fmm_pts.txx 132 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394
  1. /**
  2. * \file fmm_pts.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 3-07-2011
  5. * \brief This file contains the implementation of the FMM_Pts class.
  6. */
  7. #include <mpi.h>
  8. #include <set>
  9. #include <sstream>
  10. #include <fft_wrapper.hpp>
  11. #include <mat_utils.hpp>
  12. #ifdef PVFMM_HAVE_SYS_STAT_H
  13. #include <sys/stat.h>
  14. #endif
  15. #ifdef __SSE__
  16. #include <xmmintrin.h>
  17. #endif
  18. #ifdef __SSE3__
  19. #include <pmmintrin.h>
  20. #endif
  21. #ifdef __AVX__
  22. #include <immintrin.h>
  23. #endif
  24. #ifdef __INTEL_OFFLOAD
  25. #include <immintrin.h>
  26. #endif
  27. #ifdef __INTEL_OFFLOAD0
  28. #pragma offload_attribute(push,target(mic))
  29. #endif
  30. namespace pvfmm{
  31. /**
  32. * \brief Returns the coordinates of points on the surface of a cube.
  33. * \param[in] p Number of points on an edge of the cube is (n+1)
  34. * \param[in] c Coordinates to the centre of the cube (3D array).
  35. * \param[in] alpha Scaling factor for the size of the cube.
  36. * \param[in] depth Depth of the cube in the octree.
  37. * \return Vector with coordinates of points on the surface of the cube in the
  38. * format [x0 y0 z0 x1 y1 z1 .... ].
  39. */
  40. template <class Real_t>
  41. std::vector<Real_t> surface(int p, Real_t* c, Real_t alpha, int depth){
  42. size_t n_=(6*(p-1)*(p-1)+2); //Total number of points.
  43. std::vector<Real_t> coord(n_*3);
  44. coord[0]=coord[1]=coord[2]=-1.0;
  45. size_t cnt=1;
  46. for(int i=0;i<p-1;i++)
  47. for(int j=0;j<p-1;j++){
  48. coord[cnt*3 ]=-1.0;
  49. coord[cnt*3+1]=(2.0*(i+1)-p+1)/(p-1);
  50. coord[cnt*3+2]=(2.0*j-p+1)/(p-1);
  51. cnt++;
  52. }
  53. for(int i=0;i<p-1;i++)
  54. for(int j=0;j<p-1;j++){
  55. coord[cnt*3 ]=(2.0*i-p+1)/(p-1);
  56. coord[cnt*3+1]=-1.0;
  57. coord[cnt*3+2]=(2.0*(j+1)-p+1)/(p-1);
  58. cnt++;
  59. }
  60. for(int i=0;i<p-1;i++)
  61. for(int j=0;j<p-1;j++){
  62. coord[cnt*3 ]=(2.0*(i+1)-p+1)/(p-1);
  63. coord[cnt*3+1]=(2.0*j-p+1)/(p-1);
  64. coord[cnt*3+2]=-1.0;
  65. cnt++;
  66. }
  67. for(size_t i=0;i<(n_/2)*3;i++)
  68. coord[cnt*3+i]=-coord[i];
  69. Real_t r = 0.5*pow(0.5,depth);
  70. Real_t b = alpha*r;
  71. for(size_t i=0;i<n_;i++){
  72. coord[i*3+0]=(coord[i*3+0]+1.0)*b+c[0];
  73. coord[i*3+1]=(coord[i*3+1]+1.0)*b+c[1];
  74. coord[i*3+2]=(coord[i*3+2]+1.0)*b+c[2];
  75. }
  76. return coord;
  77. }
  78. /**
  79. * \brief Returns the coordinates of points on the upward check surface of cube.
  80. * \see surface()
  81. */
  82. template <class Real_t>
  83. std::vector<Real_t> u_check_surf(int p, Real_t* c, int depth){
  84. Real_t r=0.5*pow(0.5,depth);
  85. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  86. return surface(p,coord,(Real_t)RAD1,depth);
  87. }
  88. /**
  89. * \brief Returns the coordinates of points on the upward equivalent surface of cube.
  90. * \see surface()
  91. */
  92. template <class Real_t>
  93. std::vector<Real_t> u_equiv_surf(int p, Real_t* c, int depth){
  94. Real_t r=0.5*pow(0.5,depth);
  95. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  96. return surface(p,coord,(Real_t)RAD0,depth);
  97. }
  98. /**
  99. * \brief Returns the coordinates of points on the downward check surface of cube.
  100. * \see surface()
  101. */
  102. template <class Real_t>
  103. std::vector<Real_t> d_check_surf(int p, Real_t* c, int depth){
  104. Real_t r=0.5*pow(0.5,depth);
  105. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  106. return surface(p,coord,(Real_t)RAD0,depth);
  107. }
  108. /**
  109. * \brief Returns the coordinates of points on the downward equivalent surface of cube.
  110. * \see surface()
  111. */
  112. template <class Real_t>
  113. std::vector<Real_t> d_equiv_surf(int p, Real_t* c, int depth){
  114. Real_t r=0.5*pow(0.5,depth);
  115. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  116. return surface(p,coord,(Real_t)RAD1,depth);
  117. }
  118. /**
  119. * \brief Defines the 3D grid for convolution in FFT acceleration of V-list.
  120. * \see surface()
  121. */
  122. template <class Real_t>
  123. std::vector<Real_t> conv_grid(int p, Real_t* c, int depth){
  124. Real_t r=pow(0.5,depth);
  125. Real_t a=r*RAD0;
  126. Real_t coord[3]={c[0],c[1],c[2]};
  127. int n1=p*2;
  128. int n2=(int)pow((Real_t)n1,2);
  129. int n3=(int)pow((Real_t)n1,3);
  130. std::vector<Real_t> grid(n3*3);
  131. for(int i=0;i<n1;i++)
  132. for(int j=0;j<n1;j++)
  133. for(int k=0;k<n1;k++){
  134. grid[(i+n1*j+n2*k)*3+0]=(i-p)*a/(p-1)+coord[0];
  135. grid[(i+n1*j+n2*k)*3+1]=(j-p)*a/(p-1)+coord[1];
  136. grid[(i+n1*j+n2*k)*3+2]=(k-p)*a/(p-1)+coord[2];
  137. }
  138. return grid;
  139. }
  140. #ifdef __INTEL_OFFLOAD0
  141. #pragma offload_attribute(pop)
  142. #endif
  143. template <class Real_t>
  144. void FMM_Data<Real_t>::Clear(){
  145. upward_equiv.Resize(0);
  146. }
  147. template <class Real_t>
  148. PackedData FMM_Data<Real_t>::PackMultipole(void* buff_ptr){
  149. PackedData p0; p0.data=buff_ptr;
  150. p0.length=upward_equiv.Dim()*sizeof(Real_t);
  151. if(p0.length==0) return p0;
  152. if(p0.data==NULL) p0.data=(char*)&upward_equiv[0];
  153. else mem::memcopy(p0.data,&upward_equiv[0],p0.length);
  154. return p0;
  155. }
  156. template <class Real_t>
  157. void FMM_Data<Real_t>::AddMultipole(PackedData p0){
  158. Real_t* data=(Real_t*)p0.data;
  159. size_t n=p0.length/sizeof(Real_t);
  160. assert(upward_equiv.Dim()==n);
  161. Matrix<Real_t> v0(1,n,&upward_equiv[0],false);
  162. Matrix<Real_t> v1(1,n,data,false);
  163. v0+=v1;
  164. }
  165. template <class Real_t>
  166. void FMM_Data<Real_t>::InitMultipole(PackedData p0, bool own_data){
  167. Real_t* data=(Real_t*)p0.data;
  168. size_t n=p0.length/sizeof(Real_t);
  169. if(n==0) return;
  170. if(own_data){
  171. upward_equiv=Vector<Real_t>(n, &data[0], false);
  172. }else{
  173. upward_equiv.ReInit(n, &data[0], false);
  174. }
  175. }
  176. template <class FMMNode>
  177. FMM_Pts<FMMNode>::~FMM_Pts() {
  178. if(mat!=NULL){
  179. // int rank;
  180. // MPI_Comm_rank(comm,&rank);
  181. // if(rank==0) mat->Save2File("Precomp.data");
  182. delete mat;
  183. mat=NULL;
  184. }
  185. if(vprecomp_fft_flag) FFTW_t<Real_t>::fft_destroy_plan(vprecomp_fftplan);
  186. #ifdef __INTEL_OFFLOAD0
  187. #pragma offload target(mic:0)
  188. #endif
  189. {
  190. if(vlist_fft_flag ) FFTW_t<Real_t>::fft_destroy_plan(vlist_fftplan );
  191. if(vlist_ifft_flag) FFTW_t<Real_t>::fft_destroy_plan(vlist_ifftplan);
  192. vlist_fft_flag =false;
  193. vlist_ifft_flag=false;
  194. }
  195. }
  196. template <class FMMNode>
  197. void FMM_Pts<FMMNode>::Initialize(int mult_order, const MPI_Comm& comm_, const Kernel<Real_t>* kernel_, const Kernel<Real_t>* aux_kernel_){
  198. Profile::Tic("InitFMM_Pts",&comm_,true);{
  199. multipole_order=mult_order;
  200. comm=comm_;
  201. kernel=*kernel_;
  202. aux_kernel=*(aux_kernel_?aux_kernel_:kernel_);
  203. assert(kernel.ker_dim[0]==aux_kernel.ker_dim[0]);
  204. mat=new PrecompMat<Real_t>(Homogen(), MAX_DEPTH+1);
  205. if(this->mat_fname.size()==0){
  206. std::stringstream st;
  207. st<<PVFMM_PRECOMP_DATA_PATH;
  208. if(!st.str().size()){ // look in PVFMM_DIR
  209. char* pvfmm_dir = getenv ("PVFMM_DIR");
  210. if(pvfmm_dir) st<<pvfmm_dir<<'/';
  211. }
  212. #ifndef STAT_MACROS_BROKEN
  213. if(st.str().size()){ // check if the path is a directory
  214. struct stat stat_buff;
  215. if(stat(st.str().c_str(), &stat_buff) || !S_ISDIR(stat_buff.st_mode)){
  216. std::cout<<"error: path not found: "<<st.str()<<'\n';
  217. exit(0);
  218. }
  219. }
  220. #endif
  221. st<<"Precomp_"<<kernel.ker_name.c_str()<<"_m"<<mult_order<<(typeid(Real_t)==typeid(float)?"_f":"")<<".data";
  222. this->mat_fname=st.str();
  223. }
  224. this->mat->LoadFile(mat_fname.c_str(), this->comm);
  225. interac_list.Initialize(COORD_DIM, this->mat);
  226. Profile::Tic("PrecompUC2UE",&comm,false,4);
  227. this->PrecompAll(UC2UE_Type);
  228. Profile::Toc();
  229. Profile::Tic("PrecompDC2DE",&comm,false,4);
  230. this->PrecompAll(DC2DE_Type);
  231. Profile::Toc();
  232. Profile::Tic("PrecompBC",&comm,false,4);
  233. { /*
  234. int type=BC_Type;
  235. for(int l=0;l<MAX_DEPTH;l++)
  236. for(size_t indx=0;indx<this->interac_list.ListCount((Mat_Type)type);indx++){
  237. Matrix<Real_t>& M=this->mat->Mat(l, (Mat_Type)type, indx);
  238. M.Resize(0,0);
  239. } // */
  240. }
  241. this->PrecompAll(BC_Type,0);
  242. Profile::Toc();
  243. Profile::Tic("PrecompU2U",&comm,false,4);
  244. this->PrecompAll(U2U_Type);
  245. Profile::Toc();
  246. Profile::Tic("PrecompD2D",&comm,false,4);
  247. this->PrecompAll(D2D_Type);
  248. Profile::Toc();
  249. Profile::Tic("PrecompV",&comm,false,4);
  250. this->PrecompAll(V_Type);
  251. Profile::Toc();
  252. Profile::Tic("PrecompV1",&comm,false,4);
  253. this->PrecompAll(V1_Type);
  254. Profile::Toc();
  255. }Profile::Toc();
  256. }
  257. template <class FMMNode>
  258. Permutation<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::PrecompPerm(Mat_Type type, Perm_Type perm_indx){
  259. //Check if the matrix already exists.
  260. Permutation<Real_t>& P_ = mat->Perm((Mat_Type)type, perm_indx);
  261. if(P_.Dim()!=0) return P_;
  262. Matrix<size_t> swap_xy(10,9);
  263. Matrix<size_t> swap_xz(10,9);
  264. {
  265. for(int i=0;i<9;i++)
  266. for(int j=0;j<9;j++){
  267. swap_xy[i][j]=j;
  268. swap_xz[i][j]=j;
  269. }
  270. swap_xy[3][0]=1; swap_xy[3][1]=0; swap_xy[3][2]=2;
  271. swap_xz[3][0]=2; swap_xz[3][1]=1; swap_xz[3][2]=0;
  272. swap_xy[6][0]=1; swap_xy[6][1]=0; swap_xy[6][2]=2;
  273. swap_xy[6][3]=4; swap_xy[6][4]=3; swap_xy[6][5]=5;
  274. swap_xz[6][0]=2; swap_xz[6][1]=1; swap_xz[6][2]=0;
  275. swap_xz[6][3]=5; swap_xz[6][4]=4; swap_xz[6][5]=3;
  276. swap_xy[9][0]=4; swap_xy[9][1]=3; swap_xy[9][2]=5;
  277. swap_xy[9][3]=1; swap_xy[9][4]=0; swap_xy[9][5]=2;
  278. swap_xy[9][6]=7; swap_xy[9][7]=6; swap_xy[9][8]=8;
  279. swap_xz[9][0]=8; swap_xz[9][1]=7; swap_xz[9][2]=6;
  280. swap_xz[9][3]=5; swap_xz[9][4]=4; swap_xz[9][5]=3;
  281. swap_xz[9][6]=2; swap_xz[9][7]=1; swap_xz[9][8]=0;
  282. }
  283. //Compute the matrix.
  284. Permutation<Real_t> P;
  285. switch (type){
  286. case UC2UE_Type:
  287. {
  288. break;
  289. }
  290. case DC2DE_Type:
  291. {
  292. break;
  293. }
  294. case S2U_Type:
  295. {
  296. break;
  297. }
  298. case U2U_Type:
  299. {
  300. break;
  301. }
  302. case D2D_Type:
  303. {
  304. Real_t eps=1e-10;
  305. int dof=kernel.ker_dim[0];
  306. size_t p_indx=perm_indx % C_Perm;
  307. Real_t c[3]={-0.5,-0.5,-0.5};
  308. std::vector<Real_t> trg_coord=d_check_surf(this->MultipoleOrder(),c,0);
  309. int n_trg=trg_coord.size()/3;
  310. P=Permutation<Real_t>(n_trg*dof);
  311. if(p_indx==ReflecX || p_indx==ReflecY || p_indx==ReflecZ){
  312. for(int i=0;i<n_trg;i++)
  313. for(int j=0;j<n_trg;j++){
  314. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+0]*(p_indx==ReflecX?-1.0:1.0))<eps)
  315. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+1]*(p_indx==ReflecY?-1.0:1.0))<eps)
  316. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+2]*(p_indx==ReflecZ?-1.0:1.0))<eps){
  317. for(int k=0;k<dof;k++){
  318. P.perm[j*dof+k]=i*dof+k;
  319. }
  320. }
  321. }
  322. if(dof==3) //stokes_vel (and like kernels)
  323. for(int j=0;j<n_trg;j++)
  324. P.scal[j*dof+(int)p_indx]*=-1.0;
  325. }else if(p_indx==SwapXY || p_indx==SwapXZ)
  326. for(int i=0;i<n_trg;i++)
  327. for(int j=0;j<n_trg;j++){
  328. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+(p_indx==SwapXY?1:2)])<eps)
  329. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+(p_indx==SwapXY?0:1)])<eps)
  330. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+(p_indx==SwapXY?2:0)])<eps){
  331. for(int k=0;k<dof;k++){
  332. P.perm[j*dof+k]=i*dof+(p_indx==SwapXY?swap_xy[dof][k]:swap_xz[dof][k]);
  333. }
  334. }
  335. }
  336. break;
  337. }
  338. case D2T_Type:
  339. {
  340. break;
  341. }
  342. case U0_Type:
  343. {
  344. break;
  345. }
  346. case U1_Type:
  347. {
  348. break;
  349. }
  350. case U2_Type:
  351. {
  352. break;
  353. }
  354. case V_Type:
  355. {
  356. break;
  357. }
  358. case V1_Type:
  359. {
  360. break;
  361. }
  362. case W_Type:
  363. {
  364. break;
  365. }
  366. case X_Type:
  367. {
  368. break;
  369. }
  370. case BC_Type:
  371. {
  372. break;
  373. }
  374. default:
  375. break;
  376. }
  377. //Save the matrix for future use.
  378. #pragma omp critical (PRECOMP_MATRIX_PTS)
  379. {
  380. if(P_.Dim()==0) P_=P;
  381. }
  382. return P_;
  383. }
  384. template <class FMMNode>
  385. Matrix<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::Precomp(int level, Mat_Type type, size_t mat_indx){
  386. if(this->Homogen()) level=0;
  387. //Check if the matrix already exists.
  388. Matrix<Real_t>& M_ = this->mat->Mat(level, type, mat_indx);
  389. if(M_.Dim(0)!=0 && M_.Dim(1)!=0) return M_;
  390. else{ //Compute matrix from symmetry class (if possible).
  391. size_t class_indx = this->interac_list.InteracClass(type, mat_indx);
  392. if(class_indx!=mat_indx){
  393. Matrix<Real_t>& M0 = this->Precomp(level, type, class_indx);
  394. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, type, mat_indx);
  395. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, type, mat_indx);
  396. if(Pr.Dim()>0 && Pc.Dim()>0 && M0.Dim(0)>0 && M0.Dim(1)>0) return M_;
  397. }
  398. }
  399. //Compute the matrix.
  400. Matrix<Real_t> M;
  401. int* ker_dim=kernel.ker_dim;
  402. int* aux_ker_dim=aux_kernel.ker_dim;
  403. //int omp_p=omp_get_max_threads();
  404. switch (type){
  405. case UC2UE_Type:
  406. {
  407. // Coord of upward check surface
  408. Real_t c[3]={0,0,0};
  409. std::vector<Real_t> uc_coord=u_check_surf(MultipoleOrder(),c,level);
  410. size_t n_uc=uc_coord.size()/3;
  411. // Coord of upward equivalent surface
  412. std::vector<Real_t> ue_coord=u_equiv_surf(MultipoleOrder(),c,level);
  413. size_t n_ue=ue_coord.size()/3;
  414. // Evaluate potential at check surface due to equivalent surface.
  415. Matrix<Real_t> M_e2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
  416. Kernel<Real_t>::Eval(&ue_coord[0], n_ue,
  417. &uc_coord[0], n_uc, &(M_e2c[0][0]),
  418. aux_kernel.ker_poten, aux_ker_dim);
  419. M=M_e2c.pinv(); //check 2 equivalent
  420. break;
  421. }
  422. case DC2DE_Type:
  423. {
  424. // Coord of downward check surface
  425. Real_t c[3]={0,0,0};
  426. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  427. size_t n_ch=check_surf.size()/3;
  428. // Coord of downward equivalent surface
  429. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  430. size_t n_eq=equiv_surf.size()/3;
  431. // Evaluate potential at check surface due to equivalent surface.
