fmm_pts.txx 139 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649
  1. /**
  2. * \file fmm_pts.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 3-07-2011
  5. * \brief This file contains the implementation of the FMM_Pts class.
  6. */
  7. #include <omp.h>
  8. #include <cmath>
  9. #include <cstdlib>
  10. #include <cassert>
  11. #include <sstream>
  12. #include <iostream>
  13. #include <stdint.h>
  14. #include <set>
  15. #ifdef PVFMM_HAVE_SYS_STAT_H
  16. #include <sys/stat.h>
  17. #endif
  18. #ifdef __SSE__
  19. #include <xmmintrin.h>
  20. #endif
  21. #ifdef __SSE2__
  22. #include <emmintrin.h>
  23. #endif
  24. #ifdef __SSE3__
  25. #include <pmmintrin.h>
  26. #endif
  27. #ifdef __AVX__
  28. #include <immintrin.h>
  29. #endif
  30. #if defined(__MIC__)
  31. #include <immintrin.h>
  32. #endif
  33. #include <profile.hpp>
  34. namespace pvfmm{
  35. /**
  36. * \brief Returns the coordinates of points on the surface of a cube.
  37. * \param[in] p Number of points on an edge of the cube is (n+1)
  38. * \param[in] c Coordinates to the centre of the cube (3D array).
  39. * \param[in] alpha Scaling factor for the size of the cube.
  40. * \param[in] depth Depth of the cube in the octree.
  41. * \return Vector with coordinates of points on the surface of the cube in the
  42. * format [x0 y0 z0 x1 y1 z1 .... ].
  43. */
  44. template <class Real_t>
  45. std::vector<Real_t> surface(int p, Real_t* c, Real_t alpha, int depth){
  46. size_t n_=(6*(p-1)*(p-1)+2); //Total number of points.
  47. std::vector<Real_t> coord(n_*3);
  48. coord[0]=coord[1]=coord[2]=-1.0;
  49. size_t cnt=1;
  50. for(int i=0;i<p-1;i++)
  51. for(int j=0;j<p-1;j++){
  52. coord[cnt*3 ]=-1.0;
  53. coord[cnt*3+1]=(2.0*(i+1)-p+1)/(p-1);
  54. coord[cnt*3+2]=(2.0*j-p+1)/(p-1);
  55. cnt++;
  56. }
  57. for(int i=0;i<p-1;i++)
  58. for(int j=0;j<p-1;j++){
  59. coord[cnt*3 ]=(2.0*i-p+1)/(p-1);
  60. coord[cnt*3+1]=-1.0;
  61. coord[cnt*3+2]=(2.0*(j+1)-p+1)/(p-1);
  62. cnt++;
  63. }
  64. for(int i=0;i<p-1;i++)
  65. for(int j=0;j<p-1;j++){
  66. coord[cnt*3 ]=(2.0*(i+1)-p+1)/(p-1);
  67. coord[cnt*3+1]=(2.0*j-p+1)/(p-1);
  68. coord[cnt*3+2]=-1.0;
  69. cnt++;
  70. }
  71. for(size_t i=0;i<(n_/2)*3;i++)
  72. coord[cnt*3+i]=-coord[i];
  73. Real_t r = 0.5*pow(0.5,depth);
  74. Real_t b = alpha*r;
  75. for(size_t i=0;i<n_;i++){
  76. coord[i*3+0]=(coord[i*3+0]+1.0)*b+c[0];
  77. coord[i*3+1]=(coord[i*3+1]+1.0)*b+c[1];
  78. coord[i*3+2]=(coord[i*3+2]+1.0)*b+c[2];
  79. }
  80. return coord;
  81. }
  82. /**
  83. * \brief Returns the coordinates of points on the upward check surface of cube.
  84. * \see surface()
  85. */
  86. template <class Real_t>
  87. std::vector<Real_t> u_check_surf(int p, Real_t* c, int depth){
  88. Real_t r=0.5*pow(0.5,depth);
  89. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  90. return surface(p,coord,(Real_t)RAD1,depth);
  91. }
  92. /**
  93. * \brief Returns the coordinates of points on the upward equivalent surface of cube.
  94. * \see surface()
  95. */
  96. template <class Real_t>
  97. std::vector<Real_t> u_equiv_surf(int p, Real_t* c, int depth){
  98. Real_t r=0.5*pow(0.5,depth);
  99. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  100. return surface(p,coord,(Real_t)RAD0,depth);
  101. }
  102. /**
  103. * \brief Returns the coordinates of points on the downward check surface of cube.
  104. * \see surface()
  105. */
  106. template <class Real_t>
  107. std::vector<Real_t> d_check_surf(int p, Real_t* c, int depth){
  108. Real_t r=0.5*pow(0.5,depth);
  109. Real_t coord[3]={c[0]-r*(RAD0-1.0),c[1]-r*(RAD0-1.0),c[2]-r*(RAD0-1.0)};
  110. return surface(p,coord,(Real_t)RAD0,depth);
  111. }
  112. /**
  113. * \brief Returns the coordinates of points on the downward equivalent surface of cube.
  114. * \see surface()
  115. */
  116. template <class Real_t>
  117. std::vector<Real_t> d_equiv_surf(int p, Real_t* c, int depth){
  118. Real_t r=0.5*pow(0.5,depth);
  119. Real_t coord[3]={c[0]-r*(RAD1-1.0),c[1]-r*(RAD1-1.0),c[2]-r*(RAD1-1.0)};
  120. return surface(p,coord,(Real_t)RAD1,depth);
  121. }
  122. /**
  123. * \brief Defines the 3D grid for convolution in FFT acceleration of V-list.
  124. * \see surface()
  125. */
  126. template <class Real_t>
  127. std::vector<Real_t> conv_grid(int p, Real_t* c, int depth){
  128. Real_t r=pow(0.5,depth);
  129. Real_t a=r*RAD0;
  130. Real_t coord[3]={c[0],c[1],c[2]};
  131. int n1=p*2;
  132. int n2=(int)pow((Real_t)n1,2);
  133. int n3=(int)pow((Real_t)n1,3);
  134. std::vector<Real_t> grid(n3*3);
  135. for(int i=0;i<n1;i++)
  136. for(int j=0;j<n1;j++)
  137. for(int k=0;k<n1;k++){
  138. grid[(i+n1*j+n2*k)*3+0]=(i-p)*a/(p-1)+coord[0];
  139. grid[(i+n1*j+n2*k)*3+1]=(j-p)*a/(p-1)+coord[1];
  140. grid[(i+n1*j+n2*k)*3+2]=(k-p)*a/(p-1)+coord[2];
  141. }
  142. return grid;
  143. }
  144. template <class Real_t>
  145. void FMM_Data<Real_t>::Clear(){
  146. upward_equiv.Resize(0);
  147. }
  148. template <class Real_t>
  149. PackedData FMM_Data<Real_t>::PackMultipole(void* buff_ptr){
  150. PackedData p0; p0.data=buff_ptr;
  151. p0.length=upward_equiv.Dim()*sizeof(Real_t);
  152. if(p0.length==0) return p0;
  153. if(p0.data==NULL) p0.data=(char*)&upward_equiv[0];
  154. else mem::memcopy(p0.data,&upward_equiv[0],p0.length);
  155. return p0;
  156. }
  157. template <class Real_t>
  158. void FMM_Data<Real_t>::AddMultipole(PackedData p0){
  159. Real_t* data=(Real_t*)p0.data;
  160. size_t n=p0.length/sizeof(Real_t);
  161. assert(upward_equiv.Dim()==n);
  162. Matrix<Real_t> v0(1,n,&upward_equiv[0],false);
  163. Matrix<Real_t> v1(1,n,data,false);
  164. v0+=v1;
  165. }
  166. template <class Real_t>
  167. void FMM_Data<Real_t>::InitMultipole(PackedData p0, bool own_data){
  168. Real_t* data=(Real_t*)p0.data;
  169. size_t n=p0.length/sizeof(Real_t);
  170. if(n==0) return;
  171. if(own_data){
  172. upward_equiv=Vector<Real_t>(n, &data[0], false);
  173. }else{
  174. upward_equiv.ReInit(n, &data[0], false);
  175. }
  176. }
  177. template <class FMMNode>
  178. FMM_Pts<FMMNode>::~FMM_Pts() {
  179. if(mat!=NULL){
  180. // int rank;
  181. // MPI_Comm_rank(comm,&rank);
  182. // if(rank==0) mat->Save2File("Precomp.data");
  183. delete mat;
  184. mat=NULL;
  185. }
  186. if(vprecomp_fft_flag) FFTW_t<Real_t>::fft_destroy_plan(vprecomp_fftplan);
  187. #ifdef __INTEL_OFFLOAD0
  188. #pragma offload target(mic:0)
  189. #endif
  190. {
  191. if(vlist_fft_flag ) FFTW_t<Real_t>::fft_destroy_plan(vlist_fftplan );
  192. if(vlist_ifft_flag) FFTW_t<Real_t>::fft_destroy_plan(vlist_ifftplan);
  193. vlist_fft_flag =false;
  194. vlist_ifft_flag=false;
  195. }
  196. }
  197. template <class FMMNode>
  198. void FMM_Pts<FMMNode>::Initialize(int mult_order, const MPI_Comm& comm_, const Kernel<Real_t>* kernel_, const Kernel<Real_t>* aux_kernel_){
  199. Profile::Tic("InitFMM_Pts",&comm_,true);{
  200. bool verbose=false;
  201. #ifndef NDEBUG
  202. #ifdef __VERBOSE__
  203. int rank;
  204. MPI_Comm_rank(comm_,&rank);
  205. if(!rank) verbose=true;
  206. #endif
  207. #endif
  208. if( kernel_) kernel_->Initialize(verbose);
  209. if(aux_kernel_) aux_kernel_->Initialize(verbose);
  210. multipole_order=mult_order;
  211. comm=comm_;
  212. kernel=kernel_;
  213. assert(kernel!=NULL);
  214. aux_kernel=(aux_kernel_?aux_kernel_:kernel_);
  215. assert(kernel->ker_dim[0]==aux_kernel->ker_dim[0]);
  216. mat=new PrecompMat<Real_t>(Homogen(), MAX_DEPTH+1);
  217. if(this->mat_fname.size()==0){
  218. std::stringstream st;
  219. st<<PVFMM_PRECOMP_DATA_PATH;
  220. if(!st.str().size()){ // look in PVFMM_DIR
  221. char* pvfmm_dir = getenv ("PVFMM_DIR");
  222. if(pvfmm_dir) st<<pvfmm_dir<<'/';
  223. }
  224. #ifndef STAT_MACROS_BROKEN
  225. if(st.str().size()){ // check if the path is a directory
  226. struct stat stat_buff;
  227. if(stat(st.str().c_str(), &stat_buff) || !S_ISDIR(stat_buff.st_mode)){
  228. std::cout<<"error: path not found: "<<st.str()<<'\n';
  229. exit(0);
  230. }
  231. }
  232. #endif
  233. st<<"Precomp_"<<kernel->ker_name.c_str()<<"_m"<<mult_order;
  234. if(sizeof(Real_t)==8) st<<"";
  235. else if(sizeof(Real_t)==4) st<<"_f";
  236. else st<<"_t"<<sizeof(Real_t);
  237. st<<".data";
  238. this->mat_fname=st.str();
  239. }
  240. this->mat->LoadFile(mat_fname.c_str(), this->comm);
  241. interac_list.Initialize(COORD_DIM, this->mat);
  242. Profile::Tic("PrecompUC2UE",&comm,false,4);
  243. this->PrecompAll(UC2UE_Type);
  244. Profile::Toc();
  245. Profile::Tic("PrecompDC2DE",&comm,false,4);
  246. this->PrecompAll(DC2DE_Type);
  247. Profile::Toc();
  248. Profile::Tic("PrecompBC",&comm,false,4);
  249. { /*
  250. int type=BC_Type;
  251. for(int l=0;l<MAX_DEPTH;l++)
  252. for(size_t indx=0;indx<this->interac_list.ListCount((Mat_Type)type);indx++){
  253. Matrix<Real_t>& M=this->mat->Mat(l, (Mat_Type)type, indx);
  254. M.Resize(0,0);
  255. } // */
  256. }
  257. this->PrecompAll(BC_Type,0);
  258. Profile::Toc();
  259. Profile::Tic("PrecompU2U",&comm,false,4);
  260. this->PrecompAll(U2U_Type);
  261. Profile::Toc();
  262. Profile::Tic("PrecompD2D",&comm,false,4);
  263. this->PrecompAll(D2D_Type);
  264. Profile::Toc();
  265. Profile::Tic("PrecompV",&comm,false,4);
  266. this->PrecompAll(V_Type);
  267. Profile::Toc();
  268. Profile::Tic("PrecompV1",&comm,false,4);
  269. this->PrecompAll(V1_Type);
  270. Profile::Toc();
  271. }Profile::Toc();
  272. }
  273. template <class FMMNode>
  274. Permutation<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::PrecompPerm(Mat_Type type, Perm_Type perm_indx){
  275. //Check if the matrix already exists.
  276. Permutation<Real_t>& P_ = mat->Perm((Mat_Type)type, perm_indx);
  277. if(P_.Dim()!=0) return P_;
  278. //Compute the matrix.
  279. Permutation<Real_t> P;
  280. switch (type){
  281. case UC2UE_Type:
  282. {
  283. break;
  284. }
  285. case DC2DE_Type:
  286. {
  287. break;
  288. }
  289. case S2U_Type:
  290. {
  291. break;
  292. }
  293. case U2U_Type:
  294. {
  295. P=PrecompPerm(D2D_Type, perm_indx);
  296. break;
  297. }
  298. case D2D_Type:
  299. {
  300. Real_t eps=1e-10;
  301. int dof=kernel->ker_dim[0];
  302. size_t p_indx=perm_indx % C_Perm;
  303. Permutation<Real_t>& ker_perm=kernel->perm_vec[p_indx];
  304. assert(dof==ker_perm.Dim());
  305. Real_t c[3]={-0.5,-0.5,-0.5};
  306. std::vector<Real_t> trg_coord=d_check_surf(this->MultipoleOrder(),c,0);
  307. int n_trg=trg_coord.size()/3;
  308. P=Permutation<Real_t>(n_trg*dof);
  309. if(p_indx==ReflecX || p_indx==ReflecY || p_indx==ReflecZ){ // Set P.perm
  310. for(int i=0;i<n_trg;i++)
  311. for(int j=0;j<n_trg;j++){
  312. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+0]*(p_indx==ReflecX?-1.0:1.0))<eps)
  313. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+1]*(p_indx==ReflecY?-1.0:1.0))<eps)
  314. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+2]*(p_indx==ReflecZ?-1.0:1.0))<eps){
  315. for(int k=0;k<dof;k++){
  316. P.perm[j*dof+k]=i*dof+ker_perm.perm[k];
  317. }
  318. }
  319. }
  320. }else if(p_indx==SwapXY || p_indx==SwapXZ){
  321. for(int i=0;i<n_trg;i++)
  322. for(int j=0;j<n_trg;j++){
  323. if(fabs(trg_coord[i*3+0]-trg_coord[j*3+(p_indx==SwapXY?1:2)])<eps)
  324. if(fabs(trg_coord[i*3+1]-trg_coord[j*3+(p_indx==SwapXY?0:1)])<eps)
  325. if(fabs(trg_coord[i*3+2]-trg_coord[j*3+(p_indx==SwapXY?2:0)])<eps){
  326. for(int k=0;k<dof;k++){
  327. P.perm[j*dof+k]=i*dof+ker_perm.perm[k];
  328. }
  329. }
  330. }
  331. }else{
  332. for(int j=0;j<n_trg;j++){
  333. for(int k=0;k<dof;k++){
  334. P.perm[j*dof+k]=j*dof+ker_perm.perm[k];
  335. }
  336. }
  337. }
  338. if(p_indx==Scaling && this->Homogen()){ // Set level-by-level scaling
  339. const Vector<Real_t>& scal_exp=kernel->src_scal;
  340. assert(dof==scal_exp.Dim());
  341. Vector<Real_t> scal(scal_exp.Dim());
  342. for(size_t i=0;i<scal_exp.Dim();i++){
  343. scal[i]=pow(2.0,(perm_indx<C_Perm?1.0:-1.0)*scal_exp[i]);
  344. }
  345. for(int j=0;j<n_trg;j++){
  346. for(int i=0;i<dof;i++){
  347. P.scal[j*dof+i]*=scal[i];
  348. }
  349. }
  350. }
  351. { // Set P.scal
  352. for(int j=0;j<n_trg;j++){
  353. for(int i=0;i<dof;i++){
  354. P.scal[j*dof+i]*=ker_perm.scal[i];
  355. }
  356. }
  357. }
  358. break;
  359. }
  360. case D2T_Type:
  361. {
  362. break;
  363. }
  364. case U0_Type:
  365. {
  366. break;
  367. }
  368. case U1_Type:
  369. {
  370. break;
  371. }
  372. case U2_Type:
  373. {
  374. break;
  375. }
  376. case V_Type:
  377. {
  378. break;
  379. }
  380. case V1_Type:
  381. {
  382. break;
  383. }
  384. case W_Type:
  385. {
  386. break;
  387. }
  388. case X_Type:
  389. {
  390. break;
  391. }
  392. case BC_Type:
  393. {
  394. break;
  395. }
  396. default:
  397. break;
  398. }
  399. //Save the matrix for future use.
