fmm_pts.txx 135 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513
  1. /**
  2. * \file fmm_pts.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 3-07-2011
  5. * \brief This file contains the implementation of the FMM_Pts class.
  6. */
  7. #include <mpi.h>
  8. #include <set>
  9. #include <sstream>
  10. #include <fft_wrapper.hpp>
  11. #include <mat_utils.hpp>
  12. #ifdef PVFMM_HAVE_SYS_STAT_H
  13. #include <sys/stat.h>
  14. #endif
  15. #ifdef __SSE__
  16. #include <xmmintrin.h>
  17. #endif
  18. #ifdef __SSE3__
  19. #include <pmmintrin.h>
  20. #endif
  21. #ifdef __AVX__
  22. #include <immintrin.h>
  23. #endif
  24. #if defined(__INTEL_OFFLOAD) || defined(__MIC__)
  25. #include <immintrin.h>
  26. #endif
  27. #ifdef __INTEL_OFFLOAD0
  28. #pragma offload_attribute(push,target(mic))
  29. #endif
  30. namespace pvfmm{
  31. /**
  32. * \brief Returns the coordinates of points on the surface of a cube.
  33. * \param[in] p Number of points on an edge of the cube is (n+1)
  34. * \param[in] c Coordinates to the centre of the cube (3D array).
  35. * \param[in] alpha Scaling factor for the size of the cube.
  36. * \param[in] depth Depth of the cube in the octree.
  37. * \return Vector with coordinates of points on the surface of the cube in the
  38. * format [x0 y0 z0 x1 y1 z1 .... ].
  39. */
  40. template <class Real_t>
  41. std::vector<Real_t> surface(int p, Real_t* c, Real_t alpha, int depth){
  42. size_t n_=(6*(p-1)*(p-1)+2); //Total number of points.
  43. std::vector<Real_t> coord(n_*3);
  44. coord[0]=coord[1]=coord[2]=-1.0;
  45. size_t cnt=1;
  46. for(int i=0;i<p-1;i++)
  47. for(int j=0;j<p-1;j++){
  48. coord[cnt*3 ]=-1.0;
  49. coord[cnt*3+1]=(2.0*(i+1)-p+1)/(p-1);
  50. coord[cnt*3+2]=(2.0*j-p+1)/(p-1);
  51. cnt++;
  52. }
  53. for(int i=0;i<p-1;i++)
  54. for(int j=0;j<p-1;j++){
  55. coord[cnt*3 ]=(2.0*i-p+1)/(p-1);
  56. coord[cnt*3+1]=-1.0;
  57. coord[cnt*3+2]=(2.0*(j+1)-p+1)/(p-1);
  58. cnt++;
  59. }
  60. for(int i=0;i<p-1;i++)
  61. for(int j=0;j<p-1;j++){
  62. coord[cnt*3 ]=(2.0*(i+1)-p+1)/(p-1);
  63. coord[cnt*3+1]=(2.0*j-p+1)/(p-1);
  64. coord[cnt*3+2]=-1.0;
  65. cnt++;
  66. }
  67. for(size_t i=0;i<(n_/2)*3;i++)
  68. coord[cnt*3+i]=-coord[i];
  69. Real_t r = 0.5*pow(0.5,depth);
  70. Real_t b = alpha*r;
  71. for(size_t i=0;i<n_;i++){
  72. coord[i*3+0]=(coord[i*3+0]+1.0)*b+c[0];
  73. coord[i*3+1]=(coord[i*3+1]+1.0)*b+c[1];
  74. coord[i*3+2]=(coord[i*3+2]+1.0)*b+c[2];
  75. }
  76. return coord;
  77. }
  78. /**
  79. * \brief Returns the coordinates of points on the upward check surface of cube.
  80. * \see surface()
  81. */
  82. template <class Real_t>
  83. std::vector<Real_t> u_check_surf(int p, Real_t* c, int depth){
  84. Real_t r=0.5*pow(0.5,depth);
  85. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  86. return surface(p,coord,(Real_t)RAD1,depth);
  87. }
  88. /**
  89. * \brief Returns the coordinates of points on the upward equivalent surface of cube.
  90. * \see surface()
  91. */
  92. template <class Real_t>
  93. std::vector<Real_t> u_equiv_surf(int p, Real_t* c, int depth){
  94. Real_t r=0.5*pow(0.5,depth);
  95. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  96. return surface(p,coord,(Real_t)RAD0,depth);
  97. }
  98. /**
  99. * \brief Returns the coordinates of points on the downward check surface of cube.
  100. * \see surface()
  101. */
  102. template <class Real_t>
  103. std::vector<Real_t> d_check_surf(int p, Real_t* c, int depth){
  104. Real_t r=0.5*pow(0.5,depth);
  105. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  106. return surface(p,coord,(Real_t)RAD0,depth);
  107. }
  108. /**
  109. * \brief Returns the coordinates of points on the downward equivalent surface of cube.
  110. * \see surface()
  111. */
  112. template <class Real_t>
  113. std::vector<Real_t> d_equiv_surf(int p, Real_t* c, int depth){
  114. Real_t r=0.5*pow(0.5,depth);
  115. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  116. return surface(p,coord,(Real_t)RAD1,depth);
  117. }
  118. /**
  119. * \brief Defines the 3D grid for convolution in FFT acceleration of V-list.
  120. * \see surface()
  121. */
  122. template <class Real_t>
  123. std::vector<Real_t> conv_grid(int p, Real_t* c, int depth){
  124. Real_t r=pow(0.5,depth);
  125. Real_t a=r*RAD0;
  126. Real_t coord[3]={c[0],c[1],c[2]};
  127. int n1=p*2;
  128. int n2=(int)pow((Real_t)n1,2);
  129. int n3=(int)pow((Real_t)n1,3);
  130. std::vector<Real_t> grid(n3*3);
  131. for(int i=0;i<n1;i++)
  132. for(int j=0;j<n1;j++)
  133. for(int k=0;k<n1;k++){
  134. grid[(i+n1*j+n2*k)*3+0]=(i-p)*a/(p-1)+coord[0];
  135. grid[(i+n1*j+n2*k)*3+1]=(j-p)*a/(p-1)+coord[1];
  136. grid[(i+n1*j+n2*k)*3+2]=(k-p)*a/(p-1)+coord[2];
  137. }
  138. return grid;
  139. }
  140. #ifdef __INTEL_OFFLOAD0
  141. #pragma offload_attribute(pop)
  142. #endif
  143. template <class Real_t>
  144. void FMM_Data<Real_t>::Clear(){
  145. upward_equiv.Resize(0);
  146. }
  147. template <class Real_t>
  148. PackedData FMM_Data<Real_t>::PackMultipole(void* buff_ptr){
  149. PackedData p0; p0.data=buff_ptr;
  150. p0.length=upward_equiv.Dim()*sizeof(Real_t);
  151. if(p0.length==0) return p0;
  152. if(p0.data==NULL) p0.data=(char*)&upward_equiv[0];
  153. else mem::memcopy(p0.data,&upward_equiv[0],p0.length);
  154. return p0;
  155. }
  156. template <class Real_t>
  157. void FMM_Data<Real_t>::AddMultipole(PackedData p0){
  158. Real_t* data=(Real_t*)p0.data;
  159. size_t n=p0.length/sizeof(Real_t);
  160. assert(upward_equiv.Dim()==n);
  161. Matrix<Real_t> v0(1,n,&upward_equiv[0],false);
  162. Matrix<Real_t> v1(1,n,data,false);
  163. v0+=v1;
  164. }
  165. template <class Real_t>
  166. void FMM_Data<Real_t>::InitMultipole(PackedData p0, bool own_data){
  167. Real_t* data=(Real_t*)p0.data;
  168. size_t n=p0.length/sizeof(Real_t);
  169. if(n==0) return;
  170. if(own_data){
  171. upward_equiv=Vector<Real_t>(n, &data[0], false);
  172. }else{
  173. upward_equiv.ReInit(n, &data[0], false);
  174. }
  175. }
  176. template <class FMMNode>
  177. FMM_Pts<FMMNode>::~FMM_Pts() {
  178. if(mat!=NULL){
  179. // int rank;
  180. // MPI_Comm_rank(comm,&rank);
  181. // if(rank==0) mat->Save2File("Precomp.data");
  182. delete mat;
  183. mat=NULL;
  184. }
  185. if(vprecomp_fft_flag) FFTW_t<Real_t>::fft_destroy_plan(vprecomp_fftplan);
  186. #ifdef __INTEL_OFFLOAD0
  187. #pragma offload target(mic:0)
  188. #endif
  189. {
  190. if(vlist_fft_flag ) FFTW_t<Real_t>::fft_destroy_plan(vlist_fftplan );
  191. if(vlist_ifft_flag) FFTW_t<Real_t>::fft_destroy_plan(vlist_ifftplan);
  192. vlist_fft_flag =false;
  193. vlist_ifft_flag=false;
  194. }
  195. }
  196. template <class FMMNode>
  197. void FMM_Pts<FMMNode>::Initialize(int mult_order, const MPI_Comm& comm_, const Kernel<Real_t>* kernel_, const Kernel<Real_t>* aux_kernel_){
  198. Profile::Tic("InitFMM_Pts",&comm_,true);{
  199. multipole_order=mult_order;
  200. comm=comm_;
  201. kernel=*kernel_;
  202. aux_kernel=*(aux_kernel_?aux_kernel_:kernel_);
  203. assert(kernel.ker_dim[0]==aux_kernel.ker_dim[0]);
  204. mat=new PrecompMat<Real_t>(Homogen(), MAX_DEPTH+1);
  205. if(this->mat_fname.size()==0){
  206. std::stringstream st;
  207. st<<PVFMM_PRECOMP_DATA_PATH;
  208. if(!st.str().size()){ // look in PVFMM_DIR
  209. char* pvfmm_dir = getenv ("PVFMM_DIR");
  210. if(pvfmm_dir) st<<pvfmm_dir<<'/';
  211. }
  212. #ifndef STAT_MACROS_BROKEN
  213. if(st.str().size()){ // check if the path is a directory
  214. struct stat stat_buff;
  215. if(stat(st.str().c_str(), &stat_buff) || !S_ISDIR(stat_buff.st_mode)){
  216. std::cout<<"error: path not found: "<<st.str()<<'\n';
  217. exit(0);
  218. }
  219. }
  220. #endif
  221. st<<"Precomp_"<<kernel.ker_name.c_str()<<"_m"<<mult_order;
  222. if(sizeof(Real_t)==8) st<<"";
  223. else if(sizeof(Real_t)==4) st<<"_f";
  224. else st<<"_t"<<sizeof(Real_t);
  225. st<<".data";
  226. this->mat_fname=st.str();
  227. }
  228. this->mat->LoadFile(mat_fname.c_str(), this->comm);
  229. interac_list.Initialize(COORD_DIM, this->mat);
  230. Profile::Tic("PrecompUC2UE",&comm,false,4);
  231. this->PrecompAll(UC2UE_Type);
  232. Profile::Toc();
  233. Profile::Tic("PrecompDC2DE",&comm,false,4);
  234. this->PrecompAll(DC2DE_Type);
  235. Profile::Toc();
  236. Profile::Tic("PrecompBC",&comm,false,4);
  237. { /*
  238. int type=BC_Type;
  239. for(int l=0;l<MAX_DEPTH;l++)
  240. for(size_t indx=0;indx<this->interac_list.ListCount((Mat_Type)type);indx++){
  241. Matrix<Real_t>& M=this->mat->Mat(l, (Mat_Type)type, indx);
  242. M.Resize(0,0);
  243. } // */
  244. }
  245. this->PrecompAll(BC_Type,0);
  246. Profile::Toc();
  247. Profile::Tic("PrecompU2U",&comm,false,4);
  248. this->PrecompAll(U2U_Type);
  249. Profile::Toc();
  250. Profile::Tic("PrecompD2D",&comm,false,4);
  251. this->PrecompAll(D2D_Type);
  252. Profile::Toc();
  253. Profile::Tic("PrecompV",&comm,false,4);
  254. this->PrecompAll(V_Type);
  255. Profile::Toc();
  256. Profile::Tic("PrecompV1",&comm,false,4);
  257. this->PrecompAll(V1_Type);
  258. Profile::Toc();
  259. }Profile::Toc();
  260. }
  261. template <class FMMNode>
  262. Permutation<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::PrecompPerm(Mat_Type type, Perm_Type perm_indx){
  263. //Check if the matrix already exists.
  264. Permutation<Real_t>& P_ = mat->Perm((Mat_Type)type, perm_indx);
  265. if(P_.Dim()!=0) return P_;
  266. Matrix<size_t> swap_xy(10,9);
  267. Matrix<size_t> swap_xz(10,9);
  268. {
  269. for(int i=0;i<9;i++)
  270. for(int j=0;j<9;j++){
  271. swap_xy[i][j]=j;
  272. swap_xz[i][j]=j;
  273. }
  274. swap_xy[3][0]=1; swap_xy[3][1]=0; swap_xy[3][2]=2;
  275. swap_xz[3][0]=2; swap_xz[3][1]=1; swap_xz[3][2]=0;
  276. swap_xy[6][0]=1; swap_xy[6][1]=0; swap_xy[6][2]=2;
  277. swap_xy[6][3]=4; swap_xy[6][4]=3; swap_xy[6][5]=5;
  278. swap_xz[6][0]=2; swap_xz[6][1]=1; swap_xz[6][2]=0;
  279. swap_xz[6][3]=5; swap_xz[6][4]=4; swap_xz[6][5]=3;
  280. swap_xy[9][0]=4; swap_xy[9][1]=3; swap_xy[9][2]=5;
  281. swap_xy[9][3]=1; swap_xy[9][4]=0; swap_xy[9][5]=2;
  282. swap_xy[9][6]=7; swap_xy[9][7]=6; swap_xy[9][8]=8;
  283. swap_xz[9][0]=8; swap_xz[9][1]=7; swap_xz[9][2]=6;
  284. swap_xz[9][3]=5; swap_xz[9][4]=4; swap_xz[9][5]=3;
  285. swap_xz[9][6]=2; swap_xz[9][7]=1; swap_xz[9][8]=0;
  286. }
  287. //Compute the matrix.
  288. Permutation<Real_t> P;
  289. switch (type){
  290. case UC2UE_Type:
  291. {
  292. break;
  293. }
  294. case DC2DE_Type:
  295. {
  296. break;
  297. }
  298. case S2U_Type:
  299. {
  300. break;
  301. }
  302. case U2U_Type:
  303. {
  304. P=PrecompPerm(D2D_Type, perm_indx);
  305. break;
  306. }
  307. case D2D_Type:
  308. {
  309. Real_t eps=1e-10;
  310. int dof=kernel.ker_dim[0];
  311. size_t p_indx=perm_indx % C_Perm;
  312. Real_t c[3]={-0.5,-0.5,-0.5};
  313. std::vector<Real_t> trg_coord=d_check_surf(this->MultipoleOrder(),c,0);
  314. int n_trg=trg_coord.size()/3;
  315. P=Permutation<Real_t>(n_trg*dof);
  316. if(p_indx==ReflecX || p_indx==ReflecY || p_indx==ReflecZ){
  317. for(int i=0;i<n_trg;i++)
  318. for(int j=0;j<n_trg;j++){
  319. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+0]*(p_indx==ReflecX?-1.0:1.0))<eps)
  320. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+1]*(p_indx==ReflecY?-1.0:1.0))<eps)
  321. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+2]*(p_indx==ReflecZ?-1.0:1.0))<eps){
  322. for(int k=0;k<dof;k++){
  323. P.perm[j*dof+k]=i*dof+k;
  324. }
  325. }
  326. }
  327. if(dof==3) //stokes_vel (and like kernels)
  328. for(int j=0;j<n_trg;j++)
  329. P.scal[j*dof+(int)p_indx]*=-1.0;
  330. }else if(p_indx==SwapXY || p_indx==SwapXZ)
  331. for(int i=0;i<n_trg;i++)
  332. for(int j=0;j<n_trg;j++){
  333. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+(p_indx==SwapXY?1:2)])<eps)
  334. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+(p_indx==SwapXY?0:1)])<eps)
  335. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+(p_indx==SwapXY?2:0)])<eps){
  336. for(int k=0;k<dof;k++){
  337. P.perm[j*dof+k]=i*dof+(p_indx==SwapXY?swap_xy[dof][k]:swap_xz[dof][k]);
  338. }
  339. }
  340. }
  341. break;
  342. }
  343. case D2T_Type:
  344. {
  345. break;
  346. }
  347. case U0_Type:
  348. {
  349. break;
  350. }
  351. case U1_Type:
  352. {
  353. break;
  354. }
  355. case U2_Type:
  356. {
  357. break;
  358. }
  359. case V_Type:
  360. {
  361. break;
  362. }
  363. case V1_Type:
  364. {
  365. break;
  366. }
  367. case W_Type:
  368. {
  369. break;
  370. }
  371. case X_Type:
  372. {
  373. break;
  374. }
  375. case BC_Type:
  376. {
  377. break;
  378. }
  379. default:
  380. break;
  381. }
  382. //Save the matrix for future use.
  383. #pragma omp critical (PRECOMP_MATRIX_PTS)
  384. {
  385. if(P_.Dim()==0) P_=P;
  386. }
  387. return P_;
  388. }
  389. template <class FMMNode>
  390. Matrix<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::Precomp(int level, Mat_Type type, size_t mat_indx){
  391. if(this->Homogen()) level=0;
  392. //Check if the matrix already exists.
  393. Matrix<Real_t>& M_ = this->mat->Mat(level, type, mat_indx);
  394. if(M_.Dim(0)!=0 && M_.Dim(1)!=0) return M_;
  395. else{ //Compute matrix from symmetry class (if possible).
  396. size_t class_indx = this->interac_list.InteracClass(type, mat_indx);
  397. if(class_indx!=mat_indx){
  398. Matrix<Real_t>& M0 = this->Precomp(level, type, class_indx);
  399. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, type, mat_indx);
  400. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, type, mat_indx);
  401. if(Pr.Dim()>0 && Pc.Dim()>0 && M0.Dim(0)>0 && M0.Dim(1)>0) return M_;
  402. }
  403. }
  404. //Compute the matrix.
  405. Matrix<Real_t> M;
  406. int* ker_dim=kernel.ker_dim;
  407. int* aux_ker_dim=aux_kernel.ker_dim;
  408. //int omp_p=omp_get_max_threads();
  409. switch (type){
  410. case UC2UE_Type:
  411. {
  412. if(MultipoleOrder()==0) break;
  413. // Coord of upward check surface
  414. Real_t c[3]={0,0,0};
  415. std::vector<Real_t> uc_coord=u_check_surf(MultipoleOrder(),c,level);
  416. size_t n_uc=uc_coord.size()/3;
  417. // Coord of upward equivalent surface
  418. std::vector<Real_t> ue_coord=u_equiv_surf(MultipoleOrder(),c,level);
  419. size_t n_ue=ue_coord.size()/3;
  420. // Evaluate potential at check surface due to equivalent surface.
  421. Matrix<Real_t> M_e2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
  422. aux_kernel.BuildMatrix(&ue_coord[0], n_ue,
  423. &uc_coord[0], n_uc, &(M_e2c[0][0]));
  424. Real_t eps=1.0;
  425. while(eps+(Real_t)1.0>1.0) eps*=0.5;
  426. M=M_e2c.pinv(sqrt(eps)); //check 2 equivalent
  427. break;
  428. }
  429. case DC2DE_Type:
  430. {
  431. if(MultipoleOrder()==0) break;
  432. // Coord of downward check surface
  433. Real_t c[3]={0,0,0};
  434. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  435. size_t n_ch=check_surf.size()/3;
  436. // Coord of downward equivalent surface
  437. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  438. size_t n_eq=equiv_surf.size()/3;
  439. // Evaluate potential at check surface due to equivalent surface.
