invdr3*( x*srcDen[j*3+2] - srcDen[j*3 ]*z + dot*(0-3*x*z*invdr2) );
  2082. trgVal[i*9+7] += OOEP*oomeu*invdr3*( y*srcDen[j*3+2] - srcDen[j*3+1]*z + dot*(0-3*y*z*invdr2) );
  2083. trgVal[i*9+8] += OOEP*oomeu*invdr3*( z*srcDen[j*3+2] - srcDen[j*3+2]*z + dot*(1-3*z*z*invdr2) );
  2084. }
  2085. }
  2086. return;
  2087. }
  2088. #undef SIMD_LEN
  2089. #define X(s,k) (s)[(k)*COORD_DIM]
  2090. #define Y(s,k) (s)[(k)*COORD_DIM+1]
  2091. #define Z(s,k) (s)[(k)*COORD_DIM+2]
  2092. void stokesDirectSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], const double kernel_coef, mem::MemoryManager* mem_mgr=NULL)
  2093. {
  2094. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  2095. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  2096. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  2097. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2098. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  2099. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2100. //1. reshuffle memory
  2101. for (int k =0;k<ns;k++){
  2102. xs[k+x_shift]=X(src,k);
  2103. ys[k+y_shift]=Y(src,k);
  2104. zs[k+z_shift]=Z(src,k);
  2105. }
  2106. for (int k=0;k<nt;k++){
  2107. xt[k]=X(trg,k);
  2108. yt[k]=Y(trg,k);
  2109. zt[k]=Z(trg,k);
  2110. }
  2111. //2. perform caclulation
  2112. stokesDirectVecSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot,kernel_coef);
  2113. return;
  2114. }
  2115. void stokesPressureSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  2116. {
  2117. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  2118. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  2119. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  2120. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2121. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  2122. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2123. //1. reshuffle memory
  2124. for (int k =0;k<ns;k++){
  2125. xs[k+x_shift]=X(src,k);
  2126. ys[k+y_shift]=Y(src,k);
  2127. zs[k+z_shift]=Z(src,k);
  2128. }
  2129. for (int k=0;k<nt;k++){
  2130. xt[k]=X(trg,k);
  2131. yt[k]=Y(trg,k);
  2132. zt[k]=Z(trg,k);
  2133. }
  2134. //2. perform caclulation
  2135. stokesPressureSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  2136. return;
  2137. }
  2138. void stokesStressSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  2139. {
  2140. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  2141. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  2142. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  2143. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2144. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  2145. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2146. //1. reshuffle memory
  2147. for (int k =0;k<ns;k++){
  2148. xs[k+x_shift]=X(src,k);
  2149. ys[k+y_shift]=Y(src,k);
  2150. zs[k+z_shift]=Z(src,k);
  2151. }
  2152. for (int k=0;k<nt;k++){
  2153. xt[k]=X(trg,k);
  2154. yt[k]=Y(trg,k);
  2155. zt[k]=Z(trg,k);
  2156. }
  2157. //2. perform caclulation
  2158. stokesStressSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  2159. return;
  2160. }
  2161. void stokesGradSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], const double kernel_coef, mem::MemoryManager* mem_mgr=NULL)
  2162. {
  2163. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  2164. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  2165. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  2166. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2167. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  2168. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2169. //1. reshuffle memory
  2170. for (int k =0;k<ns;k++){
  2171. xs[k+x_shift]=X(src,k);
  2172. ys[k+y_shift]=Y(src,k);
  2173. zs[k+z_shift]=Z(src,k);
  2174. }
  2175. for (int k=0;k<nt;k++){
  2176. xt[k]=X(trg,k);
  2177. yt[k]=Y(trg,k);
  2178. zt[k]=Z(trg,k);
  2179. }
  2180. //2. perform caclulation
  2181. stokesGradSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot,kernel_coef);
  2182. return;
  2183. }
  2184. #undef X
  2185. #undef Y
  2186. #undef Z
  2187. #undef IDEAL_ALIGNMENT
  2188. #undef DECL_SIMD_ALIGNED