  400. #pragma omp critical (PRECOMP_MATRIX_PTS)
  401. {
  402. if(P_.Dim()==0) P_=P;
  403. }
  404. return P_;
  405. }
  406. template <class FMMNode>
  407. Matrix<typename FMMNode::Real_t>& FMM_Pts<FMMNode>::Precomp(int level, Mat_Type type, size_t mat_indx){
  408. if(this->Homogen()) level=0;
  409. //Check if the matrix already exists.
  410. Matrix<Real_t>& M_ = this->mat->Mat(level, type, mat_indx);
  411. if(M_.Dim(0)!=0 && M_.Dim(1)!=0) return M_;
  412. else{ //Compute matrix from symmetry class (if possible).
  413. size_t class_indx = this->interac_list.InteracClass(type, mat_indx);
  414. if(class_indx!=mat_indx){
  415. Matrix<Real_t>& M0 = this->Precomp(level, type, class_indx);
  416. Permutation<Real_t>& Pr = this->interac_list.Perm_R(level, type, mat_indx);
  417. Permutation<Real_t>& Pc = this->interac_list.Perm_C(level, type, mat_indx);
  418. if(Pr.Dim()>0 && Pc.Dim()>0 && M0.Dim(0)>0 && M0.Dim(1)>0) return M_;
  419. }
  420. }
  421. //Compute the matrix.
  422. Matrix<Real_t> M;
  423. const int* ker_dim=kernel->ker_dim;
  424. const int* aux_ker_dim=aux_kernel->ker_dim;
  425. //int omp_p=omp_get_max_threads();
  426. switch (type){
  427. case UC2UE_Type:
  428. {
  429. if(MultipoleOrder()==0) break;
  430. // Coord of upward check surface
  431. Real_t c[3]={0,0,0};
  432. std::vector<Real_t> uc_coord=u_check_surf(MultipoleOrder(),c,level);
  433. size_t n_uc=uc_coord.size()/3;
  434. // Coord of upward equivalent surface
  435. std::vector<Real_t> ue_coord=u_equiv_surf(MultipoleOrder(),c,level);
  436. size_t n_ue=ue_coord.size()/3;
  437. // Evaluate potential at check surface due to equivalent surface.
  438. Matrix<Real_t> M_e2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
  439. aux_kernel->BuildMatrix(&ue_coord[0], n_ue,
  440. &uc_coord[0], n_uc, &(M_e2c[0][0]));
  441. Real_t eps=1.0;
  442. while(eps+(Real_t)1.0>1.0) eps*=0.5;
  443. M=M_e2c.pinv(sqrt(eps)); //check 2 equivalent
  444. break;
  445. }
  446. case DC2DE_Type:
  447. {
  448. if(MultipoleOrder()==0) break;
  449. // Coord of downward check surface
  450. Real_t c[3]={0,0,0};
  451. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  452. size_t n_ch=check_surf.size()/3;
  453. // Coord of downward equivalent surface
  454. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  455. size_t n_eq=equiv_surf.size()/3;
  456. // Evaluate potential at check surface due to equivalent surface.
  457. Matrix<Real_t> M_e2c(n_eq*aux_ker_dim[0],n_ch*aux_ker_dim[1]);
  458. aux_kernel->BuildMatrix(&equiv_surf[0], n_eq,
  459. &check_surf[0], n_ch, &(M_e2c[0][0]));
  460. Real_t eps=1.0;
  461. while(eps+(Real_t)1.0>1.0) eps*=0.5;
  462. M=M_e2c.pinv(sqrt(eps)); //check 2 equivalent
  463. break;
  464. }
  465. case S2U_Type:
  466. {
  467. break;
  468. }
  469. case U2U_Type:
  470. {
  471. if(MultipoleOrder()==0) break;
  472. // Coord of upward check surface
  473. Real_t c[3]={0,0,0};
  474. std::vector<Real_t> check_surf=u_check_surf(MultipoleOrder(),c,level);
  475. size_t n_uc=check_surf.size()/3;
  476. // Coord of child's upward equivalent surface
  477. Real_t s=pow(0.5,(level+2));
  478. int* coord=interac_list.RelativeCoord(type,mat_indx);
  479. Real_t child_coord[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  480. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),child_coord,level+1);
  481. size_t n_ue=equiv_surf.size()/3;
  482. // Evaluate potential at check surface due to equivalent surface.
  483. Matrix<Real_t> M_ce2c(n_ue*aux_ker_dim[0],n_uc*aux_ker_dim[1]);
  484. aux_kernel->BuildMatrix(&equiv_surf[0], n_ue,
  485. &check_surf[0], n_uc, &(M_ce2c[0][0]));
  486. Matrix<Real_t>& M_c2e = Precomp(level, UC2UE_Type, 0);
  487. M=M_ce2c*M_c2e;
  488. break;
  489. }
  490. case D2D_Type:
  491. {
  492. if(MultipoleOrder()==0) break;
  493. // Coord of downward check surface
  494. Real_t s=pow(0.5,level+1);
  495. int* coord=interac_list.RelativeCoord(type,mat_indx);
  496. Real_t c[3]={(coord[0]+1)*s,(coord[1]+1)*s,(coord[2]+1)*s};
  497. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level);
  498. size_t n_dc=check_surf.size()/3;
  499. // Coord of parent's downward equivalent surface
  500. Real_t parent_coord[3]={0,0,0};
  501. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),parent_coord,level-1);
  502. size_t n_de=equiv_surf.size()/3;
  503. // Evaluate potential at check surface due to equivalent surface.
  504. Matrix<Real_t> M_pe2c(n_de*aux_ker_dim[0],n_dc*aux_ker_dim[1]);
  505. aux_kernel->BuildMatrix(&equiv_surf[0], n_de,
  506. &check_surf[0], n_dc, &(M_pe2c[0][0]));
  507. Matrix<Real_t>& M_c2e=Precomp(level,DC2DE_Type,0);
  508. M=M_pe2c*M_c2e;
  509. break;
  510. }
  511. case D2T_Type:
  512. {
  513. if(MultipoleOrder()==0) break;
  514. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  515. // Coord of target points
  516. Real_t r=pow(0.5,level);
  517. size_t n_trg=rel_trg_coord.size()/3;
  518. std::vector<Real_t> trg_coord(n_trg*3);
  519. for(size_t i=0;i<n_trg*COORD_DIM;i++) trg_coord[i]=rel_trg_coord[i]*r;
  520. // Coord of downward equivalent surface
  521. Real_t c[3]={0,0,0};
  522. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level);
  523. size_t n_eq=equiv_surf.size()/3;
  524. // Evaluate potential at target points due to equivalent surface.
  525. {
  526. M .Resize(n_eq*ker_dim [0], n_trg*ker_dim [1]);
  527. kernel->BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  528. }
  529. break;
  530. }
  531. case U0_Type:
  532. {
  533. break;
  534. }
  535. case U1_Type:
  536. {
  537. break;
  538. }
  539. case U2_Type:
  540. {
  541. break;
  542. }
  543. case V_Type:
  544. {
  545. if(MultipoleOrder()==0) break;
  546. int n1=MultipoleOrder()*2;
  547. int n3 =n1*n1*n1;
  548. int n3_=n1*n1*(n1/2+1);
  549. //Compute the matrix.
  550. Real_t s=pow(0.5,level);
  551. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  552. Real_t coord_diff[3]={coord2[0]*s,coord2[1]*s,coord2[2]*s};
  553. //Evaluate potential.
  554. std::vector<Real_t> r_trg(COORD_DIM,0.0);
  555. std::vector<Real_t> conv_poten(n3*aux_ker_dim[0]*aux_ker_dim[1]);
  556. std::vector<Real_t> conv_coord=conv_grid(MultipoleOrder(),coord_diff,level);
  557. aux_kernel->BuildMatrix(&conv_coord[0],n3,&r_trg[0],1,&conv_poten[0]);
  558. //Rearrange data.
  559. Matrix<Real_t> M_conv(n3,aux_ker_dim[0]*aux_ker_dim[1],&conv_poten[0],false);
  560. M_conv=M_conv.Transpose();
  561. //Compute FFTW plan.
  562. int nnn[3]={n1,n1,n1};
  563. Real_t *fftw_in, *fftw_out;
  564. fftw_in = mem::aligned_new<Real_t>( n3 *aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  565. fftw_out = mem::aligned_new<Real_t>(2*n3_*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  566. #pragma omp critical (FFTW_PLAN)
  567. {
  568. if (!vprecomp_fft_flag){
  569. vprecomp_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM, nnn, aux_ker_dim[0]*aux_ker_dim[1],
  570. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*) fftw_out, NULL, 1, n3_, FFTW_ESTIMATE);
  571. vprecomp_fft_flag=true;
  572. }
  573. }
  574. //Compute FFT.
  575. mem::memcopy(fftw_in, &conv_poten[0], n3*aux_ker_dim[0]*aux_ker_dim[1]*sizeof(Real_t));
  576. FFTW_t<Real_t>::fft_execute_dft_r2c(vprecomp_fftplan, (Real_t*)fftw_in, (typename FFTW_t<Real_t>::cplx*)(fftw_out));
  577. Matrix<Real_t> M_(2*n3_*aux_ker_dim[0]*aux_ker_dim[1],1,(Real_t*)fftw_out,false);
  578. M=M_;
  579. //Free memory.
  580. mem::aligned_delete<Real_t>(fftw_in);
  581. mem::aligned_delete<Real_t>(fftw_out);
  582. break;
  583. }
  584. case V1_Type:
  585. {
  586. if(MultipoleOrder()==0) break;
  587. size_t mat_cnt =interac_list.ListCount( V_Type);
  588. for(size_t k=0;k<mat_cnt;k++) Precomp(level, V_Type, k);
  589. const size_t chld_cnt=1UL<<COORD_DIM;
  590. size_t n1=MultipoleOrder()*2;
  591. size_t M_dim=n1*n1*(n1/2+1);
  592. size_t n3=n1*n1*n1;
  593. Vector<Real_t> zero_vec(M_dim*aux_ker_dim[0]*aux_ker_dim[1]*2);
  594. zero_vec.SetZero();
  595. Vector<Real_t*> M_ptr(chld_cnt*chld_cnt);
  596. for(size_t i=0;i<chld_cnt*chld_cnt;i++) M_ptr[i]=&zero_vec[0];
  597. int* rel_coord_=interac_list.RelativeCoord(V1_Type, mat_indx);
  598. for(int j1=0;j1<chld_cnt;j1++)
  599. for(int j2=0;j2<chld_cnt;j2++){
  600. int rel_coord[3]={rel_coord_[0]*2-(j1/1)%2+(j2/1)%2,
  601. rel_coord_[1]*2-(j1/2)%2+(j2/2)%2,
  602. rel_coord_[2]*2-(j1/4)%2+(j2/4)%2};
  603. for(size_t k=0;k<mat_cnt;k++){
  604. int* ref_coord=interac_list.RelativeCoord(V_Type, k);
  605. if(ref_coord[0]==rel_coord[0] &&
  606. ref_coord[1]==rel_coord[1] &&
  607. ref_coord[2]==rel_coord[2]){
  608. Matrix<Real_t>& M = this->mat->Mat(level, V_Type, k);
  609. M_ptr[j2*chld_cnt+j1]=&M[0][0];
  610. break;
  611. }
  612. }
  613. }
  614. // Build matrix aux_ker_dim0 x aux_ker_dim1 x M_dim x 8 x 8
  615. M.Resize(aux_ker_dim[0]*aux_ker_dim[1]*M_dim, 2*chld_cnt*chld_cnt);
  616. for(int j=0;j<aux_ker_dim[0]*aux_ker_dim[1]*M_dim;j++){
  617. for(size_t k=0;k<chld_cnt*chld_cnt;k++){
  618. M[j][k*2+0]=M_ptr[k][j*2+0]/n3;
  619. M[j][k*2+1]=M_ptr[k][j*2+1]/n3;
  620. }
  621. }
  622. break;
  623. }
  624. case W_Type:
  625. {
  626. if(MultipoleOrder()==0) break;
  627. std::vector<Real_t>& rel_trg_coord=mat->RelativeTrgCoord();
  628. // Coord of target points
  629. Real_t s=pow(0.5,level);
  630. size_t n_trg=rel_trg_coord.size()/3;
  631. std::vector<Real_t> trg_coord(n_trg*3);
  632. for(size_t j=0;j<n_trg*COORD_DIM;j++) trg_coord[j]=rel_trg_coord[j]*s;
  633. // Coord of downward equivalent surface
  634. int* coord2=interac_list.RelativeCoord(type,mat_indx);
  635. Real_t c[3]={(coord2[0]+1)*s*0.25,(coord2[1]+1)*s*0.25,(coord2[2]+1)*s*0.25};
  636. std::vector<Real_t> equiv_surf=u_equiv_surf(MultipoleOrder(),c,level+1);
  637. size_t n_eq=equiv_surf.size()/3;
  638. // Evaluate potential at target points due to equivalent surface.
  639. {
  640. M .Resize(n_eq*ker_dim [0],n_trg*ker_dim [1]);
  641. kernel->BuildMatrix(&equiv_surf[0], n_eq, &trg_coord[0], n_trg, &(M [0][0]));
  642. }
  643. break;
  644. }
  645. case X_Type:
  646. {
  647. break;
  648. }
  649. case BC_Type:
  650. {
  651. if(MultipoleOrder()==0) break;
  652. size_t mat_cnt_m2m=interac_list.ListCount(U2U_Type);
  653. size_t n_surf=(6*(MultipoleOrder()-1)*(MultipoleOrder()-1)+2); //Total number of points.
  654. if((M.Dim(0)!=n_surf*aux_ker_dim[0] || M.Dim(1)!=n_surf*aux_ker_dim[1]) && level==0){
  655. Matrix<Real_t> M_m2m[BC_LEVELS+1];
  656. Matrix<Real_t> M_m2l[BC_LEVELS+1];
  657. Matrix<Real_t> M_l2l[BC_LEVELS+1];
  658. Matrix<Real_t> M_zero_avg(n_surf*aux_ker_dim[0],n_surf*aux_ker_dim[0]);
  659. { // Set average multipole charge to zero. (improves stability for large BC_LEVELS)
  660. M_zero_avg.SetZero();
  661. for(size_t i=0;i<n_surf*aux_ker_dim[0];i++)
  662. M_zero_avg[i][i]+=1;
  663. for(size_t i=0;i<n_surf;i++)
  664. for(size_t j=0;j<n_surf;j++)
  665. for(size_t k=0;k<aux_ker_dim[0];k++)
  666. M_zero_avg[i*aux_ker_dim[0]+k][j*aux_ker_dim[0]+k]-=1.0/n_surf;
  667. }
  668. for(int level=0; level>=-BC_LEVELS; level--){
  669. // Compute M_l2l
  670. M_l2l[-level] = this->Precomp(level, D2D_Type, 0);
  671. assert(M_l2l[-level].Dim(0)>0 && M_l2l[-level].Dim(1)>0);
  672. // Compute M_m2m
  673. for(size_t mat_indx=0; mat_indx<mat_cnt_m2m; mat_indx++){
  674. Matrix<Real_t> M=this->Precomp(level, U2U_Type, mat_indx);
  675. assert(M.Dim(0)>0 && M_m2m>0);
  676. if(mat_indx==0) M_m2m[-level] = M_zero_avg*M;
  677. else M_m2m[-level] += M_zero_avg*M;
  678. }
  679. // Compute M_m2l
  680. if(!Homogen() || level==0){
  681. Real_t s=(1UL<<(-level));
  682. Real_t ue_coord[3]={0,0,0};
  683. Real_t dc_coord[3]={0,0,0};
  684. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  685. std::vector<Real_t> trg_coord=d_check_surf(MultipoleOrder(), dc_coord, level);
  686. Matrix<Real_t> M_ue2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  687. M_ue2dc.SetZero();
  688. for(int x0=-2;x0<4;x0++)
  689. for(int x1=-2;x1<4;x1++)
  690. for(int x2=-2;x2<4;x2++)
  691. if(abs(x0)>1 || abs(x1)>1 || abs(x2)>1){
  692. ue_coord[0]=x0*s; ue_coord[1]=x1*s; ue_coord[2]=x2*s;
  693. std::vector<Real_t> src_coord=u_equiv_surf(MultipoleOrder(), ue_coord, level);
  694. Matrix<Real_t> M_tmp(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  695. aux_kernel->BuildMatrix(&src_coord[0], n_surf,
  696. &trg_coord[0], n_surf, &(M_tmp[0][0]));
  697. M_ue2dc+=M_tmp;
  698. }
  699. // Shift by constant.