  440. Matrix<Real_t> M_e2c(n_eq*aux_ker_dim[0],n_ch*aux_ker_dim[1]);
  441. aux_kernel.BuildMatrix(&equiv_surf[0], n_eq,
  442. &check_surf[0], n_ch, &(M_e2c[0][0]));
  443. Real_t eps=1.0;
  444. while(eps+(Real_t)1.0>1.0) eps*=0.5;
  445. M=M_e2c.pinv(sqrt(eps)); //check 2 equivalent
  446. break;
  447. }
  448. case S2U_Type:
  449. {
  450. break;
  451. }
  452. case U2U_Type:
  453. {
  454. if(MultipoleOrder()==0) break;
  455. // Coord of upward check surface
  456. Real_t c[3]={0,0,0};
  457. std::vector<Real_t> check_surf=u_check_surf(MultipoleOrder(),c,level);
  458. size_t n_uc=check_surf.size()/3;
  459. // Coord of child's upward equivalent surface
  460. Real_t s=pow(0.5,(level+2));
  461. int* coord=interac_list.RelativeCoord(type,mat_indx);
  462. Real_t child_coord[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  463. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),child_coord,level+1);
  464. size_t n_ue=equiv_surf.size()/3;
  465. // Evaluate potential at check surface due to equivalent surface.
  466. Matrix<Real_t> M_ce2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
  467. aux_kernel.BuildMatrix(&equiv_surf[0], n_ue,
  468. &check_surf[0], n_uc, &(M_ce2c[0][0]));
  469. Matrix<Real_t>& M_c2e = Precomp(level, UC2UE_Type, 0);
  470. M=M_ce2c*M_c2e;
  471. break;
  472. }
  473. case D2D_Type:
  474. {
  475. if(MultipoleOrder()==0) break;
  476. // Coord of downward check surface
  477. Real_t s=pow(0.5,level+1);
  478. int* coord=interac_list.RelativeCoord(type,mat_indx);
  479. Real_t c[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  480. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  481. size_t n_dc=check_surf.size()/3;
  482. // Coord of parent's downward equivalent surface
  483. Real_t parent_coord[3]={0,0,0};
  484. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),parent_coord,level-1);
  485. size_t n_de=equiv_surf.size()/3;
  486. // Evaluate potential at check surface due to equivalent surface.
  487. Matrix<Real_t> M_pe2c(n_de*aux_ker_dim[0],n_dc*aux_ker_dim[1]);
  488. aux_kernel.BuildMatrix(&equiv_surf[0], n_de,
  489. &check_surf[0], n_dc, &(M_pe2c[0][0]));
  490. Matrix<Real_t>& M_c2e=Precomp(level,DC2DE_Type,0);
  491. M=M_pe2c*M_c2e;
  492. break;
  493. }
  494. case D2T_Type:
  495. {
  496. if(MultipoleOrder()==0) break;
  497. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  498. // Coord of target points
  499. Real_t r=pow(0.5,level);
  500. size_t n_trg=rel_trg_coord.size()/3;
  501. std::vector<Real_t> trg_coord(n_trg*3);
  502. for(size_t i=0;i<n_trg*COORD_DIM;i++) trg_coord[i]=rel_trg_coord[i]*r;
  503. // Coord of downward equivalent surface
  504. Real_t c[3]={0,0,0};
  505. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  506. size_t n_eq=equiv_surf.size()/3;
  507. // Evaluate potential at target points due to equivalent surface.
  508. {
  509. M .Resize(n_eq*ker_dim [0], n_trg*ker_dim [1]);
  510. kernel.BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  511. }
  512. break;
  513. }
  514. case U0_Type:
  515. {
  516. break;
  517. }
  518. case U1_Type:
  519. {
  520. break;
  521. }
  522. case U2_Type:
  523. {
  524. break;
  525. }
  526. case V_Type:
  527. {
  528. if(MultipoleOrder()==0) break;
  529. int n1=MultipoleOrder()*2;
  530. int n3 =n1*n1*n1;
  531. int n3_=n1*n1*(n1/2+1);
  532. //Compute the matrix.
  533. Real_t s=pow(0.5,level);
  534. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  535. Real_t coord_diff[3]={coord2[0]*s,coord2[1]*s,coord2[2]*s};
  536. //Evaluate potential.
  537. std::vector<Real_t> r_trg(COORD_DIM,0.0);
  538. std::vector<Real_t> conv_poten(n3*aux_ker_dim[0]*aux_ker_dim[1]);
  539. std::vector<Real_t> conv_coord=conv_grid(MultipoleOrder(),coord_diff,level);
  540. aux_kernel.BuildMatrix(&conv_coord[0],n3,&r_trg[0],1,&conv_poten[0]);
  541. //Rearrange data.
  542. Matrix<Real_t> M_conv(n3,aux_ker_dim[0]*aux_ker_dim[1],&conv_poten[0],false);
  543. M_conv=M_conv.Transpose();
  544. //Compute FFTW plan.
  545. int nnn[3]={n1,n1,n1};
  546. Real_t *fftw_in, *fftw_out;
  547. fftw_in = mem::aligned_malloc<Real_t>( n3 *aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  548. fftw_out = mem::aligned_malloc<Real_t>(2*n3_*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  549. #pragma omp critical (FFTW_PLAN)
  550. {
  551. if (!vprecomp_fft_flag){
  552. vprecomp_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM, nnn, aux_ker_dim[0]*aux_ker_dim[1],
  553. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*) fftw_out, NULL, 1, n3_, FFTW_ESTIMATE);
  554. vprecomp_fft_flag=true;
  555. }
  556. }
  557. //Compute FFT.
  558. mem::memcopy(fftw_in, &conv_poten[0], n3*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  559. FFTW_t<Real_t>::fft_execute_dft_r2c(vprecomp_fftplan, (Real_t*)fftw_in, (typename FFTW_t<Real_t>::cplx*)(fftw_out));
  560. Matrix<Real_t> M_(2*n3_*aux_ker_dim[0]*aux_ker_dim[1],1,(Real_t*)fftw_out,false);
  561. M=M_;
  562. //Free memory.
  563. mem::aligned_free<Real_t>(fftw_in);
  564. mem::aligned_free<Real_t>(fftw_out);
  565. break;
  566. }
  567. case V1_Type:
  568. {
  569. if(MultipoleOrder()==0) break;
  570. size_t mat_cnt =interac_list.ListCount( V_Type);
  571. for(size_t k=0;k<mat_cnt;k++) Precomp(level, V_Type, k);
  572. const size_t chld_cnt=1UL<<COORD_DIM;
  573. size_t n1=MultipoleOrder()*2;
  574. size_t M_dim=n1*n1*(n1/2+1);
  575. size_t n3=n1*n1*n1;
  576. Vector<Real_t> zero_vec(M_dim*aux_ker_dim[0]*aux_ker_dim[1]*2);
  577. zero_vec.SetZero();
  578. Vector<Real_t*> M_ptr(chld_cnt*chld_cnt);
  579. for(size_t i=0;i<chld_cnt*chld_cnt;i++) M_ptr[i]=&zero_vec[0];
  580. int* rel_coord_=interac_list.RelativeCoord(V1_Type, mat_indx);
  581. for(int j1=0;j1<chld_cnt;j1++)
  582. for(int j2=0;j2<chld_cnt;j2++){
  583. int rel_coord[3]={rel_coord_[0]*2-(j1/1)%2+(j2/1)%2,
  584. rel_coord_[1]*2-(j1/2)%2+(j2/2)%2,
  585. rel_coord_[2]*2-(j1/4)%2+(j2/4)%2};
  586. for(size_t k=0;k<mat_cnt;k++){
  587. int* ref_coord=interac_list.RelativeCoord(V_Type, k);
  588. if(ref_coord[0]==rel_coord[0] &&
  589. ref_coord[1]==rel_coord[1] &&
  590. ref_coord[2]==rel_coord[2]){
  591. Matrix<Real_t>& M = this->mat->Mat(level, V_Type, k);
  592. M_ptr[j2*chld_cnt+j1]=&M[0][0];
  593. break;
  594. }
  595. }
  596. }
  597. // Build matrix aux_ker_dim0 x aux_ker_dim1 x M_dim x 8 x 8
  598. M.Resize(aux_ker_dim[0]*aux_ker_dim[1]*M_dim, 2*chld_cnt*chld_cnt);
  599. for(int j=0;j<aux_ker_dim[0]*aux_ker_dim[1]*M_dim;j++){
  600. for(size_t k=0;k<chld_cnt*chld_cnt;k++){
  601. M[j][k*2+0]=M_ptr[k][j*2+0]/n3;
  602. M[j][k*2+1]=M_ptr[k][j*2+1]/n3;
  603. }
  604. }
  605. break;
  606. }
  607. case W_Type:
  608. {
  609. if(MultipoleOrder()==0) break;
  610. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  611. // Coord of target points
  612. Real_t s=pow(0.5,level);
  613. size_t n_trg=rel_trg_coord.size()/3;
  614. std::vector<Real_t> trg_coord(n_trg*3);
  615. for(size_t j=0;j<n_trg*COORD_DIM;j++) trg_coord[j]=rel_trg_coord[j]*s;
  616. // Coord of downward equivalent surface
  617. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  618. Real_t c[3]={(coord2[0]+1)*s*0.25,(coord2[1]+1)*s*0.25,(coord2[2]+1)*s*0.25};
  619. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),c,level+1);
  620. size_t n_eq=equiv_surf.size()/3;
  621. // Evaluate potential at target points due to equivalent surface.
  622. {
  623. M .Resize(n_eq*ker_dim [0],n_trg*ker_dim [1]);
  624. kernel.BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  625. }
  626. break;
  627. }
  628. case X_Type:
  629. {
  630. break;
  631. }
  632. case BC_Type:
  633. {
  634. if(MultipoleOrder()==0) break;
  635. size_t mat_cnt_m2m=interac_list.ListCount(U2U_Type);
  636. size_t n_surf=(6*(MultipoleOrder()-1)*(MultipoleOrder()-1)+2); //Total number of points.
  637. if((M.Dim(0)!=n_surf*aux_ker_dim[0] || M.Dim(1)!=n_surf*aux_ker_dim[1]) && level==0){
  638. Matrix<Real_t> M_m2m[BC_LEVELS+1];
  639. Matrix<Real_t> M_m2l[BC_LEVELS+1];
  640. Matrix<Real_t> M_l2l[BC_LEVELS+1];
  641. Matrix<Real_t> M_zero_avg(n_surf*aux_ker_dim[0],n_surf*aux_ker_dim[0]);
  642. { // Set average multipole charge to zero. (improves stability for large BC_LEVELS)
  643. M_zero_avg.SetZero();
  644. for(size_t i=0;i<n_surf*aux_ker_dim[0];i++)
  645. M_zero_avg[i][i]+=1;
  646. for(size_t i=0;i<n_surf;i++)
  647. for(size_t j=0;j<n_surf;j++)
  648. for(size_t k=0;k<aux_ker_dim[0];k++)
  649. M_zero_avg[i*aux_ker_dim[0]+k][j*aux_ker_dim[0]+k]-=1.0/n_surf;
  650. }
  651. for(int level=0; level>-BC_LEVELS; level--){
  652. M_l2l[-level] = this->Precomp(level, D2D_Type, 0);
  653. if(M_l2l[-level].Dim(0)==0 || M_l2l[-level].Dim(1)==0){
  654. Matrix<Real_t>& M0 = interac_list.ClassMat(level, D2D_Type, 0);
  655. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, D2D_Type, 0);
  656. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, D2D_Type, 0);
  657. M_l2l[-level] = Pr*M0*Pc;
  658. }
  659. M_m2m[-level] = M_zero_avg*this->Precomp(level, U2U_Type, 0);
  660. for(size_t mat_indx=1; mat_indx<mat_cnt_m2m; mat_indx++)
  661. M_m2m[-level] += M_zero_avg*this->Precomp(level, U2U_Type, mat_indx);
  662. }
  663. for(int level=-BC_LEVELS;level<=0;level++){
  664. if(!Homogen() || level==-BC_LEVELS){
  665. Real_t s=(1UL<<(-level));
  666. Real_t ue_coord[3]={0,0,0};
  667. Real_t dc_coord[3]={0,0,0};
  668. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  669. std::vector<Real_t> trg_coord=d_check_surf(MultipoleOrder(), dc_coord, level);
  670. Matrix<Real_t> M_ue2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  671. M_ue2dc.SetZero();
  672. for(int x0=-2;x0<4;x0++)
  673. for(int x1=-2;x1<4;x1++)
  674. for(int x2=-2;x2<4;x2++)
  675. if(abs(x0)>1 || abs(x1)>1 || abs(x2)>1){
  676. ue_coord[0]=x0*s; ue_coord[1]=x1*s; ue_coord[2]=x2*s;
  677. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  678. Matrix<Real_t> M_tmp(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  679. aux_kernel.BuildMatrix(&src_coord[0], n_surf,
  680. &trg_coord[0], n_surf, &(M_tmp[0][0]));
  681. M_ue2dc+=M_tmp;
  682. }
  683. // Shift by constant.
  684. Real_t scale_adj=(Homogen()?pow(0.5, level*aux_kernel.poten_scale):1);
  685. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  686. std::vector<Real_t> avg(aux_ker_dim[1],0);
  687. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  688. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  689. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
  690. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  691. for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]=(M_ue2dc[i][j+k]-avg[k])*scale_adj;
  692. }
  693. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  694. M_m2l[-level]=M_ue2dc*M_dc2de;
  695. }else M_m2l[-level]=M_m2l[1-level];
  696. if(level==-BC_LEVELS) M = M_m2l[-level];
  697. else M = M_m2l[-level] + M_m2m[-level]*M*M_l2l[-level];
  698. { // Shift by constant. (improves stability for large BC_LEVELS)
  699. Matrix<Real_t> M_de2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  700. { // M_de2dc TODO: For homogeneous kernels, compute only once.
  701. // Coord of downward check surface
  702. Real_t c[3]={0,0,0};
  703. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,0);
  704. size_t n_ch=check_surf.size()/3;
  705. // Coord of downward equivalent surface
  706. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  707. size_t n_eq=equiv_surf.size()/3;
  708. // Evaluate potential at check surface due to equivalent surface.
  709. aux_kernel.BuildMatrix(&equiv_surf[0], n_eq,
  710. &check_surf[0], n_ch, &(M_de2dc[0][0]));
  711. }
  712. Matrix<Real_t> M_ue2dc=M*M_de2dc;
  713. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  714. std::vector<Real_t> avg(aux_ker_dim[1],0);
  715. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  716. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  717. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
  718. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  719. for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]-=avg[k];
  720. }
  721. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  722. M=M_ue2dc*M_dc2de;
  723. }
  724. }
  725. { // ax+by+cz+d correction.
  726. std::vector<Real_t> corner_pts;
  727. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(0);
  728. corner_pts.push_back(1); corner_pts.push_back(0); corner_pts.push_back(0);
  729. corner_pts.push_back(0); corner_pts.push_back(1); corner_pts.push_back(0);
  730. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(1);
  731. size_t n_corner=corner_pts.size()/3;
  732. // Coord of downward equivalent surface
  733. Real_t c[3]={0,0,0};
  734. std::vector<Real_t> up_equiv_surf=u_equiv_surf(MultipoleOrder(),c,0);
  735. std::vector<Real_t> dn_equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  736. std::vector<Real_t> dn_check_surf=d_check_surf(MultipoleOrder(),c,0);
  737. Matrix<Real_t> M_err;
  738. { // Evaluate potential at corner due to upward and dnward equivalent surface.
  739. { // Error from local expansion.
  740. Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],n_corner*aux_ker_dim[1]);
  741. aux_kernel.BuildMatrix(&dn_equiv_surf[0], n_surf,
  742. &corner_pts[0], n_corner, &(M_e2pt[0][0]));
  743. M_err=M*M_e2pt;
  744. }
  745. for(size_t k=0;k<4;k++){ // Error from colleagues of root.
  746. for(int j0=-1;j0<=1;j0++)
  747. for(int j1=-1;j1<=1;j1++)
  748. for(int j2=-1;j2<=1;j2++){
  749. Real_t pt_coord[3]={corner_pts[k*COORD_DIM+0]-j0,
  750. corner_pts[k*COORD_DIM+1]-j1,
  751. corner_pts[k*COORD_DIM+2]-j2};
  752. if(fabs(pt_coord[0]-0.5)>1.0 || fabs(pt_coord[1]-0.5)>1.0 || fabs(pt_coord[2]-0.5)>1.0){
  753. Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],aux_ker_dim[1]);
  754. aux_kernel.BuildMatrix(&up_equiv_surf[0], n_surf,
  755. &pt_coord[0], 1, &(M_e2pt[0][0]));
  756. for(size_t i=0;i<M_e2pt.Dim(0);i++)
  757. for(size_t j=0;j<M_e2pt.Dim(1);j++)
  758. M_err[i][k*aux_ker_dim[1]+j]+=M_e2pt[i][j];
  759. }
  760. }
  761. }
  762. }
  763. Matrix<Real_t> M_grad(M_err.Dim(0),n_surf*aux_ker_dim[1]);
  764. for(size_t i=0;i<M_err.Dim(0);i++)
  765. for(size_t k=0;k<aux_ker_dim[1];k++)
  766. for(size_t j=0;j<n_surf;j++){
  767. M_grad[i][j*aux_ker_dim[1]+k]=(M_err[i][0*aux_ker_dim[1]+k] )*1.0 +
  768. (M_err[i][1*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+0]+
  769. (M_err[i][2*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+1]+
  770. (M_err[i][3*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+2];
  771. }
  772. Matrix<Real_t>& M_dc2de = Precomp(0, DC2DE_Type, 0);
  773. M-=M_grad*M_dc2de;
  774. }
  775. { // Free memory
  776. Mat_Type type=D2D_Type;
  777. for(int l=-BC_LEVELS;l<0;l++)
  778. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  779. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  780. M.Resize(0,0);
  781. }
  782. type=U2U_Type;
  783. for(int l=-BC_LEVELS;l<0;l++)
  784. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  785. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  786. M.Resize(0,0);
  787. }
  788. type=DC2DE_Type;
  789. for(int l=-BC_LEVELS;l<0;l++)
  790. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  791. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  792. M.Resize(0,0);
  793. }
  794. type=UC2UE_Type;
  795. for(int l=-BC_LEVELS;l<0;l++)
  796. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  797. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  798. M.Resize(0,0);
  799. }
  800. }
  801. }
  802. break;
  803. }
  804. default:
  805. break;
  806. }
  807. //Save the matrix for future use.
  808. #pragma omp critical (PRECOMP_MATRIX_PTS)
  809. if(M_.Dim(0)==0 && M_.Dim(1)==0){
  810. M_=M;
  811. /*
  812. M_.Resize(M.Dim(0),M.Dim(1));
  813. int dof=aux_ker_dim[0]*aux_ker_dim[1];
  814. for(int j=0;j<dof;j++){
  815. size_t a=(M.Dim(0)*M.Dim(1)* j )/dof;
  816. size_t b=(M.Dim(0)*M.Dim(1)*(j+1))/dof;
  817. #pragma omp parallel for // NUMA
  818. for(int tid=0;tid<omp_p;tid++){
  819. size_t a_=a+((b-a)* tid )/omp_p;
  820. size_t b_=a+((b-a)*(tid+1))/omp_p;
  821. mem::memcopy(&M_[0][a_], &M[0][a_], (b_-a_)*sizeof(Real_t));
  822. }
  823. }
  824. */
  825. }
  826. return M_;
  827. }
  828. template <class FMMNode>
  829. void FMM_Pts<FMMNode>::PrecompAll(Mat_Type type, int level){
  830. int depth=(Homogen()?1:MAX_DEPTH);
  831. if(level==-1){
  832. for(int l=0;l<depth;l++){
  833. std::stringstream level_str;
  834. level_str<<"level="<<l;
  835. PrecompAll(type, l);
  836. }
  837. return;
  838. }
  839. //Compute basic permutations.
  840. for(size_t i=0;i<Perm_Count;i++)
  841. this->PrecompPerm(type, (Perm_Type) i);
  842. {
  843. //Allocate matrices.
  844. size_t mat_cnt=interac_list.ListCount((Mat_Type)type);
  845. mat->Mat(level, (Mat_Type)type, mat_cnt-1);
  846. { // Compute InteracClass matrices.