  2189. }
  2190. template <>
  2191. void stokes_vel<double>(double* r_src, int src_cnt, double* v_src_, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  2192. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(28*dof));
  2193. const double mu=1.0;
  2194. stokesDirectSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mu, mem_mgr);
  2195. }
  2196. template <>
  2197. void stokes_press<double>(double* r_src, int src_cnt, double* v_src_, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  2198. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(17*dof));
  2199. stokesPressureSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mem_mgr);
  2200. return;
  2201. }
  2202. template <>
  2203. void stokes_stress<double>(double* r_src, int src_cnt, double* v_src_, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  2204. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(45*dof));
  2205. stokesStressSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mem_mgr);
  2206. }
  2207. template <>
  2208. void stokes_grad<double>(double* r_src, int src_cnt, double* v_src_, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  2209. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(89*dof));
  2210. const double mu=1.0;
  2211. stokesGradSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mu, mem_mgr);
  2212. }
  2213. #endif
  2214. #endif
  2215. ////////////////////////////////////////////////////////////////////////////////
  2216. //////// BIOT-SAVART KERNEL ////////
  2217. ////////////////////////////////////////////////////////////////////////////////
  2218. template <class T>
  2219. void biot_savart(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  2220. #ifndef __MIC__
  2221. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(26*dof));
  2222. #endif
  2223. const T OOFP = -1.0/(4.0*const_pi<T>());
  2224. for(int t=0;t<trg_cnt;t++){
  2225. for(int i=0;i<dof;i++){
  2226. T p[3]={0,0,0};
  2227. for(int s=0;s<src_cnt;s++){
  2228. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  2229. r_trg[3*t+1]-r_src[3*s+1],
  2230. r_trg[3*t+2]-r_src[3*s+2]};
  2231. T R2 = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  2232. if (R2!=0){
  2233. T invR2=1.0/R2;
  2234. T invR=sqrt(invR2);
  2235. T invR3=invR*invR2;
  2236. T v_src[3]={v_src_[(s*dof+i)*3 ],
  2237. v_src_[(s*dof+i)*3+1],
  2238. v_src_[(s*dof+i)*3+2]};
  2239. p[0] -= (v_src[1]*dR[2]-v_src[2]*dR[1])*invR3;
  2240. p[1] -= (v_src[2]*dR[0]-v_src[0]*dR[2])*invR3;
  2241. p[2] -= (v_src[0]*dR[1]-v_src[1]*dR[0])*invR3;
  2242. }
  2243. }
  2244. k_out[(t*dof+i)*3+0] += p[0]*OOFP;
  2245. k_out[(t*dof+i)*3+1] += p[1]*OOFP;
  2246. k_out[(t*dof+i)*3+2] += p[2]*OOFP;
  2247. }
  2248. }
  2249. }
  2250. ////////////////////////////////////////////////////////////////////////////////
  2251. //////// HELMHOLTZ KERNEL ////////
  2252. ////////////////////////////////////////////////////////////////////////////////
  2253. /**
  2254. * \brief Green's function for the Helmholtz's equation. Kernel tensor
  2255. * dimension = 2x2.
  2256. */
  2257. template <class T>
  2258. void helmholtz_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  2259. #ifndef __MIC__
  2260. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(24*dof));
  2261. #endif
  2262. const T mu = (20.0*const_pi<T>());
  2263. for(int t=0;t<trg_cnt;t++){
  2264. for(int i=0;i<dof;i++){
  2265. T p[2]={0,0};
  2266. for(int s=0;s<src_cnt;s++){
  2267. T dX_reg=r_trg[3*t ]-r_src[3*s ];
  2268. T dY_reg=r_trg[3*t+1]-r_src[3*s+1];
  2269. T dZ_reg=r_trg[3*t+2]-r_src[3*s+2];
  2270. T R = (dX_reg*dX_reg+dY_reg*dY_reg+dZ_reg*dZ_reg);
  2271. if (R!=0){
  2272. R = sqrt(R);
  2273. T invR=1.0/R;
  2274. T G[2]={cos(mu*R)*invR, sin(mu*R)*invR};
  2275. p[0] += v_src[(s*dof+i)*2+0]*G[0] - v_src[(s*dof+i)*2+1]*G[1];
  2276. p[1] += v_src[(s*dof+i)*2+0]*G[1] + v_src[(s*dof+i)*2+1]*G[0];
  2277. }
  2278. }
  2279. k_out[(t*dof+i)*2+0] += p[0];
  2280. k_out[(t*dof+i)*2+1] += p[1];
  2281. }
  2282. }
  2283. }
  2284. template <class T>
  2285. void helmholtz_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  2286. //TODO Implement this.
  2287. }
  2288. }//end namespace