  432. Matrix<Real_t> M_e2c(n_eq*aux_ker_dim[0],n_ch*aux_ker_dim[1]);
  433. Kernel<Real_t>::Eval(&equiv_surf[0], n_eq,
  434. &check_surf[0], n_ch, &(M_e2c[0][0]),
  435. aux_kernel.ker_poten,aux_ker_dim);
  436. M=M_e2c.pinv(); //check 2 equivalent
  437. break;
  438. }
  439. case S2U_Type:
  440. {
  441. break;
  442. }
  443. case U2U_Type:
  444. {
  445. // Coord of upward check surface
  446. Real_t c[3]={0,0,0};
  447. std::vector<Real_t> check_surf=u_check_surf(MultipoleOrder(),c,level);
  448. size_t n_uc=check_surf.size()/3;
  449. // Coord of child's upward equivalent surface
  450. Real_t s=pow(0.5,(level+2));
  451. int* coord=interac_list.RelativeCoord(type,mat_indx);
  452. Real_t child_coord[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  453. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),child_coord,level+1);
  454. size_t n_ue=equiv_surf.size()/3;
  455. // Evaluate potential at check surface due to equivalent surface.
  456. Matrix<Real_t> M_ce2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
  457. Kernel<Real_t>::Eval(&equiv_surf[0], n_ue,
  458. &check_surf[0], n_uc, &(M_ce2c[0][0]),
  459. aux_kernel.ker_poten, aux_ker_dim);
  460. Matrix<Real_t>& M_c2e = Precomp(level, UC2UE_Type, 0);
  461. M=M_ce2c*M_c2e;
  462. break;
  463. }
  464. case D2D_Type:
  465. {
  466. // Coord of downward check surface
  467. Real_t s=pow(0.5,level+1);
  468. int* coord=interac_list.RelativeCoord(type,mat_indx);
  469. Real_t c[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  470. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  471. size_t n_dc=check_surf.size()/3;
  472. // Coord of parent's downward equivalent surface
  473. Real_t parent_coord[3]={0,0,0};
  474. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),parent_coord,level-1);
  475. size_t n_de=equiv_surf.size()/3;
  476. // Evaluate potential at check surface due to equivalent surface.
  477. Matrix<Real_t> M_pe2c(n_de*aux_ker_dim[0],n_dc*aux_ker_dim[1]);
  478. Kernel<Real_t>::Eval(&equiv_surf[0], n_de,
  479. &check_surf[0], n_dc, &(M_pe2c[0][0]),
  480. aux_kernel.ker_poten,aux_ker_dim);
  481. Matrix<Real_t>& M_c2e=Precomp(level,DC2DE_Type,0);
  482. M=M_pe2c*M_c2e;
  483. break;
  484. }
  485. case D2T_Type:
  486. {
  487. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  488. // Coord of target points
  489. Real_t r=pow(0.5,level);
  490. size_t n_trg=rel_trg_coord.size()/3;
  491. std::vector<Real_t> trg_coord(n_trg*3);
  492. for(size_t i=0;i<n_trg*COORD_DIM;i++) trg_coord[i]=rel_trg_coord[i]*r;
  493. // Coord of downward equivalent surface
  494. Real_t c[3]={0,0,0};
  495. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  496. size_t n_eq=equiv_surf.size()/3;
  497. // Evaluate potential at target points due to equivalent surface.
  498. {
  499. M .Resize(n_eq*ker_dim [0], n_trg*ker_dim [1]);
  500. kernel.BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  501. }
  502. break;
  503. }
  504. case U0_Type:
  505. {
  506. break;
  507. }
  508. case U1_Type:
  509. {
  510. break;
  511. }
  512. case U2_Type:
  513. {
  514. break;
  515. }
  516. case V_Type:
  517. {
  518. int n1=MultipoleOrder()*2;
  519. int n3 =n1*n1*n1;
  520. int n3_=n1*n1*(n1/2+1);
  521. //Compute the matrix.
  522. Real_t s=pow(0.5,level);
  523. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  524. Real_t coord_diff[3]={coord2[0]*s,coord2[1]*s,coord2[2]*s};
  525. //Evaluate potential.
  526. std::vector<Real_t> r_trg(COORD_DIM,0.0);
  527. std::vector<Real_t> conv_poten(n3*aux_ker_dim[0]*aux_ker_dim[1]);
  528. std::vector<Real_t> conv_coord=conv_grid(MultipoleOrder(),coord_diff,level);
  529. Kernel<Real_t>::Eval(&conv_coord[0],n3,&r_trg[0],1,&conv_poten[0],aux_kernel.ker_poten,aux_ker_dim);
  530. //Rearrange data.
  531. Matrix<Real_t> M_conv(n3,aux_ker_dim[0]*aux_ker_dim[1],&conv_poten[0],false);
  532. M_conv=M_conv.Transpose();
  533. //Compute FFTW plan.
  534. int nnn[3]={n1,n1,n1};
  535. void *fftw_in, *fftw_out;
  536. fftw_in = fftw_malloc( n3 *aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  537. fftw_out = fftw_malloc(2*n3_*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  538. #pragma omp critical (FFTW_PLAN)
  539. {
  540. if (!vprecomp_fft_flag){
  541. vprecomp_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM, nnn, aux_ker_dim[0]*aux_ker_dim[1],
  542. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*) fftw_out, NULL, 1, n3_, FFTW_ESTIMATE);
  543. vprecomp_fft_flag=true;
  544. }
  545. }
  546. //Compute FFT.
  547. mem::memcopy(fftw_in, &conv_poten[0], n3*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  548. FFTW_t<Real_t>::fft_execute_dft_r2c(vprecomp_fftplan, (Real_t*)fftw_in, (typename FFTW_t<Real_t>::cplx*)(fftw_out));
  549. Matrix<Real_t> M_(2*n3_*aux_ker_dim[0]*aux_ker_dim[1],1,(Real_t*)fftw_out,false);
  550. M=M_;
  551. //Free memory.
  552. fftw_free(fftw_in);
  553. fftw_free(fftw_out);
  554. break;
  555. }
  556. case V1_Type:
  557. {
  558. size_t mat_cnt =interac_list.ListCount( V_Type);
  559. for(size_t k=0;k<mat_cnt;k++) Precomp(level, V_Type, k);
  560. const size_t chld_cnt=1UL<<COORD_DIM;
  561. size_t n1=MultipoleOrder()*2;
  562. size_t M_dim=n1*n1*(n1/2+1);
  563. size_t n3=n1*n1*n1;
  564. Vector<Real_t> zero_vec(M_dim*aux_ker_dim[0]*aux_ker_dim[1]*2);
  565. zero_vec.SetZero();
  566. Vector<Real_t*> M_ptr(chld_cnt*chld_cnt);
  567. for(size_t i=0;i<chld_cnt*chld_cnt;i++) M_ptr[i]=&zero_vec[0];
  568. int* rel_coord_=interac_list.RelativeCoord(V1_Type, mat_indx);
  569. for(int j1=0;j1<chld_cnt;j1++)
  570. for(int j2=0;j2<chld_cnt;j2++){
  571. int rel_coord[3]={rel_coord_[0]*2-(j1/1)%2+(j2/1)%2,
  572. rel_coord_[1]*2-(j1/2)%2+(j2/2)%2,
  573. rel_coord_[2]*2-(j1/4)%2+(j2/4)%2};
  574. for(size_t k=0;k<mat_cnt;k++){
  575. int* ref_coord=interac_list.RelativeCoord(V_Type, k);
  576. if(ref_coord[0]==rel_coord[0] &&
  577. ref_coord[1]==rel_coord[1] &&
  578. ref_coord[2]==rel_coord[2]){
  579. Matrix<Real_t>& M = this->mat->Mat(level, V_Type, k);
  580. M_ptr[j2*chld_cnt+j1]=&M[0][0];
  581. break;
  582. }
  583. }
  584. }
  585. // Build matrix aux_ker_dim0 x aux_ker_dim1 x M_dim x 8 x 8
  586. M.Resize(aux_ker_dim[0]*aux_ker_dim[1]*M_dim, 2*chld_cnt*chld_cnt);
  587. for(int j=0;j<aux_ker_dim[0]*aux_ker_dim[1]*M_dim;j++){
  588. for(size_t k=0;k<chld_cnt*chld_cnt;k++){
  589. M[j][k*2+0]=M_ptr[k][j*2+0]/n3;
  590. M[j][k*2+1]=M_ptr[k][j*2+1]/n3;
  591. }
  592. }
  593. break;
  594. }
  595. case W_Type:
  596. {
  597. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  598. // Coord of target points
  599. Real_t s=pow(0.5,level);
  600. size_t n_trg=rel_trg_coord.size()/3;
  601. std::vector<Real_t> trg_coord(n_trg*3);
  602. for(size_t j=0;j<n_trg*COORD_DIM;j++) trg_coord[j]=rel_trg_coord[j]*s;
  603. // Coord of downward equivalent surface
  604. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  605. Real_t c[3]={(coord2[0]+1)*s*0.25,(coord2[1]+1)*s*0.25,(coord2[2]+1)*s*0.25};
  606. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),c,level+1);
  607. size_t n_eq=equiv_surf.size()/3;
  608. // Evaluate potential at target points due to equivalent surface.
  609. {
  610. M .Resize(n_eq*ker_dim [0],n_trg*ker_dim [1]);
  611. kernel.BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  612. }
  613. break;
  614. }
  615. case X_Type:
  616. {
  617. break;
  618. }
  619. case BC_Type:
  620. {
  621. size_t mat_cnt_m2m=interac_list.ListCount(U2U_Type);
  622. size_t n_surf=(6*(MultipoleOrder()-1)*(MultipoleOrder()-1)+2); //Total number of points.
  623. if((M.Dim(0)!=n_surf*aux_ker_dim[0] || M.Dim(1)!=n_surf*aux_ker_dim[1]) && level==0){
  624. Matrix<Real_t> M_m2m[BC_LEVELS+1];
  625. Matrix<Real_t> M_m2l[BC_LEVELS+1];
  626. Matrix<Real_t> M_l2l[BC_LEVELS+1];
  627. Matrix<Real_t> M_zero_avg(n_surf*aux_ker_dim[0],n_surf*aux_ker_dim[0]);
  628. { // Set average multipole charge to zero. (improves stability for large BC_LEVELS)
  629. M_zero_avg.SetZero();
  630. for(size_t i=0;i<n_surf*aux_ker_dim[0];i++)
  631. M_zero_avg[i][i]+=1;
  632. for(size_t i=0;i<n_surf;i++)
  633. for(size_t j=0;j<n_surf;j++)
  634. for(size_t k=0;k<aux_ker_dim[0];k++)
  635. M_zero_avg[i*aux_ker_dim[0]+k][j*aux_ker_dim[0]+k]-=1.0/n_surf;
  636. }
  637. for(int level=0; level>-BC_LEVELS; level--){
  638. M_l2l[-level] = this->Precomp(level, D2D_Type, 0);
  639. if(M_l2l[-level].Dim(0)==0 || M_l2l[-level].Dim(1)==0){
  640. Matrix<Real_t>& M0 = interac_list.ClassMat(level, D2D_Type, 0);
  641. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, D2D_Type, 0);
  642. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, D2D_Type, 0);
  643. M_l2l[-level] = Pr*M0*Pc;
  644. }
  645. M_m2m[-level] = M_zero_avg*this->Precomp(level, U2U_Type, 0);
  646. for(size_t mat_indx=1; mat_indx<mat_cnt_m2m; mat_indx++)
  647. M_m2m[-level] += M_zero_avg*this->Precomp(level, U2U_Type, mat_indx);
  648. }
  649. for(int level=-BC_LEVELS;level<=0;level++){
  650. if(!Homogen() || level==-BC_LEVELS){
  651. Real_t s=(1UL<<(-level));
  652. Real_t ue_coord[3]={0,0,0};
  653. Real_t dc_coord[3]={0,0,0};
  654. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  655. std::vector<Real_t> trg_coord=d_check_surf(MultipoleOrder(), dc_coord, level);
  656. Matrix<Real_t> M_ue2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  657. M_ue2dc.SetZero();
  658. for(int x0=-2;x0<4;x0++)
  659. for(int x1=-2;x1<4;x1++)
  660. for(int x2=-2;x2<4;x2++)
  661. if(abs(x0)>1 || abs(x1)>1 || abs(x2)>1){
  662. ue_coord[0]=x0*s; ue_coord[1]=x1*s; ue_coord[2]=x2*s;
  663. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  664. Matrix<Real_t> M_tmp(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  665. Kernel<Real_t>::Eval(&src_coord[0], n_surf,
  666. &trg_coord[0], n_surf, &(M_tmp[0][0]),
  667. aux_kernel.ker_poten, aux_ker_dim);
  668. M_ue2dc+=M_tmp;
  669. }
  670. // Shift by constant.
  671. Real_t scale_adj=(Homogen()?pow(0.5, level*aux_kernel.poten_scale):1);
  672. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  673. std::vector<Real_t> avg(aux_ker_dim[1],0);
  674. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  675. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  676. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
  677. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  678. for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]=(M_ue2dc[i][j+k]-avg[k])*scale_adj;
  679. }
  680. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  681. M_m2l[-level]=M_ue2dc*M_dc2de;
  682. }else M_m2l[-level]=M_m2l[1-level];
  683. if(level==-BC_LEVELS) M = M_m2l[-level];
  684. else M = M_m2l[-level] + M_m2m[-level]*M*M_l2l[-level];
  685. { // Shift by constant. (improves stability for large BC_LEVELS)
  686. Matrix<Real_t> M_de2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  687. { // M_de2dc TODO: For homogeneous kernels, compute only once.
  688. // Coord of downward check surface
  689. Real_t c[3]={0,0,0};
  690. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,0);
  691. size_t n_ch=check_surf.size()/3;
  692. // Coord of downward equivalent surface
  693. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  694. size_t n_eq=equiv_surf.size()/3;
  695. // Evaluate potential at check surface due to equivalent surface.
  696. Kernel<Real_t>::Eval(&equiv_surf[0], n_eq,
  697. &check_surf[0], n_ch, &(M_de2dc[0][0]),
  698. aux_kernel.ker_poten,aux_ker_dim);
  699. }
  700. Matrix<Real_t> M_ue2dc=M*M_de2dc;
  701. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  702. std::vector<Real_t> avg(aux_ker_dim[1],0);
  703. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  704. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  705. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
  706. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  707. for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]-=avg[k];
  708. }
  709. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  710. M=M_ue2dc*M_dc2de;
  711. }
  712. }
  713. { // ax+by+cz+d correction.
  714. std::vector<Real_t> corner_pts;
  715. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(0);
  716. corner_pts.push_back(1); corner_pts.push_back(0); corner_pts.push_back(0);
  717. corner_pts.push_back(0); corner_pts.push_back(1); corner_pts.push_back(0);
  718. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(1);
  719. size_t n_corner=corner_pts.size()/3;
  720. // Coord of downward equivalent surface
  721. Real_t c[3]={0,0,0};
  722. std::vector<Real_t> up_equiv_surf=u_equiv_surf(MultipoleOrder(),c,0);
  723. std::vector<Real_t> dn_equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  724. std::vector<Real_t> dn_check_surf=d_check_surf(MultipoleOrder(),c,0);
  725. Matrix<Real_t> M_err;
  726. { // Evaluate potential at corner due to upward and dnward equivalent surface.
  727. { // Error from local expansion.
  728. Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],n_corner*aux_ker_dim[1]);
  729. Kernel<Real_t>::Eval(&dn_equiv_surf[0], n_surf,
  730. &corner_pts[0], n_corner, &(M_e2pt[0][0]),
  731. aux_kernel.ker_poten,aux_ker_dim);
  732. M_err=M*M_e2pt;
  733. }
  734. for(size_t k=0;k<4;k++){ // Error from colleagues of root.
  735. for(int j0=-1;j0<=1;j0++)
  736. for(int j1=-1;j1<=1;j1++)
  737. for(int j2=-1;j2<=1;j2++){
  738. Real_t pt_coord[3]={corner_pts[k*COORD_DIM+0]-j0,
  739. corner_pts[k*COORD_DIM+1]-j1,
  740. corner_pts[k*COORD_DIM+2]-j2};
  741. if(fabs(pt_coord[0]-0.5)>1.0 || fabs(pt_coord[1]-0.5)>1.0 || fabs(pt_coord[2]-0.5)>1.0){
  742. Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],aux_ker_dim[1]);
  743. Kernel<Real_t>::Eval(&up_equiv_surf[0], n_surf,
  744. &pt_coord[0], 1, &(M_e2pt[0][0]),
  745. aux_kernel.ker_poten,aux_ker_dim);
  746. for(size_t i=0;i<M_e2pt.Dim(0);i++)
  747. for(size_t j=0;j<M_e2pt.Dim(1);j++)
  748. M_err[i][k*aux_ker_dim[1]+j]+=M_e2pt[i][j];
  749. }
  750. }
  751. }
  752. }
  753. Matrix<Real_t> M_grad(M_err.Dim(0),n_surf*aux_ker_dim[1]);
  754. for(size_t i=0;i<M_err.Dim(0);i++)
  755. for(size_t k=0;k<aux_ker_dim[1];k++)
  756. for(size_t j=0;j<n_surf;j++){
  757. M_grad[i][j*aux_ker_dim[1]+k]=(M_err[i][0*aux_ker_dim[1]+k] )*1.0 +
  758. (M_err[i][1*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+0]+
  759. (M_err[i][2*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+1]+
  760. (M_err[i][3*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+2];
  761. }
  762. Matrix<Real_t>& M_dc2de = Precomp(0, DC2DE_Type, 0);
  763. M-=M_grad*M_dc2de;
  764. }
  765. { // Free memory
  766. Mat_Type type=D2D_Type;
  767. for(int l=-BC_LEVELS;l<0;l++)
  768. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  769. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  770. M.Resize(0,0);
  771. }
  772. type=U2U_Type;
  773. for(int l=-BC_LEVELS;l<0;l++)
  774. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  775. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  776. M.Resize(0,0);
  777. }
  778. type=DC2DE_Type;
  779. for(int l=-BC_LEVELS;l<0;l++)
  780. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  781. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  782. M.Resize(0,0);
  783. }
  784. type=UC2UE_Type;
  785. for(int l=-BC_LEVELS;l<0;l++)
  786. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  787. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  788. M.Resize(0,0);
  789. }
  790. }
  791. }
  792. break;
  793. }
  794. default:
  795. break;
  796. }
  797. //Save the matrix for future use.
  798. #pragma omp critical (PRECOMP_MATRIX_PTS)
  799. if(M_.Dim(0)==0 && M_.Dim(1)==0){
  800. M_=M;
  801. /*
  802. M_.Resize(M.Dim(0),M.Dim(1));
  803. int dof=aux_ker_dim[0]*aux_ker_dim[1];
  804. for(int j=0;j<dof;j++){
  805. size_t a=(M.Dim(0)*M.Dim(1)* j )/dof;
  806. size_t b=(M.Dim(0)*M.Dim(1)*(j+1))/dof;
  807. #pragma omp parallel for // NUMA
  808. for(int tid=0;tid<omp_p;tid++){
  809. size_t a_=a+((b-a)* tid )/omp_p;
  810. size_t b_=a+((b-a)*(tid+1))/omp_p;
  811. mem::memcopy(&M_[0][a_], &M[0][a_], (b_-a_)*sizeof(Real_t));
  812. }
  813. }
  814. */
  815. }
  816. return M_;
  817. }
  818. template <class FMMNode>
  819. void FMM_Pts<FMMNode>::PrecompAll(Mat_Type type, int level){
  820. int depth=(Homogen()?1:MAX_DEPTH);
  821. if(level==-1){
  822. for(int l=0;l<depth;l++){
  823. std::stringstream level_str;
  824. level_str<<"level="<<l;
  825. PrecompAll(type, l);
  826. }
  827. return;
  828. }
  829. //Compute basic permutations.