  847. std::vector<size_t> indx_lst;
  848. for(size_t i=0; i<mat_cnt; i++){
  849. if(interac_list.InteracClass((Mat_Type)type,i)==i)
  850. indx_lst.push_back(i);
  851. }
  852. //Compute Transformations.
  853. //#pragma omp parallel for //lets use fine grained parallelism
  854. for(size_t i=0; i<indx_lst.size(); i++){
  855. Precomp(level, (Mat_Type)type, indx_lst[i]);
  856. }
  857. }
  858. //#pragma omp parallel for //lets use fine grained parallelism
  859. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
  860. Matrix<Real_t>& M0=interac_list.ClassMat(level,(Mat_Type)type,mat_indx);
  861. Permutation<Real_t>& pr=interac_list.Perm_R(level, (Mat_Type)type, mat_indx);
  862. Permutation<Real_t>& pc=interac_list.Perm_C(level, (Mat_Type)type, mat_indx);
  863. if(pr.Dim()!=M0.Dim(0) || pc.Dim()!=M0.Dim(1)) Precomp(level, (Mat_Type)type, mat_indx);
  864. }
  865. }
  866. }
  867. template <class FMMNode>
  868. void FMM_Pts<FMMNode>::CollectNodeData(std::vector<FMMNode*>& node, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, std::vector<size_t> extra_size){
  869. if( buff.size()<7) buff.resize(7);
  870. if( n_list.size()<7) n_list.resize(7);
  871. if(node.size()==0) return;
  872. {// 0. upward_equiv
  873. int indx=0;
  874. Matrix<Real_t>& M_uc2ue = this->interac_list.ClassMat(0, UC2UE_Type, 0);
  875. size_t vec_sz=M_uc2ue.Dim(1);
  876. std::vector< FMMNode* > node_lst;
  877. {
  878. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  879. FMMNode_t* r_node=NULL;
  880. for(size_t i=0;i<node.size();i++){
  881. if(!node[i]->IsLeaf())
  882. node_lst_[node[i]->Depth()].push_back(node[i]);
  883. if(node[i]->Depth()==0) r_node=node[i];
  884. }
  885. size_t chld_cnt=1UL<<COORD_DIM;
  886. for(int i=0;i<=MAX_DEPTH;i++)
  887. for(size_t j=0;j<node_lst_[i].size();j++)
  888. for(size_t k=0;k<chld_cnt;k++)
  889. node_lst.push_back((FMMNode_t*)node_lst_[i][j]->Child(k));
  890. if(r_node!=NULL) node_lst.push_back(r_node);
  891. }
  892. n_list[indx]=node_lst;
  893. size_t buff_size=node_lst.size()*vec_sz;
  894. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  895. #pragma omp parallel for
  896. for(size_t i=0;i<node.size();i++){ // Clear data
  897. Vector<Real_t>& upward_equiv=node[i]->FMMData()->upward_equiv;
  898. upward_equiv.ReInit(0);
  899. }
  900. buff[indx].Resize(1,buff_size);
  901. #pragma omp parallel for
  902. for(size_t i=0;i<node_lst.size();i++){
  903. Vector<Real_t>& upward_equiv=node_lst[i]->FMMData()->upward_equiv;
  904. upward_equiv.ReInit(vec_sz, buff[indx][0]+i*vec_sz, false);
  905. upward_equiv.SetZero();
  906. }
  907. buff[indx].AllocDevice(true);
  908. }
  909. {// 1. dnward_equiv
  910. int indx=1;
  911. Matrix<Real_t>& M_dc2de = this->interac_list.ClassMat(0, DC2DE_Type, 0);
  912. size_t vec_sz=M_dc2de.Dim(1);
  913. std::vector< FMMNode* > node_lst;
  914. {
  915. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  916. FMMNode_t* r_node=NULL;
  917. for(size_t i=0;i<node.size();i++){
  918. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  919. node_lst_[node[i]->Depth()].push_back(node[i]);
  920. if(node[i]->Depth()==0) r_node=node[i];
  921. }
  922. size_t chld_cnt=1UL<<COORD_DIM;
  923. for(int i=0;i<=MAX_DEPTH;i++)
  924. for(size_t j=0;j<node_lst_[i].size();j++)
  925. for(size_t k=0;k<chld_cnt;k++)
  926. node_lst.push_back((FMMNode_t*)node_lst_[i][j]->Child(k));
  927. if(r_node!=NULL) node_lst.push_back(r_node);
  928. }
  929. n_list[indx]=node_lst;
  930. size_t buff_size=node_lst.size()*vec_sz;
  931. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  932. #pragma omp parallel for
  933. for(size_t i=0;i<node.size();i++){ // Clear data
  934. Vector<Real_t>& dnward_equiv=node[i]->FMMData()->dnward_equiv;
  935. dnward_equiv.ReInit(0);
  936. }
  937. buff[indx].Resize(1,buff_size);
  938. #pragma omp parallel for
  939. for(size_t i=0;i<node_lst.size();i++){
  940. Vector<Real_t>& dnward_equiv=node_lst[i]->FMMData()->dnward_equiv;
  941. dnward_equiv.ReInit(vec_sz, buff[indx][0]+i*vec_sz, false);
  942. dnward_equiv.SetZero();
  943. }
  944. buff[indx].AllocDevice(true);
  945. }
  946. {// 2. upward_equiv_fft
  947. int indx=2;
  948. std::vector< FMMNode* > node_lst;
  949. {
  950. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  951. for(size_t i=0;i<node.size();i++)
  952. if(!node[i]->IsLeaf())
  953. node_lst_[node[i]->Depth()].push_back(node[i]);
  954. for(int i=0;i<=MAX_DEPTH;i++)
  955. for(size_t j=0;j<node_lst_[i].size();j++)
  956. node_lst.push_back(node_lst_[i][j]);
  957. }
  958. n_list[indx]=node_lst;
  959. buff[indx].AllocDevice(true);
  960. }
  961. {// 3. dnward_check_fft
  962. int indx=3;
  963. std::vector< FMMNode* > node_lst;
  964. {
  965. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  966. for(size_t i=0;i<node.size();i++)
  967. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  968. node_lst_[node[i]->Depth()].push_back(node[i]);
  969. for(int i=0;i<=MAX_DEPTH;i++)
  970. for(size_t j=0;j<node_lst_[i].size();j++)
  971. node_lst.push_back(node_lst_[i][j]);
  972. }
  973. n_list[indx]=node_lst;
  974. buff[indx].AllocDevice(true);
  975. }
  976. {// 4. src_val
  977. int indx=4;
  978. int src_dof=kernel.ker_dim[0];
  979. int surf_dof=COORD_DIM+src_dof;
  980. std::vector< FMMNode* > node_lst;
  981. size_t buff_size=0;
  982. for(size_t i=0;i<node.size();i++)
  983. if(node[i]->IsLeaf()){
  984. node_lst.push_back(node[i]);
  985. buff_size+=(node[i]->src_coord.Dim()/COORD_DIM)*src_dof;
  986. buff_size+=(node[i]->surf_coord.Dim()/COORD_DIM)*surf_dof;
  987. }
  988. n_list[indx]=node_lst;
  989. #pragma omp parallel for
  990. for(size_t i=0;i<node.size();i++){ // Move data before resizing buff[indx]
  991. { // src_value
  992. Vector<Real_t>& src_value=node[i]->src_value;
  993. Vector<Real_t> new_buff=src_value;
  994. src_value.Swap(new_buff);
  995. }
  996. { // surf_value
  997. Vector<Real_t>& surf_value=node[i]->surf_value;
  998. Vector<Real_t> new_buff=surf_value;
  999. surf_value.Swap(new_buff);
  1000. }
  1001. }
  1002. buff[indx].Resize(1,buff_size+(extra_size.size()>indx?extra_size[indx]:0));
  1003. Real_t* buff_ptr=&buff[indx][0][0];
  1004. for(size_t i=0;i<node_lst.size();i++){
  1005. { // src_value
  1006. Vector<Real_t>& src_value=node_lst[i]->src_value;
  1007. mem::memcopy(buff_ptr,&src_value[0],src_value.Dim()*sizeof(Real_t));
  1008. src_value.ReInit((node_lst[i]->src_coord.Dim()/COORD_DIM)*src_dof, buff_ptr, false);
  1009. buff_ptr+=(node_lst[i]->src_coord.Dim()/COORD_DIM)*src_dof;
  1010. }
  1011. { // surf_value
  1012. Vector<Real_t>& surf_value=node_lst[i]->surf_value;
  1013. mem::memcopy(buff_ptr,&surf_value[0],surf_value.Dim()*sizeof(Real_t));
  1014. surf_value.ReInit((node_lst[i]->surf_coord.Dim()/COORD_DIM)*surf_dof, buff_ptr, false);
  1015. buff_ptr+=(node_lst[i]->surf_coord.Dim()/COORD_DIM)*surf_dof;
  1016. }
  1017. }
  1018. buff[indx].AllocDevice(true);
  1019. }
  1020. {// 5. trg_val
  1021. int indx=5;
  1022. int trg_dof=kernel.ker_dim[1];
  1023. std::vector< FMMNode* > node_lst;
  1024. size_t buff_size=0;
  1025. for(size_t i=0;i<node.size();i++)
  1026. if(node[i]->IsLeaf() && !node[i]->IsGhost()){
  1027. node_lst.push_back(node[i]);
  1028. buff_size+=(node[i]->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1029. }
  1030. n_list[indx]=node_lst;
  1031. #pragma omp parallel for
  1032. for(size_t i=0;i<node.size();i++){ // Clear data
  1033. { // trg_value
  1034. Vector<Real_t>& trg_value=node[i]->trg_value;
  1035. trg_value.ReInit(0);
  1036. }
  1037. }
  1038. buff[indx].Resize(1,buff_size+(extra_size.size()>indx?extra_size[indx]:0));
  1039. Real_t* buff_ptr=&buff[indx][0][0];
  1040. for(size_t i=0;i<node_lst.size();i++){
  1041. { // trg_value
  1042. Vector<Real_t>& trg_value=node_lst[i]->trg_value;
  1043. trg_value.ReInit((node_lst[i]->trg_coord.Dim()/COORD_DIM)*trg_dof, buff_ptr, false);
  1044. buff_ptr+=(node_lst[i]->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1045. }
  1046. }
  1047. #pragma omp parallel for
  1048. for(size_t i=0;i<node_lst.size();i++){
  1049. Vector<Real_t>& trg_value=node_lst[i]->trg_value;
  1050. trg_value.SetZero();
  1051. }
  1052. buff[indx].AllocDevice(true);
  1053. }
  1054. {// 6. pts_coord
  1055. int indx=6;
  1056. size_t m=MultipoleOrder();
  1057. std::vector< FMMNode* > node_lst;
  1058. size_t buff_size=0;
  1059. for(size_t i=0;i<node.size();i++)
  1060. if(node[i]->IsLeaf()){
  1061. node_lst.push_back(node[i]);
  1062. buff_size+=node[i]->src_coord.Dim();
  1063. buff_size+=node[i]->surf_coord.Dim();
  1064. buff_size+=node[i]->trg_coord.Dim();
  1065. }
  1066. n_list[indx]=node_lst;
  1067. #pragma omp parallel for
  1068. for(size_t i=0;i<node.size();i++){ // Move data before resizing buff[indx]
  1069. { // src_coord
  1070. Vector<Real_t>& src_coord=node[i]->src_coord;
  1071. Vector<Real_t> new_buff=src_coord;
  1072. src_coord.Swap(new_buff);
  1073. }
  1074. { // surf_coord
  1075. Vector<Real_t>& surf_coord=node[i]->surf_coord;
  1076. Vector<Real_t> new_buff=surf_coord;
  1077. surf_coord.Swap(new_buff);
  1078. }
  1079. { // trg_coord
  1080. Vector<Real_t>& trg_coord=node[i]->trg_coord;
  1081. Vector<Real_t> new_buff=trg_coord;
  1082. trg_coord.Swap(new_buff);
  1083. }
  1084. }
  1085. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  1086. buff_size+=4*MAX_DEPTH*(6*(m-1)*(m-1)+2)*COORD_DIM;
  1087. buff[indx].Resize(1,buff_size);
  1088. Real_t* buff_ptr=&buff[indx][0][0];
  1089. for(size_t i=0;i<node_lst.size();i++){
  1090. { // src_coord
  1091. Vector<Real_t>& src_coord=node_lst[i]->src_coord;
  1092. mem::memcopy(buff_ptr,&src_coord[0],src_coord.Dim()*sizeof(Real_t));
  1093. src_coord.ReInit(node_lst[i]->src_coord.Dim(), buff_ptr, false);
  1094. buff_ptr+=node_lst[i]->src_coord.Dim();
  1095. }
  1096. { // surf_coord
  1097. Vector<Real_t>& surf_coord=node_lst[i]->surf_coord;
  1098. mem::memcopy(buff_ptr,&surf_coord[0],surf_coord.Dim()*sizeof(Real_t));
  1099. surf_coord.ReInit(node_lst[i]->surf_coord.Dim(), buff_ptr, false);
  1100. buff_ptr+=node_lst[i]->surf_coord.Dim();
  1101. }
  1102. { // trg_coord
  1103. Vector<Real_t>& trg_coord=node_lst[i]->trg_coord;
  1104. mem::memcopy(buff_ptr,&trg_coord[0],trg_coord.Dim()*sizeof(Real_t));
  1105. trg_coord.ReInit(node_lst[i]->trg_coord.Dim(), buff_ptr, false);
  1106. buff_ptr+=node_lst[i]->trg_coord.Dim();
  1107. }
  1108. }
  1109. { // check and equiv surfaces.
  1110. upwd_check_surf.resize(MAX_DEPTH);
  1111. upwd_equiv_surf.resize(MAX_DEPTH);
  1112. dnwd_check_surf.resize(MAX_DEPTH);
  1113. dnwd_equiv_surf.resize(MAX_DEPTH);
  1114. for(size_t depth=0;depth<MAX_DEPTH;depth++){
  1115. Real_t c[3]={0.0,0.0,0.0};
  1116. upwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1117. upwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1118. dnwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1119. dnwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1120. upwd_check_surf[depth]=u_check_surf(m,c,depth);
  1121. upwd_equiv_surf[depth]=u_equiv_surf(m,c,depth);
  1122. dnwd_check_surf[depth]=d_check_surf(m,c,depth);
  1123. dnwd_equiv_surf[depth]=d_equiv_surf(m,c,depth);
  1124. }
  1125. }
  1126. buff[indx].AllocDevice(true);
  1127. }
  1128. }
  1129. template <class FMMNode>
  1130. void FMM_Pts<FMMNode>::SetupPrecomp(SetupData<Real_t>& setup_data, bool device){
  1131. if(setup_data.precomp_data==NULL || setup_data.level>MAX_DEPTH) return;
  1132. Profile::Tic("SetupPrecomp",&this->comm,true,25);
  1133. { // Build precomp_data
  1134. size_t precomp_offset=0;
  1135. int level=setup_data.level;
  1136. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1137. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1138. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1139. Mat_Type& interac_type=interac_type_lst[type_indx];
  1140. this->PrecompAll(interac_type, level); // Compute matrices.
  1141. precomp_offset=this->mat->CompactData(level, interac_type, precomp_data, precomp_offset);
  1142. }
  1143. }
  1144. Profile::Toc();
  1145. if(device){ // Host2Device
  1146. Profile::Tic("Host2Device",&this->comm,false,25);
  1147. setup_data.precomp_data->AllocDevice(true);
  1148. Profile::Toc();
  1149. }
  1150. }
  1151. template <class FMMNode>
  1152. void FMM_Pts<FMMNode>::SetupInterac(SetupData<Real_t>& setup_data, bool device){
  1153. int level=setup_data.level;
  1154. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1155. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1156. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1157. Matrix<Real_t>& input_data=*setup_data. input_data;
  1158. Matrix<Real_t>& output_data=*setup_data.output_data;
  1159. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  1160. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  1161. size_t n_in =nodes_in .size();
  1162. size_t n_out=nodes_out.size();
  1163. // Setup precomputed data.
  1164. SetupPrecomp(setup_data,device);
  1165. // Build interac_data
  1166. Profile::Tic("Interac-Data",&this->comm,true,25);
  1167. Matrix<char>& interac_data=setup_data.interac_data;
  1168. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  1169. std::vector<size_t> interac_mat;
  1170. std::vector<size_t> interac_cnt;
  1171. std::vector<size_t> interac_blk;
  1172. std::vector<size_t> input_perm;
  1173. std::vector<size_t> output_perm;
  1174. std::vector<Real_t> scaling;
  1175. size_t dof=0, M_dim0=0, M_dim1=0;
  1176. size_t precomp_offset=0;
  1177. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  1178. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1179. Mat_Type& interac_type=interac_type_lst[type_indx];
  1180. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  1181. Vector<size_t> precomp_data_offset;
  1182. { // Load precomp_data for interac_type.
  1183. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1184. char* indx_ptr=precomp_data[0]+precomp_offset;
  1185. size_t total_size=((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  1186. /*size_t mat_cnt_ =((size_t*)indx_ptr)[0];*/ indx_ptr+=sizeof(size_t);
  1187. precomp_data_offset.ReInit((1+2+2)*mat_cnt, (size_t*)indx_ptr, false);
  1188. precomp_offset+=total_size;
  1189. }
  1190. Matrix<FMMNode*> src_interac_list(n_in ,mat_cnt); src_interac_list.SetZero();
  1191. Matrix<FMMNode*> trg_interac_list(n_out,mat_cnt); trg_interac_list.SetZero();
  1192. { // Build trg_interac_list
  1193. for(size_t i=0;i<n_out;i++){
  1194. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  1195. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  1196. mem::memcopy(&trg_interac_list[i][0], &lst[0], lst.size()*sizeof(FMMNode*));
  1197. assert(lst.size()==mat_cnt);
  1198. }
  1199. }
  1200. }
  1201. { // Build src_interac_list
  1202. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  1203. for(size_t i=0;i<n_out;i++){
  1204. for(size_t j=0;j<mat_cnt;j++)
  1205. if(trg_interac_list[i][j]!=NULL){
  1206. src_interac_list[trg_interac_list[i][j]->node_id][j]=(FMMNode*)nodes_out[i];
  1207. }
  1208. }
  1209. }
  1210. Matrix<size_t> interac_dsp(n_out,mat_cnt);
  1211. std::vector<size_t> interac_blk_dsp(1,0);
  1212. { // Determine dof, M_dim0, M_dim1
  1213. dof=1;
  1214. Matrix<Real_t>& M0 = this->interac_list.ClassMat(level, interac_type_lst[0], 0);
  1215. M_dim0=M0.Dim(0); M_dim1=M0.Dim(1);
  1216. }
  1217. { // Determine interaction blocks which fit in memory.
  1218. size_t vec_size=(M_dim0+M_dim1)*sizeof(Real_t)*dof;
  1219. for(size_t j=0;j<mat_cnt;j++){// Determine minimum buff_size
  1220. size_t vec_cnt=0;
  1221. for(size_t i=0;i<n_out;i++){
  1222. if(trg_interac_list[i][j]!=NULL) vec_cnt++;
  1223. }
  1224. if(buff_size<vec_cnt*vec_size)
  1225. buff_size=vec_cnt*vec_size;
  1226. }
  1227. size_t interac_dsp_=0;
  1228. for(size_t j=0;j<mat_cnt;j++){
  1229. for(size_t i=0;i<n_out;i++){
  1230. interac_dsp[i][j]=interac_dsp_;
  1231. if(trg_interac_list[i][j]!=NULL) interac_dsp_++;
  1232. }
  1233. if(interac_dsp_*vec_size>buff_size) // Comment to disable symmetries.
  1234. {
  1235. interac_blk.push_back(j-interac_blk_dsp.back());
  1236. interac_blk_dsp.push_back(j);
  1237. size_t offset=interac_dsp[0][j];
  1238. for(size_t i=0;i<n_out;i++) interac_dsp[i][j]-=offset;
  1239. interac_dsp_-=offset;
  1240. assert(interac_dsp_*vec_size<=buff_size); // Problem too big for buff_size.