  700. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  701. std::vector<Real_t> avg(aux_ker_dim[1],0);
  702. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  703. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  704. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
  705. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  706. for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]-=avg[k];
  707. }
  708. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  709. M_m2l[-level]=M_ue2dc*M_dc2de;
  710. }else M_m2l[-level]=M_m2l[-level-1];
  711. }
  712. for(int level=-BC_LEVELS;level<=0;level++){
  713. if(level==-BC_LEVELS) M = M_m2l[-level];
  714. else M = M_m2l[-level] + M_m2m[-level]*M*M_l2l[-level];
  715. { // Shift by constant. (improves stability for large BC_LEVELS)
  716. Matrix<Real_t> M_de2dc(n_surf*aux_ker_dim[0], n_surf*aux_ker_dim[1]);
  717. { // M_de2dc TODO: For homogeneous kernels, compute only once.
  718. // Coord of downward check surface
  719. Real_t c[3]={0,0,0};
  720. int level_=(Homogen()?0:level);
  721. std::vector<Real_t> check_surf=d_check_surf(MultipoleOrder(),c,level_);
  722. size_t n_ch=check_surf.size()/3;
  723. // Coord of downward equivalent surface
  724. std::vector<Real_t> equiv_surf=d_equiv_surf(MultipoleOrder(),c,level_);
  725. size_t n_eq=equiv_surf.size()/3;
  726. // Evaluate potential at check surface due to equivalent surface.
  727. aux_kernel->BuildMatrix(&equiv_surf[0], n_eq,
  728. &check_surf[0], n_ch, &(M_de2dc[0][0]));
  729. }
  730. Matrix<Real_t> M_ue2dc=M*M_de2dc;
  731. for(size_t i=0;i<M_ue2dc.Dim(0);i++){
  732. std::vector<Real_t> avg(aux_ker_dim[1],0);
  733. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  734. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]+=M_ue2dc[i][j+k];
  735. for(int k=0; k<aux_ker_dim[1]; k++) avg[k]/=n_surf;
  736. for(size_t j=0; j<M_ue2dc.Dim(1); j+=aux_ker_dim[1])
  737. for(int k=0; k<aux_ker_dim[1]; k++) M_ue2dc[i][j+k]-=avg[k];
  738. }
  739. Matrix<Real_t>& M_dc2de = Precomp(level, DC2DE_Type, 0);
  740. M=M_ue2dc*M_dc2de;
  741. }
  742. }
  743. { // ax+by+cz+d correction.
  744. std::vector<Real_t> corner_pts;
  745. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(0);
  746. corner_pts.push_back(1); corner_pts.push_back(0); corner_pts.push_back(0);
  747. corner_pts.push_back(0); corner_pts.push_back(1); corner_pts.push_back(0);
  748. corner_pts.push_back(0); corner_pts.push_back(0); corner_pts.push_back(1);
  749. size_t n_corner=corner_pts.size()/3;
  750. // Coord of downward equivalent surface
  751. Real_t c[3]={0,0,0};
  752. std::vector<Real_t> up_equiv_surf=u_equiv_surf(MultipoleOrder(),c,0);
  753. std::vector<Real_t> dn_equiv_surf=d_equiv_surf(MultipoleOrder(),c,0);
  754. std::vector<Real_t> dn_check_surf=d_check_surf(MultipoleOrder(),c,0);
  755. Matrix<Real_t> M_err;
  756. { // Evaluate potential at corner due to upward and dnward equivalent surface.
  757. { // Error from local expansion.
  758. Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],n_corner*aux_ker_dim[1]);
  759. aux_kernel->BuildMatrix(&dn_equiv_surf[0], n_surf,
  760. &corner_pts[0], n_corner, &(M_e2pt[0][0]));
  761. M_err=M*M_e2pt;
  762. }
  763. for(size_t k=0;k<4;k++){ // Error from colleagues of root.
  764. for(int j0=-1;j0<=1;j0++)
  765. for(int j1=-1;j1<=1;j1++)
  766. for(int j2=-1;j2<=1;j2++){
  767. Real_t pt_coord[3]={corner_pts[k*COORD_DIM+0]-j0,
  768. corner_pts[k*COORD_DIM+1]-j1,
  769. corner_pts[k*COORD_DIM+2]-j2};
  770. if(fabs(pt_coord[0]-0.5)>1.0 || fabs(pt_coord[1]-0.5)>1.0 || fabs(pt_coord[2]-0.5)>1.0){
  771. Matrix<Real_t> M_e2pt(n_surf*aux_ker_dim[0],aux_ker_dim[1]);
  772. aux_kernel->BuildMatrix(&up_equiv_surf[0], n_surf,
  773. &pt_coord[0], 1, &(M_e2pt[0][0]));
  774. for(size_t i=0;i<M_e2pt.Dim(0);i++)
  775. for(size_t j=0;j<M_e2pt.Dim(1);j++)
  776. M_err[i][k*aux_ker_dim[1]+j]+=M_e2pt[i][j];
  777. }
  778. }
  779. }
  780. }
  781. Matrix<Real_t> M_grad(M_err.Dim(0),n_surf*aux_ker_dim[1]);
  782. for(size_t i=0;i<M_err.Dim(0);i++)
  783. for(size_t k=0;k<aux_ker_dim[1];k++)
  784. for(size_t j=0;j<n_surf;j++){
  785. M_grad[i][j*aux_ker_dim[1]+k]=(M_err[i][0*aux_ker_dim[1]+k] )*1.0 +
  786. (M_err[i][1*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+0]+
  787. (M_err[i][2*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+1]+
  788. (M_err[i][3*aux_ker_dim[1]+k]-M_err[i][0*aux_ker_dim[1]+k])*dn_check_surf[j*COORD_DIM+2];
  789. }
  790. Matrix<Real_t>& M_dc2de = Precomp(0, DC2DE_Type, 0);
  791. M-=M_grad*M_dc2de;
  792. }
  793. { // Free memory
  794. Mat_Type type=D2D_Type;
  795. for(int l=-BC_LEVELS;l<0;l++)
  796. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  797. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  798. M.Resize(0,0);
  799. }
  800. type=U2U_Type;
  801. for(int l=-BC_LEVELS;l<0;l++)
  802. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  803. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  804. M.Resize(0,0);
  805. }
  806. type=DC2DE_Type;
  807. for(int l=-BC_LEVELS;l<0;l++)
  808. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  809. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  810. M.Resize(0,0);
  811. }
  812. type=UC2UE_Type;
  813. for(int l=-BC_LEVELS;l<0;l++)
  814. for(size_t indx=0;indx<this->interac_list.ListCount(type);indx++){
  815. Matrix<Real_t>& M=this->mat->Mat(l, type, indx);
  816. M.Resize(0,0);
  817. }
  818. }
  819. }
  820. break;
  821. }
  822. default:
  823. break;
  824. }
  825. //Save the matrix for future use.
  826. #pragma omp critical (PRECOMP_MATRIX_PTS)
  827. if(M_.Dim(0)==0 && M_.Dim(1)==0){
  828. M_=M;
  829. /*
  830. M_.Resize(M.Dim(0),M.Dim(1));
  831. int dof=aux_ker_dim[0]*aux_ker_dim[1];
  832. for(int j=0;j<dof;j++){
  833. size_t a=(M.Dim(0)*M.Dim(1)* j )/dof;
  834. size_t b=(M.Dim(0)*M.Dim(1)*(j+1))/dof;
  835. #pragma omp parallel for // NUMA
  836. for(int tid=0;tid<omp_p;tid++){
  837. size_t a_=a+((b-a)* tid )/omp_p;
  838. size_t b_=a+((b-a)*(tid+1))/omp_p;
  839. mem::memcopy(&M_[0][a_], &M[0][a_], (b_-a_)*sizeof(Real_t));
  840. }
  841. }
  842. */
  843. }
  844. return M_;
  845. }
  846. template <class FMMNode>
  847. void FMM_Pts<FMMNode>::PrecompAll(Mat_Type type, int level){
  848. if(level==-1){
  849. for(int l=0;l<MAX_DEPTH;l++){
  850. PrecompAll(type, l);
  851. }
  852. return;
  853. }
  854. //Compute basic permutations.
  855. for(size_t i=0;i<Perm_Count;i++)
  856. this->PrecompPerm(type, (Perm_Type) i);
  857. {
  858. //Allocate matrices.
  859. size_t mat_cnt=interac_list.ListCount((Mat_Type)type);
  860. mat->Mat(level, (Mat_Type)type, mat_cnt-1);
  861. { // Compute InteracClass matrices.
  862. std::vector<size_t> indx_lst;
  863. for(size_t i=0; i<mat_cnt; i++){
  864. if(interac_list.InteracClass((Mat_Type)type,i)==i)
  865. indx_lst.push_back(i);
  866. }
  867. //Compute Transformations.
  868. //#pragma omp parallel for //lets use fine grained parallelism
  869. for(size_t i=0; i<indx_lst.size(); i++){
  870. Precomp(level, (Mat_Type)type, indx_lst[i]);
  871. }
  872. }
  873. //#pragma omp parallel for //lets use fine grained parallelism
  874. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++){
  875. Matrix<Real_t>& M0=interac_list.ClassMat(level,(Mat_Type)type,mat_indx);
  876. Permutation<Real_t>& pr=interac_list.Perm_R(level, (Mat_Type)type, mat_indx);
  877. Permutation<Real_t>& pc=interac_list.Perm_C(level, (Mat_Type)type, mat_indx);
  878. if(pr.Dim()!=M0.Dim(0) || pc.Dim()!=M0.Dim(1)) Precomp(level, (Mat_Type)type, mat_indx);
  879. }
  880. }
  881. }
  882. template <class FMMNode>
  883. void FMM_Pts<FMMNode>::CollectNodeData(std::vector<FMMNode*>& node, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, std::vector<size_t> extra_size){
  884. if( buff.size()<7) buff.resize(7);
  885. if( n_list.size()<7) n_list.resize(7);
  886. if(node.size()==0) return;
  887. {// 0. upward_equiv
  888. int indx=0;
  889. Matrix<Real_t>& M_uc2ue = this->interac_list.ClassMat(0, UC2UE_Type, 0);
  890. size_t vec_sz=M_uc2ue.Dim(1);
  891. std::vector< FMMNode* > node_lst;
  892. {
  893. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  894. FMMNode_t* r_node=NULL;
  895. for(size_t i=0;i<node.size();i++){
  896. if(!node[i]->IsLeaf())
  897. node_lst_[node[i]->Depth()].push_back(node[i]);
  898. if(node[i]->Depth()==0) r_node=node[i];
  899. }
  900. size_t chld_cnt=1UL<<COORD_DIM;
  901. for(int i=0;i<=MAX_DEPTH;i++)
  902. for(size_t j=0;j<node_lst_[i].size();j++)
  903. for(size_t k=0;k<chld_cnt;k++)
  904. node_lst.push_back((FMMNode_t*)node_lst_[i][j]->Child(k));
  905. if(r_node!=NULL) node_lst.push_back(r_node);
  906. }
  907. n_list[indx]=node_lst;
  908. size_t buff_size=node_lst.size()*vec_sz;
  909. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  910. #pragma omp parallel for
  911. for(size_t i=0;i<node.size();i++){ // Clear data
  912. Vector<Real_t>& upward_equiv=node[i]->FMMData()->upward_equiv;
  913. upward_equiv.ReInit(0);
  914. }
  915. buff[indx].Resize(1,buff_size);
  916. #pragma omp parallel for
  917. for(size_t i=0;i<node_lst.size();i++){
  918. Vector<Real_t>& upward_equiv=node_lst[i]->FMMData()->upward_equiv;
  919. upward_equiv.ReInit(vec_sz, buff[indx][0]+i*vec_sz, false);
  920. upward_equiv.SetZero();
  921. }
  922. buff[indx].AllocDevice(true);
  923. }
  924. {// 1. dnward_equiv
  925. int indx=1;
  926. Matrix<Real_t>& M_dc2de = this->interac_list.ClassMat(0, DC2DE_Type, 0);
  927. size_t vec_sz=M_dc2de.Dim(1);
  928. std::vector< FMMNode* > node_lst;
  929. {
  930. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  931. FMMNode_t* r_node=NULL;
  932. for(size_t i=0;i<node.size();i++){
  933. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  934. node_lst_[node[i]->Depth()].push_back(node[i]);
  935. if(node[i]->Depth()==0) r_node=node[i];
  936. }
  937. size_t chld_cnt=1UL<<COORD_DIM;
  938. for(int i=0;i<=MAX_DEPTH;i++)
  939. for(size_t j=0;j<node_lst_[i].size();j++)
  940. for(size_t k=0;k<chld_cnt;k++)
  941. node_lst.push_back((FMMNode_t*)node_lst_[i][j]->Child(k));
  942. if(r_node!=NULL) node_lst.push_back(r_node);
  943. }
  944. n_list[indx]=node_lst;
  945. size_t buff_size=node_lst.size()*vec_sz;
  946. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  947. #pragma omp parallel for
  948. for(size_t i=0;i<node.size();i++){ // Clear data
  949. Vector<Real_t>& dnward_equiv=node[i]->FMMData()->dnward_equiv;
  950. dnward_equiv.ReInit(0);
  951. }
  952. buff[indx].Resize(1,buff_size);
  953. #pragma omp parallel for
  954. for(size_t i=0;i<node_lst.size();i++){
  955. Vector<Real_t>& dnward_equiv=node_lst[i]->FMMData()->dnward_equiv;
  956. dnward_equiv.ReInit(vec_sz, buff[indx][0]+i*vec_sz, false);
  957. dnward_equiv.SetZero();
  958. }
  959. buff[indx].AllocDevice(true);
  960. }
  961. {// 2. upward_equiv_fft
  962. int indx=2;
  963. std::vector< FMMNode* > node_lst;
  964. {
  965. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  966. for(size_t i=0;i<node.size();i++)
  967. if(!node[i]->IsLeaf())
  968. node_lst_[node[i]->Depth()].push_back(node[i]);
  969. for(int i=0;i<=MAX_DEPTH;i++)
  970. for(size_t j=0;j<node_lst_[i].size();j++)
  971. node_lst.push_back(node_lst_[i][j]);
  972. }
  973. n_list[indx]=node_lst;
  974. buff[indx].AllocDevice(true);
  975. }
  976. {// 3. dnward_check_fft
  977. int indx=3;
  978. std::vector< FMMNode* > node_lst;
  979. {
  980. std::vector<std::vector< FMMNode* > > node_lst_(MAX_DEPTH+1);
  981. for(size_t i=0;i<node.size();i++)
  982. if(!node[i]->IsLeaf() && !node[i]->IsGhost())
  983. node_lst_[node[i]->Depth()].push_back(node[i]);
  984. for(int i=0;i<=MAX_DEPTH;i++)
  985. for(size_t j=0;j<node_lst_[i].size();j++)
  986. node_lst.push_back(node_lst_[i][j]);
  987. }
  988. n_list[indx]=node_lst;
  989. buff[indx].AllocDevice(true);
  990. }
  991. {// 4. src_val
  992. int indx=4;
  993. int src_dof=kernel->ker_dim[0];
  994. int surf_dof=COORD_DIM+src_dof;
  995. std::vector< FMMNode* > node_lst;
  996. size_t buff_size=0;
  997. for(size_t i=0;i<node.size();i++)
  998. if(node[i]->IsLeaf()){
  999. node_lst.push_back(node[i]);
  1000. buff_size+=(node[i]->src_coord.Dim()/COORD_DIM)*src_dof;
  1001. buff_size+=(node[i]->surf_coord.Dim()/COORD_DIM)*surf_dof;
  1002. }
  1003. n_list[indx]=node_lst;
  1004. #pragma omp parallel for
  1005. for(size_t i=0;i<node.size();i++){ // Move data before resizing buff[indx]
  1006. { // src_value
  1007. Vector<Real_t>& src_value=node[i]->src_value;
  1008. Vector<Real_t> new_buff=src_value;
  1009. src_value.Swap(new_buff);
  1010. }
  1011. { // surf_value
  1012. Vector<Real_t>& surf_value=node[i]->surf_value;
  1013. Vector<Real_t> new_buff=surf_value;
  1014. surf_value.Swap(new_buff);
  1015. }
  1016. }
  1017. buff[indx].Resize(1,buff_size+(extra_size.size()>indx?extra_size[indx]:0));
  1018. Real_t* buff_ptr=&buff[indx][0][0];
  1019. for(size_t i=0;i<node_lst.size();i++){
  1020. { // src_value
  1021. Vector<Real_t>& src_value=node_lst[i]->src_value;
  1022. mem::memcopy(buff_ptr,&src_value[0],src_value.Dim()*sizeof(Real_t));