  830. for(size_t i=0;i<Perm_Count;i++)
  831. this->PrecompPerm(type, (Perm_Type) i);
  832. {
  833. //Allocate matrices.
  834. size_t mat_cnt=interac_list.ListCount((Mat_Type)type);
  835. mat->Mat(level, (Mat_Type)type, mat_cnt-1);
  836. { // Compute InteracClass matrices.
  837. std::vector<size_t> indx_lst;
  838. for(size_t i=0; i<mat_cnt; i++){
  839. if(interac_list.InteracClass((Mat_Type)type,i)==i)
  840. indx_lst.push_back(i);
  841. }
  842. //Compute Transformations.
  843. //#pragma omp parallel for //lets use fine grained parallelism
  844. for(size_t i=0; i<indx_lst.size(); i++){
  845. Precomp(level, (Mat_Type)type, indx_lst[i]);
  846. }
  847. }
  848. //#pragma omp parallel for //lets use fine grained parallelism
  849. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
  850. Matrix<Real_t>& M0=interac_list.ClassMat(level,(Mat_Type)type,mat_indx);
  851. assert(M0.Dim(0)>0 && M0.Dim(1)>0);
  852. Permutation<Real_t>& pr=interac_list.Perm_R(level, (Mat_Type)type, mat_indx);
  853. Permutation<Real_t>& pc=interac_list.Perm_C(level, (Mat_Type)type, mat_indx);
  854. if(pr.Dim()!=M0.Dim(0) || pc.Dim()!=M0.Dim(1)) Precomp(level, (Mat_Type)type, mat_indx);
  855. }
  856. }
  857. }
  858. template <class FMMNode>
  859. void FMM_Pts<FMMNode>::CollectNodeData(std::vector<FMMNode*>& node, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, std::vector<size_t> extra_size){
  860. if( buff.size()<7) buff.resize(7);
  861. if( n_list.size()<7) n_list.resize(7);
  862. if(node.size()==0) return;
  863. {// 0. upward_equiv
  864. int indx=0;
  865. Matrix<Real_t>& M_uc2ue = this->interac_list.ClassMat(0, UC2UE_Type, 0);
  866. size_t vec_sz=M_uc2ue.Dim(1);
  867. std::vector< FMMNode* > node_lst;
  868. {
  869. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  870. FMMNode_t* r_node=NULL;
  871. for(size_t i=0;i<node.size();i++){
  872. if(!node[i]->IsLeaf())
  873. node_lst_[node[i]->Depth()].push_back(node[i]);
  874. if(node[i]->Depth()==0) r_node=node[i];
  875. }
  876. size_t chld_cnt=1UL<<COORD_DIM;
  877. for(int i=0;i<=MAX_DEPTH;i++)
  878. for(size_t j=0;j<node_lst_[i].size();j++)
  879. for(size_t k=0;k<chld_cnt;k++)
  880. node_lst.push_back((FMMNode_t*)node_lst_[i][j]->Child(k));
  881. if(r_node!=NULL) node_lst.push_back(r_node);
  882. }
  883. n_list[indx]=node_lst;
  884. size_t buff_size=node_lst.size()*vec_sz;
  885. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  886. buff[indx].Resize(1,buff_size);
  887. #pragma omp parallel for
  888. for(size_t i=0;i<node_lst.size();i++){
  889. Vector<Real_t>& upward_equiv=node_lst[i]->FMMData()->upward_equiv;
  890. upward_equiv.ReInit(vec_sz, buff[indx][0]+i*vec_sz, false);
  891. upward_equiv.SetZero();
  892. }
  893. buff[indx].AllocDevice(true);
  894. }
  895. {// 1. dnward_equiv
  896. int indx=1;
  897. Matrix<Real_t>& M_dc2de = this->interac_list.ClassMat(0, DC2DE_Type, 0);
  898. size_t vec_sz=M_dc2de.Dim(1);
  899. std::vector< FMMNode* > node_lst;
  900. {
  901. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  902. FMMNode_t* r_node=NULL;
  903. for(size_t i=0;i<node.size();i++){
  904. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  905. node_lst_[node[i]->Depth()].push_back(node[i]);
  906. if(node[i]->Depth()==0) r_node=node[i];
  907. }
  908. size_t chld_cnt=1UL<<COORD_DIM;
  909. for(int i=0;i<=MAX_DEPTH;i++)
  910. for(size_t j=0;j<node_lst_[i].size();j++)
  911. for(size_t k=0;k<chld_cnt;k++)
  912. node_lst.push_back((FMMNode_t*)node_lst_[i][j]->Child(k));
  913. if(r_node!=NULL) node_lst.push_back(r_node);
  914. }
  915. n_list[indx]=node_lst;
  916. size_t buff_size=node_lst.size()*vec_sz;
  917. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  918. buff[indx].Resize(1,buff_size);
  919. #pragma omp parallel for
  920. for(size_t i=0;i<node_lst.size();i++){
  921. Vector<Real_t>& dnward_equiv=node_lst[i]->FMMData()->dnward_equiv;
  922. dnward_equiv.ReInit(vec_sz, buff[indx][0]+i*vec_sz, false);
  923. dnward_equiv.SetZero();
  924. }
  925. buff[indx].AllocDevice(true);
  926. }
  927. {// 2. upward_equiv_fft
  928. int indx=2;
  929. std::vector< FMMNode* > node_lst;
  930. {
  931. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  932. for(size_t i=0;i<node.size();i++)
  933. if(!node[i]->IsLeaf())
  934. node_lst_[node[i]->Depth()].push_back(node[i]);
  935. for(int i=0;i<=MAX_DEPTH;i++)
  936. for(size_t j=0;j<node_lst_[i].size();j++)
  937. node_lst.push_back(node_lst_[i][j]);
  938. }
  939. n_list[indx]=node_lst;
  940. buff[indx].AllocDevice(true);
  941. }
  942. {// 3. dnward_check_fft
  943. int indx=3;
  944. std::vector< FMMNode* > node_lst;
  945. {
  946. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  947. for(size_t i=0;i<node.size();i++)
  948. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  949. node_lst_[node[i]->Depth()].push_back(node[i]);
  950. for(int i=0;i<=MAX_DEPTH;i++)
  951. for(size_t j=0;j<node_lst_[i].size();j++)
  952. node_lst.push_back(node_lst_[i][j]);
  953. }
  954. n_list[indx]=node_lst;
  955. buff[indx].AllocDevice(true);
  956. }
  957. {// 4. src_val
  958. int indx=4;
  959. int src_dof=kernel.ker_dim[0];
  960. int surf_dof=COORD_DIM+src_dof;
  961. std::vector< FMMNode* > node_lst;
  962. size_t buff_size=0;
  963. for(size_t i=0;i<node.size();i++)
  964. if(node[i]->IsLeaf()){
  965. node_lst.push_back(node[i]);
  966. buff_size+=(node[i]->src_coord.Dim()/COORD_DIM)*src_dof;
  967. buff_size+=(node[i]->surf_coord.Dim()/COORD_DIM)*surf_dof;
  968. }
  969. n_list[indx]=node_lst;
  970. #pragma omp parallel for
  971. for(size_t i=0;i<node_lst.size();i++){ // Move data before resizing buff[indx]
  972. { // src_value
  973. Vector<Real_t>& src_value=node_lst[i]->src_value;
  974. Vector<Real_t> new_buff=src_value;
  975. src_value.ReInit(new_buff.Dim(), &new_buff[0]);
  976. }
  977. { // surf_value
  978. Vector<Real_t>& surf_value=node_lst[i]->surf_value;
  979. Vector<Real_t> new_buff=surf_value;
  980. surf_value.ReInit(new_buff.Dim(), &new_buff[0]);
  981. }
  982. }
  983. buff[indx].Resize(1,buff_size+(extra_size.size()>indx?extra_size[indx]:0));
  984. Real_t* buff_ptr=&buff[indx][0][0];
  985. for(size_t i=0;i<node_lst.size();i++){
  986. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  987. { // src_value
  988. Vector<Real_t>& src_value=node_lst[i]->src_value;
  989. mem::memcopy(buff_ptr,&src_value[0],src_value.Dim()*sizeof(Real_t));
  990. src_value.ReInit((node_lst[i]->src_coord.Dim()/COORD_DIM)*src_dof, buff_ptr, false);
  991. buff_ptr+=(node_lst[i]->src_coord.Dim()/COORD_DIM)*src_dof;
  992. }
  993. { // surf_value
  994. Vector<Real_t>& surf_value=node_lst[i]->surf_value;
  995. mem::memcopy(buff_ptr,&surf_value[0],surf_value.Dim()*sizeof(Real_t));
  996. surf_value.ReInit((node_lst[i]->surf_coord.Dim()/COORD_DIM)*surf_dof, buff_ptr, false);
  997. buff_ptr+=(node_lst[i]->surf_coord.Dim()/COORD_DIM)*surf_dof;
  998. }
  999. }
  1000. buff[indx].AllocDevice(true);
  1001. }
  1002. {// 5. trg_val
  1003. int indx=5;
  1004. int trg_dof=kernel.ker_dim[1];
  1005. std::vector< FMMNode* > node_lst;
  1006. size_t buff_size=0;
  1007. for(size_t i=0;i<node.size();i++)
  1008. if(node[i]->IsLeaf() && !node[i]->IsGhost()){
  1009. node_lst.push_back(node[i]);
  1010. FMMData* fmm_data=((FMMData*)node[i]->FMMData());
  1011. buff_size+=(node[i]->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1012. }
  1013. n_list[indx]=node_lst;
  1014. buff[indx].Resize(1,buff_size+(extra_size.size()>indx?extra_size[indx]:0));
  1015. Real_t* buff_ptr=&buff[indx][0][0];
  1016. for(size_t i=0;i<node_lst.size();i++){
  1017. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  1018. { // trg_value
  1019. Vector<Real_t>& trg_value=node_lst[i]->trg_value;
  1020. trg_value.ReInit((node_lst[i]->trg_coord.Dim()/COORD_DIM)*trg_dof, buff_ptr, false);
  1021. buff_ptr+=(node_lst[i]->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1022. }
  1023. }
  1024. #pragma omp parallel for
  1025. for(size_t i=0;i<node_lst.size();i++){
  1026. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  1027. Vector<Real_t>& trg_value=node_lst[i]->trg_value;
  1028. trg_value.SetZero();
  1029. }
  1030. buff[indx].AllocDevice(true);
  1031. }
  1032. {// 6. pts_coord
  1033. int indx=6;
  1034. size_t m=MultipoleOrder();
  1035. std::vector< FMMNode* > node_lst;
  1036. size_t buff_size=0;
  1037. for(size_t i=0;i<node.size();i++)
  1038. if(node[i]->IsLeaf()){
  1039. node_lst.push_back(node[i]);
  1040. FMMData* fmm_data=((FMMData*)node[i]->FMMData());
  1041. buff_size+=node[i]->src_coord.Dim();
  1042. buff_size+=node[i]->surf_coord.Dim();
  1043. buff_size+=node[i]->trg_coord.Dim();
  1044. }
  1045. n_list[indx]=node_lst;
  1046. #pragma omp parallel for
  1047. for(size_t i=0;i<node_lst.size();i++){ // Move data before resizing buff[indx]
  1048. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  1049. { // src_coord
  1050. Vector<Real_t>& src_coord=node_lst[i]->src_coord;
  1051. Vector<Real_t> new_buff=src_coord;
  1052. src_coord.ReInit(new_buff.Dim(), &new_buff[0]);
  1053. }
  1054. { // surf_coord
  1055. Vector<Real_t>& surf_coord=node_lst[i]->surf_coord;
  1056. Vector<Real_t> new_buff=surf_coord;
  1057. surf_coord.ReInit(new_buff.Dim(), &new_buff[0]);
  1058. }
  1059. { // trg_coord
  1060. Vector<Real_t>& trg_coord=node_lst[i]->trg_coord;
  1061. Vector<Real_t> new_buff=trg_coord;
  1062. trg_coord.ReInit(new_buff.Dim(), &new_buff[0]);
  1063. }
  1064. }
  1065. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  1066. buff_size+=4*MAX_DEPTH*(6*(m-1)*(m-1)+2)*COORD_DIM;
  1067. buff[indx].Resize(1,buff_size);
  1068. Real_t* buff_ptr=&buff[indx][0][0];
  1069. for(size_t i=0;i<node_lst.size();i++){
  1070. FMMData* fmm_data=((FMMData*)node_lst[i]->FMMData());
  1071. { // src_coord
  1072. Vector<Real_t>& src_coord=node_lst[i]->src_coord;
  1073. mem::memcopy(buff_ptr,&src_coord[0],src_coord.Dim()*sizeof(Real_t));
  1074. src_coord.ReInit(node_lst[i]->src_coord.Dim(), buff_ptr, false);
  1075. buff_ptr+=node_lst[i]->src_coord.Dim();
  1076. }
  1077. { // surf_coord
  1078. Vector<Real_t>& surf_coord=node_lst[i]->surf_coord;
  1079. mem::memcopy(buff_ptr,&surf_coord[0],surf_coord.Dim()*sizeof(Real_t));
  1080. surf_coord.ReInit(node_lst[i]->surf_coord.Dim(), buff_ptr, false);
  1081. buff_ptr+=node_lst[i]->surf_coord.Dim();
  1082. }
  1083. { // trg_coord
  1084. Vector<Real_t>& trg_coord=node_lst[i]->trg_coord;
  1085. mem::memcopy(buff_ptr,&trg_coord[0],trg_coord.Dim()*sizeof(Real_t));
  1086. trg_coord.ReInit(node_lst[i]->trg_coord.Dim(), buff_ptr, false);
  1087. buff_ptr+=node_lst[i]->trg_coord.Dim();
  1088. }
  1089. }
  1090. { // check and equiv surfaces.
  1091. upwd_check_surf.resize(MAX_DEPTH);
  1092. upwd_equiv_surf.resize(MAX_DEPTH);
  1093. dnwd_check_surf.resize(MAX_DEPTH);
  1094. dnwd_equiv_surf.resize(MAX_DEPTH);
  1095. for(size_t depth=0;depth<MAX_DEPTH;depth++){
  1096. Real_t c[3]={0.0,0.0,0.0};
  1097. upwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1098. upwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1099. dnwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1100. dnwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1101. upwd_check_surf[depth]=u_check_surf(m,c,depth);
  1102. upwd_equiv_surf[depth]=u_equiv_surf(m,c,depth);
  1103. dnwd_check_surf[depth]=d_check_surf(m,c,depth);
  1104. dnwd_equiv_surf[depth]=d_equiv_surf(m,c,depth);
  1105. }
  1106. }
  1107. buff[indx].AllocDevice(true);
  1108. }
  1109. }
  1110. template <class FMMNode>
  1111. void FMM_Pts<FMMNode>::SetupPrecomp(SetupData<Real_t>& setup_data, bool device){
  1112. if(setup_data.precomp_data==NULL) return;
  1113. Profile::Tic("SetupPrecomp",&this->comm,true,25);
  1114. { // Build precomp_data
  1115. size_t precomp_offset=0;
  1116. int level=setup_data.level;
  1117. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1118. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1119. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1120. Mat_Type& interac_type=interac_type_lst[type_indx];
  1121. this->PrecompAll(interac_type, level); // Compute matrices.
  1122. precomp_offset=this->mat->CompactData(level, interac_type, precomp_data, precomp_offset);
  1123. }
  1124. }
  1125. Profile::Toc();
  1126. if(device){ // Host2Device
  1127. Profile::Tic("Host2Device",&this->comm,false,25);
  1128. setup_data.precomp_data->AllocDevice(true);
  1129. Profile::Toc();
  1130. }
  1131. }
  1132. template <class FMMNode>
  1133. void FMM_Pts<FMMNode>::SetupInterac(SetupData<Real_t>& setup_data, bool device){
  1134. int level=setup_data.level;
  1135. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1136. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1137. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1138. Matrix<Real_t>& input_data=*setup_data. input_data;
  1139. Matrix<Real_t>& output_data=*setup_data.output_data;
  1140. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  1141. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  1142. size_t n_in =nodes_in .size();
  1143. size_t n_out=nodes_out.size();
  1144. // Setup precomputed data.
  1145. SetupPrecomp(setup_data,device);
  1146. // Build interac_data
  1147. Profile::Tic("Interac-Data",&this->comm,true,25);
  1148. Matrix<char>& interac_data=setup_data.interac_data;
  1149. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  1150. std::vector<size_t> interac_mat;
  1151. std::vector<size_t> interac_cnt;
  1152. std::vector<size_t> interac_blk;
  1153. std::vector<size_t> input_perm;
  1154. std::vector<size_t> output_perm;
  1155. std::vector<Real_t> scaling;
  1156. size_t dof=0, M_dim0=0, M_dim1=0;
  1157. size_t precomp_offset=0;
  1158. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  1159. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1160. Mat_Type& interac_type=interac_type_lst[type_indx];
  1161. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  1162. Vector<size_t> precomp_data_offset;
  1163. { // Load precomp_data for interac_type.
  1164. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1165. char* indx_ptr=precomp_data[0]+precomp_offset;
  1166. size_t total_size=((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  1167. /*size_t mat_cnt_ =((size_t*)indx_ptr)[0];*/ indx_ptr+=sizeof(size_t);
  1168. precomp_data_offset.ReInit((1+2+2)*mat_cnt, (size_t*)indx_ptr, false);
  1169. precomp_offset+=total_size;
  1170. }
  1171. Matrix<FMMNode*> src_interac_list(n_in ,mat_cnt); src_interac_list.SetZero();
  1172. Matrix<FMMNode*> trg_interac_list(n_out,mat_cnt); trg_interac_list.SetZero();
  1173. { // Build trg_interac_list
  1174. for(size_t i=0;i<n_out;i++){
  1175. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  1176. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  1177. mem::memcopy(&trg_interac_list[i][0], &lst[0], lst.size()*sizeof(FMMNode*));
  1178. assert(lst.size()==mat_cnt);
  1179. }
  1180. }
  1181. }
  1182. { // Build src_interac_list
  1183. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  1184. for(size_t i=0;i<n_out;i++){
  1185. for(size_t j=0;j<mat_cnt;j++)
  1186. if(trg_interac_list[i][j]!=NULL){
  1187. src_interac_list[trg_interac_list[i][j]->node_id][j]=(FMMNode*)nodes_out[i];
  1188. }
  1189. }
  1190. }
  1191. Matrix<size_t> interac_dsp(n_out,mat_cnt);
  1192. std::vector<size_t> interac_blk_dsp(1,0);
  1193. { // Determine dof, M_dim0, M_dim1
  1194. dof=1;
  1195. Matrix<Real_t>& M0 = this->interac_list.ClassMat(level, interac_type_lst[0], 0);
  1196. M_dim0=M0.Dim(0); M_dim1=M0.Dim(1);
  1197. }
  1198. { // Determine interaction blocks which fit in memory.