  1241. }
  1242. interac_mat.push_back(precomp_data_offset[5*this->interac_list.InteracClass(interac_type,j)+0]);
  1243. interac_cnt.push_back(interac_dsp_-interac_dsp[0][j]);
  1244. }
  1245. interac_blk.push_back(mat_cnt-interac_blk_dsp.back());
  1246. interac_blk_dsp.push_back(mat_cnt);
  1247. }
  1248. { // Determine input_perm.
  1249. size_t vec_size=M_dim0*dof;
  1250. for(size_t i=0;i<n_out;i++) ((FMMNode*)nodes_out[i])->node_id=i;
  1251. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1252. for(size_t i=0;i<n_in ;i++){
  1253. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1254. FMMNode_t* trg_node=src_interac_list[i][j];
  1255. if(trg_node!=NULL){
  1256. input_perm .push_back(precomp_data_offset[5*j+1]); // prem
  1257. input_perm .push_back(precomp_data_offset[5*j+2]); // scal
  1258. input_perm .push_back(interac_dsp[trg_node->node_id][j]*vec_size*sizeof(Real_t)); // trg_ptr
  1259. input_perm .push_back((size_t)(& input_vector[i][0][0]- input_data[0])); // src_ptr
  1260. assert(input_vector[i]->Dim()==vec_size);
  1261. }
  1262. }
  1263. }
  1264. }
  1265. }
  1266. { // Determine scaling and output_perm
  1267. size_t vec_size=M_dim1*dof;
  1268. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1269. for(size_t i=0;i<n_out;i++){
  1270. Real_t scaling_=0.0;
  1271. if(!this->Homogen()) scaling_=1.0;
  1272. else if(interac_type==S2U_Type) scaling_=pow(0.5, COORD_DIM *((FMMNode*)nodes_out[i])->Depth());
  1273. else if(interac_type==U2U_Type) scaling_=1.0;
  1274. else if(interac_type==D2D_Type) scaling_=1.0;
  1275. else if(interac_type==D2T_Type) scaling_=pow(0.5, -setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  1276. else if(interac_type== U0_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1277. else if(interac_type== U1_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1278. else if(interac_type== U2_Type) scaling_=pow(0.5,(COORD_DIM-setup_data.kernel->poten_scale)*((FMMNode*)nodes_out[i])->Depth());
  1279. else if(interac_type== W_Type) scaling_=pow(0.5, -setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  1280. else if(interac_type== X_Type) scaling_=pow(0.5, COORD_DIM *((FMMNode*)nodes_out[i])->Depth());
  1281. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1282. if(trg_interac_list[i][j]!=NULL){
  1283. scaling.push_back(scaling_); // scaling
  1284. output_perm.push_back(precomp_data_offset[5*j+3]); // prem
  1285. output_perm.push_back(precomp_data_offset[5*j+4]); // scal
  1286. output_perm.push_back(interac_dsp[ i ][j]*vec_size*sizeof(Real_t)); // src_ptr
  1287. output_perm.push_back((size_t)(&output_vector[i][0][0]-output_data[0])); // trg_ptr
  1288. assert(output_vector[i]->Dim()==vec_size);
  1289. }
  1290. }
  1291. }
  1292. }
  1293. }
  1294. }
  1295. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  1296. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  1297. { // Set interac_data.
  1298. size_t data_size=sizeof(size_t)*4;
  1299. data_size+=sizeof(size_t)+interac_blk.size()*sizeof(size_t);
  1300. data_size+=sizeof(size_t)+interac_cnt.size()*sizeof(size_t);
  1301. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  1302. data_size+=sizeof(size_t)+ input_perm.size()*sizeof(size_t);
  1303. data_size+=sizeof(size_t)+output_perm.size()*sizeof(size_t);
  1304. data_size+=sizeof(size_t)+scaling.size()*sizeof(Real_t);
  1305. if(interac_data.Dim(0)*interac_data.Dim(1)<sizeof(size_t)){
  1306. data_size+=sizeof(size_t);
  1307. interac_data.Resize(1,data_size);
  1308. ((size_t*)&interac_data[0][0])[0]=sizeof(size_t);
  1309. }else{
  1310. size_t pts_data_size=*((size_t*)&interac_data[0][0]);
  1311. assert(interac_data.Dim(0)*interac_data.Dim(1)>=pts_data_size);
  1312. data_size+=pts_data_size;
  1313. if(data_size>interac_data.Dim(0)*interac_data.Dim(1)){ //Resize and copy interac_data.
  1314. Matrix< char> pts_interac_data=interac_data;
  1315. interac_data.Resize(1,data_size);
  1316. mem::memcopy(&interac_data[0][0],&pts_interac_data[0][0],pts_data_size);
  1317. }
  1318. }
  1319. char* data_ptr=&interac_data[0][0];
  1320. data_ptr+=((size_t*)data_ptr)[0];
  1321. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  1322. ((size_t*)data_ptr)[0]= M_dim0; data_ptr+=sizeof(size_t);
  1323. ((size_t*)data_ptr)[0]= M_dim1; data_ptr+=sizeof(size_t);
  1324. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  1325. ((size_t*)data_ptr)[0]=interac_blk.size(); data_ptr+=sizeof(size_t);
  1326. mem::memcopy(data_ptr, &interac_blk[0], interac_blk.size()*sizeof(size_t));
  1327. data_ptr+=interac_blk.size()*sizeof(size_t);
  1328. ((size_t*)data_ptr)[0]=interac_cnt.size(); data_ptr+=sizeof(size_t);
  1329. mem::memcopy(data_ptr, &interac_cnt[0], interac_cnt.size()*sizeof(size_t));
  1330. data_ptr+=interac_cnt.size()*sizeof(size_t);
  1331. ((size_t*)data_ptr)[0]=interac_mat.size(); data_ptr+=sizeof(size_t);
  1332. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  1333. data_ptr+=interac_mat.size()*sizeof(size_t);
  1334. ((size_t*)data_ptr)[0]= input_perm.size(); data_ptr+=sizeof(size_t);
  1335. mem::memcopy(data_ptr, & input_perm[0], input_perm.size()*sizeof(size_t));
  1336. data_ptr+= input_perm.size()*sizeof(size_t);
  1337. ((size_t*)data_ptr)[0]=output_perm.size(); data_ptr+=sizeof(size_t);
  1338. mem::memcopy(data_ptr, &output_perm[0], output_perm.size()*sizeof(size_t));
  1339. data_ptr+=output_perm.size()*sizeof(size_t);
  1340. ((size_t*)data_ptr)[0]=scaling.size(); data_ptr+=sizeof(size_t);
  1341. mem::memcopy(data_ptr, &scaling[0], scaling.size()*sizeof(Real_t));
  1342. data_ptr+=scaling.size()*sizeof(Real_t);
  1343. }
  1344. }
  1345. Profile::Toc();
  1346. if(device){ // Host2Device
  1347. Profile::Tic("Host2Device",&this->comm,false,25);
  1348. setup_data.interac_data .AllocDevice(true);
  1349. Profile::Toc();
  1350. }
  1351. }
  1352. template <class FMMNode>
  1353. void FMM_Pts<FMMNode>::EvalList(SetupData<Real_t>& setup_data, bool device){
  1354. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  1355. Profile::Tic("Host2Device",&this->comm,false,25);
  1356. Profile::Toc();
  1357. Profile::Tic("DeviceComp",&this->comm,false,20);
  1358. Profile::Toc();
  1359. return;
  1360. }
  1361. Profile::Tic("Host2Device",&this->comm,false,25);
  1362. typename Vector<char>::Device buff;
  1363. typename Matrix<char>::Device precomp_data;
  1364. typename Matrix<char>::Device interac_data;
  1365. typename Matrix<Real_t>::Device input_data;
  1366. typename Matrix<Real_t>::Device output_data;
  1367. if(device){
  1368. buff = this-> dev_buffer. AllocDevice(false);
  1369. precomp_data= setup_data.precomp_data->AllocDevice(false);
  1370. interac_data= setup_data.interac_data. AllocDevice(false);
  1371. input_data = setup_data. input_data->AllocDevice(false);
  1372. output_data = setup_data. output_data->AllocDevice(false);
  1373. }else{
  1374. buff = this-> cpu_buffer;
  1375. precomp_data=*setup_data.precomp_data;
  1376. interac_data= setup_data.interac_data;
  1377. input_data =*setup_data. input_data;
  1378. output_data =*setup_data. output_data;
  1379. }
  1380. Profile::Toc();
  1381. Profile::Tic("DeviceComp",&this->comm,false,20);
  1382. #ifdef __INTEL_OFFLOAD
  1383. int lock_idx=-1;
  1384. int wait_lock_idx=-1;
  1385. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  1386. if(device) lock_idx=MIC_Lock::get_lock();
  1387. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  1388. #endif
  1389. { // Offloaded computation.
  1390. // Set interac_data.
  1391. size_t data_size, M_dim0, M_dim1, dof;
  1392. Vector<size_t> interac_blk;
  1393. Vector<size_t> interac_cnt;
  1394. Vector<size_t> interac_mat;
  1395. Vector<size_t> input_perm;
  1396. Vector<size_t> output_perm;
  1397. Vector<Real_t> scaling;
  1398. { // Set interac_data.
  1399. char* data_ptr=&interac_data[0][0];
  1400. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size;
  1401. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1402. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1403. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1404. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1405. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1406. data_ptr+=sizeof(size_t)+interac_blk.Dim()*sizeof(size_t);
  1407. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1408. data_ptr+=sizeof(size_t)+interac_cnt.Dim()*sizeof(size_t);
  1409. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1410. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  1411. input_perm .ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1412. data_ptr+=sizeof(size_t)+ input_perm.Dim()*sizeof(size_t);
  1413. output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1414. data_ptr+=sizeof(size_t)+output_perm.Dim()*sizeof(size_t);
  1415. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  1416. data_ptr+=sizeof(size_t)+scaling.Dim()*sizeof(Real_t);
  1417. }
  1418. #ifdef __INTEL_OFFLOAD
  1419. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  1420. #endif
  1421. //Compute interaction from Chebyshev source density.
  1422. { // interactions
  1423. int omp_p=omp_get_max_threads();
  1424. size_t interac_indx=0;
  1425. size_t interac_blk_dsp=0;
  1426. for(size_t k=0;k<interac_blk.Dim();k++){
  1427. size_t vec_cnt=0;
  1428. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
  1429. char* buff_in =&buff[0];
  1430. char* buff_out=&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1431. // Input permutation.
  1432. #pragma omp parallel for
  1433. for(int tid=0;tid<omp_p;tid++){
  1434. size_t a=( tid *vec_cnt)/omp_p;
  1435. size_t b=((tid+1)*vec_cnt)/omp_p;
  1436. for(size_t i=a;i<b;i++){
  1437. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+input_perm[(interac_indx+i)*4+0]);
  1438. const Real_t* scal=( Real_t*)(precomp_data[0]+input_perm[(interac_indx+i)*4+1]);
  1439. const Real_t* v_in =( Real_t*)( input_data[0]+input_perm[(interac_indx+i)*4+3]);
  1440. Real_t* v_out=( Real_t*)( buff_in +input_perm[(interac_indx+i)*4+2]);
  1441. // TODO: Fix for dof>1
  1442. #ifdef __MIC__
  1443. {
  1444. __m512d v8;
  1445. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1446. size_t j_end =(((uintptr_t)(v_out+M_dim0) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1447. j_start/=sizeof(Real_t);
  1448. j_end /=sizeof(Real_t);
  1449. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1450. assert(((uintptr_t)(v_out+j_start))%64==0);
  1451. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1452. size_t j=0;
  1453. for(;j<j_start;j++ ){
  1454. v_out[j]=v_in[perm[j]]*scal[j];
  1455. }
  1456. for(;j<j_end ;j+=8){
  1457. v8=_mm512_setr_pd(
  1458. v_in[perm[j+0]]*scal[j+0],
  1459. v_in[perm[j+1]]*scal[j+1],
  1460. v_in[perm[j+2]]*scal[j+2],
  1461. v_in[perm[j+3]]*scal[j+3],
  1462. v_in[perm[j+4]]*scal[j+4],
  1463. v_in[perm[j+5]]*scal[j+5],
  1464. v_in[perm[j+6]]*scal[j+6],
  1465. v_in[perm[j+7]]*scal[j+7]);
  1466. _mm512_storenrngo_pd(v_out+j,v8);
  1467. }
  1468. for(;j<M_dim0 ;j++ ){
  1469. v_out[j]=v_in[perm[j]]*scal[j];
  1470. }
  1471. }
  1472. #else
  1473. for(size_t j=0;j<M_dim0;j++ ){
  1474. v_out[j]=v_in[perm[j]]*scal[j];
  1475. }
  1476. #endif
  1477. }
  1478. }
  1479. size_t vec_cnt0=0;
  1480. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];){
  1481. size_t vec_cnt1=0;
  1482. size_t interac_mat0=interac_mat[j];
  1483. for(;j<interac_blk_dsp+interac_blk[k] && interac_mat[j]==interac_mat0;j++) vec_cnt1+=interac_cnt[j];
  1484. Matrix<Real_t> M(M_dim0, M_dim1, (Real_t*)(precomp_data[0]+interac_mat0), false);
  1485. #ifdef __MIC__
  1486. {
  1487. Matrix<Real_t> Ms(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1488. Matrix<Real_t> Mt(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1489. Matrix<Real_t>::DGEMM(Mt,Ms,M);
  1490. }
  1491. #else
  1492. #pragma omp parallel for
  1493. for(int tid=0;tid<omp_p;tid++){
  1494. size_t a=(dof*vec_cnt1*(tid ))/omp_p;
  1495. size_t b=(dof*vec_cnt1*(tid+1))/omp_p;
  1496. Matrix<Real_t> Ms(b-a, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t))+M_dim0*a, false);
  1497. Matrix<Real_t> Mt(b-a, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t))+M_dim1*a, false);
  1498. Matrix<Real_t>::DGEMM(Mt,Ms,M);
  1499. }
  1500. #endif
  1501. vec_cnt0+=vec_cnt1;
  1502. }
  1503. // Output permutation.
  1504. #pragma omp parallel for
  1505. for(int tid=0;tid<omp_p;tid++){
  1506. size_t a=( tid *vec_cnt)/omp_p;
  1507. size_t b=((tid+1)*vec_cnt)/omp_p;
  1508. if(tid> 0 && a<vec_cnt){ // Find 'a' independent of other threads.
  1509. size_t out_ptr=output_perm[(interac_indx+a)*4+3];
  1510. if(tid> 0) while(a<vec_cnt && out_ptr==output_perm[(interac_indx+a)*4+3]) a++;
  1511. }
  1512. if(tid<omp_p-1 && b<vec_cnt){ // Find 'b' independent of other threads.
  1513. size_t out_ptr=output_perm[(interac_indx+b)*4+3];
  1514. if(tid<omp_p-1) while(b<vec_cnt && out_ptr==output_perm[(interac_indx+b)*4+3]) b++;
  1515. }
  1516. for(size_t i=a;i<b;i++){ // Compute permutations.
  1517. Real_t scaling_factor=scaling[interac_indx+i];
  1518. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+output_perm[(interac_indx+i)*4+0]);
  1519. const Real_t* scal=( Real_t*)(precomp_data[0]+output_perm[(interac_indx+i)*4+1]);
  1520. const Real_t* v_in =( Real_t*)( buff_out +output_perm[(interac_indx+i)*4+2]);
  1521. Real_t* v_out=( Real_t*)( output_data[0]+output_perm[(interac_indx+i)*4+3]);
  1522. // TODO: Fix for dof>1
  1523. #ifdef __MIC__
  1524. {
  1525. __m512d v8;
  1526. __m512d v_old;
  1527. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1528. size_t j_end =(((uintptr_t)(v_out+M_dim1) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1529. j_start/=sizeof(Real_t);
  1530. j_end /=sizeof(Real_t);
  1531. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1532. assert(((uintptr_t)(v_out+j_start))%64==0);
  1533. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1534. size_t j=0;
  1535. for(;j<j_start;j++ ){
  1536. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1537. }
  1538. for(;j<j_end ;j+=8){
  1539. v_old=_mm512_load_pd(v_out+j);
  1540. v8=_mm512_setr_pd(
  1541. v_in[perm[j+0]]*scal[j+0]*scaling_factor,
  1542. v_in[perm[j+1]]*scal[j+1]*scaling_factor,
  1543. v_in[perm[j+2]]*scal[j+2]*scaling_factor,
  1544. v_in[perm[j+3]]*scal[j+3]*scaling_factor,
  1545. v_in[perm[j+4]]*scal[j+4]*scaling_factor,
  1546. v_in[perm[j+5]]*scal[j+5]*scaling_factor,
  1547. v_in[perm[j+6]]*scal[j+6]*scaling_factor,
  1548. v_in[perm[j+7]]*scal[j+7]*scaling_factor);
  1549. v_old=_mm512_add_pd(v_old, v8);
  1550. _mm512_storenrngo_pd(v_out+j,v_old);
  1551. }
  1552. for(;j<M_dim1 ;j++ ){
  1553. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1554. }
  1555. }
  1556. #else
  1557. for(size_t j=0;j<M_dim1;j++ ){
  1558. v_out[j]+=v_in[perm[j]]*scal[j]*scaling_factor;
  1559. }
  1560. #endif
  1561. }
  1562. }
  1563. interac_indx+=vec_cnt;
  1564. interac_blk_dsp+=interac_blk[k];
  1565. }
  1566. }
  1567. #ifdef __INTEL_OFFLOAD
  1568. if(device) MIC_Lock::release_lock(lock_idx);
  1569. #endif
  1570. }
  1571. #ifndef __MIC_ASYNCH__
  1572. #ifdef __INTEL_OFFLOAD
  1573. #pragma offload if(device) target(mic:0)
  1574. {if(device) MIC_Lock::wait_lock(lock_idx);}
  1575. #endif
  1576. #endif
  1577. Profile::Toc();
  1578. }
  1579. template <class FMMNode>
  1580. void FMM_Pts<FMMNode>::Source2UpSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  1581. if(this->MultipoleOrder()==0) return;
  1582. { // Set setup_data
  1583. setup_data.level=level;
  1584. setup_data.kernel=&aux_kernel;
  1585. setup_data.interac_type.resize(1);
  1586. setup_data.interac_type[0]=S2U_Type;
  1587. setup_data. input_data=&buff[4];
  1588. setup_data.output_data=&buff[0];
  1589. setup_data. coord_data=&buff[6];
  1590. Vector<FMMNode_t*>& nodes_in =n_list[4];
  1591. Vector<FMMNode_t*>& nodes_out=n_list[0];
  1592. setup_data.nodes_in .clear();
  1593. setup_data.nodes_out.clear();
  1594. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  1595. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  1596. }
  1597. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1598. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1599. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  1600. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  1601. for(size_t i=0;i<nodes_in .size();i++){
  1602. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  1603. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  1604. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  1605. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  1606. }
  1607. for(size_t i=0;i<nodes_out.size();i++){
  1608. output_vector.push_back(&upwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
  1609. output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
  1610. }
  1611. //Upward check to upward equivalent matrix.
  1612. Matrix<Real_t>& M_uc2ue = this->mat->Mat(level, UC2UE_Type, 0);
  1613. this->SetupInteracPts(setup_data, false, true, &M_uc2ue,device);
  1614. { // Resize device buffer
  1615. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  1616. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  1617. }
  1618. }
  1619. template <class FMMNode>
  1620. void FMM_Pts<FMMNode>::Source2Up(SetupData<Real_t>& setup_data, bool device){
  1621. //Add Source2Up contribution.