  1023. src_value.ReInit((node_lst[i]->src_coord.Dim()/COORD_DIM)*src_dof, buff_ptr, false);
  1024. buff_ptr+=(node_lst[i]->src_coord.Dim()/COORD_DIM)*src_dof;
  1025. }
  1026. { // surf_value
  1027. Vector<Real_t>& surf_value=node_lst[i]->surf_value;
  1028. mem::memcopy(buff_ptr,&surf_value[0],surf_value.Dim()*sizeof(Real_t));
  1029. surf_value.ReInit((node_lst[i]->surf_coord.Dim()/COORD_DIM)*surf_dof, buff_ptr, false);
  1030. buff_ptr+=(node_lst[i]->surf_coord.Dim()/COORD_DIM)*surf_dof;
  1031. }
  1032. }
  1033. buff[indx].AllocDevice(true);
  1034. }
  1035. {// 5. trg_val
  1036. int indx=5;
  1037. int trg_dof=kernel->ker_dim[1];
  1038. std::vector< FMMNode* > node_lst;
  1039. size_t buff_size=0;
  1040. for(size_t i=0;i<node.size();i++)
  1041. if(node[i]->IsLeaf() && !node[i]->IsGhost()){
  1042. node_lst.push_back(node[i]);
  1043. buff_size+=(node[i]->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1044. }
  1045. n_list[indx]=node_lst;
  1046. #pragma omp parallel for
  1047. for(size_t i=0;i<node.size();i++){ // Clear data
  1048. { // trg_value
  1049. Vector<Real_t>& trg_value=node[i]->trg_value;
  1050. trg_value.ReInit(0);
  1051. }
  1052. }
  1053. buff[indx].Resize(1,buff_size+(extra_size.size()>indx?extra_size[indx]:0));
  1054. Real_t* buff_ptr=&buff[indx][0][0];
  1055. for(size_t i=0;i<node_lst.size();i++){
  1056. { // trg_value
  1057. Vector<Real_t>& trg_value=node_lst[i]->trg_value;
  1058. trg_value.ReInit((node_lst[i]->trg_coord.Dim()/COORD_DIM)*trg_dof, buff_ptr, false);
  1059. buff_ptr+=(node_lst[i]->trg_coord.Dim()/COORD_DIM)*trg_dof;
  1060. }
  1061. }
  1062. #pragma omp parallel for
  1063. for(size_t i=0;i<node_lst.size();i++){
  1064. Vector<Real_t>& trg_value=node_lst[i]->trg_value;
  1065. trg_value.SetZero();
  1066. }
  1067. buff[indx].AllocDevice(true);
  1068. }
  1069. {// 6. pts_coord
  1070. int indx=6;
  1071. size_t m=MultipoleOrder();
  1072. std::vector< FMMNode* > node_lst;
  1073. size_t buff_size=0;
  1074. for(size_t i=0;i<node.size();i++)
  1075. if(node[i]->IsLeaf()){
  1076. node_lst.push_back(node[i]);
  1077. buff_size+=node[i]->src_coord.Dim();
  1078. buff_size+=node[i]->surf_coord.Dim();
  1079. buff_size+=node[i]->trg_coord.Dim();
  1080. }
  1081. n_list[indx]=node_lst;
  1082. #pragma omp parallel for
  1083. for(size_t i=0;i<node.size();i++){ // Move data before resizing buff[indx]
  1084. { // src_coord
  1085. Vector<Real_t>& src_coord=node[i]->src_coord;
  1086. Vector<Real_t> new_buff=src_coord;
  1087. src_coord.Swap(new_buff);
  1088. }
  1089. { // surf_coord
  1090. Vector<Real_t>& surf_coord=node[i]->surf_coord;
  1091. Vector<Real_t> new_buff=surf_coord;
  1092. surf_coord.Swap(new_buff);
  1093. }
  1094. { // trg_coord
  1095. Vector<Real_t>& trg_coord=node[i]->trg_coord;
  1096. Vector<Real_t> new_buff=trg_coord;
  1097. trg_coord.Swap(new_buff);
  1098. }
  1099. }
  1100. buff_size+=(extra_size.size()>indx?extra_size[indx]:0);
  1101. buff_size+=4*MAX_DEPTH*(6*(m-1)*(m-1)+2)*COORD_DIM;
  1102. buff[indx].Resize(1,buff_size);
  1103. Real_t* buff_ptr=&buff[indx][0][0];
  1104. for(size_t i=0;i<node_lst.size();i++){
  1105. { // src_coord
  1106. Vector<Real_t>& src_coord=node_lst[i]->src_coord;
  1107. mem::memcopy(buff_ptr,&src_coord[0],src_coord.Dim()*sizeof(Real_t));
  1108. src_coord.ReInit(node_lst[i]->src_coord.Dim(), buff_ptr, false);
  1109. buff_ptr+=node_lst[i]->src_coord.Dim();
  1110. }
  1111. { // surf_coord
  1112. Vector<Real_t>& surf_coord=node_lst[i]->surf_coord;
  1113. mem::memcopy(buff_ptr,&surf_coord[0],surf_coord.Dim()*sizeof(Real_t));
  1114. surf_coord.ReInit(node_lst[i]->surf_coord.Dim(), buff_ptr, false);
  1115. buff_ptr+=node_lst[i]->surf_coord.Dim();
  1116. }
  1117. { // trg_coord
  1118. Vector<Real_t>& trg_coord=node_lst[i]->trg_coord;
  1119. mem::memcopy(buff_ptr,&trg_coord[0],trg_coord.Dim()*sizeof(Real_t));
  1120. trg_coord.ReInit(node_lst[i]->trg_coord.Dim(), buff_ptr, false);
  1121. buff_ptr+=node_lst[i]->trg_coord.Dim();
  1122. }
  1123. }
  1124. { // check and equiv surfaces.
  1125. upwd_check_surf.resize(MAX_DEPTH);
  1126. upwd_equiv_surf.resize(MAX_DEPTH);
  1127. dnwd_check_surf.resize(MAX_DEPTH);
  1128. dnwd_equiv_surf.resize(MAX_DEPTH);
  1129. for(size_t depth=0;depth<MAX_DEPTH;depth++){
  1130. Real_t c[3]={0.0,0.0,0.0};
  1131. upwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1132. upwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1133. dnwd_check_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1134. dnwd_equiv_surf[depth].ReInit((6*(m-1)*(m-1)+2)*COORD_DIM, buff_ptr, false); buff_ptr+=(6*(m-1)*(m-1)+2)*COORD_DIM;
  1135. upwd_check_surf[depth]=u_check_surf(m,c,depth);
  1136. upwd_equiv_surf[depth]=u_equiv_surf(m,c,depth);
  1137. dnwd_check_surf[depth]=d_check_surf(m,c,depth);
  1138. dnwd_equiv_surf[depth]=d_equiv_surf(m,c,depth);
  1139. }
  1140. }
  1141. buff[indx].AllocDevice(true);
  1142. }
  1143. }
  1144. template <class FMMNode>
  1145. void FMM_Pts<FMMNode>::SetupPrecomp(SetupData<Real_t>& setup_data, bool device){
  1146. if(setup_data.precomp_data==NULL || setup_data.level>MAX_DEPTH) return;
  1147. Profile::Tic("SetupPrecomp",&this->comm,true,25);
  1148. { // Build precomp_data
  1149. size_t precomp_offset=0;
  1150. int level=setup_data.level;
  1151. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1152. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1153. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1154. Mat_Type& interac_type=interac_type_lst[type_indx];
  1155. this->PrecompAll(interac_type, level); // Compute matrices.
  1156. precomp_offset=this->mat->CompactData(level, interac_type, precomp_data, precomp_offset);
  1157. }
  1158. }
  1159. Profile::Toc();
  1160. if(device){ // Host2Device
  1161. Profile::Tic("Host2Device",&this->comm,false,25);
  1162. setup_data.precomp_data->AllocDevice(true);
  1163. Profile::Toc();
  1164. }
  1165. }
  1166. template <class FMMNode>
  1167. void FMM_Pts<FMMNode>::SetupInterac(SetupData<Real_t>& setup_data, bool device){
  1168. int level=setup_data.level;
  1169. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  1170. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1171. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1172. Matrix<Real_t>& input_data=*setup_data. input_data;
  1173. Matrix<Real_t>& output_data=*setup_data.output_data;
  1174. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  1175. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  1176. size_t n_in =nodes_in .size();
  1177. size_t n_out=nodes_out.size();
  1178. // Setup precomputed data.
  1179. SetupPrecomp(setup_data,device);
  1180. // Build interac_data
  1181. Profile::Tic("Interac-Data",&this->comm,true,25);
  1182. Matrix<char>& interac_data=setup_data.interac_data;
  1183. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  1184. std::vector<size_t> interac_mat;
  1185. std::vector<size_t> interac_cnt;
  1186. std::vector<size_t> interac_blk;
  1187. std::vector<size_t> input_perm;
  1188. std::vector<size_t> output_perm;
  1189. size_t dof=0, M_dim0=0, M_dim1=0;
  1190. size_t precomp_offset=0;
  1191. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  1192. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  1193. Mat_Type& interac_type=interac_type_lst[type_indx];
  1194. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  1195. Matrix<size_t> precomp_data_offset;
  1196. { // Load precomp_data for interac_type.
  1197. Matrix<char>& precomp_data=*setup_data.precomp_data;
  1198. char* indx_ptr=precomp_data[0]+precomp_offset;
  1199. size_t total_size=((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  1200. size_t mat_cnt_ =((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  1201. size_t max_depth =((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  1202. precomp_data_offset.ReInit(mat_cnt_,(1+(2+2)*max_depth), (size_t*)indx_ptr, false);
  1203. precomp_offset+=total_size;
  1204. }
  1205. Matrix<FMMNode*> src_interac_list(n_in ,mat_cnt); src_interac_list.SetZero();
  1206. Matrix<FMMNode*> trg_interac_list(n_out,mat_cnt); trg_interac_list.SetZero();
  1207. { // Build trg_interac_list
  1208. for(size_t i=0;i<n_out;i++){
  1209. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  1210. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  1211. mem::memcopy(&trg_interac_list[i][0], &lst[0], lst.size()*sizeof(FMMNode*));
  1212. assert(lst.size()==mat_cnt);
  1213. }
  1214. }
  1215. }
  1216. { // Build src_interac_list
  1217. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  1218. for(size_t i=0;i<n_out;i++){
  1219. for(size_t j=0;j<mat_cnt;j++)
  1220. if(trg_interac_list[i][j]!=NULL){
  1221. src_interac_list[trg_interac_list[i][j]->node_id][j]=(FMMNode*)nodes_out[i];
  1222. }
  1223. }
  1224. }
  1225. Matrix<size_t> interac_dsp(n_out,mat_cnt);
  1226. std::vector<size_t> interac_blk_dsp(1,0);
  1227. { // Determine dof, M_dim0, M_dim1
  1228. dof=1;
  1229. Matrix<Real_t>& M0 = this->interac_list.ClassMat(level, interac_type_lst[0], 0);
  1230. M_dim0=M0.Dim(0); M_dim1=M0.Dim(1);
  1231. }
  1232. { // Determine interaction blocks which fit in memory.
  1233. size_t vec_size=(M_dim0+M_dim1)*sizeof(Real_t)*dof;
  1234. for(size_t j=0;j<mat_cnt;j++){// Determine minimum buff_size
  1235. size_t vec_cnt=0;
  1236. for(size_t i=0;i<n_out;i++){
  1237. if(trg_interac_list[i][j]!=NULL) vec_cnt++;
  1238. }
  1239. if(buff_size<vec_cnt*vec_size)
  1240. buff_size=vec_cnt*vec_size;
  1241. }
  1242. size_t interac_dsp_=0;
  1243. for(size_t j=0;j<mat_cnt;j++){
  1244. for(size_t i=0;i<n_out;i++){
  1245. interac_dsp[i][j]=interac_dsp_;
  1246. if(trg_interac_list[i][j]!=NULL) interac_dsp_++;
  1247. }
  1248. if(interac_dsp_*vec_size>buff_size) // Comment to disable symmetries.
  1249. {
  1250. interac_blk.push_back(j-interac_blk_dsp.back());
  1251. interac_blk_dsp.push_back(j);
  1252. size_t offset=interac_dsp[0][j];
  1253. for(size_t i=0;i<n_out;i++) interac_dsp[i][j]-=offset;
  1254. interac_dsp_-=offset;
  1255. assert(interac_dsp_*vec_size<=buff_size); // Problem too big for buff_size.
  1256. }
  1257. interac_mat.push_back(precomp_data_offset[this->interac_list.InteracClass(interac_type,j)][0]);
  1258. interac_cnt.push_back(interac_dsp_-interac_dsp[0][j]);
  1259. }
  1260. interac_blk.push_back(mat_cnt-interac_blk_dsp.back());
  1261. interac_blk_dsp.push_back(mat_cnt);
  1262. }
  1263. { // Determine input_perm.
  1264. size_t vec_size=M_dim0*dof;
  1265. for(size_t i=0;i<n_out;i++) ((FMMNode*)nodes_out[i])->node_id=i;
  1266. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1267. for(size_t i=0;i<n_in ;i++){
  1268. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1269. FMMNode_t* trg_node=src_interac_list[i][j];
  1270. if(trg_node!=NULL){
  1271. size_t depth=trg_node->Depth();
  1272. input_perm .push_back(precomp_data_offset[j][1+4*depth+0]); // prem
  1273. input_perm .push_back(precomp_data_offset[j][1+4*depth+1]); // scal
  1274. input_perm .push_back(interac_dsp[trg_node->node_id][j]*vec_size*sizeof(Real_t)); // trg_ptr
  1275. input_perm .push_back((size_t)(& input_vector[i][0][0]- input_data[0])); // src_ptr
  1276. assert(input_vector[i]->Dim()==vec_size);
  1277. }
  1278. }
  1279. }
  1280. }
  1281. }
  1282. { // Determine output_perm
  1283. size_t vec_size=M_dim1*dof;
  1284. for(size_t k=1;k<interac_blk_dsp.size();k++){
  1285. for(size_t i=0;i<n_out;i++){
  1286. for(size_t j=interac_blk_dsp[k-1];j<interac_blk_dsp[k];j++){
  1287. if(trg_interac_list[i][j]!=NULL){
  1288. size_t depth=((FMMNode*)nodes_out[i])->Depth();
  1289. output_perm.push_back(precomp_data_offset[j][1+4*depth+2]); // prem
  1290. output_perm.push_back(precomp_data_offset[j][1+4*depth+3]); // scal
  1291. output_perm.push_back(interac_dsp[ i ][j]*vec_size*sizeof(Real_t)); // src_ptr
  1292. output_perm.push_back((size_t)(&output_vector[i][0][0]-output_data[0])); // trg_ptr
  1293. assert(output_vector[i]->Dim()==vec_size);
  1294. }
  1295. }
  1296. }
  1297. }
  1298. }
  1299. }
  1300. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  1301. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  1302. { // Set interac_data.
  1303. size_t data_size=sizeof(size_t)*4;
  1304. data_size+=sizeof(size_t)+interac_blk.size()*sizeof(size_t);
  1305. data_size+=sizeof(size_t)+interac_cnt.size()*sizeof(size_t);
  1306. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  1307. data_size+=sizeof(size_t)+ input_perm.size()*sizeof(size_t);
  1308. data_size+=sizeof(size_t)+output_perm.size()*sizeof(size_t);
  1309. if(interac_data.Dim(0)*interac_data.Dim(1)<sizeof(size_t)){
  1310. data_size+=sizeof(size_t);
  1311. interac_data.Resize(1,data_size);
  1312. ((size_t*)&interac_data[0][0])[0]=sizeof(size_t);
  1313. }else{
  1314. size_t pts_data_size=*((size_t*)&interac_data[0][0]);
  1315. assert(interac_data.Dim(0)*interac_data.Dim(1)>=pts_data_size);
  1316. data_size+=pts_data_size;
  1317. if(data_size>interac_data.Dim(0)*interac_data.Dim(1)){ //Resize and copy interac_data.