  1199. size_t vec_size=(M_dim0+M_dim1)*sizeof(Real_t)*dof;
  1200. for(size_t j=0;j<mat_cnt;j++){// Determine minimum buff_size
  1201. size_t vec_cnt=0;
  1202. for(size_t i=0;i<n_out;i++){
  1203. if(trg_interac_list[i][j]!=NULL) vec_cnt++;
  1204. }
  1205. if(buff_size<vec_cnt*vec_size)
  1206. buff_size=vec_cnt*vec_size;
  1207. }
  1208. size_t interac_dsp_=0;
  1209. for(size_t j=0;j<mat_cnt;j++){
  1210. for(size_t i=0;i<n_out;i++){
  1211. interac_dsp[i][j]=interac_dsp_;
  1212. if(trg_interac_list[i][j]!=NULL) interac_dsp_++;
  1213. }
  1214. if(interac_dsp_*vec_size>buff_size){
  1215. interac_blk.push_back(j-interac_blk_dsp.back());
  1216. interac_blk_dsp.push_back(j);
  1217. size_t offset=interac_dsp[0][j];
  1218. for(size_t i=0;i<n_out;i++) interac_dsp[i][j]-=offset;
  1219. interac_dsp_-=offset;
  1220. assert(interac_dsp_*vec_size<=buff_size); // Problem too big for buff_size.
  1221. }
  1222. interac_mat.push_back(precomp_data_offset[5*this->interac_list.InteracClass(interac_type,j)+0]);
  1223. interac_cnt.push_back(interac_dsp_-interac_dsp[0][j]);
  1224. }
  1225. interac_blk.push_back(mat_cnt-interac_blk_dsp.back());
  1226. interac_blk_dsp.push_back(mat_cnt);
  1227. }
  1228. { // Determine input_perm.
  1229. size_t vec_size=M_dim0*dof;
  1230. for(size_t i=0;i<n_out;i++) ((FMMNode*)nodes_out[i])->node_id=i;
  1231. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1232. for(size_t i=0;i<n_in ;i++){
  1233. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1234. FMMNode_t* trg_node=src_interac_list[i][j];
  1235. if(trg_node!=NULL){
  1236. input_perm .push_back(precomp_data_offset[5*j+1]); // prem
  1237. input_perm .push_back(precomp_data_offset[5*j+2]); // scal
  1238. input_perm .push_back(interac_dsp[trg_node->node_id][j]*vec_size*sizeof(Real_t)); // trg_ptr
  1239. input_perm .push_back((size_t)(& input_vector[i][0][0]- input_data[0])); // src_ptr
  1240. assert(input_vector[i]->Dim()==vec_size);
  1241. }
  1242. }
  1243. }
  1244. }
  1245. }
  1246. { // Determine scaling and output_perm
  1247. size_t vec_size=M_dim1*dof;
  1248. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1249. for(size_t i=0;i<n_out;i++){
  1250. Real_t scaling_=0.0;
  1251. if(!this->Homogen()) scaling_=1.0;
  1252. else if(interac_type==D2D_Type) scaling_=1.0;
  1253. else if(interac_type==D2T_Type) scaling_=pow(0.5, -setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  1254. else if(interac_type== U0_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1255. else if(interac_type== U1_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1256. else if(interac_type== U2_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1257. else if(interac_type== W_Type) scaling_=pow(0.5, -setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  1258. else if(interac_type== X_Type) scaling_=pow(0.5, COORD_DIM *((FMMNode*)nodes_out[i])->Depth());
  1259. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1260. if(trg_interac_list[i][j]!=NULL){
  1261. scaling.push_back(scaling_); // scaling
  1262. output_perm.push_back(precomp_data_offset[5*j+3]); // prem
  1263. output_perm.push_back(precomp_data_offset[5*j+4]); // scal
  1264. output_perm.push_back(interac_dsp[ i ][j]*vec_size*sizeof(Real_t)); // src_ptr
  1265. output_perm.push_back((size_t)(&output_vector[i][0][0]-output_data[0])); // trg_ptr
  1266. assert(output_vector[i]->Dim()==vec_size);
  1267. }
  1268. }
  1269. }
  1270. }
  1271. }
  1272. }
  1273. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  1274. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  1275. { // Set interac_data.
  1276. size_t data_size=sizeof(size_t)*4;
  1277. data_size+=sizeof(size_t)+interac_blk.size()*sizeof(size_t);
  1278. data_size+=sizeof(size_t)+interac_cnt.size()*sizeof(size_t);
  1279. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  1280. data_size+=sizeof(size_t)+ input_perm.size()*sizeof(size_t);
  1281. data_size+=sizeof(size_t)+output_perm.size()*sizeof(size_t);
  1282. data_size+=sizeof(size_t)+scaling.size()*sizeof(Real_t);
  1283. if(interac_data.Dim(0)*interac_data.Dim(1)<sizeof(size_t)){
  1284. data_size+=sizeof(size_t);
  1285. interac_data.Resize(1,data_size);
  1286. ((size_t*)&interac_data[0][0])[0]=sizeof(size_t);
  1287. }else{
  1288. size_t pts_data_size=*((size_t*)&interac_data[0][0]);
  1289. assert(interac_data.Dim(0)*interac_data.Dim(1)>=pts_data_size);
  1290. data_size+=pts_data_size;
  1291. if(data_size>interac_data.Dim(0)*interac_data.Dim(1)){ //Resize and copy interac_data.
  1292. Matrix< char> pts_interac_data=interac_data;
  1293. interac_data.Resize(1,data_size);
  1294. mem::memcopy(&interac_data[0][0],&pts_interac_data[0][0],pts_data_size);
  1295. }
  1296. }
  1297. char* data_ptr=&interac_data[0][0];
  1298. data_ptr+=((size_t*)data_ptr)[0];
  1299. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  1300. ((size_t*)data_ptr)[0]= M_dim0; data_ptr+=sizeof(size_t);
  1301. ((size_t*)data_ptr)[0]= M_dim1; data_ptr+=sizeof(size_t);
  1302. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  1303. ((size_t*)data_ptr)[0]=interac_blk.size(); data_ptr+=sizeof(size_t);
  1304. mem::memcopy(data_ptr, &interac_blk[0], interac_blk.size()*sizeof(size_t));
  1305. data_ptr+=interac_blk.size()*sizeof(size_t);
  1306. ((size_t*)data_ptr)[0]=interac_cnt.size(); data_ptr+=sizeof(size_t);
  1307. mem::memcopy(data_ptr, &interac_cnt[0], interac_cnt.size()*sizeof(size_t));
  1308. data_ptr+=interac_cnt.size()*sizeof(size_t);
  1309. ((size_t*)data_ptr)[0]=interac_mat.size(); data_ptr+=sizeof(size_t);
  1310. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  1311. data_ptr+=interac_mat.size()*sizeof(size_t);
  1312. ((size_t*)data_ptr)[0]= input_perm.size(); data_ptr+=sizeof(size_t);
  1313. mem::memcopy(data_ptr, & input_perm[0], input_perm.size()*sizeof(size_t));
  1314. data_ptr+= input_perm.size()*sizeof(size_t);
  1315. ((size_t*)data_ptr)[0]=output_perm.size(); data_ptr+=sizeof(size_t);
  1316. mem::memcopy(data_ptr, &output_perm[0], output_perm.size()*sizeof(size_t));
  1317. data_ptr+=output_perm.size()*sizeof(size_t);
  1318. ((size_t*)data_ptr)[0]=scaling.size(); data_ptr+=sizeof(size_t);
  1319. mem::memcopy(data_ptr, &scaling[0], scaling.size()*sizeof(Real_t));
  1320. data_ptr+=scaling.size()*sizeof(Real_t);
  1321. }
  1322. }
  1323. Profile::Toc();
  1324. if(device){ // Host2Device
  1325. Profile::Tic("Host2Device",&this->comm,false,25);
  1326. setup_data.interac_data .AllocDevice(true);
  1327. Profile::Toc();
  1328. }
  1329. }
  1330. template <class FMMNode>
  1331. void FMM_Pts<FMMNode>::EvalList(SetupData<Real_t>& setup_data, bool device){
  1332. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  1333. Profile::Tic("Host2Device",&this->comm,false,25);
  1334. Profile::Toc();
  1335. Profile::Tic("DeviceComp",&this->comm,false,20);
  1336. Profile::Toc();
  1337. return;
  1338. }
  1339. Profile::Tic("Host2Device",&this->comm,false,25);
  1340. typename Vector<char>::Device buff;
  1341. typename Matrix<char>::Device precomp_data;
  1342. typename Matrix<char>::Device interac_data;
  1343. typename Matrix<Real_t>::Device input_data;
  1344. typename Matrix<Real_t>::Device output_data;
  1345. if(device){
  1346. buff = this-> dev_buffer. AllocDevice(false);
  1347. precomp_data= setup_data.precomp_data->AllocDevice(false);
  1348. interac_data= setup_data.interac_data. AllocDevice(false);
  1349. input_data = setup_data. input_data->AllocDevice(false);
  1350. output_data = setup_data. output_data->AllocDevice(false);
  1351. }else{
  1352. buff = this-> cpu_buffer;
  1353. precomp_data=*setup_data.precomp_data;
  1354. interac_data= setup_data.interac_data;
  1355. input_data =*setup_data. input_data;
  1356. output_data =*setup_data. output_data;
  1357. }
  1358. Profile::Toc();
  1359. Profile::Tic("DeviceComp",&this->comm,false,20);
  1360. #ifdef __INTEL_OFFLOAD
  1361. int lock_idx=-1;
  1362. int wait_lock_idx=-1;
  1363. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  1364. if(device) lock_idx=MIC_Lock::get_lock();
  1365. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  1366. #endif
  1367. { // Offloaded computation.
  1368. // Set interac_data.
  1369. size_t data_size, M_dim0, M_dim1, dof;
  1370. Vector<size_t> interac_blk;
  1371. Vector<size_t> interac_cnt;
  1372. Vector<size_t> interac_mat;
  1373. Vector<size_t> input_perm;
  1374. Vector<size_t> output_perm;
  1375. Vector<Real_t> scaling;
  1376. { // Set interac_data.
  1377. char* data_ptr=&interac_data[0][0];
  1378. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size;
  1379. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1380. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1381. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1382. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1383. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1384. data_ptr+=sizeof(size_t)+interac_blk.Dim()*sizeof(size_t);
  1385. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1386. data_ptr+=sizeof(size_t)+interac_cnt.Dim()*sizeof(size_t);
  1387. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1388. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  1389. input_perm .ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1390. data_ptr+=sizeof(size_t)+ input_perm.Dim()*sizeof(size_t);
  1391. output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1392. data_ptr+=sizeof(size_t)+output_perm.Dim()*sizeof(size_t);
  1393. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  1394. data_ptr+=sizeof(size_t)+scaling.Dim()*sizeof(Real_t);
  1395. }
  1396. #ifdef __INTEL_OFFLOAD
  1397. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  1398. #endif
  1399. //Compute interaction from Chebyshev source density.
  1400. { // interactions
  1401. int omp_p=omp_get_max_threads();
  1402. size_t interac_indx=0;
  1403. size_t interac_blk_dsp=0;
  1404. for(size_t k=0;k<interac_blk.Dim();k++){
  1405. size_t vec_cnt=0;
  1406. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
  1407. char* buff_in =&buff[0];
  1408. char* buff_out=&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1409. // Input permutation.
  1410. #pragma omp parallel for
  1411. for(int tid=0;tid<omp_p;tid++){
  1412. size_t a=( tid *vec_cnt)/omp_p;
  1413. size_t b=((tid+1)*vec_cnt)/omp_p;
  1414. for(size_t i=a;i<b;i++){
  1415. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+input_perm[(interac_indx+i)*4+0]);
  1416. const Real_t* scal=( Real_t*)(precomp_data[0]+input_perm[(interac_indx+i)*4+1]);
  1417. const Real_t* v_in =( Real_t*)( input_data[0]+input_perm[(interac_indx+i)*4+3]);
  1418. Real_t* v_out=( Real_t*)( buff_in +input_perm[(interac_indx+i)*4+2]);
  1419. // TODO: Fix for dof>1
  1420. #ifdef __MIC__
  1421. {
  1422. __m512d v8;
  1423. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1424. size_t j_end =(((uintptr_t)(v_out+M_dim0) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1425. j_start/=sizeof(Real_t);
  1426. j_end /=sizeof(Real_t);
  1427. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1428. assert(((uintptr_t)(v_out+j_start))%64==0);
  1429. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1430. size_t j=0;
  1431. for(;j<j_start;j++ ){
  1432. v_out[j]=v_in[perm[j]]*scal[j];
  1433. }
  1434. for(;j<j_end ;j+=8){
  1435. v8=_mm512_setr_pd(
  1436. v_in[perm[j+0]]*scal[j+0],
  1437. v_in[perm[j+1]]*scal[j+1],
  1438. v_in[perm[j+2]]*scal[j+2],
  1439. v_in[perm[j+3]]*scal[j+3],
  1440. v_in[perm[j+4]]*scal[j+4],
  1441. v_in[perm[j+5]]*scal[j+5],
  1442. v_in[perm[j+6]]*scal[j+6],
  1443. v_in[perm[j+7]]*scal[j+7]);
  1444. _mm512_storenrngo_pd(v_out+j,v8);
  1445. }
  1446. for(;j<M_dim0 ;j++ ){
  1447. v_out[j]=v_in[perm[j]]*scal[j];
  1448. }
  1449. }
  1450. #else
  1451. for(size_t j=0;j<M_dim0;j++ ){
  1452. v_out[j]=v_in[perm[j]]*scal[j];
  1453. }
  1454. #endif
  1455. }
  1456. }
  1457. size_t vec_cnt0=0;
  1458. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];){
  1459. size_t vec_cnt1=0;
  1460. size_t interac_mat0=interac_mat[j];
  1461. for(;j<interac_blk_dsp+interac_blk[k] && interac_mat[j]==interac_mat0;j++) vec_cnt1+=interac_cnt[j];
  1462. Matrix<Real_t> M(M_dim0, M_dim1, (Real_t*)(precomp_data[0]+interac_mat0), false);
  1463. #ifdef __MIC__
  1464. {
  1465. Matrix<Real_t> Ms(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1466. Matrix<Real_t> Mt(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1467. Matrix<Real_t>::DGEMM(Mt,Ms,M);
  1468. }
  1469. #else
  1470. #pragma omp parallel for
  1471. for(int tid=0;tid<omp_p;tid++){
  1472. size_t a=(dof*vec_cnt1*(tid ))/omp_p;
  1473. size_t b=(dof*vec_cnt1*(tid+1))/omp_p;
  1474. Matrix<Real_t> Ms(b-a, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t))+M_dim0*a, false);
  1475. Matrix<Real_t> Mt(b-a, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t))+M_dim1*a, false);
  1476. Matrix<Real_t>::DGEMM(Mt,Ms,M);
  1477. }
  1478. #endif
  1479. vec_cnt0+=vec_cnt1;
  1480. }
  1481. // Output permutation.
  1482. #pragma omp parallel for
  1483. for(int tid=0;tid<omp_p;tid++){
  1484. size_t a=( tid *vec_cnt)/omp_p;
  1485. size_t b=((tid+1)*vec_cnt)/omp_p;
  1486. if(tid> 0 && a<vec_cnt){ // Find 'a' independent of other threads.
  1487. size_t out_ptr=output_perm[(interac_indx+a)*4+3];
  1488. if(tid> 0) while(a<vec_cnt && out_ptr==output_perm[(interac_indx+a)*4+3]) a++;
  1489. }
  1490. if(tid<omp_p-1 && b<vec_cnt){ // Find 'b' independent of other threads.
  1491. size_t out_ptr=output_perm[(interac_indx+b)*4+3];
  1492. if(tid<omp_p-1) while(b<vec_cnt && out_ptr==output_perm[(interac_indx+b)*4+3]) b++;
  1493. }
  1494. for(size_t i=a;i<b;i++){ // Compute permutations.
  1495. Real_t scaling_factor=scaling[interac_indx+i];
  1496. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+output_perm[(interac_indx+i)*4+0]);
  1497. const Real_t* scal=( Real_t*)(precomp_data[0]+output_perm[(interac_indx+i)*4+1]);
  1498. const Real_t* v_in =( Real_t*)( buff_out +output_perm[(interac_indx+i)*4+2]);
  1499. Real_t* v_out=( Real_t*)( output_data[0]+output_perm[(interac_indx+i)*4+3]);
  1500. // TODO: Fix for dof>1
  1501. #ifdef __MIC__
  1502. {
  1503. __m512d v8;
  1504. __m512d v_old;
  1505. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1506. size_t j_end =(((uintptr_t)(v_out+M_dim1) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1507. j_start/=sizeof(Real_t);
  1508. j_end /=sizeof(Real_t);
  1509. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1510. assert(((uintptr_t)(v_out+j_start))%64==0);
  1511. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1512. size_t j=0;
  1513. for(;j<j_start;j++ ){
  1514. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1515. }
  1516. for(;j<j_end ;j+=8){
  1517. v_old=_mm512_load_pd(v_out+j);
  1518. v8=_mm512_setr_pd(
  1519. v_in[perm[j+0]]*scal[j+0]*scaling_factor,
  1520. v_in[perm[j+1]]*scal[j+1]*scaling_factor,
  1521. v_in[perm[j+2]]*scal[j+2]*scaling_factor,
  1522. v_in[perm[j+3]]*scal[j+3]*scaling_factor,
  1523. v_in[perm[j+4]]*scal[j+4]*scaling_factor,
  1524. v_in[perm[j+5]]*scal[j+5]*scaling_factor,
  1525. v_in[perm[j+6]]*scal[j+6]*scaling_factor,
  1526. v_in[perm[j+7]]*scal[j+7]*scaling_factor);
  1527. v_old=_mm512_add_pd(v_old, v8);
  1528. _mm512_storenrngo_pd(v_out+j,v_old);
  1529. }
  1530. for(;j<M_dim1 ;j++ ){
  1531. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1532. }
  1533. }
  1534. #else
  1535. for(size_t j=0;j<M_dim1;j++ ){
  1536. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1537. }
  1538. #endif
  1539. }
  1540. }
  1541. interac_indx+=vec_cnt;
  1542. interac_blk_dsp+=interac_blk[k];
  1543. }
  1544. }
  1545. #ifdef __INTEL_OFFLOAD
  1546. if(device) MIC_Lock::release_lock(lock_idx);
  1547. #endif
  1548. }
  1549. #ifndef __MIC_ASYNCH__
  1550. #ifdef __INTEL_OFFLOAD
  1551. #pragma offload if(device) target(mic:0)
  1552. {if(device) MIC_Lock::wait_lock(lock_idx);}
  1553. #endif
  1554. #endif
  1555. Profile::Toc();
  1556. }
  1557. template <class FMMNode>
  1558. void FMM_Pts<FMMNode>::InitMultipole(FMMNode** node, size_t n, int level){
  1559. if(n==0) return;
  1560. int dof=1;
  1561. //Get the upward-check surface.
  1562. std::vector<Real_t> uc_coord[MAX_DEPTH+1];
  1563. size_t uc_cnt;
  1564. {
  1565. Real_t c[3]={0,0,0};
  1566. for(int i=0;i<=MAX_DEPTH;i++)
  1567. uc_coord[i]=u_check_surf(MultipoleOrder(),c,i);
  1568. uc_cnt=uc_coord[0].size()/COORD_DIM;
  1569. }
  1570. //Read matrices.
  1571. Matrix<Real_t>& M_uc2ue = this->mat->Mat(level, UC2UE_Type, 0);
  1572. //Compute multipole expansion.