  1622. this->EvalListPts(setup_data, device);
  1623. }
  1624. template <class FMMNode>
  1625. void FMM_Pts<FMMNode>::Up2UpSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  1626. if(this->MultipoleOrder()==0) return;
  1627. { // Set setup_data
  1628. setup_data.level=level;
  1629. setup_data.kernel=&aux_kernel;
  1630. setup_data.interac_type.resize(1);
  1631. setup_data.interac_type[0]=U2U_Type;
  1632. setup_data. input_data=&buff[0];
  1633. setup_data.output_data=&buff[0];
  1634. Vector<FMMNode_t*>& nodes_in =n_list[0];
  1635. Vector<FMMNode_t*>& nodes_out=n_list[0];
  1636. setup_data.nodes_in .clear();
  1637. setup_data.nodes_out.clear();
  1638. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1) setup_data.nodes_in .push_back(nodes_in [i]);
  1639. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
  1640. }
  1641. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1642. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1643. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  1644. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  1645. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  1646. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
  1647. SetupInterac(setup_data,device);
  1648. }
  1649. template <class FMMNode>
  1650. void FMM_Pts<FMMNode>::Up2Up (SetupData<Real_t>& setup_data, bool device){
  1651. //Add Up2Up contribution.
  1652. EvalList(setup_data, device);
  1653. }
  1654. template <class FMMNode>
  1655. void FMM_Pts<FMMNode>::PeriodicBC(FMMNode* node){
  1656. if(this->MultipoleOrder()==0) return;
  1657. Matrix<Real_t>& M = Precomp(0, BC_Type, 0);
  1658. assert(node->FMMData()->upward_equiv.Dim()>0);
  1659. int dof=1;
  1660. Vector<Real_t>& upward_equiv=node->FMMData()->upward_equiv;
  1661. Vector<Real_t>& dnward_equiv=node->FMMData()->dnward_equiv;
  1662. assert(upward_equiv.Dim()==M.Dim(0)*dof);
  1663. assert(dnward_equiv.Dim()==M.Dim(1)*dof);
  1664. Matrix<Real_t> d_equiv(dof,M.Dim(0),&dnward_equiv[0],false);
  1665. Matrix<Real_t> u_equiv(dof,M.Dim(1),&upward_equiv[0],false);
  1666. Matrix<Real_t>::DGEMM(d_equiv,u_equiv,M);
  1667. }
  1668. template <class FMMNode>
  1669. void FMM_Pts<FMMNode>::FFT_UpEquiv(size_t dof, size_t m, size_t ker_dim0, Vector<size_t>& fft_vec,
  1670. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_){
  1671. size_t n1=m*2;
  1672. size_t n2=n1*n1;
  1673. size_t n3=n1*n2;
  1674. size_t n3_=n2*(n1/2+1);
  1675. size_t chld_cnt=1UL<<COORD_DIM;
  1676. size_t fftsize_in =2*n3_*chld_cnt*ker_dim0*dof;
  1677. int omp_p=omp_get_max_threads();
  1678. //Load permutation map.
  1679. size_t n=6*(m-1)*(m-1)+2;
  1680. static Vector<size_t> map;
  1681. { // Build map to reorder upward_equiv
  1682. size_t n_old=map.Dim();
  1683. if(n_old!=n){
  1684. Real_t c[3]={0,0,0};
  1685. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1686. map.Resize(surf.Dim()/COORD_DIM);
  1687. for(size_t i=0;i<map.Dim();i++)
  1688. map[i]=((size_t)(m-1-surf[i*3]+0.5))+((size_t)(m-1-surf[i*3+1]+0.5))*n1+((size_t)(m-1-surf[i*3+2]+0.5))*n2;
  1689. }
  1690. }
  1691. { // Build FFTW plan.
  1692. if(!vlist_fft_flag){
  1693. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1694. void *fftw_in, *fftw_out;
  1695. fftw_in = mem::aligned_malloc<Real_t>( n3 *ker_dim0*chld_cnt);
  1696. fftw_out = mem::aligned_malloc<Real_t>(2*n3_*ker_dim0*chld_cnt);
  1697. vlist_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM,nnn,ker_dim0*chld_cnt,
  1698. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*)(fftw_out),NULL, 1, n3_, FFTW_ESTIMATE);
  1699. mem::aligned_free<Real_t>((Real_t*)fftw_in );
  1700. mem::aligned_free<Real_t>((Real_t*)fftw_out);
  1701. vlist_fft_flag=true;
  1702. }
  1703. }
  1704. { // Offload section
  1705. size_t n_in = fft_vec.Dim();
  1706. #pragma omp parallel for
  1707. for(int pid=0; pid<omp_p; pid++){
  1708. size_t node_start=(n_in*(pid ))/omp_p;
  1709. size_t node_end =(n_in*(pid+1))/omp_p;
  1710. Vector<Real_t> buffer(fftsize_in, &buffer_[fftsize_in*pid], false);
  1711. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  1712. Vector<Real_t*> upward_equiv(chld_cnt);
  1713. for(size_t i=0;i<chld_cnt;i++) upward_equiv[i]=&input_data[0] + fft_vec[node_idx] + n*ker_dim0*dof*i;
  1714. Vector<Real_t> upward_equiv_fft(fftsize_in, &output_data[fftsize_in *node_idx], false);
  1715. upward_equiv_fft.SetZero();
  1716. // Rearrange upward equivalent data.
  1717. for(size_t k=0;k<n;k++){
  1718. size_t idx=map[k];
  1719. for(int j1=0;j1<dof;j1++)
  1720. for(int j0=0;j0<(int)chld_cnt;j0++)
  1721. for(int i=0;i<ker_dim0;i++)
  1722. upward_equiv_fft[idx+(j0+(i+j1*ker_dim0)*chld_cnt)*n3]=upward_equiv[j0][ker_dim0*(n*j1+k)+i];
  1723. }
  1724. // Compute FFT.
  1725. for(int i=0;i<dof;i++)
  1726. FFTW_t<Real_t>::fft_execute_dft_r2c(vlist_fftplan, (Real_t*)&upward_equiv_fft[i* n3 *ker_dim0*chld_cnt],
  1727. (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim0*chld_cnt]);
  1728. //Compute flops.
  1729. #ifndef FFTW3_MKL
  1730. double add, mul, fma;
  1731. FFTW_t<Real_t>::fftw_flops(vlist_fftplan, &add, &mul, &fma);
  1732. #ifndef __INTEL_OFFLOAD0
  1733. Profile::Add_FLOP((long long)(add+mul+2*fma));
  1734. #endif
  1735. #endif
  1736. for(int i=0;i<ker_dim0*dof;i++)
  1737. for(size_t j=0;j<n3_;j++)
  1738. for(size_t k=0;k<chld_cnt;k++){
  1739. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+0]=buffer[2*(n3_*(chld_cnt*i+k)+j)+0];
  1740. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+1]=buffer[2*(n3_*(chld_cnt*i+k)+j)+1];
  1741. }
  1742. }
  1743. }
  1744. }
  1745. }
  1746. template <class FMMNode>
  1747. void FMM_Pts<FMMNode>::FFT_Check2Equiv(size_t dof, size_t m, size_t ker_dim1, Vector<size_t>& ifft_vec,
  1748. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_, Matrix<Real_t>& M){
  1749. size_t n1=m*2;
  1750. size_t n2=n1*n1;
  1751. size_t n3=n1*n2;
  1752. size_t n3_=n2*(n1/2+1);
  1753. size_t chld_cnt=1UL<<COORD_DIM;
  1754. size_t fftsize_out=2*n3_*dof*ker_dim1*chld_cnt;
  1755. int omp_p=omp_get_max_threads();
  1756. //Load permutation map.
  1757. size_t n=6*(m-1)*(m-1)+2;
  1758. static Vector<size_t> map;
  1759. { // Build map to reorder dnward_check
  1760. size_t n_old=map.Dim();
  1761. if(n_old!=n){
  1762. Real_t c[3]={0,0,0};
  1763. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1764. map.Resize(surf.Dim()/COORD_DIM);
  1765. for(size_t i=0;i<map.Dim();i++)
  1766. map[i]=((size_t)(m*2-0.5-surf[i*3]))+((size_t)(m*2-0.5-surf[i*3+1]))*n1+((size_t)(m*2-0.5-surf[i*3+2]))*n2;
  1767. //map;//.AllocDevice(true);
  1768. }
  1769. }
  1770. { // Build FFTW plan.
  1771. if(!vlist_ifft_flag){
  1772. //Build FFTW plan.
  1773. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1774. Real_t *fftw_in, *fftw_out;
  1775. fftw_in = mem::aligned_malloc<Real_t>(2*n3_*ker_dim1*chld_cnt);
  1776. fftw_out = mem::aligned_malloc<Real_t>( n3 *ker_dim1*chld_cnt);
  1777. vlist_ifftplan = FFTW_t<Real_t>::fft_plan_many_dft_c2r(COORD_DIM,nnn,ker_dim1*chld_cnt,
  1778. (typename FFTW_t<Real_t>::cplx*)fftw_in, NULL, 1, n3_, (Real_t*)(fftw_out),NULL, 1, n3, FFTW_ESTIMATE);
  1779. mem::aligned_free<Real_t>(fftw_in);
  1780. mem::aligned_free<Real_t>(fftw_out);
  1781. vlist_ifft_flag=true;
  1782. }
  1783. }
  1784. { // Offload section
  1785. size_t n_out=ifft_vec.Dim();
  1786. #pragma omp parallel for
  1787. for(int pid=0; pid<omp_p; pid++){
  1788. size_t node_start=(n_out*(pid ))/omp_p;
  1789. size_t node_end =(n_out*(pid+1))/omp_p;
  1790. Vector<Real_t> buffer(fftsize_out, &buffer_[fftsize_out*pid], false);
  1791. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  1792. Vector<Real_t> dnward_check_fft(fftsize_out, &input_data[fftsize_out*node_idx], false);
  1793. //De-interleave data.
  1794. for(int i=0;i<ker_dim1*dof;i++)
  1795. for(size_t j=0;j<n3_;j++)
  1796. for(size_t k=0;k<chld_cnt;k++){
  1797. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+0]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+0];
  1798. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+1]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+1];
  1799. }
  1800. // Compute FFT.
  1801. for(int i=0;i<dof;i++)
  1802. FFTW_t<Real_t>::fft_execute_dft_c2r(vlist_ifftplan, (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim1*chld_cnt],
  1803. (Real_t*)&dnward_check_fft[i* n3 *ker_dim1*chld_cnt]);
  1804. //Compute flops.
  1805. #ifndef FFTW3_MKL
  1806. double add, mul, fma;
  1807. FFTW_t<Real_t>::fftw_flops(vlist_ifftplan, &add, &mul, &fma);
  1808. #ifndef __INTEL_OFFLOAD0
  1809. Profile::Add_FLOP((long long)(add+mul+2*fma));
  1810. #endif
  1811. #endif
  1812. // Rearrange downward check data.
  1813. for(size_t k=0;k<n;k++){
  1814. size_t idx=map[k];
  1815. for(int j1=0;j1<dof;j1++)
  1816. for(int j0=0;j0<(int)chld_cnt;j0++)
  1817. for(int i=0;i<ker_dim1;i++)
  1818. buffer[ker_dim1*(n*(dof*j0+j1)+k)+i]=dnward_check_fft[idx+(j1+(i+j0*ker_dim1)*dof)*n3];
  1819. }
  1820. // Compute check to equiv.
  1821. for(size_t j=0;j<chld_cnt;j++){
  1822. Matrix<Real_t> d_check(dof,M.Dim(0),&buffer[n*ker_dim1*dof*j],false);
  1823. Matrix<Real_t> d_equiv(dof,M.Dim(1),&output_data[0] + ifft_vec[node_idx] + M.Dim(1)*dof*j,false);
  1824. Matrix<Real_t>::DGEMM(d_equiv,d_check,M,1.0);
  1825. }
  1826. }
  1827. }
  1828. }
  1829. }
  1830. template<class Real_t>
  1831. inline void matmult_8x8x2(Real_t*& M_, Real_t*& IN0, Real_t*& IN1, Real_t*& OUT0, Real_t*& OUT1){
  1832. // Generic code.
  1833. Real_t out_reg000, out_reg001, out_reg010, out_reg011;
  1834. Real_t out_reg100, out_reg101, out_reg110, out_reg111;
  1835. Real_t in_reg000, in_reg001, in_reg010, in_reg011;
  1836. Real_t in_reg100, in_reg101, in_reg110, in_reg111;
  1837. Real_t m_reg000, m_reg001, m_reg010, m_reg011;
  1838. Real_t m_reg100, m_reg101, m_reg110, m_reg111;
  1839. //#pragma unroll
  1840. for(int i1=0;i1<8;i1+=2){
  1841. Real_t* IN0_=IN0;
  1842. Real_t* IN1_=IN1;
  1843. out_reg000=OUT0[ 0]; out_reg001=OUT0[ 1];
  1844. out_reg010=OUT0[ 2]; out_reg011=OUT0[ 3];
  1845. out_reg100=OUT1[ 0]; out_reg101=OUT1[ 1];
  1846. out_reg110=OUT1[ 2]; out_reg111=OUT1[ 3];
  1847. //#pragma unroll
  1848. for(int i2=0;i2<8;i2+=2){
  1849. m_reg000=M_[ 0]; m_reg001=M_[ 1];
  1850. m_reg010=M_[ 2]; m_reg011=M_[ 3];
  1851. m_reg100=M_[16]; m_reg101=M_[17];
  1852. m_reg110=M_[18]; m_reg111=M_[19];
  1853. in_reg000=IN0_[0]; in_reg001=IN0_[1];
  1854. in_reg010=IN0_[2]; in_reg011=IN0_[3];
  1855. in_reg100=IN1_[0]; in_reg101=IN1_[1];
  1856. in_reg110=IN1_[2]; in_reg111=IN1_[3];
  1857. out_reg000 += m_reg000*in_reg000 - m_reg001*in_reg001;
  1858. out_reg001 += m_reg000*in_reg001 + m_reg001*in_reg000;
  1859. out_reg010 += m_reg010*in_reg000 - m_reg011*in_reg001;
  1860. out_reg011 += m_reg010*in_reg001 + m_reg011*in_reg000;
  1861. out_reg000 += m_reg100*in_reg010 - m_reg101*in_reg011;
  1862. out_reg001 += m_reg100*in_reg011 + m_reg101*in_reg010;
  1863. out_reg010 += m_reg110*in_reg010 - m_reg111*in_reg011;
  1864. out_reg011 += m_reg110*in_reg011 + m_reg111*in_reg010;
  1865. out_reg100 += m_reg000*in_reg100 - m_reg001*in_reg101;
  1866. out_reg101 += m_reg000*in_reg101 + m_reg001*in_reg100;
  1867. out_reg110 += m_reg010*in_reg100 - m_reg011*in_reg101;
  1868. out_reg111 += m_reg010*in_reg101 + m_reg011*in_reg100;
  1869. out_reg100 += m_reg100*in_reg110 - m_reg101*in_reg111;
  1870. out_reg101 += m_reg100*in_reg111 + m_reg101*in_reg110;
  1871. out_reg110 += m_reg110*in_reg110 - m_reg111*in_reg111;
  1872. out_reg111 += m_reg110*in_reg111 + m_reg111*in_reg110;
  1873. M_+=32; // Jump to (column+2).
  1874. IN0_+=4;
  1875. IN1_+=4;
  1876. }
  1877. OUT0[ 0]=out_reg000; OUT0[ 1]=out_reg001;
  1878. OUT0[ 2]=out_reg010; OUT0[ 3]=out_reg011;
  1879. OUT1[ 0]=out_reg100; OUT1[ 1]=out_reg101;
  1880. OUT1[ 2]=out_reg110; OUT1[ 3]=out_reg111;
  1881. M_+=4-64*2; // Jump back to first column (row+2).
  1882. OUT0+=4;
  1883. OUT1+=4;
  1884. }
  1885. }
  1886. #if defined(__AVX__) || defined(__SSE3__)
  1887. template<>
  1888. inline void matmult_8x8x2<double>(double*& M_, double*& IN0, double*& IN1, double*& OUT0, double*& OUT1){
  1889. #ifdef __AVX__ //AVX code.
  1890. __m256d out00,out01,out10,out11;
  1891. __m256d out20,out21,out30,out31;
  1892. double* in0__ = IN0;
  1893. double* in1__ = IN1;
  1894. out00 = _mm256_load_pd(OUT0);
  1895. out01 = _mm256_load_pd(OUT1);
  1896. out10 = _mm256_load_pd(OUT0+4);
  1897. out11 = _mm256_load_pd(OUT1+4);
  1898. out20 = _mm256_load_pd(OUT0+8);
  1899. out21 = _mm256_load_pd(OUT1+8);
  1900. out30 = _mm256_load_pd(OUT0+12);
  1901. out31 = _mm256_load_pd(OUT1+12);
  1902. for(int i2=0;i2<8;i2+=2){
  1903. __m256d m00;
  1904. __m256d ot00;
  1905. __m256d mt0,mtt0;
  1906. __m256d in00,in00_r,in01,in01_r;
  1907. in00 = _mm256_broadcast_pd((const __m128d*)in0__);
  1908. in00_r = _mm256_permute_pd(in00,5);
  1909. in01 = _mm256_broadcast_pd((const __m128d*)in1__);
  1910. in01_r = _mm256_permute_pd(in01,5);
  1911. m00 = _mm256_load_pd(M_);
  1912. mt0 = _mm256_unpacklo_pd(m00,m00);
  1913. ot00 = _mm256_mul_pd(mt0,in00);
  1914. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1915. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1916. ot00 = _mm256_mul_pd(mt0,in01);
  1917. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1918. m00 = _mm256_load_pd(M_+4);
  1919. mt0 = _mm256_unpacklo_pd(m00,m00);
  1920. ot00 = _mm256_mul_pd(mt0,in00);
  1921. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1922. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1923. ot00 = _mm256_mul_pd(mt0,in01);
  1924. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1925. m00 = _mm256_load_pd(M_+8);
  1926. mt0 = _mm256_unpacklo_pd(m00,m00);
  1927. ot00 = _mm256_mul_pd(mt0,in00);
  1928. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1929. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1930. ot00 = _mm256_mul_pd(mt0,in01);
  1931. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1932. m00 = _mm256_load_pd(M_+12);
  1933. mt0 = _mm256_unpacklo_pd(m00,m00);
  1934. ot00 = _mm256_mul_pd(mt0,in00);
  1935. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1936. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1937. ot00 = _mm256_mul_pd(mt0,in01);
  1938. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1939. in00 = _mm256_broadcast_pd((const __m128d*) (in0__+2));
  1940. in00_r = _mm256_permute_pd(in00,5);
  1941. in01 = _mm256_broadcast_pd((const __m128d*) (in1__+2));
  1942. in01_r = _mm256_permute_pd(in01,5);
  1943. m00 = _mm256_load_pd(M_+16);
  1944. mt0 = _mm256_unpacklo_pd(m00,m00);
  1945. ot00 = _mm256_mul_pd(mt0,in00);
  1946. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1947. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1948. ot00 = _mm256_mul_pd(mt0,in01);
  1949. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1950. m00 = _mm256_load_pd(M_+20);
  1951. mt0 = _mm256_unpacklo_pd(m00,m00);
  1952. ot00 = _mm256_mul_pd(mt0,in00);
  1953. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1954. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1955. ot00 = _mm256_mul_pd(mt0,in01);
  1956. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1957. m00 = _mm256_load_pd(M_+24);
  1958. mt0 = _mm256_unpacklo_pd(m00,m00);
  1959. ot00 = _mm256_mul_pd(mt0,in00);
  1960. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1961. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1962. ot00 = _mm256_mul_pd(mt0,in01);
  1963. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1964. m00 = _mm256_load_pd(M_+28);
  1965. mt0 = _mm256_unpacklo_pd(m00,m00);
  1966. ot00 = _mm256_mul_pd(mt0,in00);
  1967. mtt0 = _mm256_unpackhi_pd(m00,m00);
  1968. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  1969. ot00 = _mm256_mul_pd(mt0,in01);
  1970. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  1971. M_ += 32;
  1972. in0__ += 4;
  1973. in1__ += 4;
  1974. }
  1975. _mm256_store_pd(OUT0,out00);
  1976. _mm256_store_pd(OUT1,out01);
  1977. _mm256_store_pd(OUT0+4,out10);
  1978. _mm256_store_pd(OUT1+4,out11);
  1979. _mm256_store_pd(OUT0+8,out20);
  1980. _mm256_store_pd(OUT1+8,out21);
  1981. _mm256_store_pd(OUT0+12,out30);
  1982. _mm256_store_pd(OUT1+12,out31);
  1983. #elif defined __SSE3__ // SSE code.