  1318. Matrix< char> pts_interac_data=interac_data;
  1319. interac_data.Resize(1,data_size);
  1320. mem::memcopy(&interac_data[0][0],&pts_interac_data[0][0],pts_data_size);
  1321. }
  1322. }
  1323. char* data_ptr=&interac_data[0][0];
  1324. data_ptr+=((size_t*)data_ptr)[0];
  1325. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  1326. ((size_t*)data_ptr)[0]= M_dim0; data_ptr+=sizeof(size_t);
  1327. ((size_t*)data_ptr)[0]= M_dim1; data_ptr+=sizeof(size_t);
  1328. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  1329. ((size_t*)data_ptr)[0]=interac_blk.size(); data_ptr+=sizeof(size_t);
  1330. mem::memcopy(data_ptr, &interac_blk[0], interac_blk.size()*sizeof(size_t));
  1331. data_ptr+=interac_blk.size()*sizeof(size_t);
  1332. ((size_t*)data_ptr)[0]=interac_cnt.size(); data_ptr+=sizeof(size_t);
  1333. mem::memcopy(data_ptr, &interac_cnt[0], interac_cnt.size()*sizeof(size_t));
  1334. data_ptr+=interac_cnt.size()*sizeof(size_t);
  1335. ((size_t*)data_ptr)[0]=interac_mat.size(); data_ptr+=sizeof(size_t);
  1336. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  1337. data_ptr+=interac_mat.size()*sizeof(size_t);
  1338. ((size_t*)data_ptr)[0]= input_perm.size(); data_ptr+=sizeof(size_t);
  1339. mem::memcopy(data_ptr, & input_perm[0], input_perm.size()*sizeof(size_t));
  1340. data_ptr+= input_perm.size()*sizeof(size_t);
  1341. ((size_t*)data_ptr)[0]=output_perm.size(); data_ptr+=sizeof(size_t);
  1342. mem::memcopy(data_ptr, &output_perm[0], output_perm.size()*sizeof(size_t));
  1343. data_ptr+=output_perm.size()*sizeof(size_t);
  1344. }
  1345. }
  1346. Profile::Toc();
  1347. if(device){ // Host2Device
  1348. Profile::Tic("Host2Device",&this->comm,false,25);
  1349. setup_data.interac_data .AllocDevice(true);
  1350. Profile::Toc();
  1351. }
  1352. }
  1353. #if defined(PVFMM_HAVE_CUDA)
  1354. #include <fmm_pts_gpu.hpp>
  1355. template <class Real_t, int SYNC>
  1356. void EvalListGPU(SetupData<Real_t>& setup_data, Vector<char>& dev_buffer, MPI_Comm& comm) {
  1357. cudaStream_t* stream = pvfmm::CUDA_Lock::acquire_stream();
  1358. Profile::Tic("Host2Device",&comm,false,25);
  1359. typename Matrix<char>::Device interac_data;
  1360. typename Vector<char>::Device buff;
  1361. typename Matrix<char>::Device precomp_data_d;
  1362. typename Matrix<char>::Device interac_data_d;
  1363. typename Matrix<Real_t>::Device input_data_d;
  1364. typename Matrix<Real_t>::Device output_data_d;
  1365. interac_data = setup_data.interac_data;
  1366. buff = dev_buffer. AllocDevice(false);
  1367. precomp_data_d= setup_data.precomp_data->AllocDevice(false);
  1368. interac_data_d= setup_data.interac_data. AllocDevice(false);
  1369. input_data_d = setup_data. input_data->AllocDevice(false);
  1370. output_data_d = setup_data. output_data->AllocDevice(false);
  1371. Profile::Toc();
  1372. { // Set interac_data.
  1373. size_t data_size, M_dim0, M_dim1, dof;
  1374. Vector<size_t> interac_blk;
  1375. Vector<size_t> interac_cnt;
  1376. Vector<size_t> interac_mat;
  1377. Vector<size_t> input_perm_d;
  1378. Vector<size_t> output_perm_d;
  1379. { // Set interac_data.
  1380. char* data_ptr=&interac_data [0][0];
  1381. char* dev_ptr=&interac_data_d[0][0];
  1382. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size; dev_ptr += data_size;
  1383. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1384. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1385. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1386. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t); dev_ptr += sizeof(size_t);
  1387. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1388. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
  1389. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_blk.Dim();
  1390. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1391. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
  1392. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_cnt.Dim();
  1393. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1394. data_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
  1395. dev_ptr += sizeof(size_t) + sizeof(size_t)*interac_mat.Dim();
  1396. input_perm_d.ReInit(((size_t*)data_ptr)[0],(size_t*)(dev_ptr+sizeof(size_t)),false);
  1397. data_ptr += sizeof(size_t) + sizeof(size_t)*input_perm_d.Dim();
  1398. dev_ptr += sizeof(size_t) + sizeof(size_t)*input_perm_d.Dim();
  1399. output_perm_d.ReInit(((size_t*)data_ptr)[0],(size_t*)(dev_ptr+sizeof(size_t)),false);
  1400. data_ptr += sizeof(size_t) + sizeof(size_t)*output_perm_d.Dim();
  1401. dev_ptr += sizeof(size_t) + sizeof(size_t)*output_perm_d.Dim();
  1402. }
  1403. { // interactions
  1404. size_t interac_indx = 0;
  1405. size_t interac_blk_dsp = 0;
  1406. cudaError_t error;
  1407. for (size_t k = 0; k < interac_blk.Dim(); k++) {
  1408. size_t vec_cnt=0;
  1409. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
  1410. if(vec_cnt==0){
  1411. //interac_indx += vec_cnt;
  1412. interac_blk_dsp += interac_blk[k];
  1413. continue;
  1414. }
  1415. char *buff_in_d =&buff[0];
  1416. char *buff_out_d =&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1417. { // Input permutation.
  1418. in_perm_gpu<Real_t>(&precomp_data_d[0][0], &input_data_d[0][0], buff_in_d,
  1419. &input_perm_d[interac_indx*4], vec_cnt, M_dim0, stream);
  1420. }
  1421. size_t vec_cnt0 = 0;
  1422. for (size_t j = interac_blk_dsp; j < interac_blk_dsp + interac_blk[k];) {
  1423. size_t vec_cnt1 = 0;
  1424. size_t interac_mat0 = interac_mat[j];
  1425. for (; j < interac_blk_dsp + interac_blk[k] && interac_mat[j] == interac_mat0; j++) vec_cnt1 += interac_cnt[j];
  1426. Matrix<Real_t> M_d(M_dim0, M_dim1, (Real_t*)(precomp_data_d.dev_ptr + interac_mat0), false);
  1427. Matrix<Real_t> Ms_d(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in_d + M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1428. Matrix<Real_t> Mt_d(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out_d + M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1429. Matrix<Real_t>::CUBLASGEMM(Mt_d, Ms_d, M_d);
  1430. vec_cnt0 += vec_cnt1;
  1431. }
  1432. { // Output permutation.
  1433. out_perm_gpu<Real_t>(&precomp_data_d[0][0], &output_data_d[0][0], buff_out_d,
  1434. &output_perm_d[interac_indx*4], vec_cnt, M_dim1, stream);
  1435. }
  1436. interac_indx += vec_cnt;
  1437. interac_blk_dsp += interac_blk[k];
  1438. }
  1439. }
  1440. }
  1441. if(SYNC) CUDA_Lock::wait();
  1442. }
  1443. #endif
  1444. template <class FMMNode>
  1445. template <int SYNC>
  1446. void FMM_Pts<FMMNode>::EvalList(SetupData<Real_t>& setup_data, bool device){
  1447. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  1448. Profile::Tic("Host2Device",&this->comm,false,25);
  1449. Profile::Toc();
  1450. Profile::Tic("DeviceComp",&this->comm,false,20);
  1451. Profile::Toc();
  1452. return;
  1453. }
  1454. #if defined(PVFMM_HAVE_CUDA)
  1455. if (device) {
  1456. EvalListGPU<Real_t, SYNC>(setup_data, this->dev_buffer, this->comm);
  1457. return;
  1458. }
  1459. #endif
  1460. Profile::Tic("Host2Device",&this->comm,false,25);
  1461. typename Vector<char>::Device buff;
  1462. typename Matrix<char>::Device precomp_data;
  1463. typename Matrix<char>::Device interac_data;
  1464. typename Matrix<Real_t>::Device input_data;
  1465. typename Matrix<Real_t>::Device output_data;
  1466. if(device){
  1467. buff = this-> dev_buffer. AllocDevice(false);
  1468. precomp_data= setup_data.precomp_data->AllocDevice(false);
  1469. interac_data= setup_data.interac_data. AllocDevice(false);
  1470. input_data = setup_data. input_data->AllocDevice(false);
  1471. output_data = setup_data. output_data->AllocDevice(false);
  1472. }else{
  1473. buff = this-> cpu_buffer;
  1474. precomp_data=*setup_data.precomp_data;
  1475. interac_data= setup_data.interac_data;
  1476. input_data =*setup_data. input_data;
  1477. output_data =*setup_data. output_data;
  1478. }
  1479. Profile::Toc();
  1480. Profile::Tic("DeviceComp",&this->comm,false,20);
  1481. int lock_idx=-1;
  1482. int wait_lock_idx=-1;
  1483. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  1484. if(device) lock_idx=MIC_Lock::get_lock();
  1485. #ifdef __INTEL_OFFLOAD
  1486. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  1487. #endif
  1488. { // Offloaded computation.
  1489. // Set interac_data.
  1490. size_t data_size, M_dim0, M_dim1, dof;
  1491. Vector<size_t> interac_blk;
  1492. Vector<size_t> interac_cnt;
  1493. Vector<size_t> interac_mat;
  1494. Vector<size_t> input_perm;
  1495. Vector<size_t> output_perm;
  1496. { // Set interac_data.
  1497. char* data_ptr=&interac_data[0][0];
  1498. data_size=((size_t*)data_ptr)[0]; data_ptr+=data_size;
  1499. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1500. M_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1501. M_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1502. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  1503. interac_blk.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1504. data_ptr+=sizeof(size_t)+interac_blk.Dim()*sizeof(size_t);
  1505. interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1506. data_ptr+=sizeof(size_t)+interac_cnt.Dim()*sizeof(size_t);
  1507. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1508. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  1509. input_perm .ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1510. data_ptr+=sizeof(size_t)+ input_perm.Dim()*sizeof(size_t);
  1511. output_perm.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  1512. data_ptr+=sizeof(size_t)+output_perm.Dim()*sizeof(size_t);
  1513. }
  1514. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  1515. //Compute interaction from Chebyshev source density.
  1516. { // interactions
  1517. int omp_p=omp_get_max_threads();
  1518. size_t interac_indx=0;
  1519. size_t interac_blk_dsp=0;
  1520. for(size_t k=0;k<interac_blk.Dim();k++){
  1521. size_t vec_cnt=0;
  1522. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];j++) vec_cnt+=interac_cnt[j];
  1523. if(vec_cnt==0){
  1524. //interac_indx += vec_cnt;
  1525. interac_blk_dsp += interac_blk[k];
  1526. continue;
  1527. }
  1528. char* buff_in =&buff[0];
  1529. char* buff_out=&buff[vec_cnt*dof*M_dim0*sizeof(Real_t)];
  1530. // Input permutation.
  1531. #pragma omp parallel for
  1532. for(int tid=0;tid<omp_p;tid++){
  1533. size_t a=( tid *vec_cnt)/omp_p;
  1534. size_t b=((tid+1)*vec_cnt)/omp_p;
  1535. for(size_t i=a;i<b;i++){
  1536. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+input_perm[(interac_indx+i)*4+0]);
  1537. const Real_t* scal=( Real_t*)(precomp_data[0]+input_perm[(interac_indx+i)*4+1]);
  1538. const Real_t* v_in =( Real_t*)( input_data[0]+input_perm[(interac_indx+i)*4+3]);
  1539. Real_t* v_out=( Real_t*)( buff_in +input_perm[(interac_indx+i)*4+2]);
  1540. // TODO: Fix for dof>1
  1541. #ifdef __MIC__
  1542. {
  1543. __m512d v8;
  1544. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1545. size_t j_end =(((uintptr_t)(v_out+M_dim0) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1546. j_start/=sizeof(Real_t);
  1547. j_end /=sizeof(Real_t);
  1548. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1549. assert(((uintptr_t)(v_out+j_start))%64==0);
  1550. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1551. size_t j=0;
  1552. for(;j<j_start;j++ ){
  1553. v_out[j]=v_in[perm[j]]*scal[j];
  1554. }
  1555. for(;j<j_end ;j+=8){
  1556. v8=_mm512_setr_pd(
  1557. v_in[perm[j+0]]*scal[j+0],
  1558. v_in[perm[j+1]]*scal[j+1],
  1559. v_in[perm[j+2]]*scal[j+2],
  1560. v_in[perm[j+3]]*scal[j+3],
  1561. v_in[perm[j+4]]*scal[j+4],
  1562. v_in[perm[j+5]]*scal[j+5],
  1563. v_in[perm[j+6]]*scal[j+6],
  1564. v_in[perm[j+7]]*scal[j+7]);
  1565. _mm512_storenrngo_pd(v_out+j,v8);
  1566. }
  1567. for(;j<M_dim0 ;j++ ){
  1568. v_out[j]=v_in[perm[j]]*scal[j];
  1569. }
  1570. }
  1571. #else
  1572. for(size_t j=0;j<M_dim0;j++ ){
  1573. v_out[j]=v_in[perm[j]]*scal[j];
  1574. }
  1575. #endif
  1576. }
  1577. }
  1578. size_t vec_cnt0=0;
  1579. for(size_t j=interac_blk_dsp;j<interac_blk_dsp+interac_blk[k];){
  1580. size_t vec_cnt1=0;
  1581. size_t interac_mat0=interac_mat[j];
  1582. for(;j<interac_blk_dsp+interac_blk[k] && interac_mat[j]==interac_mat0;j++) vec_cnt1+=interac_cnt[j];
  1583. Matrix<Real_t> M(M_dim0, M_dim1, (Real_t*)(precomp_data[0]+interac_mat0), false);
  1584. #ifdef __MIC__
  1585. {
  1586. Matrix<Real_t> Ms(dof*vec_cnt1, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t)), false);
  1587. Matrix<Real_t> Mt(dof*vec_cnt1, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t)), false);
  1588. Matrix<Real_t>::GEMM(Mt,Ms,M);
  1589. }
  1590. #else
  1591. #pragma omp parallel for
  1592. for(int tid=0;tid<omp_p;tid++){
  1593. size_t a=(dof*vec_cnt1*(tid ))/omp_p;
  1594. size_t b=(dof*vec_cnt1*(tid+1))/omp_p;
  1595. Matrix<Real_t> Ms(b-a, M_dim0, (Real_t*)(buff_in +M_dim0*vec_cnt0*dof*sizeof(Real_t))+M_dim0*a, false);
  1596. Matrix<Real_t> Mt(b-a, M_dim1, (Real_t*)(buff_out+M_dim1*vec_cnt0*dof*sizeof(Real_t))+M_dim1*a, false);
  1597. Matrix<Real_t>::GEMM(Mt,Ms,M);
  1598. }
  1599. #endif
  1600. vec_cnt0+=vec_cnt1;
  1601. }
  1602. // Output permutation.
  1603. #pragma omp parallel for
  1604. for(int tid=0;tid<omp_p;tid++){
  1605. size_t a=( tid *vec_cnt)/omp_p;
  1606. size_t b=((tid+1)*vec_cnt)/omp_p;
  1607. if(tid> 0 && a<vec_cnt){ // Find 'a' independent of other threads.
  1608. size_t out_ptr=output_perm[(interac_indx+a)*4+3];
  1609. if(tid> 0) while(a<vec_cnt && out_ptr==output_perm[(interac_indx+a)*4+3]) a++;
  1610. }
  1611. if(tid<omp_p-1 && b<vec_cnt){ // Find 'b' independent of other threads.
  1612. size_t out_ptr=output_perm[(interac_indx+b)*4+3];
  1613. if(tid<omp_p-1) while(b<vec_cnt && out_ptr==output_perm[(interac_indx+b)*4+3]) b++;
  1614. }
  1615. for(size_t i=a;i<b;i++){ // Compute permutations.