  1573. #pragma omp parallel
  1574. {
  1575. int omp_p=omp_get_num_threads();
  1576. int pid = omp_get_thread_num();
  1577. size_t a=(pid*n)/omp_p;
  1578. size_t b=((pid+1)*n)/omp_p;
  1579. Matrix<Real_t> u_check(dof, M_uc2ue.Dim(0));
  1580. for (size_t j=a;j<b;j++){
  1581. Vector<Real_t>& upward_equiv=node[j]->FMMData()->upward_equiv;
  1582. assert(upward_equiv.Dim()==M_uc2ue.Dim(1)*dof);
  1583. Matrix<Real_t> u_equiv(dof,M_uc2ue.Dim(1),&upward_equiv[0],false);
  1584. u_equiv.SetZero(); // TODO: Do in setup
  1585. //Compute multipole expansion form point sources.
  1586. size_t pt_cnt=node[j]->src_coord.Dim()/COORD_DIM;
  1587. size_t surf_pt_cnt=node[j]->surf_coord.Dim()/COORD_DIM;
  1588. if(pt_cnt+surf_pt_cnt>0){
  1589. //Relative coord of upward check surf.
  1590. Real_t* c=node[j]->Coord();
  1591. std::vector<Real_t> uc_coord1(uc_cnt*COORD_DIM);
  1592. for(size_t i=0;i<uc_cnt;i++) for(int k=0;k<COORD_DIM;k++)
  1593. uc_coord1[i*COORD_DIM+k]=uc_coord[node[j]->Depth()][i*COORD_DIM+k]+c[k];
  1594. Profile::Add_FLOP((long long)uc_cnt*(long long)COORD_DIM);
  1595. //Compute upward check potential.
  1596. u_check.SetZero();
  1597. if(pt_cnt>0)
  1598. aux_kernel.ker_poten(&node[j]->src_coord[0], pt_cnt,
  1599. &node[j]->src_value[0], dof,
  1600. &uc_coord1[0], uc_cnt, u_check[0]);
  1601. if(surf_pt_cnt>0)
  1602. aux_kernel.dbl_layer_poten(&node[j]->surf_coord[0], surf_pt_cnt,
  1603. &node[j]->surf_value[0], dof,
  1604. &uc_coord1[0], uc_cnt, u_check[0]);
  1605. //Rearrange data.
  1606. {
  1607. Matrix<Real_t> M_tmp(M_uc2ue.Dim(0)/aux_kernel.ker_dim[1],aux_kernel.ker_dim[1]*dof, &u_check[0][0], false);
  1608. M_tmp=M_tmp.Transpose();
  1609. for(int i=0;i<dof;i++){
  1610. Matrix<Real_t> M_tmp1(aux_kernel.ker_dim[1], M_uc2ue.Dim(0)/aux_kernel.ker_dim[1], &u_check[i][0], false);
  1611. M_tmp1=M_tmp1.Transpose();
  1612. }
  1613. }
  1614. //Compute UC2UE (vector-matrix multiply).
  1615. Matrix<Real_t>::DGEMM(u_equiv,u_check,M_uc2ue,1.0);
  1616. }
  1617. //Adjusting for scale.
  1618. if(Homogen()){
  1619. Real_t scale_factor=pow(0.5, node[j]->Depth()*aux_kernel.poten_scale);
  1620. for(size_t i=0;i<upward_equiv.Dim();i++)
  1621. upward_equiv[i]*=scale_factor;
  1622. }
  1623. }
  1624. }
  1625. }
  1626. template <class FMMNode>
  1627. void FMM_Pts<FMMNode>::Up2Up(FMMNode** nodes, size_t n, int level){
  1628. if(n==0) return;
  1629. int dof=1;
  1630. size_t n_eq=this->interac_list.ClassMat(level,U2U_Type,0).Dim(1);
  1631. size_t mat_cnt=interac_list.ListCount(U2U_Type);
  1632. //For all non-leaf, non-ghost nodes.
  1633. #pragma omp parallel
  1634. {
  1635. int omp_p=omp_get_num_threads();
  1636. int pid = omp_get_thread_num();
  1637. size_t a=(pid*n)/omp_p;
  1638. size_t b=((pid+1)*n)/omp_p;
  1639. size_t cnt;
  1640. //Initialize this node's upward equivalent data
  1641. for(size_t i=a;i<b;i++){
  1642. Vector<Real_t>& upward_equiv=nodes[i]->FMMData()->upward_equiv;
  1643. assert(upward_equiv.Dim()==dof*n_eq);
  1644. upward_equiv.SetZero(); // TODO: Do in setup
  1645. UNUSED(upward_equiv);
  1646. UNUSED(n_eq);
  1647. }
  1648. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
  1649. Matrix<Real_t>& M = this->mat->Mat(level, U2U_Type, mat_indx);
  1650. if(M.Dim(0)!=0 && M.Dim(1)!=0){
  1651. cnt=0;
  1652. for(size_t i=a;i<b;i++)
  1653. if(/*!nodes[i]->IsGhost() && */!nodes[i]->IsLeaf()) if(((FMMNode*)nodes[i]->Child(mat_indx))->FMMData()->upward_equiv.Dim()>0) cnt++;
  1654. Matrix<Real_t> src_vec(cnt*dof,M.Dim(0));
  1655. Matrix<Real_t> trg_vec(cnt*dof,M.Dim(1));
  1656. //Get child's multipole expansion.
  1657. cnt=0;
  1658. for(size_t i=a;i<b;i++)
  1659. if(/*!nodes[i]->IsGhost() && */!nodes[i]->IsLeaf()) if(((FMMNode*)nodes[i]->Child(mat_indx))->FMMData()->upward_equiv.Dim()>0){
  1660. Vector<Real_t>& child_equiv=static_cast<FMMNode*>(nodes[i]->Child(mat_indx))->FMMData()->upward_equiv;
  1661. mem::memcopy(&(src_vec[cnt*dof][0]), &(child_equiv[0]), dof*M.Dim(0)*sizeof(Real_t));
  1662. cnt++;
  1663. }
  1664. Matrix<Real_t>::DGEMM(trg_vec,src_vec,M);
  1665. cnt=0;
  1666. size_t vec_len=M.Dim(1)*dof;
  1667. for(size_t i=a;i<b;i++)
  1668. if(/*!nodes[i]->IsGhost() && */!nodes[i]->IsLeaf()) if(((FMMNode*)nodes[i]->Child(mat_indx))->FMMData()->upward_equiv.Dim()>0){
  1669. Vector<Real_t>& upward_equiv=nodes[i]->FMMData()->upward_equiv;
  1670. assert(upward_equiv.Dim()==vec_len);
  1671. Matrix<Real_t> equiv (1,vec_len,&upward_equiv[0],false);
  1672. Matrix<Real_t> equiv_ (1,vec_len,trg_vec[cnt*dof],false);
  1673. equiv+=equiv_;
  1674. cnt++;
  1675. }
  1676. }
  1677. }
  1678. }
  1679. }
  1680. template <class FMMNode>
  1681. void FMM_Pts<FMMNode>::PeriodicBC(FMMNode* node){
  1682. Matrix<Real_t>& M = Precomp(0, BC_Type, 0);
  1683. assert(node->FMMData()->upward_equiv.Dim()>0);
  1684. int dof=1;
  1685. Vector<Real_t>& upward_equiv=node->FMMData()->upward_equiv;
  1686. Vector<Real_t>& dnward_equiv=node->FMMData()->dnward_equiv;
  1687. assert(upward_equiv.Dim()==M.Dim(0)*dof);
  1688. assert(dnward_equiv.Dim()==M.Dim(1)*dof);
  1689. Matrix<Real_t> d_equiv(dof,M.Dim(0),&dnward_equiv[0],false);
  1690. Matrix<Real_t> u_equiv(dof,M.Dim(1),&upward_equiv[0],false);
  1691. Matrix<Real_t>::DGEMM(d_equiv,u_equiv,M);
  1692. }
  1693. template <class FMMNode>
  1694. void FMM_Pts<FMMNode>::FFT_UpEquiv(size_t dof, size_t m, size_t ker_dim0, Vector<size_t>& fft_vec,
  1695. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_){
  1696. size_t n1=m*2;
  1697. size_t n2=n1*n1;
  1698. size_t n3=n1*n2;
  1699. size_t n3_=n2*(n1/2+1);
  1700. size_t chld_cnt=1UL<<COORD_DIM;
  1701. size_t fftsize_in =2*n3_*chld_cnt*ker_dim0*dof;
  1702. int omp_p=omp_get_max_threads();
  1703. //Load permutation map.
  1704. size_t n=6*(m-1)*(m-1)+2;
  1705. static Vector<size_t> map;
  1706. { // Build map to reorder upward_equiv
  1707. size_t n_old=map.Dim();
  1708. if(n_old!=n){
  1709. Real_t c[3]={0,0,0};
  1710. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1711. map.Resize(surf.Dim()/COORD_DIM);
  1712. for(size_t i=0;i<map.Dim();i++)
  1713. map[i]=((size_t)(m-1-surf[i*3]+0.5))+((size_t)(m-1-surf[i*3+1]+0.5))*n1+((size_t)(m-1-surf[i*3+2]+0.5))*n2;
  1714. }
  1715. }
  1716. { // Build FFTW plan.
  1717. if(!vlist_fft_flag){
  1718. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1719. void *fftw_in, *fftw_out;
  1720. fftw_in = mem::aligned_malloc<Real_t>( n3 *ker_dim0*chld_cnt);
  1721. fftw_out = mem::aligned_malloc<Real_t>(2*n3_*ker_dim0*chld_cnt);
  1722. vlist_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM,nnn,ker_dim0*chld_cnt,
  1723. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*)(fftw_out),NULL, 1, n3_, FFTW_ESTIMATE);
  1724. mem::aligned_free<Real_t>((Real_t*)fftw_in );
  1725. mem::aligned_free<Real_t>((Real_t*)fftw_out);
  1726. vlist_fft_flag=true;
  1727. }
  1728. }
  1729. { // Offload section
  1730. size_t n_in = fft_vec.Dim();
  1731. #pragma omp parallel for
  1732. for(int pid=0; pid<omp_p; pid++){
  1733. size_t node_start=(n_in*(pid ))/omp_p;
  1734. size_t node_end =(n_in*(pid+1))/omp_p;
  1735. Vector<Real_t> buffer(fftsize_in, &buffer_[fftsize_in*pid], false);
  1736. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  1737. Vector<Real_t*> upward_equiv(chld_cnt);
  1738. for(size_t i=0;i<chld_cnt;i++) upward_equiv[i]=&input_data[0] + fft_vec[node_idx] + n*ker_dim0*dof*i;
  1739. Vector<Real_t> upward_equiv_fft(fftsize_in, &output_data[fftsize_in *node_idx], false);
  1740. upward_equiv_fft.SetZero();
  1741. // Rearrange upward equivalent data.
  1742. for(size_t k=0;k<n;k++){
  1743. size_t idx=map[k];
  1744. for(int j1=0;j1<dof;j1++)
  1745. for(int j0=0;j0<(int)chld_cnt;j0++)
  1746. for(int i=0;i<ker_dim0;i++)
  1747. upward_equiv_fft[idx+(j0+(i+j1*ker_dim0)*chld_cnt)*n3]=upward_equiv[j0][ker_dim0*(n*j1+k)+i];
  1748. }
  1749. // Compute FFT.
  1750. for(int i=0;i<dof;i++)
  1751. FFTW_t<Real_t>::fft_execute_dft_r2c(vlist_fftplan, (Real_t*)&upward_equiv_fft[i* n3 *ker_dim0*chld_cnt],
  1752. (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim0*chld_cnt]);
  1753. //Compute flops.
  1754. #ifndef FFTW3_MKL
  1755. double add, mul, fma;
  1756. fftw_flops(vlist_fftplan, &add, &mul, &fma);
  1757. #ifndef __INTEL_OFFLOAD0
  1758. Profile::Add_FLOP((long long)(add+mul+2*fma));
  1759. #endif
  1760. #endif
  1761. for(int i=0;i<ker_dim0*dof;i++)
  1762. for(size_t j=0;j<n3_;j++)
  1763. for(size_t k=0;k<chld_cnt;k++){
  1764. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+0]=buffer[2*(n3_*(chld_cnt*i+k)+j)+0];
  1765. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+1]=buffer[2*(n3_*(chld_cnt*i+k)+j)+1];
  1766. }
  1767. }
  1768. }
  1769. }
  1770. }
  1771. template <class FMMNode>
  1772. void FMM_Pts<FMMNode>::FFT_Check2Equiv(size_t dof, size_t m, size_t ker_dim1, Vector<size_t>& ifft_vec,
  1773. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_, Matrix<Real_t>& M){
  1774. size_t n1=m*2;
  1775. size_t n2=n1*n1;
  1776. size_t n3=n1*n2;
  1777. size_t n3_=n2*(n1/2+1);
  1778. size_t chld_cnt=1UL<<COORD_DIM;
  1779. size_t fftsize_out=2*n3_*dof*ker_dim1*chld_cnt;
  1780. int omp_p=omp_get_max_threads();
  1781. //Load permutation map.
  1782. size_t n=6*(m-1)*(m-1)+2;
  1783. static Vector<size_t> map;
  1784. { // Build map to reorder dnward_check
  1785. size_t n_old=map.Dim();
  1786. if(n_old!=n){
  1787. Real_t c[3]={0,0,0};
  1788. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1789. map.Resize(surf.Dim()/COORD_DIM);
  1790. for(size_t i=0;i<map.Dim();i++)
  1791. map[i]=((size_t)(m*2-0.5-surf[i*3]))+((size_t)(m*2-0.5-surf[i*3+1]))*n1+((size_t)(m*2-0.5-surf[i*3+2]))*n2;
  1792. //map;//.AllocDevice(true);
  1793. }
  1794. }
  1795. { // Build FFTW plan.
  1796. if(!vlist_ifft_flag){
  1797. //Build FFTW plan.
  1798. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1799. void *fftw_in, *fftw_out;
  1800. fftw_in = fftw_malloc(2*n3_*ker_dim1*sizeof(Real_t)*chld_cnt);
  1801. fftw_out = fftw_malloc( n3 *ker_dim1*sizeof(Real_t)*chld_cnt);
  1802. vlist_ifftplan = FFTW_t<Real_t>::fft_plan_many_dft_c2r(COORD_DIM,nnn,ker_dim1*chld_cnt,
  1803. (typename FFTW_t<Real_t>::cplx*)fftw_in, NULL, 1, n3_, (Real_t*)(fftw_out),NULL, 1, n3, FFTW_ESTIMATE);
  1804. fftw_free(fftw_in);
  1805. fftw_free(fftw_out);
  1806. vlist_ifft_flag=true;
  1807. }
  1808. }
  1809. { // Offload section
  1810. size_t n_out=ifft_vec.Dim();
  1811. #pragma omp parallel for
  1812. for(int pid=0; pid<omp_p; pid++){
  1813. size_t node_start=(n_out*(pid ))/omp_p;
  1814. size_t node_end =(n_out*(pid+1))/omp_p;
  1815. Vector<Real_t> buffer(fftsize_out, &buffer_[fftsize_out*pid], false);
  1816. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  1817. Vector<Real_t> dnward_check_fft(fftsize_out, &input_data[fftsize_out*node_idx], false);
  1818. //De-interleave data.
  1819. for(int i=0;i<ker_dim1*dof;i++)
  1820. for(size_t j=0;j<n3_;j++)
  1821. for(size_t k=0;k<chld_cnt;k++){
  1822. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+0]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+0];
  1823. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+1]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+1];
  1824. }
  1825. // Compute FFT.
  1826. for(int i=0;i<dof;i++)
  1827. FFTW_t<Real_t>::fft_execute_dft_c2r(vlist_ifftplan, (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim1*chld_cnt],
  1828. (Real_t*)&dnward_check_fft[i* n3 *ker_dim1*chld_cnt]);
  1829. //Compute flops.
  1830. #ifndef FFTW3_MKL
  1831. double add, mul, fma;
  1832. fftw_flops(vlist_ifftplan, &add, &mul, &fma);
  1833. #ifndef __INTEL_OFFLOAD0
  1834. Profile::Add_FLOP((long long)(add+mul+2*fma));
  1835. #endif
  1836. #endif
  1837. // Rearrange downward check data.
  1838. for(size_t k=0;k<n;k++){
  1839. size_t idx=map[k];
  1840. for(int j1=0;j1<dof;j1++)
  1841. for(int j0=0;j0<(int)chld_cnt;j0++)
  1842. for(int i=0;i<ker_dim1;i++)
  1843. buffer[ker_dim1*(n*(dof*j0+j1)+k)+i]=dnward_check_fft[idx+(j1+(i+j0*ker_dim1)*dof)*n3];
  1844. }
  1845. // Compute check to equiv.
  1846. for(size_t j=0;j<chld_cnt;j++){
  1847. Matrix<Real_t> d_check(dof,M.Dim(0),&buffer[n*ker_dim1*dof*j],false);
  1848. Matrix<Real_t> d_equiv(dof,M.Dim(1),&output_data[0] + ifft_vec[node_idx] + M.Dim(1)*dof*j,false);
  1849. Matrix<Real_t>::DGEMM(d_equiv,d_check,M,1.0);
  1850. }
  1851. }
  1852. }
  1853. }
  1854. }
  1855. template <class Real_t>
  1856. void VListHadamard(size_t dof, size_t M_dim, size_t ker_dim0, size_t ker_dim1, Vector<size_t>& interac_dsp,
  1857. Vector<size_t>& interac_vec, Vector<Real_t*>& precomp_mat, Vector<Real_t>& fft_in, Vector<Real_t>& fft_out){
  1858. size_t chld_cnt=1UL<<COORD_DIM;
  1859. size_t fftsize_in =M_dim*ker_dim0*chld_cnt*2;
  1860. size_t fftsize_out=M_dim*ker_dim1*chld_cnt*2;
  1861. Real_t* zero_vec0=mem::aligned_malloc<Real_t>(fftsize_in );
  1862. Real_t* zero_vec1=mem::aligned_malloc<Real_t>(fftsize_out);
  1863. size_t n_out=fft_out.Dim()/fftsize_out;
  1864. // Set buff_out to zero.
  1865. #pragma omp parallel for
  1866. for(size_t k=0;k<n_out;k++){
  1867. Vector<Real_t> dnward_check_fft(fftsize_out, &fft_out[k*fftsize_out], false);
  1868. dnward_check_fft.SetZero();
  1869. }
  1870. // Build list of interaction pairs (in, out vectors).