  1984. __m128d out00, out01, out10, out11;
  1985. __m128d in00, in01, in10, in11;
  1986. __m128d m00, m01, m10, m11;
  1987. //#pragma unroll
  1988. for(int i1=0;i1<8;i1+=2){
  1989. double* IN0_=IN0;
  1990. double* IN1_=IN1;
  1991. out00 =_mm_load_pd (OUT0 );
  1992. out10 =_mm_load_pd (OUT0+2);
  1993. out01 =_mm_load_pd (OUT1 );
  1994. out11 =_mm_load_pd (OUT1+2);
  1995. //#pragma unroll
  1996. for(int i2=0;i2<8;i2+=2){
  1997. m00 =_mm_load1_pd (M_ );
  1998. m10 =_mm_load1_pd (M_+ 2);
  1999. m01 =_mm_load1_pd (M_+16);
  2000. m11 =_mm_load1_pd (M_+18);
  2001. in00 =_mm_load_pd (IN0_ );
  2002. in10 =_mm_load_pd (IN0_+2);
  2003. in01 =_mm_load_pd (IN1_ );
  2004. in11 =_mm_load_pd (IN1_+2);
  2005. out00 = _mm_add_pd (out00, _mm_mul_pd(m00 , in00 ));
  2006. out00 = _mm_add_pd (out00, _mm_mul_pd(m01 , in10 ));
  2007. out01 = _mm_add_pd (out01, _mm_mul_pd(m00 , in01 ));
  2008. out01 = _mm_add_pd (out01, _mm_mul_pd(m01 , in11 ));
  2009. out10 = _mm_add_pd (out10, _mm_mul_pd(m10 , in00 ));
  2010. out10 = _mm_add_pd (out10, _mm_mul_pd(m11 , in10 ));
  2011. out11 = _mm_add_pd (out11, _mm_mul_pd(m10 , in01 ));
  2012. out11 = _mm_add_pd (out11, _mm_mul_pd(m11 , in11 ));
  2013. m00 =_mm_load1_pd (M_+ 1);
  2014. m10 =_mm_load1_pd (M_+ 2+1);
  2015. m01 =_mm_load1_pd (M_+16+1);
  2016. m11 =_mm_load1_pd (M_+18+1);
  2017. in00 =_mm_shuffle_pd (in00,in00,_MM_SHUFFLE2(0,1));
  2018. in01 =_mm_shuffle_pd (in01,in01,_MM_SHUFFLE2(0,1));
  2019. in10 =_mm_shuffle_pd (in10,in10,_MM_SHUFFLE2(0,1));
  2020. in11 =_mm_shuffle_pd (in11,in11,_MM_SHUFFLE2(0,1));
  2021. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m00, in00));
  2022. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m01, in10));
  2023. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m00, in01));
  2024. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m01, in11));
  2025. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m10, in00));
  2026. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m11, in10));
  2027. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m10, in01));
  2028. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m11, in11));
  2029. M_+=32; // Jump to (column+2).
  2030. IN0_+=4;
  2031. IN1_+=4;
  2032. }
  2033. _mm_store_pd (OUT0 ,out00);
  2034. _mm_store_pd (OUT0+2,out10);
  2035. _mm_store_pd (OUT1 ,out01);
  2036. _mm_store_pd (OUT1+2,out11);
  2037. M_+=4-64*2; // Jump back to first column (row+2).
  2038. OUT0+=4;
  2039. OUT1+=4;
  2040. }
  2041. #endif
  2042. }
  2043. #endif
  2044. #if defined(__SSE3__)
  2045. template<>
  2046. inline void matmult_8x8x2<float>(float*& M_, float*& IN0, float*& IN1, float*& OUT0, float*& OUT1){
  2047. #if defined __SSE3__ // SSE code.
  2048. __m128 out00,out01,out10,out11;
  2049. __m128 out20,out21,out30,out31;
  2050. float* in0__ = IN0;
  2051. float* in1__ = IN1;
  2052. out00 = _mm_load_ps(OUT0);
  2053. out01 = _mm_load_ps(OUT1);
  2054. out10 = _mm_load_ps(OUT0+4);
  2055. out11 = _mm_load_ps(OUT1+4);
  2056. out20 = _mm_load_ps(OUT0+8);
  2057. out21 = _mm_load_ps(OUT1+8);
  2058. out30 = _mm_load_ps(OUT0+12);
  2059. out31 = _mm_load_ps(OUT1+12);
  2060. for(int i2=0;i2<8;i2+=2){
  2061. __m128 m00;
  2062. __m128 ot00;
  2063. __m128 mt0,mtt0;
  2064. __m128 in00,in00_r,in01,in01_r;
  2065. in00 = _mm_castpd_ps(_mm_load_pd1((const double*)in0__));
  2066. in00_r = _mm_shuffle_ps(in00,in00,_MM_SHUFFLE(2,3,0,1));
  2067. in01 = _mm_castpd_ps(_mm_load_pd1((const double*)in1__));
  2068. in01_r = _mm_shuffle_ps(in01,in01,_MM_SHUFFLE(2,3,0,1));
  2069. m00 = _mm_load_ps(M_);
  2070. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2071. out00= _mm_add_ps (out00,_mm_mul_ps( mt0,in00 ));
  2072. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2073. out00= _mm_addsub_ps(out00,_mm_mul_ps(mtt0,in00_r));
  2074. out01 = _mm_add_ps (out01,_mm_mul_ps( mt0,in01 ));
  2075. out01 = _mm_addsub_ps(out01,_mm_mul_ps(mtt0,in01_r));
  2076. m00 = _mm_load_ps(M_+4);
  2077. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2078. out10= _mm_add_ps (out10,_mm_mul_ps( mt0,in00 ));
  2079. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2080. out10= _mm_addsub_ps(out10,_mm_mul_ps(mtt0,in00_r));
  2081. out11 = _mm_add_ps (out11,_mm_mul_ps( mt0,in01 ));
  2082. out11 = _mm_addsub_ps(out11,_mm_mul_ps(mtt0,in01_r));
  2083. m00 = _mm_load_ps(M_+8);
  2084. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2085. out20= _mm_add_ps (out20,_mm_mul_ps( mt0,in00 ));
  2086. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2087. out20= _mm_addsub_ps(out20,_mm_mul_ps(mtt0,in00_r));
  2088. out21 = _mm_add_ps (out21,_mm_mul_ps( mt0,in01 ));
  2089. out21 = _mm_addsub_ps(out21,_mm_mul_ps(mtt0,in01_r));
  2090. m00 = _mm_load_ps(M_+12);
  2091. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2092. out30= _mm_add_ps (out30,_mm_mul_ps( mt0, in00));
  2093. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2094. out30= _mm_addsub_ps(out30,_mm_mul_ps(mtt0,in00_r));
  2095. out31 = _mm_add_ps (out31,_mm_mul_ps( mt0,in01 ));
  2096. out31 = _mm_addsub_ps(out31,_mm_mul_ps(mtt0,in01_r));
  2097. in00 = _mm_castpd_ps(_mm_load_pd1((const double*) (in0__+2)));
  2098. in00_r = _mm_shuffle_ps(in00,in00,_MM_SHUFFLE(2,3,0,1));
  2099. in01 = _mm_castpd_ps(_mm_load_pd1((const double*) (in1__+2)));
  2100. in01_r = _mm_shuffle_ps(in01,in01,_MM_SHUFFLE(2,3,0,1));
  2101. m00 = _mm_load_ps(M_+16);
  2102. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2103. out00= _mm_add_ps (out00,_mm_mul_ps( mt0,in00 ));
  2104. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2105. out00= _mm_addsub_ps(out00,_mm_mul_ps(mtt0,in00_r));
  2106. out01 = _mm_add_ps (out01,_mm_mul_ps( mt0,in01 ));
  2107. out01 = _mm_addsub_ps(out01,_mm_mul_ps(mtt0,in01_r));
  2108. m00 = _mm_load_ps(M_+20);
  2109. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2110. out10= _mm_add_ps (out10,_mm_mul_ps( mt0,in00 ));
  2111. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2112. out10= _mm_addsub_ps(out10,_mm_mul_ps(mtt0,in00_r));
  2113. out11 = _mm_add_ps (out11,_mm_mul_ps( mt0,in01 ));
  2114. out11 = _mm_addsub_ps(out11,_mm_mul_ps(mtt0,in01_r));
  2115. m00 = _mm_load_ps(M_+24);
  2116. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2117. out20= _mm_add_ps (out20,_mm_mul_ps( mt0,in00 ));
  2118. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2119. out20= _mm_addsub_ps(out20,_mm_mul_ps(mtt0,in00_r));
  2120. out21 = _mm_add_ps (out21,_mm_mul_ps( mt0,in01 ));
  2121. out21 = _mm_addsub_ps(out21,_mm_mul_ps(mtt0,in01_r));
  2122. m00 = _mm_load_ps(M_+28);
  2123. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2124. out30= _mm_add_ps (out30,_mm_mul_ps( mt0,in00 ));
  2125. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2126. out30= _mm_addsub_ps(out30,_mm_mul_ps(mtt0,in00_r));
  2127. out31 = _mm_add_ps (out31,_mm_mul_ps( mt0,in01 ));
  2128. out31 = _mm_addsub_ps(out31,_mm_mul_ps(mtt0,in01_r));
  2129. M_ += 32;
  2130. in0__ += 4;
  2131. in1__ += 4;
  2132. }
  2133. _mm_store_ps(OUT0,out00);
  2134. _mm_store_ps(OUT1,out01);
  2135. _mm_store_ps(OUT0+4,out10);
  2136. _mm_store_ps(OUT1+4,out11);
  2137. _mm_store_ps(OUT0+8,out20);
  2138. _mm_store_ps(OUT1+8,out21);
  2139. _mm_store_ps(OUT0+12,out30);
  2140. _mm_store_ps(OUT1+12,out31);
  2141. #endif
  2142. }
  2143. #endif
  2144. template <class Real_t>
  2145. void VListHadamard(size_t dof, size_t M_dim, size_t ker_dim0, size_t ker_dim1, Vector<size_t>& interac_dsp,
  2146. Vector<size_t>& interac_vec, Vector<Real_t*>& precomp_mat, Vector<Real_t>& fft_in, Vector<Real_t>& fft_out){
  2147. size_t chld_cnt=1UL<<COORD_DIM;
  2148. size_t fftsize_in =M_dim*ker_dim0*chld_cnt*2;
  2149. size_t fftsize_out=M_dim*ker_dim1*chld_cnt*2;
  2150. Real_t* zero_vec0=mem::aligned_malloc<Real_t>(fftsize_in );
  2151. Real_t* zero_vec1=mem::aligned_malloc<Real_t>(fftsize_out);
  2152. size_t n_out=fft_out.Dim()/fftsize_out;
  2153. // Set buff_out to zero.
  2154. #pragma omp parallel for
  2155. for(size_t k=0;k<n_out;k++){
  2156. Vector<Real_t> dnward_check_fft(fftsize_out, &fft_out[k*fftsize_out], false);
  2157. dnward_check_fft.SetZero();
  2158. }
  2159. // Build list of interaction pairs (in, out vectors).
  2160. size_t mat_cnt=precomp_mat.Dim();
  2161. size_t blk1_cnt=interac_dsp.Dim()/mat_cnt;
  2162. const size_t V_BLK_SIZE=V_BLK_CACHE*64/sizeof(Real_t);
  2163. Real_t** IN_ =new Real_t*[2*V_BLK_SIZE*blk1_cnt*mat_cnt];
  2164. Real_t** OUT_=new Real_t*[2*V_BLK_SIZE*blk1_cnt*mat_cnt];
  2165. #pragma omp parallel for
  2166. for(size_t interac_blk1=0; interac_blk1<blk1_cnt*mat_cnt; interac_blk1++){
  2167. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2168. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2169. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2170. for(size_t j=0;j<interac_cnt;j++){
  2171. IN_ [2*V_BLK_SIZE*interac_blk1 +j]=&fft_in [interac_vec[(interac_dsp0+j)*2+0]];
  2172. OUT_[2*V_BLK_SIZE*interac_blk1 +j]=&fft_out[interac_vec[(interac_dsp0+j)*2+1]];
  2173. }
  2174. IN_ [2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec0;
  2175. OUT_[2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec1;
  2176. }
  2177. int omp_p=omp_get_max_threads();
  2178. #pragma omp parallel for
  2179. for(int pid=0; pid<omp_p; pid++){
  2180. size_t a=( pid *M_dim)/omp_p;
  2181. size_t b=((pid+1)*M_dim)/omp_p;
  2182. for(size_t blk1=0; blk1<blk1_cnt; blk1++)
  2183. for(size_t k=a; k< b; k++)
  2184. for(size_t mat_indx=0; mat_indx< mat_cnt;mat_indx++){
  2185. size_t interac_blk1 = blk1*mat_cnt+mat_indx;
  2186. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2187. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2188. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2189. Real_t** IN = IN_ + 2*V_BLK_SIZE*interac_blk1;
  2190. Real_t** OUT= OUT_+ 2*V_BLK_SIZE*interac_blk1;
  2191. Real_t* M = precomp_mat[mat_indx] + k*chld_cnt*chld_cnt*2;
  2192. #ifdef __SSE__
  2193. if (mat_indx +1 < mat_cnt){ // Prefetch
  2194. _mm_prefetch(((char *)(precomp_mat[mat_indx+1] + k*chld_cnt*chld_cnt*2)), _MM_HINT_T0);
  2195. _mm_prefetch(((char *)(precomp_mat[mat_indx+1] + k*chld_cnt*chld_cnt*2) + 64), _MM_HINT_T0);
  2196. }
  2197. #endif
  2198. for(int in_dim=0;in_dim<ker_dim0;in_dim++)
  2199. for(int ot_dim=0;ot_dim<ker_dim1;ot_dim++){
  2200. for(size_t j=0;j<interac_cnt;j+=2){
  2201. Real_t* M_ = M;
  2202. Real_t* IN0 = IN [j+0] + (in_dim*M_dim+k)*chld_cnt*2;
  2203. Real_t* IN1 = IN [j+1] + (in_dim*M_dim+k)*chld_cnt*2;
  2204. Real_t* OUT0 = OUT[j+0] + (ot_dim*M_dim+k)*chld_cnt*2;
  2205. Real_t* OUT1 = OUT[j+1] + (ot_dim*M_dim+k)*chld_cnt*2;
  2206. #ifdef __SSE__
  2207. if (j+2 < interac_cnt) { // Prefetch
  2208. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2209. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2210. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2211. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2212. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2213. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2214. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2215. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2216. }
  2217. #endif
  2218. matmult_8x8x2(M_, IN0, IN1, OUT0, OUT1);
  2219. }
  2220. M += M_dim*128;
  2221. }
  2222. }
  2223. }
  2224. // Compute flops.
  2225. {
  2226. Profile::Add_FLOP(8*8*8*(interac_vec.Dim()/2)*M_dim*ker_dim0*ker_dim1*dof);
  2227. }
  2228. // Free memory
  2229. delete[] IN_ ;
  2230. delete[] OUT_;
  2231. mem::aligned_free<Real_t>(zero_vec0);
  2232. mem::aligned_free<Real_t>(zero_vec1);
  2233. }
  2234. template <class FMMNode>
  2235. void FMM_Pts<FMMNode>::V_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2236. if(this->MultipoleOrder()==0) return;
  2237. if(level==0) return;
  2238. { // Set setup_data
  2239. setup_data.level=level;
  2240. setup_data.kernel=&aux_kernel;
  2241. setup_data.interac_type.resize(1);
  2242. setup_data.interac_type[0]=V1_Type;
  2243. setup_data. input_data=&buff[0];
  2244. setup_data.output_data=&buff[1];
  2245. Vector<FMMNode_t*>& nodes_in =n_list[2];
  2246. Vector<FMMNode_t*>& nodes_out=n_list[3];
  2247. setup_data.nodes_in .clear();
  2248. setup_data.nodes_out.clear();
  2249. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2250. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level-1 || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2251. }
  2252. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2253. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2254. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2255. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2256. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_in [i])->Child(0))->FMMData())->upward_equiv);
  2257. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_out[i])->Child(0))->FMMData())->dnward_equiv);
  2258. /////////////////////////////////////////////////////////////////////////////
  2259. size_t n_in =nodes_in .size();
  2260. size_t n_out=nodes_out.size();
  2261. // Setup precomputed data.
  2262. SetupPrecomp(setup_data,device);
  2263. // Build interac_data
  2264. Profile::Tic("Interac-Data",&this->comm,true,25);
  2265. Matrix<char>& interac_data=setup_data.interac_data;
  2266. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  2267. size_t precomp_offset=0;
  2268. Mat_Type& interac_type=setup_data.interac_type[0];
  2269. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2270. Vector<size_t> precomp_data_offset;
  2271. std::vector<size_t> interac_mat;
  2272. { // Load precomp_data for interac_type.
  2273. Matrix<char>& precomp_data=*setup_data.precomp_data;
  2274. char* indx_ptr=precomp_data[0]+precomp_offset;
  2275. size_t total_size=((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  2276. /*size_t mat_cnt_ =((size_t*)indx_ptr)[0];*/ indx_ptr+=sizeof(size_t);
  2277. precomp_data_offset.ReInit((1+2+2)*mat_cnt, (size_t*)indx_ptr, false);
  2278. precomp_offset+=total_size;
  2279. for(size_t mat_id=0;mat_id<mat_cnt;mat_id++){
  2280. Matrix<Real_t>& M0 = this->mat->Mat(level, interac_type, mat_id);
  2281. assert(M0.Dim(0)>0 && M0.Dim(1)>0); UNUSED(M0);
  2282. interac_mat.push_back(precomp_data_offset[5*mat_id]);
  2283. }
  2284. }
  2285. size_t dof;
  2286. size_t m=MultipoleOrder();
  2287. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2288. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2289. size_t fftsize;
  2290. {
  2291. size_t n1=m*2;
  2292. size_t n2=n1*n1;
  2293. size_t n3_=n2*(n1/2+1);
  2294. size_t chld_cnt=1UL<<COORD_DIM;
  2295. fftsize=2*n3_*chld_cnt;
  2296. dof=1;
  2297. }
  2298. int omp_p=omp_get_max_threads();
  2299. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2300. size_t n_blk0=2*fftsize*dof*(ker_dim0*n_in +ker_dim1*n_out)*sizeof(Real_t)/buff_size;
  2301. if(n_blk0==0) n_blk0=1;
  2302. std::vector<std::vector<size_t> > fft_vec(n_blk0);
  2303. std::vector<std::vector<size_t> > ifft_vec(n_blk0);
  2304. std::vector<std::vector<size_t> > interac_vec(n_blk0);
  2305. std::vector<std::vector<size_t> > interac_dsp(n_blk0);
  2306. {
  2307. Matrix<Real_t>& input_data=*setup_data. input_data;
  2308. Matrix<Real_t>& output_data=*setup_data.output_data;
  2309. std::vector<std::vector<FMMNode*> > nodes_blk_in (n_blk0);
  2310. std::vector<std::vector<FMMNode*> > nodes_blk_out(n_blk0);
  2311. for(size_t i=0;i<n_in;i++) ((FMMNode*)nodes_in[i])->node_id=i;
  2312. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2313. size_t blk0_start=(n_out* blk0 )/n_blk0;
  2314. size_t blk0_end =(n_out*(blk0+1))/n_blk0;
  2315. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2316. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2317. { // Build node list for blk0.