  1616. const PERM_INT_T* perm=(PERM_INT_T*)(precomp_data[0]+output_perm[(interac_indx+i)*4+0]);
  1617. const Real_t* scal=( Real_t*)(precomp_data[0]+output_perm[(interac_indx+i)*4+1]);
  1618. const Real_t* v_in =( Real_t*)( buff_out +output_perm[(interac_indx+i)*4+2]);
  1619. Real_t* v_out=( Real_t*)( output_data[0]+output_perm[(interac_indx+i)*4+3]);
  1620. // TODO: Fix for dof>1
  1621. #ifdef __MIC__
  1622. {
  1623. __m512d v8;
  1624. __m512d v_old;
  1625. size_t j_start=(((uintptr_t)(v_out ) + (uintptr_t)(MEM_ALIGN-1)) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1626. size_t j_end =(((uintptr_t)(v_out+M_dim1) ) & ~ (uintptr_t)(MEM_ALIGN-1))-((uintptr_t)v_out);
  1627. j_start/=sizeof(Real_t);
  1628. j_end /=sizeof(Real_t);
  1629. assert(((uintptr_t)(v_out))%sizeof(Real_t)==0);
  1630. assert(((uintptr_t)(v_out+j_start))%64==0);
  1631. assert(((uintptr_t)(v_out+j_end ))%64==0);
  1632. size_t j=0;
  1633. for(;j<j_start;j++ ){
  1634. v_out[j]+=v_in[perm[j]]*scal[j];
  1635. }
  1636. for(;j<j_end ;j+=8){
  1637. v_old=_mm512_load_pd(v_out+j);
  1638. v8=_mm512_setr_pd(
  1639. v_in[perm[j+0]]*scal[j+0],
  1640. v_in[perm[j+1]]*scal[j+1],
  1641. v_in[perm[j+2]]*scal[j+2],
  1642. v_in[perm[j+3]]*scal[j+3],
  1643. v_in[perm[j+4]]*scal[j+4],
  1644. v_in[perm[j+5]]*scal[j+5],
  1645. v_in[perm[j+6]]*scal[j+6],
  1646. v_in[perm[j+7]]*scal[j+7]);
  1647. v_old=_mm512_add_pd(v_old, v8);
  1648. _mm512_storenrngo_pd(v_out+j,v_old);
  1649. }
  1650. for(;j<M_dim1 ;j++ ){
  1651. v_out[j]+=v_in[perm[j]]*scal[j];
  1652. }
  1653. }
  1654. #else
  1655. for(size_t j=0;j<M_dim1;j++ ){
  1656. v_out[j]+=v_in[perm[j]]*scal[j];
  1657. }
  1658. #endif
  1659. }
  1660. }
  1661. interac_indx+=vec_cnt;
  1662. interac_blk_dsp+=interac_blk[k];
  1663. }
  1664. }
  1665. if(device) MIC_Lock::release_lock(lock_idx);
  1666. }
  1667. #ifdef __INTEL_OFFLOAD
  1668. if(SYNC){
  1669. #pragma offload if(device) target(mic:0)
  1670. {if(device) MIC_Lock::wait_lock(lock_idx);}
  1671. }
  1672. #endif
  1673. Profile::Toc();
  1674. }
  1675. template <class FMMNode>
  1676. void FMM_Pts<FMMNode>::Source2UpSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  1677. if(this->MultipoleOrder()==0) return;
  1678. { // Set setup_data
  1679. setup_data.level=level;
  1680. setup_data.kernel=aux_kernel;
  1681. setup_data.interac_type.resize(1);
  1682. setup_data.interac_type[0]=S2U_Type;
  1683. setup_data. input_data=&buff[4];
  1684. setup_data.output_data=&buff[0];
  1685. setup_data. coord_data=&buff[6];
  1686. Vector<FMMNode_t*>& nodes_in =n_list[4];
  1687. Vector<FMMNode_t*>& nodes_out=n_list[0];
  1688. setup_data.nodes_in .clear();
  1689. setup_data.nodes_out.clear();
  1690. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  1691. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  1692. }
  1693. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1694. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1695. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  1696. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  1697. for(size_t i=0;i<nodes_in .size();i++){
  1698. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  1699. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  1700. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  1701. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  1702. }
  1703. for(size_t i=0;i<nodes_out.size();i++){
  1704. output_vector.push_back(&upwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
  1705. output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
  1706. }
  1707. //Upward check to upward equivalent matrix.
  1708. Matrix<Real_t>& M_uc2ue = this->mat->Mat(level, UC2UE_Type, 0);
  1709. this->SetupInteracPts(setup_data, false, true, &M_uc2ue,device);
  1710. { // Resize device buffer
  1711. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  1712. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  1713. }
  1714. }
  1715. template <class FMMNode>
  1716. void FMM_Pts<FMMNode>::Source2Up(SetupData<Real_t>& setup_data, bool device){
  1717. //Add Source2Up contribution.
  1718. this->EvalListPts(setup_data, device);
  1719. }
  1720. template <class FMMNode>
  1721. void FMM_Pts<FMMNode>::Up2UpSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  1722. if(this->MultipoleOrder()==0) return;
  1723. { // Set setup_data
  1724. setup_data.level=level;
  1725. setup_data.kernel=aux_kernel;
  1726. setup_data.interac_type.resize(1);
  1727. setup_data.interac_type[0]=U2U_Type;
  1728. setup_data. input_data=&buff[0];
  1729. setup_data.output_data=&buff[0];
  1730. Vector<FMMNode_t*>& nodes_in =n_list[0];
  1731. Vector<FMMNode_t*>& nodes_out=n_list[0];
  1732. setup_data.nodes_in .clear();
  1733. setup_data.nodes_out.clear();
  1734. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1) setup_data.nodes_in .push_back(nodes_in [i]);
  1735. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
  1736. }
  1737. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  1738. std::vector<void*>& nodes_out=setup_data.nodes_out;
  1739. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  1740. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  1741. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  1742. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->upward_equiv);
  1743. SetupInterac(setup_data,device);
  1744. }
  1745. template <class FMMNode>
  1746. void FMM_Pts<FMMNode>::Up2Up (SetupData<Real_t>& setup_data, bool device){
  1747. //Add Up2Up contribution.
  1748. EvalList(setup_data, device);
  1749. }
  1750. template <class FMMNode>
  1751. void FMM_Pts<FMMNode>::PeriodicBC(FMMNode* node){
  1752. if(this->MultipoleOrder()==0) return;
  1753. Matrix<Real_t>& M = Precomp(0, BC_Type, 0);
  1754. assert(node->FMMData()->upward_equiv.Dim()>0);
  1755. int dof=1;
  1756. Vector<Real_t>& upward_equiv=node->FMMData()->upward_equiv;
  1757. Vector<Real_t>& dnward_equiv=node->FMMData()->dnward_equiv;
  1758. assert(upward_equiv.Dim()==M.Dim(0)*dof);
  1759. assert(dnward_equiv.Dim()==M.Dim(1)*dof);
  1760. Matrix<Real_t> d_equiv(dof,M.Dim(0),&dnward_equiv[0],false);
  1761. Matrix<Real_t> u_equiv(dof,M.Dim(1),&upward_equiv[0],false);
  1762. Matrix<Real_t>::GEMM(d_equiv,u_equiv,M);
  1763. }
  1764. template <class FMMNode>
  1765. void FMM_Pts<FMMNode>::FFT_UpEquiv(size_t dof, size_t m, size_t ker_dim0, Vector<size_t>& fft_vec,
  1766. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_){
  1767. size_t n1=m*2;
  1768. size_t n2=n1*n1;
  1769. size_t n3=n1*n2;
  1770. size_t n3_=n2*(n1/2+1);
  1771. size_t chld_cnt=1UL<<COORD_DIM;
  1772. size_t fftsize_in =2*n3_*chld_cnt*ker_dim0*dof;
  1773. int omp_p=omp_get_max_threads();
  1774. //Load permutation map.
  1775. size_t n=6*(m-1)*(m-1)+2;
  1776. static Vector<size_t> map;
  1777. { // Build map to reorder upward_equiv
  1778. size_t n_old=map.Dim();
  1779. if(n_old!=n){
  1780. Real_t c[3]={0,0,0};
  1781. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1782. map.Resize(surf.Dim()/COORD_DIM);
  1783. for(size_t i=0;i<map.Dim();i++)
  1784. map[i]=((size_t)(m-1-surf[i*3]+0.5))+((size_t)(m-1-surf[i*3+1]+0.5))*n1+((size_t)(m-1-surf[i*3+2]+0.5))*n2;
  1785. }
  1786. }
  1787. { // Build FFTW plan.
  1788. if(!vlist_fft_flag){
  1789. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1790. void *fftw_in, *fftw_out;
  1791. fftw_in = mem::aligned_new<Real_t>( n3 *ker_dim0*chld_cnt);
  1792. fftw_out = mem::aligned_new<Real_t>(2*n3_*ker_dim0*chld_cnt);
  1793. vlist_fftplan = FFTW_t<Real_t>::fft_plan_many_dft_r2c(COORD_DIM,nnn,ker_dim0*chld_cnt,
  1794. (Real_t*)fftw_in, NULL, 1, n3, (typename FFTW_t<Real_t>::cplx*)(fftw_out),NULL, 1, n3_, FFTW_ESTIMATE);
  1795. mem::aligned_delete<Real_t>((Real_t*)fftw_in );
  1796. mem::aligned_delete<Real_t>((Real_t*)fftw_out);
  1797. vlist_fft_flag=true;
  1798. }
  1799. }
  1800. { // Offload section
  1801. size_t n_in = fft_vec.Dim();
  1802. #pragma omp parallel for
  1803. for(int pid=0; pid<omp_p; pid++){
  1804. size_t node_start=(n_in*(pid ))/omp_p;
  1805. size_t node_end =(n_in*(pid+1))/omp_p;
  1806. Vector<Real_t> buffer(fftsize_in, &buffer_[fftsize_in*pid], false);
  1807. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  1808. Vector<Real_t*> upward_equiv(chld_cnt);
  1809. for(size_t i=0;i<chld_cnt;i++) upward_equiv[i]=&input_data[0] + fft_vec[node_idx] + n*ker_dim0*dof*i;
  1810. Vector<Real_t> upward_equiv_fft(fftsize_in, &output_data[fftsize_in *node_idx], false);
  1811. upward_equiv_fft.SetZero();
  1812. // Rearrange upward equivalent data.
  1813. for(size_t k=0;k<n;k++){
  1814. size_t idx=map[k];
  1815. for(int j1=0;j1<dof;j1++)
  1816. for(int j0=0;j0<(int)chld_cnt;j0++)
  1817. for(int i=0;i<ker_dim0;i++)
  1818. upward_equiv_fft[idx+(j0+(i+j1*ker_dim0)*chld_cnt)*n3]=upward_equiv[j0][ker_dim0*(n*j1+k)+i];
  1819. }
  1820. // Compute FFT.
  1821. for(int i=0;i<dof;i++)
  1822. FFTW_t<Real_t>::fft_execute_dft_r2c(vlist_fftplan, (Real_t*)&upward_equiv_fft[i* n3 *ker_dim0*chld_cnt],
  1823. (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim0*chld_cnt]);
  1824. //Compute flops.
  1825. #ifndef FFTW3_MKL
  1826. double add, mul, fma;
  1827. FFTW_t<Real_t>::fftw_flops(vlist_fftplan, &add, &mul, &fma);
  1828. #ifndef __INTEL_OFFLOAD0
  1829. Profile::Add_FLOP((long long)(add+mul+2*fma));
  1830. #endif
  1831. #endif
  1832. for(int i=0;i<ker_dim0*dof;i++)
  1833. for(size_t j=0;j<n3_;j++)
  1834. for(size_t k=0;k<chld_cnt;k++){
  1835. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+0]=buffer[2*(n3_*(chld_cnt*i+k)+j)+0];
  1836. upward_equiv_fft[2*(chld_cnt*(n3_*i+j)+k)+1]=buffer[2*(n3_*(chld_cnt*i+k)+j)+1];
  1837. }
  1838. }
  1839. }
  1840. }
  1841. }
  1842. template <class FMMNode>
  1843. void FMM_Pts<FMMNode>::FFT_Check2Equiv(size_t dof, size_t m, size_t ker_dim1, Vector<size_t>& ifft_vec,
  1844. Vector<Real_t>& input_data, Vector<Real_t>& output_data, Vector<Real_t>& buffer_, Matrix<Real_t>& M){
  1845. size_t n1=m*2;
  1846. size_t n2=n1*n1;
  1847. size_t n3=n1*n2;
  1848. size_t n3_=n2*(n1/2+1);
  1849. size_t chld_cnt=1UL<<COORD_DIM;
  1850. size_t fftsize_out=2*n3_*dof*ker_dim1*chld_cnt;
  1851. int omp_p=omp_get_max_threads();
  1852. //Load permutation map.
  1853. size_t n=6*(m-1)*(m-1)+2;
  1854. static Vector<size_t> map;
  1855. { // Build map to reorder dnward_check
  1856. size_t n_old=map.Dim();
  1857. if(n_old!=n){
  1858. Real_t c[3]={0,0,0};
  1859. Vector<Real_t> surf=surface(m, c, (Real_t)(m-1), 0);
  1860. map.Resize(surf.Dim()/COORD_DIM);
  1861. for(size_t i=0;i<map.Dim();i++)
  1862. map[i]=((size_t)(m*2-0.5-surf[i*3]))+((size_t)(m*2-0.5-surf[i*3+1]))*n1+((size_t)(m*2-0.5-surf[i*3+2]))*n2;
  1863. //map;//.AllocDevice(true);
  1864. }
  1865. }
  1866. { // Build FFTW plan.
  1867. if(!vlist_ifft_flag){
  1868. //Build FFTW plan.
  1869. int nnn[3]={(int)n1,(int)n1,(int)n1};
  1870. Real_t *fftw_in, *fftw_out;
  1871. fftw_in = mem::aligned_new<Real_t>(2*n3_*ker_dim1*chld_cnt);
  1872. fftw_out = mem::aligned_new<Real_t>( n3 *ker_dim1*chld_cnt);
  1873. vlist_ifftplan = FFTW_t<Real_t>::fft_plan_many_dft_c2r(COORD_DIM,nnn,ker_dim1*chld_cnt,
  1874. (typename FFTW_t<Real_t>::cplx*)fftw_in, NULL, 1, n3_, (Real_t*)(fftw_out),NULL, 1, n3, FFTW_ESTIMATE);
  1875. mem::aligned_delete<Real_t>(fftw_in);
  1876. mem::aligned_delete<Real_t>(fftw_out);
  1877. vlist_ifft_flag=true;
  1878. }
  1879. }
  1880. { // Offload section
  1881. size_t n_out=ifft_vec.Dim();
  1882. #pragma omp parallel for
  1883. for(int pid=0; pid<omp_p; pid++){
  1884. size_t node_start=(n_out*(pid ))/omp_p;
  1885. size_t node_end =(n_out*(pid+1))/omp_p;
  1886. Vector<Real_t> buffer(fftsize_out, &buffer_[fftsize_out*pid], false);
  1887. for(size_t node_idx=node_start; node_idx<node_end; node_idx++){
  1888. Vector<Real_t> dnward_check_fft(fftsize_out, &input_data[fftsize_out*node_idx], false);
  1889. //De-interleave data.
  1890. for(int i=0;i<ker_dim1*dof;i++)
  1891. for(size_t j=0;j<n3_;j++)
  1892. for(size_t k=0;k<chld_cnt;k++){
  1893. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+0]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+0];
  1894. buffer[2*(n3_*(ker_dim1*dof*k+i)+j)+1]=dnward_check_fft[2*(chld_cnt*(n3_*i+j)+k)+1];
  1895. }
  1896. // Compute FFT.
  1897. for(int i=0;i<dof;i++)
  1898. FFTW_t<Real_t>::fft_execute_dft_c2r(vlist_ifftplan, (typename FFTW_t<Real_t>::cplx*)&buffer [i*2*n3_*ker_dim1*chld_cnt],
  1899. (Real_t*)&dnward_check_fft[i* n3 *ker_dim1*chld_cnt]);
  1900. //Compute flops.
  1901. #ifndef FFTW3_MKL
  1902. double add, mul, fma;
  1903. FFTW_t<Real_t>::fftw_flops(vlist_ifftplan, &add, &mul, &fma);
  1904. #ifndef __INTEL_OFFLOAD0
  1905. Profile::Add_FLOP((long long)(add+mul+2*fma));
  1906. #endif
  1907. #endif
  1908. // Rearrange downward check data.
  1909. for(size_t k=0;k<n;k++){
  1910. size_t idx=map[k];
  1911. for(int j1=0;j1<dof;j1++)
  1912. for(int j0=0;j0<(int)chld_cnt;j0++)
  1913. for(int i=0;i<ker_dim1;i++)
  1914. buffer[ker_dim1*(n*(dof*j0+j1)+k)+i]=dnward_check_fft[idx+(j1+(i+j0*ker_dim1)*dof)*n3];
  1915. }
  1916. // Compute check to equiv.
  1917. for(size_t j=0;j<chld_cnt;j++){
  1918. Matrix<Real_t> d_check(dof,M.Dim(0),&buffer[n*ker_dim1*dof*j],false);
  1919. Matrix<Real_t> d_equiv(dof,M.Dim(1),&output_data[0] + ifft_vec[node_idx] + M.Dim(1)*dof*j,false);
  1920. Matrix<Real_t>::GEMM(d_equiv,d_check,M,1.0);
  1921. }
  1922. }
  1923. }
  1924. }
  1925. }
  1926. template<class Real_t>
  1927. inline void matmult_8x8x2(Real_t*& M_, Real_t*& IN0, Real_t*& IN1, Real_t*& OUT0, Real_t*& OUT1){
  1928. // Generic code.