  1871. size_t mat_cnt=precomp_mat.Dim();
  1872. size_t blk1_cnt=interac_dsp.Dim()/mat_cnt;
  1873. Real_t** IN_ =new Real_t*[2*V_BLK_SIZE*blk1_cnt*mat_cnt];
  1874. Real_t** OUT_=new Real_t*[2*V_BLK_SIZE*blk1_cnt*mat_cnt];
  1875. #pragma omp parallel for
  1876. for(size_t interac_blk1=0; interac_blk1<blk1_cnt*mat_cnt; interac_blk1++){
  1877. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  1878. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  1879. size_t interac_cnt = interac_dsp1-interac_dsp0;
  1880. for(size_t j=0;j<interac_cnt;j++){
  1881. IN_ [2*V_BLK_SIZE*interac_blk1 +j]=&fft_in [interac_vec[(interac_dsp0+j)*2+0]];
  1882. OUT_[2*V_BLK_SIZE*interac_blk1 +j]=&fft_out[interac_vec[(interac_dsp0+j)*2+1]];
  1883. }
  1884. IN_ [2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec0;
  1885. OUT_[2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec1;
  1886. }
  1887. int omp_p=omp_get_max_threads();
  1888. #pragma omp parallel for
  1889. for(int pid=0; pid<omp_p; pid++){
  1890. size_t a=( pid *M_dim)/omp_p;
  1891. size_t b=((pid+1)*M_dim)/omp_p;
  1892. for(size_t blk1=0; blk1<blk1_cnt; blk1++)
  1893. for(size_t k=a; k< b; k++)
  1894. for(size_t mat_indx=0; mat_indx< mat_cnt;mat_indx++){
  1895. size_t interac_blk1 = blk1*mat_cnt+mat_indx;
  1896. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  1897. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  1898. size_t interac_cnt = interac_dsp1-interac_dsp0;
  1899. Real_t** IN = IN_ + 2*V_BLK_SIZE*interac_blk1;
  1900. Real_t** OUT= OUT_+ 2*V_BLK_SIZE*interac_blk1;
  1901. Real_t* M = precomp_mat[mat_indx] + k*chld_cnt*chld_cnt*2;
  1902. #ifdef __SSE__
  1903. if (mat_indx +1 < mat_cnt){ // Prefetch
  1904. _mm_prefetch(((char *)(precomp_mat[mat_indx+1] + k*chld_cnt*chld_cnt*2)), _MM_HINT_T0);
  1905. _mm_prefetch(((char *)(precomp_mat[mat_indx+1] + k*chld_cnt*chld_cnt*2) + 64), _MM_HINT_T0);
  1906. }
  1907. #endif
  1908. for(int in_dim=0;in_dim<ker_dim0;in_dim++)
  1909. for(int ot_dim=0;ot_dim<ker_dim1;ot_dim++){
  1910. for(size_t j=0;j<interac_cnt;j+=2){
  1911. Real_t* M_ = M;
  1912. Real_t* IN0 = IN [j+0] + (in_dim*M_dim+k)*chld_cnt*2;
  1913. Real_t* IN1 = IN [j+1] + (in_dim*M_dim+k)*chld_cnt*2;
  1914. Real_t* OUT0 = OUT[j+0] + (ot_dim*M_dim+k)*chld_cnt*2;
  1915. Real_t* OUT1 = OUT[j+1] + (ot_dim*M_dim+k)*chld_cnt*2;
  1916. #ifdef __SSE__
  1917. if (j+2 < interac_cnt) { // Prefetch
  1918. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  1919. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  1920. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  1921. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  1922. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  1923. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  1924. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  1925. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  1926. }
  1927. #endif
  1928. #ifdef __AVX__ //AVX code.
  1929. __m256d out00,out01,out10,out11;
  1930. __m256d out20,out21,out30,out31;
  1931. double* in0__ = IN0;
  1932. double* in1__ = IN1;
  1933. out00 = _mm256_load_pd(OUT0);
  1934. out01 = _mm256_load_pd(OUT1);
  1935. out10 = _mm256_load_pd(OUT0+4);
  1936. out11 = _mm256_load_pd(OUT1+4);
  1937. out20 = _mm256_load_pd(OUT0+8);
  1938. out21 = _mm256_load_pd(OUT1+8);
  1939. out30 = _mm256_load_pd(OUT0+12);
  1940. out31 = _mm256_load_pd(OUT1+12);
  1941. for(int i2=0;i2<8;i2+=2){
  1942. __m256d m00;
  1943. __m256d ot00;
  1944. __m256d mt0,mtt0;
  1945. __m256d in00,in00_r,in01,in01_r;
  1946. in00 = _mm256_broadcast_pd((const __m128d*)in0__);
  1947. in00_r = _mm256_permute_pd(in00,5);
  1948. in01 = _mm256_broadcast_pd((const __m128d*)in1__);
  1949. in01_r = _mm256_permute_pd(in01,5);
  1950. m00 = _mm256_load_pd(M_);
  1951. mt0 = _mm256_unpacklo_pd(m00,m00);
  1952. ot00 = _mm256_mul_pd(mt0,in00);
  1953. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1954. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1955. ot00 = _mm256_mul_pd(mt0,in01);
  1956. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1957. m00 = _mm256_load_pd(M_+4);
  1958. mt0 = _mm256_unpacklo_pd(m00,m00);
  1959. ot00 = _mm256_mul_pd(mt0,in00);
  1960. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1961. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1962. ot00 = _mm256_mul_pd(mt0,in01);
  1963. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1964. m00 = _mm256_load_pd(M_+8);
  1965. mt0 = _mm256_unpacklo_pd(m00,m00);
  1966. ot00 = _mm256_mul_pd(mt0,in00);
  1967. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1968. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1969. ot00 = _mm256_mul_pd(mt0,in01);
  1970. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1971. m00 = _mm256_load_pd(M_+12);
  1972. mt0 = _mm256_unpacklo_pd(m00,m00);
  1973. ot00 = _mm256_mul_pd(mt0,in00);
  1974. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1975. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1976. ot00 = _mm256_mul_pd(mt0,in01);
  1977. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1978. in00 = _mm256_broadcast_pd((const __m128d*) (in0__+2));
  1979. in00_r = _mm256_permute_pd(in00,5);
  1980. in01 = _mm256_broadcast_pd((const __m128d*) (in1__+2));
  1981. in01_r = _mm256_permute_pd(in01,5);
  1982. m00 = _mm256_load_pd(M_+16);
  1983. mt0 = _mm256_unpacklo_pd(m00,m00);
  1984. ot00 = _mm256_mul_pd(mt0,in00);
  1985. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1986. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1987. ot00 = _mm256_mul_pd(mt0,in01);
  1988. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1989. m00 = _mm256_load_pd(M_+20);
  1990. mt0 = _mm256_unpacklo_pd(m00,m00);
  1991. ot00 = _mm256_mul_pd(mt0,in00);
  1992. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1993. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1994. ot00 = _mm256_mul_pd(mt0,in01);
  1995. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1996. m00 = _mm256_load_pd(M_+24);
  1997. mt0 = _mm256_unpacklo_pd(m00,m00);
  1998. ot00 = _mm256_mul_pd(mt0,in00);
  1999. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2000. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2001. ot00 = _mm256_mul_pd(mt0,in01);
  2002. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2003. m00 = _mm256_load_pd(M_+28);
  2004. mt0 = _mm256_unpacklo_pd(m00,m00);
  2005. ot00 = _mm256_mul_pd(mt0,in00);
  2006. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2007. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2008. ot00 = _mm256_mul_pd(mt0,in01);
  2009. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2010. M_ += 32;
  2011. in0__ += 4;
  2012. in1__ += 4;
  2013. }
  2014. _mm256_store_pd(OUT0,out00);
  2015. _mm256_store_pd(OUT1,out01);
  2016. _mm256_store_pd(OUT0+4,out10);
  2017. _mm256_store_pd(OUT1+4,out11);
  2018. _mm256_store_pd(OUT0+8,out20);
  2019. _mm256_store_pd(OUT1+8,out21);
  2020. _mm256_store_pd(OUT0+12,out30);
  2021. _mm256_store_pd(OUT1+12,out31);
  2022. #elif defined __SSE3__ // SSE code.
  2023. __m128d out00, out01, out10, out11;
  2024. __m128d in00, in01, in10, in11;
  2025. __m128d m00, m01, m10, m11;
  2026. //#pragma unroll
  2027. for(int i1=0;i1<8;i1+=2){
  2028. double* IN0_=IN0;
  2029. double* IN1_=IN1;
  2030. out00 =_mm_load_pd (OUT0 );
  2031. out10 =_mm_load_pd (OUT0+2);
  2032. out01 =_mm_load_pd (OUT1 );
  2033. out11 =_mm_load_pd (OUT1+2);
  2034. //#pragma unroll
  2035. for(int i2=0;i2<8;i2+=2){
  2036. m00 =_mm_load1_pd (M_ );
  2037. m10 =_mm_load1_pd (M_+ 2);
  2038. m01 =_mm_load1_pd (M_+16);
  2039. m11 =_mm_load1_pd (M_+18);
  2040. in00 =_mm_load_pd (IN0_ );
  2041. in10 =_mm_load_pd (IN0_+2);
  2042. in01 =_mm_load_pd (IN1_ );
  2043. in11 =_mm_load_pd (IN1_+2);
  2044. out00 = _mm_add_pd (out00, _mm_mul_pd(m00 , in00 ));
  2045. out00 = _mm_add_pd (out00, _mm_mul_pd(m01 , in10 ));
  2046. out01 = _mm_add_pd (out01, _mm_mul_pd(m00 , in01 ));
  2047. out01 = _mm_add_pd (out01, _mm_mul_pd(m01 , in11 ));
  2048. out10 = _mm_add_pd (out10, _mm_mul_pd(m10 , in00 ));
  2049. out10 = _mm_add_pd (out10, _mm_mul_pd(m11 , in10 ));
  2050. out11 = _mm_add_pd (out11, _mm_mul_pd(m10 , in01 ));
  2051. out11 = _mm_add_pd (out11, _mm_mul_pd(m11 , in11 ));
  2052. m00 =_mm_load1_pd (M_+ 1);
  2053. m10 =_mm_load1_pd (M_+ 2+1);
  2054. m01 =_mm_load1_pd (M_+16+1);
  2055. m11 =_mm_load1_pd (M_+18+1);
  2056. in00 =_mm_shuffle_pd (in00,in00,_MM_SHUFFLE2(0,1));
  2057. in01 =_mm_shuffle_pd (in01,in01,_MM_SHUFFLE2(0,1));
  2058. in10 =_mm_shuffle_pd (in10,in10,_MM_SHUFFLE2(0,1));
  2059. in11 =_mm_shuffle_pd (in11,in11,_MM_SHUFFLE2(0,1));
  2060. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m00, in00));
  2061. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m01, in10));
  2062. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m00, in01));
  2063. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m01, in11));
  2064. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m10, in00));
  2065. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m11, in10));
  2066. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m10, in01));
  2067. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m11, in11));
  2068. M_+=32; // Jump to (column+2).
  2069. IN0_+=4;
  2070. IN1_+=4;
  2071. }
  2072. _mm_store_pd (OUT0 ,out00);
  2073. _mm_store_pd (OUT0+2,out10);
  2074. _mm_store_pd (OUT1 ,out01);
  2075. _mm_store_pd (OUT1+2,out11);
  2076. M_+=4-64*2; // Jump back to first column (row+2).
  2077. OUT0+=4;
  2078. OUT1+=4;
  2079. }
  2080. #else // Generic code.
  2081. Real_t out_reg000, out_reg001, out_reg010, out_reg011;
  2082. Real_t out_reg100, out_reg101, out_reg110, out_reg111;
  2083. Real_t in_reg000, in_reg001, in_reg010, in_reg011;
  2084. Real_t in_reg100, in_reg101, in_reg110, in_reg111;
  2085. Real_t m_reg000, m_reg001, m_reg010, m_reg011;
  2086. Real_t m_reg100, m_reg101, m_reg110, m_reg111;
  2087. //#pragma unroll
  2088. for(int i1=0;i1<8;i1+=2){
  2089. Real_t* IN0_=IN0;
  2090. Real_t* IN1_=IN1;
  2091. out_reg000=OUT0[ 0]; out_reg001=OUT0[ 1];
  2092. out_reg010=OUT0[ 2]; out_reg011=OUT0[ 3];
  2093. out_reg100=OUT1[ 0]; out_reg101=OUT1[ 1];
  2094. out_reg110=OUT1[ 2]; out_reg111=OUT1[ 3];
  2095. //#pragma unroll
  2096. for(int i2=0;i2<8;i2+=2){
  2097. m_reg000=M_[ 0]; m_reg001=M_[ 1];
  2098. m_reg010=M_[ 2]; m_reg011=M_[ 3];
  2099. m_reg100=M_[16]; m_reg101=M_[17];
  2100. m_reg110=M_[18]; m_reg111=M_[19];
  2101. in_reg000=IN0_[0]; in_reg001=IN0_[1];
  2102. in_reg010=IN0_[2]; in_reg011=IN0_[3];
  2103. in_reg100=IN1_[0]; in_reg101=IN1_[1];
  2104. in_reg110=IN1_[2]; in_reg111=IN1_[3];
  2105. out_reg000 += m_reg000*in_reg000 - m_reg001*in_reg001;
  2106. out_reg001 += m_reg000*in_reg001 + m_reg001*in_reg000;
  2107. out_reg010 += m_reg010*in_reg000 - m_reg011*in_reg001;
  2108. out_reg011 += m_reg010*in_reg001 + m_reg011*in_reg000;
  2109. out_reg000 += m_reg100*in_reg010 - m_reg101*in_reg011;
  2110. out_reg001 += m_reg100*in_reg011 + m_reg101*in_reg010;
  2111. out_reg010 += m_reg110*in_reg010 - m_reg111*in_reg011;
  2112. out_reg011 += m_reg110*in_reg011 + m_reg111*in_reg010;
  2113. out_reg100 += m_reg000*in_reg100 - m_reg001*in_reg101;
  2114. out_reg101 += m_reg000*in_reg101 + m_reg001*in_reg100;
  2115. out_reg110 += m_reg010*in_reg100 - m_reg011*in_reg101;
  2116. out_reg111 += m_reg010*in_reg101 + m_reg011*in_reg100;
  2117. out_reg100 += m_reg100*in_reg110 - m_reg101*in_reg111;
  2118. out_reg101 += m_reg100*in_reg111 + m_reg101*in_reg110;
  2119. out_reg110 += m_reg110*in_reg110 - m_reg111*in_reg111;
  2120. out_reg111 += m_reg110*in_reg111 + m_reg111*in_reg110;
  2121. M_+=32; // Jump to (column+2).
  2122. IN0_+=4;
  2123. IN1_+=4;
  2124. }
  2125. OUT0[ 0]=out_reg000; OUT0[ 1]=out_reg001;
  2126. OUT0[ 2]=out_reg010; OUT0[ 3]=out_reg011;
  2127. OUT1[ 0]=out_reg100; OUT1[ 1]=out_reg101;
  2128. OUT1[ 2]=out_reg110; OUT1[ 3]=out_reg111;
  2129. M_+=4-64*2; // Jump back to first column (row+2).
  2130. OUT0+=4;
  2131. OUT1+=4;
  2132. }
  2133. #endif
  2134. }
  2135. M += M_dim*128;
  2136. }
  2137. }
  2138. }
  2139. // Compute flops.
  2140. {
  2141. Profile::Add_FLOP(8*8*8*(interac_vec.Dim()/2)*M_dim*ker_dim0*ker_dim1*dof);
  2142. }
  2143. // Free memory
  2144. delete[] IN_ ;
  2145. delete[] OUT_;
  2146. mem::aligned_free<Real_t>(zero_vec0);
  2147. mem::aligned_free<Real_t>(zero_vec1);
  2148. }
  2149. template <class FMMNode>
  2150. void FMM_Pts<FMMNode>::V_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2151. if(level==0) return;
  2152. { // Set setup_data
  2153. setup_data.level=level;
  2154. setup_data.kernel=&aux_kernel;
  2155. setup_data.interac_type.resize(1);
  2156. setup_data.interac_type[0]=V1_Type;
  2157. setup_data. input_data=&buff[0];
  2158. setup_data.output_data=&buff[1];
  2159. Vector<FMMNode_t*>& nodes_in =n_list[2];
  2160. Vector<FMMNode_t*>& nodes_out=n_list[3];
  2161. setup_data.nodes_in .clear();
  2162. setup_data.nodes_out.clear();
  2163. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2164. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level-1 || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2165. }
  2166. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2167. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2168. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2169. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2170. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_in [i])->Child(0))->FMMData())->upward_equiv);
  2171. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_out[i])->Child(0))->FMMData())->dnward_equiv);
  2172. /////////////////////////////////////////////////////////////////////////////
  2173. size_t n_in =nodes_in .size();
  2174. size_t n_out=nodes_out.size();
  2175. // Setup precomputed data.
  2176. SetupPrecomp(setup_data,device);
  2177. // Build interac_data
  2178. Profile::Tic("Interac-Data",&this->comm,true,25);
  2179. Matrix<char>& interac_data=setup_data.interac_data;
  2180. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  2181. size_t precomp_offset=0;
  2182. Mat_Type& interac_type=setup_data.interac_type[0];
  2183. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2184. Vector<size_t> precomp_data_offset;
  2185. std::vector<size_t> interac_mat;
  2186. { // Load precomp_data for interac_type.
  2187. Matrix<char>& precomp_data=*setup_data.precomp_data;
  2188. char* indx_ptr=precomp_data[0]+precomp_offset;
  2189. size_t total_size=((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  2190. /*size_t mat_cnt_ =((size_t*)indx_ptr)[0];*/ indx_ptr+=sizeof(size_t);
  2191. precomp_data_offset.ReInit((1+2+2)*mat_cnt, (size_t*)indx_ptr, false);
  2192. precomp_offset+=total_size;
  2193. for(size_t mat_id=0;mat_id<mat_cnt;mat_id++){
  2194. Matrix<Real_t>& M0 = this->mat->Mat(level, interac_type, mat_id);
  2195. assert(M0.Dim(0)>0 && M0.Dim(1)>0); UNUSED(M0);
  2196. interac_mat.push_back(precomp_data_offset[5*mat_id]);
  2197. }
  2198. }
  2199. size_t dof;
  2200. size_t m=MultipoleOrder();
  2201. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2202. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2203. size_t fftsize;
  2204. {
  2205. size_t n1=m*2;
  2206. size_t n2=n1*n1;
  2207. size_t n3_=n2*(n1/2+1);
  2208. size_t chld_cnt=1UL<<COORD_DIM;
  2209. fftsize=2*n3_*chld_cnt;
  2210. dof=1;
  2211. }
  2212. int omp_p=omp_get_max_threads();
  2213. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2214. size_t n_blk0=2*fftsize*dof*(ker_dim0*n_in +ker_dim1*n_out)*sizeof(Real_t)/buff_size;
  2215. if(n_blk0==0) n_blk0=1;
  2216. std::vector<std::vector<size_t> > fft_vec(n_blk0);
  2217. std::vector<std::vector<size_t> > ifft_vec(n_blk0);
  2218. std::vector<std::vector<size_t> > interac_vec(n_blk0);
  2219. std::vector<std::vector<size_t> > interac_dsp(n_blk0);
  2220. {
  2221. Matrix<Real_t>& input_data=*setup_data. input_data;
  2222. Matrix<Real_t>& output_data=*setup_data.output_data;
  2223. std::vector<std::vector<FMMNode*> > nodes_blk_in (n_blk0);
  2224. std::vector<std::vector<FMMNode*> > nodes_blk_out(n_blk0);
  2225. for(size_t i=0;i<n_in;i++) ((FMMNode*)nodes_in[i])->node_id=i;
  2226. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2227. size_t blk0_start=(n_out* blk0 )/n_blk0;
  2228. size_t blk0_end =(n_out*(blk0+1))/n_blk0;
  2229. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2230. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2231. { // Build node list for blk0.
  2232. std::set<void*> nodes_in;
  2233. for(size_t i=blk0_start;i<blk0_end;i++){
  2234. nodes_out_.push_back((FMMNode*)nodes_out[i]);
  2235. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2236. for(size_t k=0;k<mat_cnt;k++) if(lst[k]!=NULL) nodes_in.insert(lst[k]);
  2237. }
  2238. for(std::set<void*>::iterator node=nodes_in.begin(); node != nodes_in.end(); node++){
  2239. nodes_in_.push_back((FMMNode*)*node);
  2240. }
  2241. size_t input_dim=nodes_in_ .size()*ker_dim0*dof*fftsize;
  2242. size_t output_dim=nodes_out_.size()*ker_dim1*dof*fftsize;
  2243. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2244. if(buff_size<(input_dim + output_dim + buffer_dim)*sizeof(Real_t))
  2245. buff_size=(input_dim + output_dim + buffer_dim)*sizeof(Real_t);
  2246. }
  2247. { // Set fft vectors.