  2318. std::set<void*> nodes_in;
  2319. for(size_t i=blk0_start;i<blk0_end;i++){
  2320. nodes_out_.push_back((FMMNode*)nodes_out[i]);
  2321. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2322. for(size_t k=0;k<mat_cnt;k++) if(lst[k]!=NULL) nodes_in.insert(lst[k]);
  2323. }
  2324. for(std::set<void*>::iterator node=nodes_in.begin(); node != nodes_in.end(); node++){
  2325. nodes_in_.push_back((FMMNode*)*node);
  2326. }
  2327. size_t input_dim=nodes_in_ .size()*ker_dim0*dof*fftsize;
  2328. size_t output_dim=nodes_out_.size()*ker_dim1*dof*fftsize;
  2329. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2330. if(buff_size<(input_dim + output_dim + buffer_dim)*sizeof(Real_t))
  2331. buff_size=(input_dim + output_dim + buffer_dim)*sizeof(Real_t);
  2332. }
  2333. { // Set fft vectors.
  2334. for(size_t i=0;i<nodes_in_ .size();i++) fft_vec[blk0].push_back((size_t)(& input_vector[nodes_in_[i]->node_id][0][0]- input_data[0]));
  2335. for(size_t i=0;i<nodes_out_.size();i++)ifft_vec[blk0].push_back((size_t)(&output_vector[blk0_start + i ][0][0]-output_data[0]));
  2336. }
  2337. }
  2338. for(size_t blk0=0;blk0<n_blk0;blk0++){ // Hadamard interactions.
  2339. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2340. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2341. for(size_t i=0;i<nodes_in_.size();i++) nodes_in_[i]->node_id=i;
  2342. { // Next blocking level.
  2343. size_t n_blk1=nodes_out_.size()*(ker_dim0+ker_dim1)*sizeof(Real_t)/(64*V_BLK_CACHE);
  2344. if(n_blk1==0) n_blk1=1;
  2345. size_t interac_dsp_=0;
  2346. for(size_t blk1=0;blk1<n_blk1;blk1++){
  2347. size_t blk1_start=(nodes_out_.size()* blk1 )/n_blk1;
  2348. size_t blk1_end =(nodes_out_.size()*(blk1+1))/n_blk1;
  2349. for(size_t k=0;k<mat_cnt;k++){
  2350. for(size_t i=blk1_start;i<blk1_end;i++){
  2351. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out_[i])->interac_list[interac_type];
  2352. if(lst[k]!=NULL){
  2353. interac_vec[blk0].push_back(lst[k]->node_id*fftsize*ker_dim0*dof);
  2354. interac_vec[blk0].push_back( i *fftsize*ker_dim1*dof);
  2355. interac_dsp_++;
  2356. }
  2357. }
  2358. interac_dsp[blk0].push_back(interac_dsp_);
  2359. }
  2360. }
  2361. }
  2362. }
  2363. }
  2364. { // Set interac_data.
  2365. size_t data_size=sizeof(size_t)*5; // m, dof, ker_dim0, ker_dim1, n_blk0
  2366. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2367. data_size+=sizeof(size_t)+ fft_vec[blk0].size()*sizeof(size_t);
  2368. data_size+=sizeof(size_t)+ ifft_vec[blk0].size()*sizeof(size_t);
  2369. data_size+=sizeof(size_t)+interac_vec[blk0].size()*sizeof(size_t);
  2370. data_size+=sizeof(size_t)+interac_dsp[blk0].size()*sizeof(size_t);
  2371. }
  2372. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  2373. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2374. interac_data.Resize(1,data_size);
  2375. char* data_ptr=&interac_data[0][0];
  2376. ((size_t*)data_ptr)[0]=buff_size; data_ptr+=sizeof(size_t);
  2377. ((size_t*)data_ptr)[0]= m; data_ptr+=sizeof(size_t);
  2378. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2379. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2380. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2381. ((size_t*)data_ptr)[0]= n_blk0; data_ptr+=sizeof(size_t);
  2382. ((size_t*)data_ptr)[0]= interac_mat.size(); data_ptr+=sizeof(size_t);
  2383. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  2384. data_ptr+=interac_mat.size()*sizeof(size_t);
  2385. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2386. ((size_t*)data_ptr)[0]= fft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2387. mem::memcopy(data_ptr, & fft_vec[blk0][0], fft_vec[blk0].size()*sizeof(size_t));
  2388. data_ptr+= fft_vec[blk0].size()*sizeof(size_t);
  2389. ((size_t*)data_ptr)[0]=ifft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2390. mem::memcopy(data_ptr, &ifft_vec[blk0][0], ifft_vec[blk0].size()*sizeof(size_t));
  2391. data_ptr+=ifft_vec[blk0].size()*sizeof(size_t);
  2392. ((size_t*)data_ptr)[0]=interac_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2393. mem::memcopy(data_ptr, &interac_vec[blk0][0], interac_vec[blk0].size()*sizeof(size_t));
  2394. data_ptr+=interac_vec[blk0].size()*sizeof(size_t);
  2395. ((size_t*)data_ptr)[0]=interac_dsp[blk0].size(); data_ptr+=sizeof(size_t);
  2396. mem::memcopy(data_ptr, &interac_dsp[blk0][0], interac_dsp[blk0].size()*sizeof(size_t));
  2397. data_ptr+=interac_dsp[blk0].size()*sizeof(size_t);
  2398. }
  2399. }
  2400. }
  2401. Profile::Toc();
  2402. Profile::Tic("Host2Device",&this->comm,false,25);
  2403. if(device){ // Host2Device
  2404. setup_data.interac_data. AllocDevice(true);
  2405. }
  2406. Profile::Toc();
  2407. }
  2408. template <class FMMNode>
  2409. void FMM_Pts<FMMNode>::V_List (SetupData<Real_t>& setup_data, bool device){
  2410. assert(!device); //Can not run on accelerator yet.
  2411. int np;
  2412. MPI_Comm_size(comm,&np);
  2413. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2414. if(np>1) Profile::Tic("Host2Device",&this->comm,false,25);
  2415. if(np>1) Profile::Toc();
  2416. return;
  2417. }
  2418. Profile::Tic("Host2Device",&this->comm,false,25);
  2419. int level=setup_data.level;
  2420. size_t buff_size=*((size_t*)&setup_data.interac_data[0][0]);
  2421. typename Matrix<Real_t>::Device M_d;
  2422. typename Vector<char>::Device buff;
  2423. typename Matrix<char>::Device precomp_data;
  2424. typename Matrix<char>::Device interac_data;
  2425. typename Matrix<Real_t>::Device input_data;
  2426. typename Matrix<Real_t>::Device output_data;
  2427. Matrix<Real_t>& M = this->mat->Mat(level, DC2DE_Type, 0);
  2428. if(device){
  2429. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  2430. M_d = M. AllocDevice(false);
  2431. buff = this-> dev_buffer. AllocDevice(false);
  2432. precomp_data= setup_data.precomp_data->AllocDevice(false);
  2433. interac_data= setup_data.interac_data. AllocDevice(false);
  2434. input_data = setup_data. input_data->AllocDevice(false);
  2435. output_data = setup_data. output_data->AllocDevice(false);
  2436. }else{
  2437. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  2438. M_d = M;
  2439. buff = this-> cpu_buffer;
  2440. precomp_data=*setup_data.precomp_data;
  2441. interac_data= setup_data.interac_data;
  2442. input_data =*setup_data. input_data;
  2443. output_data =*setup_data. output_data;
  2444. }
  2445. Profile::Toc();
  2446. { // Offloaded computation.
  2447. // Set interac_data.
  2448. size_t m, dof, ker_dim0, ker_dim1, n_blk0;
  2449. std::vector<Vector<size_t> > fft_vec;
  2450. std::vector<Vector<size_t> > ifft_vec;
  2451. std::vector<Vector<size_t> > interac_vec;
  2452. std::vector<Vector<size_t> > interac_dsp;
  2453. Vector<Real_t*> precomp_mat;
  2454. { // Set interac_data.
  2455. char* data_ptr=&interac_data[0][0];
  2456. buff_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2457. m =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2458. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2459. ker_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2460. ker_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2461. n_blk0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2462. fft_vec .resize(n_blk0);
  2463. ifft_vec.resize(n_blk0);
  2464. interac_vec.resize(n_blk0);
  2465. interac_dsp.resize(n_blk0);
  2466. Vector<size_t> interac_mat;
  2467. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2468. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  2469. precomp_mat.Resize(interac_mat.Dim());
  2470. for(size_t i=0;i<interac_mat.Dim();i++){
  2471. precomp_mat[i]=(Real_t*)(precomp_data[0]+interac_mat[i]);
  2472. }
  2473. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2474. fft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2475. data_ptr+=sizeof(size_t)+fft_vec[blk0].Dim()*sizeof(size_t);
  2476. ifft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2477. data_ptr+=sizeof(size_t)+ifft_vec[blk0].Dim()*sizeof(size_t);
  2478. interac_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2479. data_ptr+=sizeof(size_t)+interac_vec[blk0].Dim()*sizeof(size_t);
  2480. interac_dsp[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2481. data_ptr+=sizeof(size_t)+interac_dsp[blk0].Dim()*sizeof(size_t);
  2482. }
  2483. }
  2484. int omp_p=omp_get_max_threads();
  2485. size_t M_dim, fftsize;
  2486. {
  2487. size_t n1=m*2;
  2488. size_t n2=n1*n1;
  2489. size_t n3_=n2*(n1/2+1);
  2490. size_t chld_cnt=1UL<<COORD_DIM;
  2491. fftsize=2*n3_*chld_cnt;
  2492. M_dim=n3_;
  2493. }
  2494. for(size_t blk0=0;blk0<n_blk0;blk0++){ // interactions
  2495. size_t n_in = fft_vec[blk0].Dim();
  2496. size_t n_out=ifft_vec[blk0].Dim();
  2497. size_t input_dim=n_in *ker_dim0*dof*fftsize;
  2498. size_t output_dim=n_out*ker_dim1*dof*fftsize;
  2499. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2500. Vector<Real_t> fft_in ( input_dim, (Real_t*)&buff[ 0 ],false);
  2501. Vector<Real_t> fft_out(output_dim, (Real_t*)&buff[ input_dim *sizeof(Real_t)],false);
  2502. Vector<Real_t> buffer(buffer_dim, (Real_t*)&buff[(input_dim+output_dim)*sizeof(Real_t)],false);
  2503. { // FFT
  2504. if(np==1) Profile::Tic("FFT",&comm,false,100);
  2505. Vector<Real_t> input_data_( input_data.dim[0]* input_data.dim[1], input_data[0], false);
  2506. FFT_UpEquiv(dof, m, ker_dim0, fft_vec[blk0], input_data_, fft_in, buffer);
  2507. if(np==1) Profile::Toc();
  2508. }
  2509. { // Hadamard
  2510. #ifdef PVFMM_HAVE_PAPI
  2511. #ifdef __VERBOSE__
  2512. std::cout << "Starting counters new\n";
  2513. if (PAPI_start(EventSet) != PAPI_OK) std::cout << "handle_error3" << std::endl;
  2514. #endif
  2515. #endif
  2516. if(np==1) Profile::Tic("HadamardProduct",&comm,false,100);
  2517. VListHadamard<Real_t>(dof, M_dim, ker_dim0, ker_dim1, interac_dsp[blk0], interac_vec[blk0], precomp_mat, fft_in, fft_out);
  2518. if(np==1) Profile::Toc();
  2519. #ifdef PVFMM_HAVE_PAPI
  2520. #ifdef __VERBOSE__
  2521. if (PAPI_stop(EventSet, values) != PAPI_OK) std::cout << "handle_error4" << std::endl;
  2522. std::cout << "Stopping counters\n";
  2523. #endif
  2524. #endif
  2525. }
  2526. { // IFFT
  2527. if(np==1) Profile::Tic("IFFT",&comm,false,100);
  2528. Matrix<Real_t> M(M_d.dim[0],M_d.dim[1],M_d[0],false);
  2529. Vector<Real_t> output_data_(output_data.dim[0]*output_data.dim[1], output_data[0], false);
  2530. FFT_Check2Equiv(dof, m, ker_dim1, ifft_vec[blk0], fft_out, output_data_, buffer, M);
  2531. if(np==1) Profile::Toc();
  2532. }
  2533. }
  2534. }
  2535. }
  2536. template <class FMMNode>
  2537. void FMM_Pts<FMMNode>::Down2DownSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2538. if(this->MultipoleOrder()==0) return;
  2539. { // Set setup_data
  2540. setup_data.level=level;
  2541. setup_data.kernel=&aux_kernel;
  2542. setup_data.interac_type.resize(1);
  2543. setup_data.interac_type[0]=D2D_Type;
  2544. setup_data. input_data=&buff[1];
  2545. setup_data.output_data=&buff[1];
  2546. Vector<FMMNode_t*>& nodes_in =n_list[1];
  2547. Vector<FMMNode_t*>& nodes_out=n_list[1];
  2548. setup_data.nodes_in .clear();
  2549. setup_data.nodes_out.clear();
  2550. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2551. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
  2552. }
  2553. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2554. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2555. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2556. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2557. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  2558. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  2559. SetupInterac(setup_data,device);
  2560. }
  2561. template <class FMMNode>
  2562. void FMM_Pts<FMMNode>::Down2Down (SetupData<Real_t>& setup_data, bool device){
  2563. //Add Down2Down contribution.
  2564. EvalList(setup_data, device);
  2565. }
  2566. template <class FMMNode>
  2567. void FMM_Pts<FMMNode>::SetupInteracPts(SetupData<Real_t>& setup_data, bool shift_src, bool shift_trg, Matrix<Real_t>* M, bool device){
  2568. int level=setup_data.level;
  2569. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  2570. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2571. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2572. Matrix<Real_t>& output_data=*setup_data.output_data;
  2573. Matrix<Real_t>& input_data=*setup_data. input_data;
  2574. Matrix<Real_t>& coord_data=*setup_data. coord_data;
  2575. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  2576. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  2577. size_t n_in =nodes_in .size();
  2578. size_t n_out=nodes_out.size();
  2579. //setup_data.precomp_data=NULL;
  2580. // Build interac_data
  2581. Profile::Tic("Interac-Data",&this->comm,true,25);
  2582. Matrix<char>& interac_data=setup_data.interac_data;
  2583. if(n_out>0 && n_in >0){
  2584. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2585. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2586. size_t dof=1;
  2587. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  2588. std::vector<size_t> trg_interac_cnt(n_out,0);
  2589. std::vector<size_t> trg_coord(n_out);
  2590. std::vector<size_t> trg_value(n_out);
  2591. std::vector<size_t> trg_cnt(n_out);
  2592. std::vector<Real_t> scaling(n_out,0);
  2593. { // Set trg data
  2594. Mat_Type& interac_type=interac_type_lst[0];
  2595. for(size_t i=0;i<n_out;i++){
  2596. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2597. trg_cnt [i]=output_vector[i*2+0]->Dim()/COORD_DIM;
  2598. trg_coord[i]=(size_t)(&output_vector[i*2+0][0][0]- coord_data[0]);
  2599. trg_value[i]=(size_t)(&output_vector[i*2+1][0][0]-output_data[0]);
  2600. if(!this->Homogen()) scaling[i]=1.0;
  2601. else if(interac_type==S2U_Type) scaling[i]=pow(0.5, setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  2602. else if(interac_type== X_Type) scaling[i]=pow(0.5, setup_data.kernel->poten_scale *((FMMNode*)nodes_out[i])->Depth());
  2603. }
  2604. }
  2605. }
  2606. std::vector<std::vector<size_t> > src_cnt(n_out);
  2607. std::vector<std::vector<size_t> > src_coord(n_out);
  2608. std::vector<std::vector<size_t> > src_value(n_out);
  2609. std::vector<std::vector<Real_t> > shift_coord(n_out);
  2610. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  2611. Mat_Type& interac_type=interac_type_lst[type_indx];
  2612. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2613. for(size_t i=0;i<n_out;i++){ // For each target node.
  2614. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2615. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2616. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++) if(lst[mat_indx]!=NULL){ // For each direction.
  2617. size_t j=lst[mat_indx]->node_id;
  2618. if(input_vector[j*4+0]->Dim()>0 || input_vector[j*4+2]->Dim()>0){
  2619. trg_interac_cnt[i]++;
  2620. { // Determine shift for periodic boundary condition
  2621. Real_t* sc=lst[mat_indx]->Coord();
  2622. Real_t* tc=((FMMNode*)nodes_out[i])->Coord();
  2623. int* rel_coord=this->interac_list.RelativeCoord(interac_type, mat_indx);
  2624. shift_coord[i].push_back((tc[0]>sc[0] && rel_coord[0]>0? 1.0:
  2625. (tc[0]<sc[0] && rel_coord[0]<0?-1.0:0.0)) +
  2626. (shift_src?sc[0]:0) - (shift_trg?tc[0]:0) );
  2627. shift_coord[i].push_back((tc[1]>sc[1] && rel_coord[1]>0? 1.0:
  2628. (tc[1]<sc[1] && rel_coord[1]<0?-1.0:0.0)) +
  2629. (shift_src?sc[1]:0) - (shift_trg?tc[1]:0) );
  2630. shift_coord[i].push_back((tc[2]>sc[2] && rel_coord[2]>0? 1.0:
  2631. (tc[2]<sc[2] && rel_coord[2]<0?-1.0:0.0)) +
  2632. (shift_src?sc[2]:0) - (shift_trg?tc[2]:0) );
  2633. }
  2634. { // Set src data
  2635. if(input_vector[j*4+0]!=NULL){
  2636. src_cnt [i].push_back(input_vector[j*4+0]->Dim()/COORD_DIM);
  2637. src_coord[i].push_back((size_t)(& input_vector[j*4+0][0][0]- coord_data[0]));
  2638. src_value[i].push_back((size_t)(& input_vector[j*4+1][0][0]- input_data[0]));
  2639. }else{
  2640. src_cnt [i].push_back(0);
  2641. src_coord[i].push_back(0);
  2642. src_value[i].push_back(0);
  2643. }
  2644. if(input_vector[j*4+2]!=NULL){
  2645. src_cnt [i].push_back(input_vector[j*4+2]->Dim()/COORD_DIM);
  2646. src_coord[i].push_back((size_t)(& input_vector[j*4+2][0][0]- coord_data[0]));
  2647. src_value[i].push_back((size_t)(& input_vector[j*4+3][0][0]- input_data[0]));
  2648. }else{
  2649. src_cnt [i].push_back(0);
  2650. src_coord[i].push_back(0);
  2651. src_value[i].push_back(0);
  2652. }
  2653. }
  2654. }
  2655. }
  2656. }
  2657. }
  2658. }
  2659. { // Set interac_data.