  1929. Real_t out_reg000, out_reg001, out_reg010, out_reg011;
  1930. Real_t out_reg100, out_reg101, out_reg110, out_reg111;
  1931. Real_t in_reg000, in_reg001, in_reg010, in_reg011;
  1932. Real_t in_reg100, in_reg101, in_reg110, in_reg111;
  1933. Real_t m_reg000, m_reg001, m_reg010, m_reg011;
  1934. Real_t m_reg100, m_reg101, m_reg110, m_reg111;
  1935. //#pragma unroll
  1936. for(int i1=0;i1<8;i1+=2){
  1937. Real_t* IN0_=IN0;
  1938. Real_t* IN1_=IN1;
  1939. out_reg000=OUT0[ 0]; out_reg001=OUT0[ 1];
  1940. out_reg010=OUT0[ 2]; out_reg011=OUT0[ 3];
  1941. out_reg100=OUT1[ 0]; out_reg101=OUT1[ 1];
  1942. out_reg110=OUT1[ 2]; out_reg111=OUT1[ 3];
  1943. //#pragma unroll
  1944. for(int i2=0;i2<8;i2+=2){
  1945. m_reg000=M_[ 0]; m_reg001=M_[ 1];
  1946. m_reg010=M_[ 2]; m_reg011=M_[ 3];
  1947. m_reg100=M_[16]; m_reg101=M_[17];
  1948. m_reg110=M_[18]; m_reg111=M_[19];
  1949. in_reg000=IN0_[0]; in_reg001=IN0_[1];
  1950. in_reg010=IN0_[2]; in_reg011=IN0_[3];
  1951. in_reg100=IN1_[0]; in_reg101=IN1_[1];
  1952. in_reg110=IN1_[2]; in_reg111=IN1_[3];
  1953. out_reg000 += m_reg000*in_reg000 - m_reg001*in_reg001;
  1954. out_reg001 += m_reg000*in_reg001 + m_reg001*in_reg000;
  1955. out_reg010 += m_reg010*in_reg000 - m_reg011*in_reg001;
  1956. out_reg011 += m_reg010*in_reg001 + m_reg011*in_reg000;
  1957. out_reg000 += m_reg100*in_reg010 - m_reg101*in_reg011;
  1958. out_reg001 += m_reg100*in_reg011 + m_reg101*in_reg010;
  1959. out_reg010 += m_reg110*in_reg010 - m_reg111*in_reg011;
  1960. out_reg011 += m_reg110*in_reg011 + m_reg111*in_reg010;
  1961. out_reg100 += m_reg000*in_reg100 - m_reg001*in_reg101;
  1962. out_reg101 += m_reg000*in_reg101 + m_reg001*in_reg100;
  1963. out_reg110 += m_reg010*in_reg100 - m_reg011*in_reg101;
  1964. out_reg111 += m_reg010*in_reg101 + m_reg011*in_reg100;
  1965. out_reg100 += m_reg100*in_reg110 - m_reg101*in_reg111;
  1966. out_reg101 += m_reg100*in_reg111 + m_reg101*in_reg110;
  1967. out_reg110 += m_reg110*in_reg110 - m_reg111*in_reg111;
  1968. out_reg111 += m_reg110*in_reg111 + m_reg111*in_reg110;
  1969. M_+=32; // Jump to (column+2).
  1970. IN0_+=4;
  1971. IN1_+=4;
  1972. }
  1973. OUT0[ 0]=out_reg000; OUT0[ 1]=out_reg001;
  1974. OUT0[ 2]=out_reg010; OUT0[ 3]=out_reg011;
  1975. OUT1[ 0]=out_reg100; OUT1[ 1]=out_reg101;
  1976. OUT1[ 2]=out_reg110; OUT1[ 3]=out_reg111;
  1977. M_+=4-64*2; // Jump back to first column (row+2).
  1978. OUT0+=4;
  1979. OUT1+=4;
  1980. }
  1981. }
  1982. #if defined(__AVX__) || defined(__SSE3__)
  1983. template<>
  1984. inline void matmult_8x8x2<double>(double*& M_, double*& IN0, double*& IN1, double*& OUT0, double*& OUT1){
  1985. #ifdef __AVX__ //AVX code.
  1986. __m256d out00,out01,out10,out11;
  1987. __m256d out20,out21,out30,out31;
  1988. double* in0__ = IN0;
  1989. double* in1__ = IN1;
  1990. out00 = _mm256_load_pd(OUT0);
  1991. out01 = _mm256_load_pd(OUT1);
  1992. out10 = _mm256_load_pd(OUT0+4);
  1993. out11 = _mm256_load_pd(OUT1+4);
  1994. out20 = _mm256_load_pd(OUT0+8);
  1995. out21 = _mm256_load_pd(OUT1+8);
  1996. out30 = _mm256_load_pd(OUT0+12);
  1997. out31 = _mm256_load_pd(OUT1+12);
  1998. for(int i2=0;i2<8;i2+=2){
  1999. __m256d m00;
  2000. __m256d ot00;
  2001. __m256d mt0,mtt0;
  2002. __m256d in00,in00_r,in01,in01_r;
  2003. in00 = _mm256_broadcast_pd((const __m128d*)in0__);
  2004. in00_r = _mm256_permute_pd(in00,5);
  2005. in01 = _mm256_broadcast_pd((const __m128d*)in1__);
  2006. in01_r = _mm256_permute_pd(in01,5);
  2007. m00 = _mm256_load_pd(M_);
  2008. mt0 = _mm256_unpacklo_pd(m00,m00);
  2009. ot00 = _mm256_mul_pd(mt0,in00);
  2010. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2011. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2012. ot00 = _mm256_mul_pd(mt0,in01);
  2013. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2014. m00 = _mm256_load_pd(M_+4);
  2015. mt0 = _mm256_unpacklo_pd(m00,m00);
  2016. ot00 = _mm256_mul_pd(mt0,in00);
  2017. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2018. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2019. ot00 = _mm256_mul_pd(mt0,in01);
  2020. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2021. m00 = _mm256_load_pd(M_+8);
  2022. mt0 = _mm256_unpacklo_pd(m00,m00);
  2023. ot00 = _mm256_mul_pd(mt0,in00);
  2024. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2025. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2026. ot00 = _mm256_mul_pd(mt0,in01);
  2027. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2028. m00 = _mm256_load_pd(M_+12);
  2029. mt0 = _mm256_unpacklo_pd(m00,m00);
  2030. ot00 = _mm256_mul_pd(mt0,in00);
  2031. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2032. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2033. ot00 = _mm256_mul_pd(mt0,in01);
  2034. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2035. in00 = _mm256_broadcast_pd((const __m128d*) (in0__+2));
  2036. in00_r = _mm256_permute_pd(in00,5);
  2037. in01 = _mm256_broadcast_pd((const __m128d*) (in1__+2));
  2038. in01_r = _mm256_permute_pd(in01,5);
  2039. m00 = _mm256_load_pd(M_+16);
  2040. mt0 = _mm256_unpacklo_pd(m00,m00);
  2041. ot00 = _mm256_mul_pd(mt0,in00);
  2042. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2043. out00 = _mm256_add_pd(out00,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2044. ot00 = _mm256_mul_pd(mt0,in01);
  2045. out01 = _mm256_add_pd(out01,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2046. m00 = _mm256_load_pd(M_+20);
  2047. mt0 = _mm256_unpacklo_pd(m00,m00);
  2048. ot00 = _mm256_mul_pd(mt0,in00);
  2049. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2050. out10 = _mm256_add_pd(out10,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2051. ot00 = _mm256_mul_pd(mt0,in01);
  2052. out11 = _mm256_add_pd(out11,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2053. m00 = _mm256_load_pd(M_+24);
  2054. mt0 = _mm256_unpacklo_pd(m00,m00);
  2055. ot00 = _mm256_mul_pd(mt0,in00);
  2056. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2057. out20 = _mm256_add_pd(out20,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2058. ot00 = _mm256_mul_pd(mt0,in01);
  2059. out21 = _mm256_add_pd(out21,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2060. m00 = _mm256_load_pd(M_+28);
  2061. mt0 = _mm256_unpacklo_pd(m00,m00);
  2062. ot00 = _mm256_mul_pd(mt0,in00);
  2063. mtt0 = _mm256_unpackhi_pd(m00,m00);
  2064. out30 = _mm256_add_pd(out30,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in00_r)));
  2065. ot00 = _mm256_mul_pd(mt0,in01);
  2066. out31 = _mm256_add_pd(out31,_mm256_addsub_pd(ot00,_mm256_mul_pd(mtt0,in01_r)));
  2067. M_ += 32;
  2068. in0__ += 4;
  2069. in1__ += 4;
  2070. }
  2071. _mm256_store_pd(OUT0,out00);
  2072. _mm256_store_pd(OUT1,out01);
  2073. _mm256_store_pd(OUT0+4,out10);
  2074. _mm256_store_pd(OUT1+4,out11);
  2075. _mm256_store_pd(OUT0+8,out20);
  2076. _mm256_store_pd(OUT1+8,out21);
  2077. _mm256_store_pd(OUT0+12,out30);
  2078. _mm256_store_pd(OUT1+12,out31);
  2079. #elif defined __SSE3__ // SSE code.
  2080. __m128d out00, out01, out10, out11;
  2081. __m128d in00, in01, in10, in11;
  2082. __m128d m00, m01, m10, m11;
  2083. //#pragma unroll
  2084. for(int i1=0;i1<8;i1+=2){
  2085. double* IN0_=IN0;
  2086. double* IN1_=IN1;
  2087. out00 =_mm_load_pd (OUT0 );
  2088. out10 =_mm_load_pd (OUT0+2);
  2089. out01 =_mm_load_pd (OUT1 );
  2090. out11 =_mm_load_pd (OUT1+2);
  2091. //#pragma unroll
  2092. for(int i2=0;i2<8;i2+=2){
  2093. m00 =_mm_load1_pd (M_ );
  2094. m10 =_mm_load1_pd (M_+ 2);
  2095. m01 =_mm_load1_pd (M_+16);
  2096. m11 =_mm_load1_pd (M_+18);
  2097. in00 =_mm_load_pd (IN0_ );
  2098. in10 =_mm_load_pd (IN0_+2);
  2099. in01 =_mm_load_pd (IN1_ );
  2100. in11 =_mm_load_pd (IN1_+2);
  2101. out00 = _mm_add_pd (out00, _mm_mul_pd(m00 , in00 ));
  2102. out00 = _mm_add_pd (out00, _mm_mul_pd(m01 , in10 ));
  2103. out01 = _mm_add_pd (out01, _mm_mul_pd(m00 , in01 ));
  2104. out01 = _mm_add_pd (out01, _mm_mul_pd(m01 , in11 ));
  2105. out10 = _mm_add_pd (out10, _mm_mul_pd(m10 , in00 ));
  2106. out10 = _mm_add_pd (out10, _mm_mul_pd(m11 , in10 ));
  2107. out11 = _mm_add_pd (out11, _mm_mul_pd(m10 , in01 ));
  2108. out11 = _mm_add_pd (out11, _mm_mul_pd(m11 , in11 ));
  2109. m00 =_mm_load1_pd (M_+ 1);
  2110. m10 =_mm_load1_pd (M_+ 2+1);
  2111. m01 =_mm_load1_pd (M_+16+1);
  2112. m11 =_mm_load1_pd (M_+18+1);
  2113. in00 =_mm_shuffle_pd (in00,in00,_MM_SHUFFLE2(0,1));
  2114. in01 =_mm_shuffle_pd (in01,in01,_MM_SHUFFLE2(0,1));
  2115. in10 =_mm_shuffle_pd (in10,in10,_MM_SHUFFLE2(0,1));
  2116. in11 =_mm_shuffle_pd (in11,in11,_MM_SHUFFLE2(0,1));
  2117. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m00, in00));
  2118. out00 = _mm_addsub_pd(out00, _mm_mul_pd(m01, in10));
  2119. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m00, in01));
  2120. out01 = _mm_addsub_pd(out01, _mm_mul_pd(m01, in11));
  2121. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m10, in00));
  2122. out10 = _mm_addsub_pd(out10, _mm_mul_pd(m11, in10));
  2123. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m10, in01));
  2124. out11 = _mm_addsub_pd(out11, _mm_mul_pd(m11, in11));
  2125. M_+=32; // Jump to (column+2).
  2126. IN0_+=4;
  2127. IN1_+=4;
  2128. }
  2129. _mm_store_pd (OUT0 ,out00);
  2130. _mm_store_pd (OUT0+2,out10);
  2131. _mm_store_pd (OUT1 ,out01);
  2132. _mm_store_pd (OUT1+2,out11);
  2133. M_+=4-64*2; // Jump back to first column (row+2).
  2134. OUT0+=4;
  2135. OUT1+=4;
  2136. }
  2137. #endif
  2138. }
  2139. #endif
  2140. #if defined(__SSE3__)
  2141. template<>
  2142. inline void matmult_8x8x2<float>(float*& M_, float*& IN0, float*& IN1, float*& OUT0, float*& OUT1){
  2143. #if defined __SSE3__ // SSE code.
  2144. __m128 out00,out01,out10,out11;
  2145. __m128 out20,out21,out30,out31;
  2146. float* in0__ = IN0;
  2147. float* in1__ = IN1;
  2148. out00 = _mm_load_ps(OUT0);
  2149. out01 = _mm_load_ps(OUT1);
  2150. out10 = _mm_load_ps(OUT0+4);
  2151. out11 = _mm_load_ps(OUT1+4);
  2152. out20 = _mm_load_ps(OUT0+8);
  2153. out21 = _mm_load_ps(OUT1+8);
  2154. out30 = _mm_load_ps(OUT0+12);
  2155. out31 = _mm_load_ps(OUT1+12);
  2156. for(int i2=0;i2<8;i2+=2){
  2157. __m128 m00;
  2158. __m128 ot00;
  2159. __m128 mt0,mtt0;
  2160. __m128 in00,in00_r,in01,in01_r;
  2161. in00 = _mm_castpd_ps(_mm_load_pd1((const double*)in0__));
  2162. in00_r = _mm_shuffle_ps(in00,in00,_MM_SHUFFLE(2,3,0,1));
  2163. in01 = _mm_castpd_ps(_mm_load_pd1((const double*)in1__));
  2164. in01_r = _mm_shuffle_ps(in01,in01,_MM_SHUFFLE(2,3,0,1));
  2165. m00 = _mm_load_ps(M_);
  2166. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2167. out00= _mm_add_ps (out00,_mm_mul_ps( mt0,in00 ));
  2168. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2169. out00= _mm_addsub_ps(out00,_mm_mul_ps(mtt0,in00_r));
  2170. out01 = _mm_add_ps (out01,_mm_mul_ps( mt0,in01 ));
  2171. out01 = _mm_addsub_ps(out01,_mm_mul_ps(mtt0,in01_r));
  2172. m00 = _mm_load_ps(M_+4);
  2173. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2174. out10= _mm_add_ps (out10,_mm_mul_ps( mt0,in00 ));
  2175. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2176. out10= _mm_addsub_ps(out10,_mm_mul_ps(mtt0,in00_r));
  2177. out11 = _mm_add_ps (out11,_mm_mul_ps( mt0,in01 ));
  2178. out11 = _mm_addsub_ps(out11,_mm_mul_ps(mtt0,in01_r));
  2179. m00 = _mm_load_ps(M_+8);
  2180. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2181. out20= _mm_add_ps (out20,_mm_mul_ps( mt0,in00 ));
  2182. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2183. out20= _mm_addsub_ps(out20,_mm_mul_ps(mtt0,in00_r));
  2184. out21 = _mm_add_ps (out21,_mm_mul_ps( mt0,in01 ));
  2185. out21 = _mm_addsub_ps(out21,_mm_mul_ps(mtt0,in01_r));
  2186. m00 = _mm_load_ps(M_+12);
  2187. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2188. out30= _mm_add_ps (out30,_mm_mul_ps( mt0, in00));
  2189. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2190. out30= _mm_addsub_ps(out30,_mm_mul_ps(mtt0,in00_r));
  2191. out31 = _mm_add_ps (out31,_mm_mul_ps( mt0,in01 ));
  2192. out31 = _mm_addsub_ps(out31,_mm_mul_ps(mtt0,in01_r));
  2193. in00 = _mm_castpd_ps(_mm_load_pd1((const double*) (in0__+2)));
  2194. in00_r = _mm_shuffle_ps(in00,in00,_MM_SHUFFLE(2,3,0,1));
  2195. in01 = _mm_castpd_ps(_mm_load_pd1((const double*) (in1__+2)));
  2196. in01_r = _mm_shuffle_ps(in01,in01,_MM_SHUFFLE(2,3,0,1));
  2197. m00 = _mm_load_ps(M_+16);
  2198. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2199. out00= _mm_add_ps (out00,_mm_mul_ps( mt0,in00 ));
  2200. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2201. out00= _mm_addsub_ps(out00,_mm_mul_ps(mtt0,in00_r));
  2202. out01 = _mm_add_ps (out01,_mm_mul_ps( mt0,in01 ));
  2203. out01 = _mm_addsub_ps(out01,_mm_mul_ps(mtt0,in01_r));
  2204. m00 = _mm_load_ps(M_+20);
  2205. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2206. out10= _mm_add_ps (out10,_mm_mul_ps( mt0,in00 ));
  2207. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2208. out10= _mm_addsub_ps(out10,_mm_mul_ps(mtt0,in00_r));
  2209. out11 = _mm_add_ps (out11,_mm_mul_ps( mt0,in01 ));
  2210. out11 = _mm_addsub_ps(out11,_mm_mul_ps(mtt0,in01_r));
  2211. m00 = _mm_load_ps(M_+24);
  2212. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2213. out20= _mm_add_ps (out20,_mm_mul_ps( mt0,in00 ));
  2214. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2215. out20= _mm_addsub_ps(out20,_mm_mul_ps(mtt0,in00_r));
  2216. out21 = _mm_add_ps (out21,_mm_mul_ps( mt0,in01 ));
  2217. out21 = _mm_addsub_ps(out21,_mm_mul_ps(mtt0,in01_r));
  2218. m00 = _mm_load_ps(M_+28);
  2219. mt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(2,2,0,0));
  2220. out30= _mm_add_ps (out30,_mm_mul_ps( mt0,in00 ));
  2221. mtt0 = _mm_shuffle_ps(m00,m00,_MM_SHUFFLE(3,3,1,1));
  2222. out30= _mm_addsub_ps(out30,_mm_mul_ps(mtt0,in00_r));
  2223. out31 = _mm_add_ps (out31,_mm_mul_ps( mt0,in01 ));
  2224. out31 = _mm_addsub_ps(out31,_mm_mul_ps(mtt0,in01_r));
  2225. M_ += 32;
  2226. in0__ += 4;
  2227. in1__ += 4;
  2228. }
  2229. _mm_store_ps(OUT0,out00);
  2230. _mm_store_ps(OUT1,out01);
  2231. _mm_store_ps(OUT0+4,out10);
  2232. _mm_store_ps(OUT1+4,out11);
  2233. _mm_store_ps(OUT0+8,out20);
  2234. _mm_store_ps(OUT1+8,out21);
  2235. _mm_store_ps(OUT0+12,out30);
  2236. _mm_store_ps(OUT1+12,out31);
  2237. #endif
  2238. }
  2239. #endif
  2240. template <class Real_t>
  2241. void VListHadamard(size_t dof, size_t M_dim, size_t ker_dim0, size_t ker_dim1, Vector<size_t>& interac_dsp,
  2242. Vector<size_t>& interac_vec, Vector<Real_t*>& precomp_mat, Vector<Real_t>& fft_in, Vector<Real_t>& fft_out){
  2243. size_t chld_cnt=1UL<<COORD_DIM;
  2244. size_t fftsize_in =M_dim*ker_dim0*chld_cnt*2;
  2245. size_t fftsize_out=M_dim*ker_dim1*chld_cnt*2;
  2246. Real_t* zero_vec0=mem::aligned_new<Real_t>(fftsize_in );
  2247. Real_t* zero_vec1=mem::aligned_new<Real_t>(fftsize_out);
  2248. size_t n_out=fft_out.Dim()/fftsize_out;
  2249. // Set buff_out to zero.