  2248. for(size_t i=0;i<nodes_in_ .size();i++) fft_vec[blk0].push_back((size_t)(& input_vector[nodes_in_[i]->node_id][0][0]- input_data[0]));
  2249. for(size_t i=0;i<nodes_out_.size();i++)ifft_vec[blk0].push_back((size_t)(&output_vector[blk0_start + i ][0][0]-output_data[0]));
  2250. }
  2251. }
  2252. for(size_t blk0=0;blk0<n_blk0;blk0++){ // Hadamard interactions.
  2253. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2254. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2255. for(size_t i=0;i<nodes_in_.size();i++) nodes_in_[i]->node_id=i;
  2256. { // Next blocking level.
  2257. size_t n_blk1=nodes_out_.size()*(ker_dim0+ker_dim1)/V_BLK_SIZE; //64 vectors should fit in L1.
  2258. if(n_blk1==0) n_blk1=1;
  2259. size_t interac_dsp_=0;
  2260. for(size_t blk1=0;blk1<n_blk1;blk1++){
  2261. size_t blk1_start=(nodes_out_.size()* blk1 )/n_blk1;
  2262. size_t blk1_end =(nodes_out_.size()*(blk1+1))/n_blk1;
  2263. for(size_t k=0;k<mat_cnt;k++){
  2264. for(size_t i=blk1_start;i<blk1_end;i++){
  2265. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out_[i])->interac_list[interac_type];
  2266. if(lst[k]!=NULL){
  2267. interac_vec[blk0].push_back(lst[k]->node_id*fftsize*ker_dim0*dof);
  2268. interac_vec[blk0].push_back( i *fftsize*ker_dim1*dof);
  2269. interac_dsp_++;
  2270. }
  2271. }
  2272. interac_dsp[blk0].push_back(interac_dsp_);
  2273. }
  2274. }
  2275. }
  2276. }
  2277. }
  2278. { // Set interac_data.
  2279. size_t data_size=sizeof(size_t)*5; // m, dof, ker_dim0, ker_dim1, n_blk0
  2280. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2281. data_size+=sizeof(size_t)+ fft_vec[blk0].size()*sizeof(size_t);
  2282. data_size+=sizeof(size_t)+ ifft_vec[blk0].size()*sizeof(size_t);
  2283. data_size+=sizeof(size_t)+interac_vec[blk0].size()*sizeof(size_t);
  2284. data_size+=sizeof(size_t)+interac_dsp[blk0].size()*sizeof(size_t);
  2285. }
  2286. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  2287. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2288. interac_data.Resize(1,data_size);
  2289. char* data_ptr=&interac_data[0][0];
  2290. ((size_t*)data_ptr)[0]=buff_size; data_ptr+=sizeof(size_t);
  2291. ((size_t*)data_ptr)[0]= m; data_ptr+=sizeof(size_t);
  2292. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2293. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2294. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2295. ((size_t*)data_ptr)[0]= n_blk0; data_ptr+=sizeof(size_t);
  2296. ((size_t*)data_ptr)[0]= interac_mat.size(); data_ptr+=sizeof(size_t);
  2297. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  2298. data_ptr+=interac_mat.size()*sizeof(size_t);
  2299. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2300. ((size_t*)data_ptr)[0]= fft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2301. mem::memcopy(data_ptr, & fft_vec[blk0][0], fft_vec[blk0].size()*sizeof(size_t));
  2302. data_ptr+= fft_vec[blk0].size()*sizeof(size_t);
  2303. ((size_t*)data_ptr)[0]=ifft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2304. mem::memcopy(data_ptr, &ifft_vec[blk0][0], ifft_vec[blk0].size()*sizeof(size_t));
  2305. data_ptr+=ifft_vec[blk0].size()*sizeof(size_t);
  2306. ((size_t*)data_ptr)[0]=interac_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2307. mem::memcopy(data_ptr, &interac_vec[blk0][0], interac_vec[blk0].size()*sizeof(size_t));
  2308. data_ptr+=interac_vec[blk0].size()*sizeof(size_t);
  2309. ((size_t*)data_ptr)[0]=interac_dsp[blk0].size(); data_ptr+=sizeof(size_t);
  2310. mem::memcopy(data_ptr, &interac_dsp[blk0][0], interac_dsp[blk0].size()*sizeof(size_t));
  2311. data_ptr+=interac_dsp[blk0].size()*sizeof(size_t);
  2312. }
  2313. }
  2314. }
  2315. Profile::Toc();
  2316. Profile::Tic("Host2Device",&this->comm,false,25);
  2317. if(device){ // Host2Device
  2318. setup_data.interac_data. AllocDevice(true);
  2319. }
  2320. Profile::Toc();
  2321. }
  2322. template <class FMMNode>
  2323. void FMM_Pts<FMMNode>::V_List (SetupData<Real_t>& setup_data, bool device){
  2324. assert(!device); //Can not run on accelerator yet.
  2325. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2326. Profile::Tic("Host2Device",&this->comm,false,25);
  2327. Profile::Toc();
  2328. Profile::Tic("FFT",&comm,false,100);
  2329. Profile::Toc();
  2330. Profile::Tic("HadamardProduct",&comm,false,100);
  2331. Profile::Toc();
  2332. Profile::Tic("IFFT",&comm,false,100);
  2333. Profile::Toc();
  2334. return;
  2335. }
  2336. Profile::Tic("Host2Device",&this->comm,false,25);
  2337. int level=setup_data.level;
  2338. size_t buff_size=*((size_t*)&setup_data.interac_data[0][0]);
  2339. typename Matrix<Real_t>::Device M_d;
  2340. typename Vector<char>::Device buff;
  2341. typename Matrix<char>::Device precomp_data;
  2342. typename Matrix<char>::Device interac_data;
  2343. typename Matrix<Real_t>::Device input_data;
  2344. typename Matrix<Real_t>::Device output_data;
  2345. Matrix<Real_t>& M = this->mat->Mat(level, DC2DE_Type, 0);
  2346. if(device){
  2347. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  2348. M_d = M. AllocDevice(false);
  2349. buff = this-> dev_buffer. AllocDevice(false);
  2350. precomp_data= setup_data.precomp_data->AllocDevice(false);
  2351. interac_data= setup_data.interac_data. AllocDevice(false);
  2352. input_data = setup_data. input_data->AllocDevice(false);
  2353. output_data = setup_data. output_data->AllocDevice(false);
  2354. }else{
  2355. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  2356. M_d = M;
  2357. buff = this-> cpu_buffer;
  2358. precomp_data=*setup_data.precomp_data;
  2359. interac_data= setup_data.interac_data;
  2360. input_data =*setup_data. input_data;
  2361. output_data =*setup_data. output_data;
  2362. }
  2363. Profile::Toc();
  2364. { // Offloaded computation.
  2365. // Set interac_data.
  2366. size_t m, dof, ker_dim0, ker_dim1, n_blk0;
  2367. std::vector<Vector<size_t> > fft_vec;
  2368. std::vector<Vector<size_t> > ifft_vec;
  2369. std::vector<Vector<size_t> > interac_vec;
  2370. std::vector<Vector<size_t> > interac_dsp;
  2371. Vector<Real_t*> precomp_mat;
  2372. { // Set interac_data.
  2373. char* data_ptr=&interac_data[0][0];
  2374. buff_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2375. m =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2376. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2377. ker_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2378. ker_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2379. n_blk0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2380. fft_vec .resize(n_blk0);
  2381. ifft_vec.resize(n_blk0);
  2382. interac_vec.resize(n_blk0);
  2383. interac_dsp.resize(n_blk0);
  2384. Vector<size_t> interac_mat;
  2385. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2386. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  2387. precomp_mat.Resize(interac_mat.Dim());
  2388. for(size_t i=0;i<interac_mat.Dim();i++){
  2389. precomp_mat[i]=(Real_t*)(precomp_data[0]+interac_mat[i]);
  2390. }
  2391. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2392. fft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2393. data_ptr+=sizeof(size_t)+fft_vec[blk0].Dim()*sizeof(size_t);
  2394. ifft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2395. data_ptr+=sizeof(size_t)+ifft_vec[blk0].Dim()*sizeof(size_t);
  2396. interac_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2397. data_ptr+=sizeof(size_t)+interac_vec[blk0].Dim()*sizeof(size_t);
  2398. interac_dsp[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2399. data_ptr+=sizeof(size_t)+interac_dsp[blk0].Dim()*sizeof(size_t);
  2400. }
  2401. }
  2402. int omp_p=omp_get_max_threads();
  2403. size_t M_dim, fftsize;
  2404. {
  2405. size_t n1=m*2;
  2406. size_t n2=n1*n1;
  2407. size_t n3_=n2*(n1/2+1);
  2408. size_t chld_cnt=1UL<<COORD_DIM;
  2409. fftsize=2*n3_*chld_cnt;
  2410. M_dim=n3_;
  2411. }
  2412. for(size_t blk0=0;blk0<n_blk0;blk0++){ // interactions
  2413. size_t n_in = fft_vec[blk0].Dim();
  2414. size_t n_out=ifft_vec[blk0].Dim();
  2415. size_t input_dim=n_in *ker_dim0*dof*fftsize;
  2416. size_t output_dim=n_out*ker_dim1*dof*fftsize;
  2417. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2418. Vector<Real_t> fft_in ( input_dim, (Real_t*)&buff[ 0 ],false);
  2419. Vector<Real_t> fft_out(output_dim, (Real_t*)&buff[ input_dim *sizeof(Real_t)],false);
  2420. Vector<Real_t> buffer(buffer_dim, (Real_t*)&buff[(input_dim+output_dim)*sizeof(Real_t)],false);
  2421. { // FFT
  2422. Profile::Tic("FFT",&comm,false,100);
  2423. Vector<Real_t> input_data_( input_data.dim[0]* input_data.dim[1], input_data[0], false);
  2424. FFT_UpEquiv(dof, m, ker_dim0, fft_vec[blk0], input_data_, fft_in, buffer);
  2425. Profile::Toc();
  2426. }
  2427. { // Hadamard
  2428. #ifdef PVFMM_HAVE_PAPI
  2429. #ifdef __VERBOSE__
  2430. std::cout << "Starting counters new\n";
  2431. if (PAPI_start(EventSet) != PAPI_OK) std::cout << "handle_error3" << std::endl;
  2432. #endif
  2433. #endif
  2434. Profile::Tic("HadamardProduct",&comm,false,100);
  2435. VListHadamard<Real_t>(dof, M_dim, ker_dim0, ker_dim1, interac_dsp[blk0], interac_vec[blk0], precomp_mat, fft_in, fft_out);
  2436. Profile::Toc();
  2437. #ifdef PVFMM_HAVE_PAPI
  2438. #ifdef __VERBOSE__
  2439. if (PAPI_stop(EventSet, values) != PAPI_OK) std::cout << "handle_error4" << std::endl;
  2440. std::cout << "Stopping counters\n";
  2441. #endif
  2442. #endif
  2443. }
  2444. { // IFFT
  2445. Profile::Tic("IFFT",&comm,false,100);
  2446. Matrix<Real_t> M(M_d.dim[0],M_d.dim[1],M_d[0],false);
  2447. Vector<Real_t> output_data_(output_data.dim[0]*output_data.dim[1], output_data[0], false);
  2448. FFT_Check2Equiv(dof, m, ker_dim1, ifft_vec[blk0], fft_out, output_data_, buffer, M);
  2449. Profile::Toc();
  2450. }
  2451. }
  2452. }
  2453. }
  2454. template <class FMMNode>
  2455. void FMM_Pts<FMMNode>::Down2DownSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2456. { // Set setup_data
  2457. setup_data.level=level;
  2458. setup_data.kernel=&aux_kernel;
  2459. setup_data.interac_type.resize(1);
  2460. setup_data.interac_type[0]=D2D_Type;
  2461. setup_data. input_data=&buff[1];
  2462. setup_data.output_data=&buff[1];
  2463. Vector<FMMNode_t*>& nodes_in =n_list[1];
  2464. Vector<FMMNode_t*>& nodes_out=n_list[1];
  2465. setup_data.nodes_in .clear();
  2466. setup_data.nodes_out.clear();
  2467. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2468. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
  2469. }
  2470. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2471. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2472. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2473. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2474. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  2475. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  2476. SetupInterac(setup_data,device);
  2477. }
  2478. template <class FMMNode>
  2479. void FMM_Pts<FMMNode>::Down2Down (SetupData<Real_t>& setup_data, bool device){
  2480. //Add Down2Down contribution.
  2481. EvalList(setup_data, device);
  2482. }
  2483. template <class FMMNode>
  2484. void FMM_Pts<FMMNode>::SetupInteracPts(SetupData<Real_t>& setup_data, bool shift_src, bool shift_trg, Matrix<Real_t>* M, bool device){
  2485. int level=setup_data.level;
  2486. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  2487. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2488. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2489. Matrix<Real_t>& output_data=*setup_data.output_data;
  2490. Matrix<Real_t>& input_data=*setup_data. input_data;
  2491. Matrix<Real_t>& coord_data=*setup_data. coord_data;
  2492. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  2493. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  2494. size_t n_in =nodes_in .size();
  2495. size_t n_out=nodes_out.size();
  2496. //setup_data.precomp_data=NULL;
  2497. // Build interac_data
  2498. Profile::Tic("Interac-Data",&this->comm,true,25);
  2499. Matrix<char>& interac_data=setup_data.interac_data;
  2500. if(n_out>0 && n_in >0){
  2501. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2502. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2503. size_t dof=1;
  2504. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  2505. std::vector<size_t> trg_interac_cnt(n_out,0);
  2506. std::vector<size_t> trg_coord(n_out);
  2507. std::vector<size_t> trg_value(n_out);
  2508. std::vector<size_t> trg_cnt(n_out);
  2509. std::vector<Real_t> scaling(n_out,0);
  2510. { // Set trg data
  2511. Mat_Type& interac_type=interac_type_lst[0];
  2512. for(size_t i=0;i<n_out;i++){
  2513. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2514. trg_cnt [i]=output_vector[i*2+0]->Dim()/COORD_DIM;
  2515. trg_coord[i]=(size_t)(&output_vector[i*2+0][0][0]- coord_data[0]);
  2516. trg_value[i]=(size_t)(&output_vector[i*2+1][0][0]-output_data[0]);
  2517. if(!this->Homogen()) scaling[i]=1.0;
  2518. else if(interac_type==X_Type) scaling[i]=pow(0.5, setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  2519. }
  2520. }
  2521. }
  2522. std::vector<std::vector<size_t> > src_cnt(n_out);
  2523. std::vector<std::vector<size_t> > src_coord(n_out);
  2524. std::vector<std::vector<size_t> > src_value(n_out);
  2525. std::vector<std::vector<Real_t> > shift_coord(n_out);
  2526. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  2527. Mat_Type& interac_type=interac_type_lst[type_indx];
  2528. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2529. for(size_t i=0;i<n_out;i++){ // For each target node.
  2530. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2531. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2532. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++) if(lst[mat_indx]!=NULL){ // For each direction.
  2533. size_t j=lst[mat_indx]->node_id;
  2534. if(input_vector[j*4+0]->Dim()>0 || input_vector[j*4+2]->Dim()>0){
  2535. trg_interac_cnt[i]++;
  2536. { // Determine shift for periodic boundary condition
  2537. Real_t* sc=lst[mat_indx]->Coord();
  2538. Real_t* tc=((FMMNode*)nodes_out[i])->Coord();
  2539. int* rel_coord=this->interac_list.RelativeCoord(interac_type, mat_indx);
  2540. shift_coord[i].push_back((tc[0]>sc[0] && rel_coord[0]>0? 1.0:
  2541. (tc[0]<sc[0] && rel_coord[0]<0?-1.0:0.0)) +
  2542. (shift_src?sc[0]:0) - (shift_trg?tc[0]:0) );
  2543. shift_coord[i].push_back((tc[1]>sc[1] && rel_coord[1]>0? 1.0:
  2544. (tc[1]<sc[1] && rel_coord[1]<0?-1.0:0.0)) +
  2545. (shift_src?sc[1]:0) - (shift_trg?tc[1]:0) );
  2546. shift_coord[i].push_back((tc[2]>sc[2] && rel_coord[2]>0? 1.0:
  2547. (tc[2]<sc[2] && rel_coord[2]<0?-1.0:0.0)) +
  2548. (shift_src?sc[2]:0) - (shift_trg?tc[2]:0) );
  2549. }
  2550. { // Set src data
  2551. if(input_vector[j*4+0]!=NULL){
  2552. src_cnt [i].push_back(input_vector[j*4+0]->Dim()/COORD_DIM);
  2553. src_coord[i].push_back((size_t)(& input_vector[j*4+0][0][0]- coord_data[0]));
  2554. src_value[i].push_back((size_t)(& input_vector[j*4+1][0][0]- input_data[0]));
  2555. }else{
  2556. src_cnt [i].push_back(0);
  2557. src_coord[i].push_back(0);
  2558. src_value[i].push_back(0);
  2559. }
  2560. if(input_vector[j*4+2]!=NULL){
  2561. src_cnt [i].push_back(input_vector[j*4+2]->Dim()/COORD_DIM);
  2562. src_coord[i].push_back((size_t)(& input_vector[j*4+2][0][0]- coord_data[0]));
  2563. src_value[i].push_back((size_t)(& input_vector[j*4+3][0][0]- input_data[0]));
  2564. }else{
  2565. src_cnt [i].push_back(0);
  2566. src_coord[i].push_back(0);
  2567. src_value[i].push_back(0);
  2568. }
  2569. }
  2570. }
  2571. }
  2572. }
  2573. }
  2574. }
  2575. { // Set interac_data.