  2660. size_t data_size=sizeof(size_t)*4;
  2661. data_size+=sizeof(size_t)+trg_interac_cnt.size()*sizeof(size_t);
  2662. data_size+=sizeof(size_t)+trg_coord.size()*sizeof(size_t);
  2663. data_size+=sizeof(size_t)+trg_value.size()*sizeof(size_t);
  2664. data_size+=sizeof(size_t)+trg_cnt .size()*sizeof(size_t);
  2665. data_size+=sizeof(size_t)+scaling .size()*sizeof(Real_t);
  2666. data_size+=sizeof(size_t)*2+(M!=NULL?M->Dim(0)*M->Dim(1)*sizeof(Real_t):0);
  2667. for(size_t i=0;i<n_out;i++){
  2668. data_size+=sizeof(size_t)+src_cnt [i].size()*sizeof(size_t);
  2669. data_size+=sizeof(size_t)+src_coord[i].size()*sizeof(size_t);
  2670. data_size+=sizeof(size_t)+src_value[i].size()*sizeof(size_t);
  2671. data_size+=sizeof(size_t)+shift_coord[i].size()*sizeof(Real_t);
  2672. }
  2673. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2674. interac_data.Resize(1,data_size);
  2675. char* data_ptr=&interac_data[0][0];
  2676. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  2677. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2678. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2679. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2680. ((size_t*)data_ptr)[0]=trg_interac_cnt.size(); data_ptr+=sizeof(size_t);
  2681. mem::memcopy(data_ptr, &trg_interac_cnt[0], trg_interac_cnt.size()*sizeof(size_t));
  2682. data_ptr+=trg_interac_cnt.size()*sizeof(size_t);
  2683. ((size_t*)data_ptr)[0]=trg_coord.size(); data_ptr+=sizeof(size_t);
  2684. mem::memcopy(data_ptr, &trg_coord[0], trg_coord.size()*sizeof(size_t));
  2685. data_ptr+=trg_coord.size()*sizeof(size_t);
  2686. ((size_t*)data_ptr)[0]=trg_value.size(); data_ptr+=sizeof(size_t);
  2687. mem::memcopy(data_ptr, &trg_value[0], trg_value.size()*sizeof(size_t));
  2688. data_ptr+=trg_value.size()*sizeof(size_t);
  2689. ((size_t*)data_ptr)[0]=trg_cnt.size(); data_ptr+=sizeof(size_t);
  2690. mem::memcopy(data_ptr, &trg_cnt[0], trg_cnt.size()*sizeof(size_t));
  2691. data_ptr+=trg_cnt.size()*sizeof(size_t);
  2692. ((size_t*)data_ptr)[0]=scaling.size(); data_ptr+=sizeof(size_t);
  2693. mem::memcopy(data_ptr, &scaling[0], scaling.size()*sizeof(Real_t));
  2694. data_ptr+=scaling.size()*sizeof(Real_t);
  2695. if(M!=NULL){
  2696. ((size_t*)data_ptr)[0]=M->Dim(0); data_ptr+=sizeof(size_t);
  2697. ((size_t*)data_ptr)[0]=M->Dim(1); data_ptr+=sizeof(size_t);
  2698. mem::memcopy(data_ptr, M[0][0], M->Dim(0)*M->Dim(1)*sizeof(Real_t));
  2699. data_ptr+=M->Dim(0)*M->Dim(1)*sizeof(Real_t);
  2700. }else{
  2701. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2702. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2703. }
  2704. for(size_t i=0;i<n_out;i++){
  2705. ((size_t*)data_ptr)[0]=src_cnt[i].size(); data_ptr+=sizeof(size_t);
  2706. mem::memcopy(data_ptr, &src_cnt[i][0], src_cnt[i].size()*sizeof(size_t));
  2707. data_ptr+=src_cnt[i].size()*sizeof(size_t);
  2708. ((size_t*)data_ptr)[0]=src_coord[i].size(); data_ptr+=sizeof(size_t);
  2709. mem::memcopy(data_ptr, &src_coord[i][0], src_coord[i].size()*sizeof(size_t));
  2710. data_ptr+=src_coord[i].size()*sizeof(size_t);
  2711. ((size_t*)data_ptr)[0]=src_value[i].size(); data_ptr+=sizeof(size_t);
  2712. mem::memcopy(data_ptr, &src_value[i][0], src_value[i].size()*sizeof(size_t));
  2713. data_ptr+=src_value[i].size()*sizeof(size_t);
  2714. ((size_t*)data_ptr)[0]=shift_coord[i].size(); data_ptr+=sizeof(size_t);
  2715. mem::memcopy(data_ptr, &shift_coord[i][0], shift_coord[i].size()*sizeof(Real_t));
  2716. data_ptr+=shift_coord[i].size()*sizeof(Real_t);
  2717. }
  2718. }
  2719. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2720. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  2721. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  2722. }
  2723. Profile::Toc();
  2724. Profile::Tic("Host2Device",&this->comm,false,25);
  2725. if(device){ // Host2Device
  2726. setup_data.interac_data .AllocDevice(true);
  2727. }
  2728. Profile::Toc();
  2729. }
  2730. template <class FMMNode>
  2731. void FMM_Pts<FMMNode>::EvalListPts(SetupData<Real_t>& setup_data, bool device){
  2732. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2733. Profile::Tic("Host2Device",&this->comm,false,25);
  2734. Profile::Toc();
  2735. Profile::Tic("DeviceComp",&this->comm,false,20);
  2736. Profile::Toc();
  2737. return;
  2738. }
  2739. Profile::Tic("Host2Device",&this->comm,false,25);
  2740. typename Vector<char>::Device buff;
  2741. //typename Matrix<char>::Device precomp_data;
  2742. typename Matrix<char>::Device interac_data;
  2743. typename Matrix<Real_t>::Device coord_data;
  2744. typename Matrix<Real_t>::Device input_data;
  2745. typename Matrix<Real_t>::Device output_data;
  2746. if(device){
  2747. buff = this-> dev_buffer. AllocDevice(false);
  2748. interac_data= setup_data.interac_data. AllocDevice(false);
  2749. //if(setup_data.precomp_data!=NULL) precomp_data= setup_data.precomp_data->AllocDevice(false);
  2750. if(setup_data. coord_data!=NULL) coord_data = setup_data. coord_data->AllocDevice(false);
  2751. if(setup_data. input_data!=NULL) input_data = setup_data. input_data->AllocDevice(false);
  2752. if(setup_data. output_data!=NULL) output_data = setup_data. output_data->AllocDevice(false);
  2753. }else{
  2754. buff = this-> cpu_buffer;
  2755. interac_data= setup_data.interac_data;
  2756. //if(setup_data.precomp_data!=NULL) precomp_data=*setup_data.precomp_data;
  2757. if(setup_data. coord_data!=NULL) coord_data =*setup_data. coord_data;
  2758. if(setup_data. input_data!=NULL) input_data =*setup_data. input_data;
  2759. if(setup_data. output_data!=NULL) output_data =*setup_data. output_data;
  2760. }
  2761. Profile::Toc();
  2762. size_t ptr_single_layer_kernel=(size_t)setup_data.kernel->ker_poten;
  2763. size_t ptr_double_layer_kernel=(size_t)setup_data.kernel->dbl_layer_poten;
  2764. Profile::Tic("DeviceComp",&this->comm,false,20);
  2765. #ifdef __INTEL_OFFLOAD
  2766. int lock_idx=-1;
  2767. int wait_lock_idx=-1;
  2768. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  2769. if(device) lock_idx=MIC_Lock::get_lock();
  2770. if(device) ptr_single_layer_kernel=setup_data.kernel->dev_ker_poten;
  2771. if(device) ptr_double_layer_kernel=setup_data.kernel->dev_dbl_layer_poten;
  2772. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  2773. #endif
  2774. { // Offloaded computation.
  2775. // Set interac_data.
  2776. //size_t data_size;
  2777. //size_t ker_dim0;
  2778. size_t ker_dim1;
  2779. size_t dof, n_out;
  2780. Vector<size_t> trg_interac_cnt;
  2781. Vector<size_t> trg_coord;
  2782. Vector<size_t> trg_value;
  2783. Vector<size_t> trg_cnt;
  2784. Vector<Real_t> scaling;
  2785. Matrix<Real_t> M;
  2786. Vector< Vector<size_t> > src_cnt;
  2787. Vector< Vector<size_t> > src_coord;
  2788. Vector< Vector<size_t> > src_value;
  2789. Vector< Vector<Real_t> > shift_coord;
  2790. { // Set interac_data.
  2791. char* data_ptr=&interac_data[0][0];
  2792. /*data_size=((size_t*)data_ptr)[0];*/ data_ptr+=sizeof(size_t);
  2793. /*ker_dim0=((size_t*)data_ptr)[0];*/ data_ptr+=sizeof(size_t);
  2794. ker_dim1=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2795. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2796. trg_interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2797. data_ptr+=sizeof(size_t)+trg_interac_cnt.Dim()*sizeof(size_t);
  2798. n_out=trg_interac_cnt.Dim();
  2799. trg_coord.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2800. data_ptr+=sizeof(size_t)+trg_coord.Dim()*sizeof(size_t);
  2801. trg_value.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2802. data_ptr+=sizeof(size_t)+trg_value.Dim()*sizeof(size_t);
  2803. trg_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2804. data_ptr+=sizeof(size_t)+trg_cnt.Dim()*sizeof(size_t);
  2805. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2806. data_ptr+=sizeof(size_t)+scaling.Dim()*sizeof(Real_t);
  2807. M.ReInit(((size_t*)data_ptr)[0],((size_t*)data_ptr)[1],(Real_t*)(data_ptr+2*sizeof(size_t)),false);
  2808. data_ptr+=sizeof(size_t)*2+M.Dim(0)*M.Dim(1)*sizeof(Real_t);
  2809. src_cnt.Resize(n_out);
  2810. src_coord.Resize(n_out);
  2811. src_value.Resize(n_out);
  2812. shift_coord.Resize(n_out);
  2813. for(size_t i=0;i<n_out;i++){
  2814. src_cnt[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2815. data_ptr+=sizeof(size_t)+src_cnt[i].Dim()*sizeof(size_t);
  2816. src_coord[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2817. data_ptr+=sizeof(size_t)+src_coord[i].Dim()*sizeof(size_t);
  2818. src_value[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2819. data_ptr+=sizeof(size_t)+src_value[i].Dim()*sizeof(size_t);
  2820. shift_coord[i].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2821. data_ptr+=sizeof(size_t)+shift_coord[i].Dim()*sizeof(Real_t);
  2822. }
  2823. }
  2824. #ifdef __INTEL_OFFLOAD
  2825. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  2826. #endif
  2827. //Compute interaction from point sources.
  2828. { // interactions
  2829. typename Kernel<Real_t>::Ker_t single_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_single_layer_kernel;
  2830. typename Kernel<Real_t>::Ker_t double_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_double_layer_kernel;
  2831. int omp_p=omp_get_max_threads();
  2832. Vector<Real_t*> thread_buff(omp_p);
  2833. size_t thread_buff_size=buff.dim/sizeof(Real_t)/omp_p;
  2834. for(int i=0;i<omp_p;i++) thread_buff[i]=(Real_t*)&buff[i*thread_buff_size*sizeof(Real_t)];
  2835. #pragma omp parallel for
  2836. for(size_t i=0;i<n_out;i++)
  2837. if(trg_interac_cnt[i]>0 && trg_cnt[i]>0){
  2838. int thread_id=omp_get_thread_num();
  2839. Real_t* s_coord=thread_buff[thread_id];
  2840. Real_t* t_value=output_data[0]+trg_value[i];
  2841. if(M.Dim(0)>0 && M.Dim(1)>0){
  2842. s_coord+=dof*M.Dim(0);
  2843. t_value=thread_buff[thread_id];
  2844. for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]=0;
  2845. }
  2846. size_t interac_cnt=0;
  2847. for(size_t j=0;j<trg_interac_cnt[i];j++){
  2848. if(ptr_single_layer_kernel!=(size_t)NULL){// Single layer kernel
  2849. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+0];
  2850. assert(thread_buff_size>=dof*M.Dim(0)+src_cnt[i][2*j+0]*COORD_DIM);
  2851. for(size_t k1=0;k1<src_cnt[i][2*j+0];k1++){ // Compute shifted source coordinates.
  2852. for(size_t k0=0;k0<COORD_DIM;k0++){
  2853. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  2854. }
  2855. }
  2856. single_layer_kernel( s_coord , src_cnt[i][2*j+0], input_data[0]+src_value[i][2*j+0], dof,
  2857. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value, NULL);
  2858. interac_cnt+=src_cnt[i][2*j+0]*trg_cnt[i];
  2859. }else if(src_cnt[i][2*j+0]!=0 && trg_cnt[i]!=0){
  2860. assert(ptr_single_layer_kernel); // Single-layer kernel not implemented
  2861. }
  2862. if(ptr_double_layer_kernel!=(size_t)NULL){// Double layer kernel
  2863. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+1];
  2864. assert(thread_buff_size>=dof*M.Dim(0)+src_cnt[i][2*j+1]*COORD_DIM);
  2865. for(size_t k1=0;k1<src_cnt[i][2*j+1];k1++){ // Compute shifted source coordinates.
  2866. for(size_t k0=0;k0<COORD_DIM;k0++){
  2867. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  2868. }
  2869. }
  2870. double_layer_kernel( s_coord , src_cnt[i][2*j+1], input_data[0]+src_value[i][2*j+1], dof,
  2871. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value, NULL);
  2872. interac_cnt+=src_cnt[i][2*j+1]*trg_cnt[i];
  2873. }else if(src_cnt[i][2*j+1]!=0 && trg_cnt[i]!=0){
  2874. assert(ptr_double_layer_kernel); // Double-layer kernel not implemented
  2875. }
  2876. }
  2877. if(M.Dim(0)>0 && M.Dim(1)>0 && interac_cnt>0){
  2878. assert(trg_cnt[i]*ker_dim1==M.Dim(0)); UNUSED(ker_dim1);
  2879. for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]*=scaling[i];
  2880. Matrix<Real_t> in_vec(dof, M.Dim(0), t_value , false);
  2881. Matrix<Real_t> out_vec(dof, M.Dim(1), output_data[0]+trg_value[i], false);
  2882. Matrix<Real_t>::DGEMM(out_vec, in_vec, M, 1.0);
  2883. }
  2884. }
  2885. }
  2886. #ifdef __INTEL_OFFLOAD
  2887. if(device) MIC_Lock::release_lock(lock_idx);
  2888. #endif
  2889. }
  2890. #ifndef __MIC_ASYNCH__
  2891. #ifdef __INTEL_OFFLOAD
  2892. #pragma offload if(device) target(mic:0)
  2893. {if(device) MIC_Lock::wait_lock(lock_idx);}
  2894. #endif
  2895. #endif
  2896. Profile::Toc();
  2897. }
  2898. template <class FMMNode>
  2899. void FMM_Pts<FMMNode>::X_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2900. if(this->MultipoleOrder()==0) return;
  2901. { // Set setup_data
  2902. setup_data.level=level;
  2903. setup_data.kernel=&aux_kernel;
  2904. setup_data.interac_type.resize(1);
  2905. setup_data.interac_type[0]=X_Type;
  2906. setup_data. input_data=&buff[4];
  2907. setup_data.output_data=&buff[1];
  2908. setup_data. coord_data=&buff[6];
  2909. Vector<FMMNode_t*>& nodes_in =n_list[4];
  2910. Vector<FMMNode_t*>& nodes_out=n_list[1];
  2911. setup_data.nodes_in .clear();
  2912. setup_data.nodes_out.clear();
  2913. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2914. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2915. }
  2916. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2917. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2918. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2919. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2920. for(size_t i=0;i<nodes_in .size();i++){
  2921. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  2922. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  2923. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  2924. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  2925. }
  2926. for(size_t i=0;i<nodes_out.size();i++){
  2927. output_vector.push_back(&dnwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
  2928. output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  2929. }
  2930. //Downward check to downward equivalent matrix.
  2931. Matrix<Real_t>& M_dc2de = this->mat->Mat(level, DC2DE_Type, 0);
  2932. this->SetupInteracPts(setup_data, false, true, &M_dc2de,device);
  2933. { // Resize device buffer
  2934. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  2935. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  2936. }
  2937. }
  2938. template <class FMMNode>
  2939. void FMM_Pts<FMMNode>::X_List (SetupData<Real_t>& setup_data, bool device){
  2940. //Add X_List contribution.
  2941. this->EvalListPts(setup_data, device);
  2942. }
  2943. template <class FMMNode>
  2944. void FMM_Pts<FMMNode>::W_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2945. if(this->MultipoleOrder()==0) return;
  2946. { // Set setup_data
  2947. setup_data.level=level;
  2948. setup_data.kernel=&kernel;
  2949. setup_data.interac_type.resize(1);
  2950. setup_data.interac_type[0]=W_Type;
  2951. setup_data. input_data=&buff[0];
  2952. setup_data.output_data=&buff[5];
  2953. setup_data. coord_data=&buff[6];
  2954. Vector<FMMNode_t*>& nodes_in =n_list[0];
  2955. Vector<FMMNode_t*>& nodes_out=n_list[5];
  2956. setup_data.nodes_in .clear();
  2957. setup_data.nodes_out.clear();
  2958. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2959. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2960. }
  2961. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2962. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2963. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2964. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2965. for(size_t i=0;i<nodes_in .size();i++){
  2966. input_vector .push_back(&upwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  2967. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  2968. input_vector .push_back(NULL);
  2969. input_vector .push_back(NULL);
  2970. }
  2971. for(size_t i=0;i<nodes_out.size();i++){
  2972. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  2973. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  2974. }
  2975. this->SetupInteracPts(setup_data, true, false, NULL, device);
  2976. { // Resize device buffer
  2977. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  2978. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  2979. }
  2980. }
  2981. template <class FMMNode>
  2982. void FMM_Pts<FMMNode>::W_List (SetupData<Real_t>& setup_data, bool device){
  2983. //Add W_List contribution.
  2984. this->EvalListPts(setup_data, device);
  2985. }
  2986. template <class FMMNode>
  2987. void FMM_Pts<FMMNode>::U_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2988. { // Set setup_data
  2989. setup_data.level=level;
  2990. setup_data.kernel=&kernel;
  2991. setup_data.interac_type.resize(3);
  2992. setup_data.interac_type[0]=U0_Type;
  2993. setup_data.interac_type[1]=U1_Type;
  2994. setup_data.interac_type[2]=U2_Type;
  2995. setup_data. input_data=&buff[4];
  2996. setup_data.output_data=&buff[5];
  2997. setup_data. coord_data=&buff[6];
  2998. Vector<FMMNode_t*>& nodes_in =n_list[4];
  2999. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3000. setup_data.nodes_in .clear();
  3001. setup_data.nodes_out.clear();
  3002. for(size_t i=0;i<nodes_in .Dim();i++) if((level-1<=nodes_in [i]->Depth() && nodes_in [i]->Depth()<=level+1) || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3003. for(size_t i=0;i<nodes_out.Dim();i++) if(( nodes_out[i]->Depth()==level ) || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3004. }
  3005. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3006. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3007. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3008. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3009. for(size_t i=0;i<nodes_in .size();i++){
  3010. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  3011. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  3012. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  3013. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  3014. }
  3015. for(size_t i=0;i<nodes_out.size();i++){
  3016. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3017. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3018. }
  3019. this->SetupInteracPts(setup_data, false, false, NULL, device);
  3020. { // Resize device buffer
  3021. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3022. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3023. }
  3024. }
  3025. template <class FMMNode>
  3026. void FMM_Pts<FMMNode>::U_List (SetupData<Real_t>& setup_data, bool device){
  3027. //Add U_List contribution.
  3028. this->EvalListPts(setup_data, device);
  3029. }
  3030. template <class FMMNode>
  3031. void FMM_Pts<FMMNode>::Down2TargetSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3032. if(this->MultipoleOrder()==0) return;
  3033. { // Set setup_data
  3034. setup_data.level=level;
  3035. setup_data.kernel=&kernel;
  3036. setup_data.interac_type.resize(1);
  3037. setup_data.interac_type[0]=D2T_Type;
  3038. setup_data. input_data=&buff[1];
  3039. setup_data.output_data=&buff[5];
  3040. setup_data. coord_data=&buff[6];
  3041. Vector<FMMNode_t*>& nodes_in =n_list[1];
  3042. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3043. setup_data.nodes_in .clear();
  3044. setup_data.nodes_out.clear();
  3045. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3046. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3047. }
  3048. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3049. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3050. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3051. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3052. for(size_t i=0;i<nodes_in .size();i++){
  3053. input_vector .push_back(&dnwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  3054. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  3055. input_vector .push_back(NULL);
  3056. input_vector .push_back(NULL);
  3057. }
  3058. for(size_t i=0;i<nodes_out.size();i++){
  3059. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3060. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3061. }
  3062. this->SetupInteracPts(setup_data, true, false, NULL, device);
  3063. { // Resize device buffer
  3064. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3065. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3066. }
  3067. }
  3068. template <class FMMNode>
  3069. void FMM_Pts<FMMNode>::Down2Target(SetupData<Real_t>& setup_data, bool device){
  3070. //Add Down2Target contribution.
  3071. this->EvalListPts(setup_data, device);
  3072. }
  3073. template <class FMMNode>
  3074. void FMM_Pts<FMMNode>::PostProcessing(std::vector<FMMNode_t*>& nodes){
  3075. }
  3076. template <class FMMNode>
  3077. void FMM_Pts<FMMNode>::CopyOutput(FMMNode** nodes, size_t n){
  3078. }
  3079. }//end namespace