  2576. size_t data_size=sizeof(size_t)*4;
  2577. data_size+=sizeof(size_t)+trg_interac_cnt.size()*sizeof(size_t);
  2578. data_size+=sizeof(size_t)+trg_coord.size()*sizeof(size_t);
  2579. data_size+=sizeof(size_t)+trg_value.size()*sizeof(size_t);
  2580. data_size+=sizeof(size_t)+trg_cnt .size()*sizeof(size_t);
  2581. data_size+=sizeof(size_t)+scaling .size()*sizeof(Real_t);
  2582. data_size+=sizeof(size_t)*2+(M!=NULL?M->Dim(0)*M->Dim(1)*sizeof(Real_t):0);
  2583. for(size_t i=0;i<n_out;i++){
  2584. data_size+=sizeof(size_t)+src_cnt [i].size()*sizeof(size_t);
  2585. data_size+=sizeof(size_t)+src_coord[i].size()*sizeof(size_t);
  2586. data_size+=sizeof(size_t)+src_value[i].size()*sizeof(size_t);
  2587. data_size+=sizeof(size_t)+shift_coord[i].size()*sizeof(Real_t);
  2588. }
  2589. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2590. interac_data.Resize(1,data_size);
  2591. char* data_ptr=&interac_data[0][0];
  2592. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  2593. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2594. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2595. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2596. ((size_t*)data_ptr)[0]=trg_interac_cnt.size(); data_ptr+=sizeof(size_t);
  2597. mem::memcopy(data_ptr, &trg_interac_cnt[0], trg_interac_cnt.size()*sizeof(size_t));
  2598. data_ptr+=trg_interac_cnt.size()*sizeof(size_t);
  2599. ((size_t*)data_ptr)[0]=trg_coord.size(); data_ptr+=sizeof(size_t);
  2600. mem::memcopy(data_ptr, &trg_coord[0], trg_coord.size()*sizeof(size_t));
  2601. data_ptr+=trg_coord.size()*sizeof(size_t);
  2602. ((size_t*)data_ptr)[0]=trg_value.size(); data_ptr+=sizeof(size_t);
  2603. mem::memcopy(data_ptr, &trg_value[0], trg_value.size()*sizeof(size_t));
  2604. data_ptr+=trg_value.size()*sizeof(size_t);
  2605. ((size_t*)data_ptr)[0]=trg_cnt.size(); data_ptr+=sizeof(size_t);
  2606. mem::memcopy(data_ptr, &trg_cnt[0], trg_cnt.size()*sizeof(size_t));
  2607. data_ptr+=trg_cnt.size()*sizeof(size_t);
  2608. ((size_t*)data_ptr)[0]=scaling.size(); data_ptr+=sizeof(size_t);
  2609. mem::memcopy(data_ptr, &scaling[0], scaling.size()*sizeof(Real_t));
  2610. data_ptr+=scaling.size()*sizeof(Real_t);
  2611. if(M!=NULL){
  2612. ((size_t*)data_ptr)[0]=M->Dim(0); data_ptr+=sizeof(size_t);
  2613. ((size_t*)data_ptr)[0]=M->Dim(1); data_ptr+=sizeof(size_t);
  2614. mem::memcopy(data_ptr, M[0][0], M->Dim(0)*M->Dim(1)*sizeof(Real_t));
  2615. data_ptr+=M->Dim(0)*M->Dim(1)*sizeof(Real_t);
  2616. }else{
  2617. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2618. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2619. }
  2620. for(size_t i=0;i<n_out;i++){
  2621. ((size_t*)data_ptr)[0]=src_cnt[i].size(); data_ptr+=sizeof(size_t);
  2622. mem::memcopy(data_ptr, &src_cnt[i][0], src_cnt[i].size()*sizeof(size_t));
  2623. data_ptr+=src_cnt[i].size()*sizeof(size_t);
  2624. ((size_t*)data_ptr)[0]=src_coord[i].size(); data_ptr+=sizeof(size_t);
  2625. mem::memcopy(data_ptr, &src_coord[i][0], src_coord[i].size()*sizeof(size_t));
  2626. data_ptr+=src_coord[i].size()*sizeof(size_t);
  2627. ((size_t*)data_ptr)[0]=src_value[i].size(); data_ptr+=sizeof(size_t);
  2628. mem::memcopy(data_ptr, &src_value[i][0], src_value[i].size()*sizeof(size_t));
  2629. data_ptr+=src_value[i].size()*sizeof(size_t);
  2630. ((size_t*)data_ptr)[0]=shift_coord[i].size(); data_ptr+=sizeof(size_t);
  2631. mem::memcopy(data_ptr, &shift_coord[i][0], shift_coord[i].size()*sizeof(Real_t));
  2632. data_ptr+=shift_coord[i].size()*sizeof(Real_t);
  2633. }
  2634. }
  2635. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2636. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  2637. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  2638. }
  2639. Profile::Toc();
  2640. Profile::Tic("Host2Device",&this->comm,false,25);
  2641. if(device){ // Host2Device
  2642. setup_data.interac_data .AllocDevice(true);
  2643. }
  2644. Profile::Toc();
  2645. }
  2646. template <class FMMNode>
  2647. void FMM_Pts<FMMNode>::EvalListPts(SetupData<Real_t>& setup_data, bool device){
  2648. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2649. Profile::Tic("Host2Device",&this->comm,false,25);
  2650. Profile::Toc();
  2651. Profile::Tic("DeviceComp",&this->comm,false,20);
  2652. Profile::Toc();
  2653. return;
  2654. }
  2655. Profile::Tic("Host2Device",&this->comm,false,25);
  2656. typename Vector<char>::Device buff;
  2657. //typename Matrix<char>::Device precomp_data;
  2658. typename Matrix<char>::Device interac_data;
  2659. typename Matrix<Real_t>::Device coord_data;
  2660. typename Matrix<Real_t>::Device input_data;
  2661. typename Matrix<Real_t>::Device output_data;
  2662. if(device){
  2663. buff = this-> dev_buffer. AllocDevice(false);
  2664. interac_data= setup_data.interac_data. AllocDevice(false);
  2665. //if(setup_data.precomp_data!=NULL) precomp_data= setup_data.precomp_data->AllocDevice(false);
  2666. if(setup_data. coord_data!=NULL) coord_data = setup_data. coord_data->AllocDevice(false);
  2667. if(setup_data. input_data!=NULL) input_data = setup_data. input_data->AllocDevice(false);
  2668. if(setup_data. output_data!=NULL) output_data = setup_data. output_data->AllocDevice(false);
  2669. }else{
  2670. buff = this-> cpu_buffer;
  2671. interac_data= setup_data.interac_data;
  2672. //if(setup_data.precomp_data!=NULL) precomp_data=*setup_data.precomp_data;
  2673. if(setup_data. coord_data!=NULL) coord_data =*setup_data. coord_data;
  2674. if(setup_data. input_data!=NULL) input_data =*setup_data. input_data;
  2675. if(setup_data. output_data!=NULL) output_data =*setup_data. output_data;
  2676. }
  2677. Profile::Toc();
  2678. size_t ptr_single_layer_kernel=(size_t)setup_data.kernel->ker_poten;
  2679. size_t ptr_double_layer_kernel=(size_t)setup_data.kernel->dbl_layer_poten;
  2680. Profile::Tic("DeviceComp",&this->comm,false,20);
  2681. #ifdef __INTEL_OFFLOAD
  2682. int lock_idx=-1;
  2683. int wait_lock_idx=-1;
  2684. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  2685. if(device) lock_idx=MIC_Lock::get_lock();
  2686. if(device) ptr_single_layer_kernel=setup_data.kernel->dev_ker_poten;
  2687. if(device) ptr_double_layer_kernel=setup_data.kernel->dev_dbl_layer_poten;
  2688. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  2689. #endif
  2690. { // Offloaded computation.
  2691. // Set interac_data.
  2692. //size_t data_size;
  2693. //size_t ker_dim0;
  2694. size_t ker_dim1;
  2695. size_t dof, n_out;
  2696. Vector<size_t> trg_interac_cnt;
  2697. Vector<size_t> trg_coord;
  2698. Vector<size_t> trg_value;
  2699. Vector<size_t> trg_cnt;
  2700. Vector<Real_t> scaling;
  2701. Matrix<Real_t> M;
  2702. Vector< Vector<size_t> > src_cnt;
  2703. Vector< Vector<size_t> > src_coord;
  2704. Vector< Vector<size_t> > src_value;
  2705. Vector< Vector<Real_t> > shift_coord;
  2706. { // Set interac_data.
  2707. char* data_ptr=&interac_data[0][0];
  2708. /*data_size=((size_t*)data_ptr)[0];*/ data_ptr+=sizeof(size_t);
  2709. /*ker_dim0=((size_t*)data_ptr)[0];*/ data_ptr+=sizeof(size_t);
  2710. ker_dim1=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2711. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2712. trg_interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2713. data_ptr+=sizeof(size_t)+trg_interac_cnt.Dim()*sizeof(size_t);
  2714. n_out=trg_interac_cnt.Dim();
  2715. trg_coord.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2716. data_ptr+=sizeof(size_t)+trg_coord.Dim()*sizeof(size_t);
  2717. trg_value.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2718. data_ptr+=sizeof(size_t)+trg_value.Dim()*sizeof(size_t);
  2719. trg_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2720. data_ptr+=sizeof(size_t)+trg_cnt.Dim()*sizeof(size_t);
  2721. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2722. data_ptr+=sizeof(size_t)+scaling.Dim()*sizeof(Real_t);
  2723. M.ReInit(((size_t*)data_ptr)[0],((size_t*)data_ptr)[1],(Real_t*)(data_ptr+2*sizeof(size_t)),false);
  2724. data_ptr+=sizeof(size_t)*2+M.Dim(0)*M.Dim(1)*sizeof(Real_t);
  2725. src_cnt.Resize(n_out);
  2726. src_coord.Resize(n_out);
  2727. src_value.Resize(n_out);
  2728. shift_coord.Resize(n_out);
  2729. for(size_t i=0;i<n_out;i++){
  2730. src_cnt[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2731. data_ptr+=sizeof(size_t)+src_cnt[i].Dim()*sizeof(size_t);
  2732. src_coord[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2733. data_ptr+=sizeof(size_t)+src_coord[i].Dim()*sizeof(size_t);
  2734. src_value[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2735. data_ptr+=sizeof(size_t)+src_value[i].Dim()*sizeof(size_t);
  2736. shift_coord[i].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2737. data_ptr+=sizeof(size_t)+shift_coord[i].Dim()*sizeof(Real_t);
  2738. }
  2739. }
  2740. #ifdef __INTEL_OFFLOAD
  2741. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  2742. #endif
  2743. //Compute interaction from point sources.
  2744. { // interactions
  2745. typename Kernel<Real_t>::Ker_t single_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_single_layer_kernel;
  2746. typename Kernel<Real_t>::Ker_t double_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_double_layer_kernel;
  2747. int omp_p=omp_get_max_threads();
  2748. Vector<Real_t*> thread_buff(omp_p);
  2749. size_t thread_buff_size=buff.dim/sizeof(Real_t)/omp_p;
  2750. for(int i=0;i<omp_p;i++) thread_buff[i]=(Real_t*)&buff[i*thread_buff_size*sizeof(Real_t)];
  2751. #pragma omp parallel for
  2752. for(size_t i=0;i<n_out;i++)
  2753. if(trg_interac_cnt[i]>0 && trg_cnt[i]>0){
  2754. int thread_id=omp_get_thread_num();
  2755. Real_t* s_coord=thread_buff[thread_id];
  2756. Real_t* t_value=output_data[0]+trg_value[i];
  2757. if(M.Dim(0)>0 && M.Dim(1)>0){
  2758. s_coord+=dof*M.Dim(0);
  2759. t_value=thread_buff[thread_id];
  2760. for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]=0;
  2761. }
  2762. size_t interac_cnt=0;
  2763. for(size_t j=0;j<trg_interac_cnt[i];j++){
  2764. if(ptr_single_layer_kernel!=(size_t)NULL){// Single layer kernel
  2765. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+0];
  2766. assert(thread_buff_size>=dof*M.Dim(0)+src_cnt[i][2*j+0]*COORD_DIM);
  2767. for(size_t k1=0;k1<src_cnt[i][2*j+0];k1++){ // Compute shifted source coordinates.
  2768. for(size_t k0=0;k0<COORD_DIM;k0++){
  2769. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  2770. }
  2771. }
  2772. single_layer_kernel( s_coord , src_cnt[i][2*j+0], input_data[0]+src_value[i][2*j+0], dof,
  2773. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value);
  2774. interac_cnt+=src_cnt[i][2*j+0]*trg_cnt[i];
  2775. }
  2776. if(ptr_double_layer_kernel!=(size_t)NULL){// Double layer kernel
  2777. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+1];
  2778. assert(thread_buff_size>=dof*M.Dim(0)+src_cnt[i][2*j+1]*COORD_DIM);
  2779. for(size_t k1=0;k1<src_cnt[i][2*j+1];k1++){ // Compute shifted source coordinates.
  2780. for(size_t k0=0;k0<COORD_DIM;k0++){
  2781. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  2782. }
  2783. }
  2784. double_layer_kernel( s_coord , src_cnt[i][2*j+1], input_data[0]+src_value[i][2*j+1], dof,
  2785. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value);
  2786. interac_cnt+=src_cnt[i][2*j+1]*trg_cnt[i];
  2787. }
  2788. }
  2789. if(M.Dim(0)>0 && M.Dim(1)>0 && interac_cnt>0){
  2790. assert(trg_cnt[i]*ker_dim1==M.Dim(0)); UNUSED(ker_dim1);
  2791. for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]*=scaling[i];
  2792. Matrix<Real_t> in_vec(dof, M.Dim(0), t_value , false);
  2793. Matrix<Real_t> out_vec(dof, M.Dim(1), output_data[0]+trg_value[i], false);
  2794. Matrix<Real_t>::DGEMM(out_vec, in_vec, M, 1.0);
  2795. }
  2796. }
  2797. }
  2798. #ifdef __INTEL_OFFLOAD
  2799. if(device) MIC_Lock::release_lock(lock_idx);
  2800. #endif
  2801. }
  2802. #ifndef __MIC_ASYNCH__
  2803. #ifdef __INTEL_OFFLOAD
  2804. #pragma offload if(device) target(mic:0)
  2805. {if(device) MIC_Lock::wait_lock(lock_idx);}
  2806. #endif
  2807. #endif
  2808. Profile::Toc();
  2809. }
  2810. template <class FMMNode>
  2811. void FMM_Pts<FMMNode>::X_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2812. { // Set setup_data
  2813. setup_data.level=level;
  2814. setup_data.kernel=&aux_kernel;
  2815. setup_data.interac_type.resize(1);
  2816. setup_data.interac_type[0]=X_Type;
  2817. setup_data. input_data=&buff[4];
  2818. setup_data.output_data=&buff[1];
  2819. setup_data. coord_data=&buff[6];
  2820. Vector<FMMNode_t*>& nodes_in =n_list[4];
  2821. Vector<FMMNode_t*>& nodes_out=n_list[1];
  2822. setup_data.nodes_in .clear();
  2823. setup_data.nodes_out.clear();
  2824. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2825. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2826. }
  2827. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2828. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2829. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2830. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2831. for(size_t i=0;i<nodes_in .size();i++){
  2832. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  2833. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  2834. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  2835. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  2836. }
  2837. for(size_t i=0;i<nodes_out.size();i++){
  2838. output_vector.push_back(&dnwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
  2839. output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  2840. }
  2841. //Downward check to downward equivalent matrix.
  2842. Matrix<Real_t>& M_dc2de = this->mat->Mat(level, DC2DE_Type, 0);
  2843. this->SetupInteracPts(setup_data, false, true, &M_dc2de,device);
  2844. { // Resize device buffer
  2845. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  2846. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  2847. }
  2848. }
  2849. template <class FMMNode>
  2850. void FMM_Pts<FMMNode>::X_List (SetupData<Real_t>& setup_data, bool device){
  2851. //Add X_List contribution.
  2852. this->EvalListPts(setup_data, device);
  2853. }
  2854. template <class FMMNode>
  2855. void FMM_Pts<FMMNode>::W_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2856. { // Set setup_data
  2857. setup_data.level=level;
  2858. setup_data.kernel=&kernel;
  2859. setup_data.interac_type.resize(1);
  2860. setup_data.interac_type[0]=W_Type;
  2861. setup_data. input_data=&buff[0];
  2862. setup_data.output_data=&buff[5];
  2863. setup_data. coord_data=&buff[6];
  2864. Vector<FMMNode_t*>& nodes_in =n_list[0];
  2865. Vector<FMMNode_t*>& nodes_out=n_list[5];
  2866. setup_data.nodes_in .clear();
  2867. setup_data.nodes_out.clear();
  2868. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2869. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2870. }
  2871. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2872. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2873. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2874. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2875. for(size_t i=0;i<nodes_in .size();i++){
  2876. input_vector .push_back(&upwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  2877. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  2878. input_vector .push_back(NULL);
  2879. input_vector .push_back(NULL);
  2880. }
  2881. for(size_t i=0;i<nodes_out.size();i++){
  2882. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  2883. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  2884. }
  2885. this->SetupInteracPts(setup_data, true, false, NULL, device);
  2886. { // Resize device buffer
  2887. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  2888. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  2889. }
  2890. }
  2891. template <class FMMNode>
  2892. void FMM_Pts<FMMNode>::W_List (SetupData<Real_t>& setup_data, bool device){
  2893. //Add W_List contribution.
  2894. this->EvalListPts(setup_data, device);
  2895. }
  2896. template <class FMMNode>
  2897. void FMM_Pts<FMMNode>::U_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2898. { // Set setup_data
  2899. setup_data.level=level;
  2900. setup_data.kernel=&kernel;
  2901. setup_data.interac_type.resize(3);
  2902. setup_data.interac_type[0]=U0_Type;
  2903. setup_data.interac_type[1]=U1_Type;
  2904. setup_data.interac_type[2]=U2_Type;
  2905. setup_data. input_data=&buff[4];
  2906. setup_data.output_data=&buff[5];
  2907. setup_data. coord_data=&buff[6];
  2908. Vector<FMMNode_t*>& nodes_in =n_list[4];
  2909. Vector<FMMNode_t*>& nodes_out=n_list[5];
  2910. setup_data.nodes_in .clear();
  2911. setup_data.nodes_out.clear();
  2912. for(size_t i=0;i<nodes_in .Dim();i++) if((level-1<=nodes_in [i]->Depth() && nodes_in [i]->Depth()<=level+1) || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2913. for(size_t i=0;i<nodes_out.Dim();i++) if(( nodes_out[i]->Depth()==level ) || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2914. }
  2915. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2916. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2917. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2918. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2919. for(size_t i=0;i<nodes_in .size();i++){
  2920. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  2921. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  2922. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  2923. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  2924. }
  2925. for(size_t i=0;i<nodes_out.size();i++){
  2926. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  2927. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  2928. }
  2929. this->SetupInteracPts(setup_data, false, false, NULL, device);
  2930. { // Resize device buffer
  2931. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  2932. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  2933. }
  2934. }
  2935. template <class FMMNode>
  2936. void FMM_Pts<FMMNode>::U_List (SetupData<Real_t>& setup_data, bool device){
  2937. //Add U_List contribution.
  2938. this->EvalListPts(setup_data, device);
  2939. }
  2940. template <class FMMNode>
  2941. void FMM_Pts<FMMNode>::Down2TargetSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2942. { // Set setup_data
  2943. setup_data.level=level;
  2944. setup_data.kernel=&kernel;
  2945. setup_data.interac_type.resize(1);
  2946. setup_data.interac_type[0]=D2T_Type;
  2947. setup_data. input_data=&buff[1];
  2948. setup_data.output_data=&buff[5];
  2949. setup_data. coord_data=&buff[6];
  2950. Vector<FMMNode_t*>& nodes_in =n_list[1];
  2951. Vector<FMMNode_t*>& nodes_out=n_list[5];
  2952. setup_data.nodes_in .clear();
  2953. setup_data.nodes_out.clear();
  2954. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2955. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2956. }
  2957. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2958. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2959. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2960. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2961. for(size_t i=0;i<nodes_in .size();i++){
  2962. input_vector .push_back(&dnwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  2963. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  2964. input_vector .push_back(NULL);
  2965. input_vector .push_back(NULL);
  2966. }
  2967. for(size_t i=0;i<nodes_out.size();i++){
  2968. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  2969. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  2970. }
  2971. this->SetupInteracPts(setup_data, true, false, NULL, device);
  2972. { // Resize device buffer
  2973. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  2974. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  2975. }
  2976. }
  2977. template <class FMMNode>
  2978. void FMM_Pts<FMMNode>::Down2Target(SetupData<Real_t>& setup_data, bool device){
  2979. //Add Down2Target contribution.
  2980. this->EvalListPts(setup_data, device);
  2981. }
  2982. template <class FMMNode>
  2983. void FMM_Pts<FMMNode>::PostProcessing(std::vector<FMMNode_t*>& nodes){
  2984. }
  2985. template <class FMMNode>
  2986. void FMM_Pts<FMMNode>::CopyOutput(FMMNode** nodes, size_t n){
  2987. // for(size_t i=0;i<n;i++){
  2988. // FMMData* fmm_data=((FMMData*)nodes[i]->FMMData());
  2989. // }
  2990. }
  2991. }//end namespace