  2250. #pragma omp parallel for
  2251. for(size_t k=0;k<n_out;k++){
  2252. Vector<Real_t> dnward_check_fft(fftsize_out, &fft_out[k*fftsize_out], false);
  2253. dnward_check_fft.SetZero();
  2254. }
  2255. // Build list of interaction pairs (in, out vectors).
  2256. size_t mat_cnt=precomp_mat.Dim();
  2257. size_t blk1_cnt=interac_dsp.Dim()/mat_cnt;
  2258. const size_t V_BLK_SIZE=V_BLK_CACHE*64/sizeof(Real_t);
  2259. Real_t** IN_ =mem::aligned_new<Real_t*>(2*V_BLK_SIZE*blk1_cnt*mat_cnt);
  2260. Real_t** OUT_=mem::aligned_new<Real_t*>(2*V_BLK_SIZE*blk1_cnt*mat_cnt);
  2261. #pragma omp parallel for
  2262. for(size_t interac_blk1=0; interac_blk1<blk1_cnt*mat_cnt; interac_blk1++){
  2263. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2264. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2265. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2266. for(size_t j=0;j<interac_cnt;j++){
  2267. IN_ [2*V_BLK_SIZE*interac_blk1 +j]=&fft_in [interac_vec[(interac_dsp0+j)*2+0]];
  2268. OUT_[2*V_BLK_SIZE*interac_blk1 +j]=&fft_out[interac_vec[(interac_dsp0+j)*2+1]];
  2269. }
  2270. IN_ [2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec0;
  2271. OUT_[2*V_BLK_SIZE*interac_blk1 +interac_cnt]=zero_vec1;
  2272. }
  2273. int omp_p=omp_get_max_threads();
  2274. #pragma omp parallel for
  2275. for(int pid=0; pid<omp_p; pid++){
  2276. size_t a=( pid *M_dim)/omp_p;
  2277. size_t b=((pid+1)*M_dim)/omp_p;
  2278. for(int in_dim=0;in_dim<ker_dim0;in_dim++)
  2279. for(int ot_dim=0;ot_dim<ker_dim1;ot_dim++)
  2280. for(size_t blk1=0; blk1<blk1_cnt; blk1++)
  2281. for(size_t k=a; k< b; k++)
  2282. for(size_t mat_indx=0; mat_indx< mat_cnt;mat_indx++){
  2283. size_t interac_blk1 = blk1*mat_cnt+mat_indx;
  2284. size_t interac_dsp0 = (interac_blk1==0?0:interac_dsp[interac_blk1-1]);
  2285. size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
  2286. size_t interac_cnt = interac_dsp1-interac_dsp0;
  2287. Real_t** IN = IN_ + 2*V_BLK_SIZE*interac_blk1;
  2288. Real_t** OUT= OUT_+ 2*V_BLK_SIZE*interac_blk1;
  2289. Real_t* M = precomp_mat[mat_indx] + k*chld_cnt*chld_cnt*2 + (ot_dim+in_dim*ker_dim1)*M_dim*128;
  2290. {
  2291. for(size_t j=0;j<interac_cnt;j+=2){
  2292. Real_t* M_ = M;
  2293. Real_t* IN0 = IN [j+0] + (in_dim*M_dim+k)*chld_cnt*2;
  2294. Real_t* IN1 = IN [j+1] + (in_dim*M_dim+k)*chld_cnt*2;
  2295. Real_t* OUT0 = OUT[j+0] + (ot_dim*M_dim+k)*chld_cnt*2;
  2296. Real_t* OUT1 = OUT[j+1] + (ot_dim*M_dim+k)*chld_cnt*2;
  2297. #ifdef __SSE__
  2298. if (j+2 < interac_cnt) { // Prefetch
  2299. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2300. _mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2301. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2302. _mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2303. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2304. _mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2305. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_T0);
  2306. _mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2) + 64), _MM_HINT_T0);
  2307. }
  2308. #endif
  2309. matmult_8x8x2(M_, IN0, IN1, OUT0, OUT1);
  2310. }
  2311. }
  2312. }
  2313. }
  2314. // Compute flops.
  2315. {
  2316. Profile::Add_FLOP(8*8*8*(interac_vec.Dim()/2)*M_dim*ker_dim0*ker_dim1*dof);
  2317. }
  2318. // Free memory
  2319. mem::aligned_delete<Real_t*>(IN_ );
  2320. mem::aligned_delete<Real_t*>(OUT_);
  2321. mem::aligned_delete<Real_t>(zero_vec0);
  2322. mem::aligned_delete<Real_t>(zero_vec1);
  2323. }
  2324. template <class FMMNode>
  2325. void FMM_Pts<FMMNode>::V_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2326. if(this->MultipoleOrder()==0) return;
  2327. if(level==0) return;
  2328. { // Set setup_data
  2329. setup_data.level=level;
  2330. setup_data.kernel=aux_kernel;
  2331. setup_data.interac_type.resize(1);
  2332. setup_data.interac_type[0]=V1_Type;
  2333. setup_data. input_data=&buff[0];
  2334. setup_data.output_data=&buff[1];
  2335. Vector<FMMNode_t*>& nodes_in =n_list[2];
  2336. Vector<FMMNode_t*>& nodes_out=n_list[3];
  2337. setup_data.nodes_in .clear();
  2338. setup_data.nodes_out.clear();
  2339. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2340. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level-1 || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  2341. }
  2342. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2343. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2344. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2345. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2346. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_in [i])->Child(0))->FMMData())->upward_equiv);
  2347. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)((FMMNode*)nodes_out[i])->Child(0))->FMMData())->dnward_equiv);
  2348. /////////////////////////////////////////////////////////////////////////////
  2349. size_t n_in =nodes_in .size();
  2350. size_t n_out=nodes_out.size();
  2351. // Setup precomputed data.
  2352. SetupPrecomp(setup_data,device);
  2353. // Build interac_data
  2354. Profile::Tic("Interac-Data",&this->comm,true,25);
  2355. Matrix<char>& interac_data=setup_data.interac_data;
  2356. if(n_out>0 && n_in >0){ // Build precomp_data, interac_data
  2357. size_t precomp_offset=0;
  2358. Mat_Type& interac_type=setup_data.interac_type[0];
  2359. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2360. Matrix<size_t> precomp_data_offset;
  2361. std::vector<size_t> interac_mat;
  2362. { // Load precomp_data for interac_type.
  2363. Matrix<char>& precomp_data=*setup_data.precomp_data;
  2364. char* indx_ptr=precomp_data[0]+precomp_offset;
  2365. size_t total_size=((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  2366. size_t mat_cnt_ =((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  2367. size_t max_depth =((size_t*)indx_ptr)[0]; indx_ptr+=sizeof(size_t);
  2368. precomp_data_offset.ReInit(mat_cnt_,1+(2+2)*max_depth, (size_t*)indx_ptr, false);
  2369. precomp_offset+=total_size;
  2370. for(size_t mat_id=0;mat_id<mat_cnt;mat_id++){
  2371. Matrix<Real_t>& M0 = this->mat->Mat(level, interac_type, mat_id);
  2372. assert(M0.Dim(0)>0 && M0.Dim(1)>0); UNUSED(M0);
  2373. interac_mat.push_back(precomp_data_offset[mat_id][0]);
  2374. }
  2375. }
  2376. size_t dof;
  2377. size_t m=MultipoleOrder();
  2378. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2379. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2380. size_t fftsize;
  2381. {
  2382. size_t n1=m*2;
  2383. size_t n2=n1*n1;
  2384. size_t n3_=n2*(n1/2+1);
  2385. size_t chld_cnt=1UL<<COORD_DIM;
  2386. fftsize=2*n3_*chld_cnt;
  2387. dof=1;
  2388. }
  2389. int omp_p=omp_get_max_threads();
  2390. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2391. size_t n_blk0=2*fftsize*dof*(ker_dim0*n_in +ker_dim1*n_out)*sizeof(Real_t)/buff_size;
  2392. if(n_blk0==0) n_blk0=1;
  2393. std::vector<std::vector<size_t> > fft_vec(n_blk0);
  2394. std::vector<std::vector<size_t> > ifft_vec(n_blk0);
  2395. std::vector<std::vector<size_t> > interac_vec(n_blk0);
  2396. std::vector<std::vector<size_t> > interac_dsp(n_blk0);
  2397. {
  2398. Matrix<Real_t>& input_data=*setup_data. input_data;
  2399. Matrix<Real_t>& output_data=*setup_data.output_data;
  2400. std::vector<std::vector<FMMNode*> > nodes_blk_in (n_blk0);
  2401. std::vector<std::vector<FMMNode*> > nodes_blk_out(n_blk0);
  2402. for(size_t i=0;i<n_in;i++) ((FMMNode*)nodes_in[i])->node_id=i;
  2403. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2404. size_t blk0_start=(n_out* blk0 )/n_blk0;
  2405. size_t blk0_end =(n_out*(blk0+1))/n_blk0;
  2406. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2407. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2408. { // Build node list for blk0.
  2409. std::set<void*> nodes_in;
  2410. for(size_t i=blk0_start;i<blk0_end;i++){
  2411. nodes_out_.push_back((FMMNode*)nodes_out[i]);
  2412. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2413. for(size_t k=0;k<mat_cnt;k++) if(lst[k]!=NULL) nodes_in.insert(lst[k]);
  2414. }
  2415. for(std::set<void*>::iterator node=nodes_in.begin(); node != nodes_in.end(); node++){
  2416. nodes_in_.push_back((FMMNode*)*node);
  2417. }
  2418. size_t input_dim=nodes_in_ .size()*ker_dim0*dof*fftsize;
  2419. size_t output_dim=nodes_out_.size()*ker_dim1*dof*fftsize;
  2420. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2421. if(buff_size<(input_dim + output_dim + buffer_dim)*sizeof(Real_t))
  2422. buff_size=(input_dim + output_dim + buffer_dim)*sizeof(Real_t);
  2423. }
  2424. { // Set fft vectors.
  2425. for(size_t i=0;i<nodes_in_ .size();i++) fft_vec[blk0].push_back((size_t)(& input_vector[nodes_in_[i]->node_id][0][0]- input_data[0]));
  2426. for(size_t i=0;i<nodes_out_.size();i++)ifft_vec[blk0].push_back((size_t)(&output_vector[blk0_start + i ][0][0]-output_data[0]));
  2427. }
  2428. }
  2429. for(size_t blk0=0;blk0<n_blk0;blk0++){ // Hadamard interactions.
  2430. std::vector<FMMNode*>& nodes_in_ =nodes_blk_in [blk0];
  2431. std::vector<FMMNode*>& nodes_out_=nodes_blk_out[blk0];
  2432. for(size_t i=0;i<nodes_in_.size();i++) nodes_in_[i]->node_id=i;
  2433. { // Next blocking level.
  2434. size_t n_blk1=nodes_out_.size()*(2)*sizeof(Real_t)/(64*V_BLK_CACHE);
  2435. if(n_blk1==0) n_blk1=1;
  2436. size_t interac_dsp_=0;
  2437. for(size_t blk1=0;blk1<n_blk1;blk1++){
  2438. size_t blk1_start=(nodes_out_.size()* blk1 )/n_blk1;
  2439. size_t blk1_end =(nodes_out_.size()*(blk1+1))/n_blk1;
  2440. for(size_t k=0;k<mat_cnt;k++){
  2441. for(size_t i=blk1_start;i<blk1_end;i++){
  2442. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out_[i])->interac_list[interac_type];
  2443. if(lst[k]!=NULL){
  2444. interac_vec[blk0].push_back(lst[k]->node_id*fftsize*ker_dim0*dof);
  2445. interac_vec[blk0].push_back( i *fftsize*ker_dim1*dof);
  2446. interac_dsp_++;
  2447. }
  2448. }
  2449. interac_dsp[blk0].push_back(interac_dsp_);
  2450. }
  2451. }
  2452. }
  2453. }
  2454. }
  2455. { // Set interac_data.
  2456. size_t data_size=sizeof(size_t)*6; // buff_size, m, dof, ker_dim0, ker_dim1, n_blk0
  2457. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2458. data_size+=sizeof(size_t)+ fft_vec[blk0].size()*sizeof(size_t);
  2459. data_size+=sizeof(size_t)+ ifft_vec[blk0].size()*sizeof(size_t);
  2460. data_size+=sizeof(size_t)+interac_vec[blk0].size()*sizeof(size_t);
  2461. data_size+=sizeof(size_t)+interac_dsp[blk0].size()*sizeof(size_t);
  2462. }
  2463. data_size+=sizeof(size_t)+interac_mat.size()*sizeof(size_t);
  2464. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2465. interac_data.Resize(1,data_size);
  2466. char* data_ptr=&interac_data[0][0];
  2467. ((size_t*)data_ptr)[0]=buff_size; data_ptr+=sizeof(size_t);
  2468. ((size_t*)data_ptr)[0]= m; data_ptr+=sizeof(size_t);
  2469. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2470. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2471. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2472. ((size_t*)data_ptr)[0]= n_blk0; data_ptr+=sizeof(size_t);
  2473. ((size_t*)data_ptr)[0]= interac_mat.size(); data_ptr+=sizeof(size_t);
  2474. mem::memcopy(data_ptr, &interac_mat[0], interac_mat.size()*sizeof(size_t));
  2475. data_ptr+=interac_mat.size()*sizeof(size_t);
  2476. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2477. ((size_t*)data_ptr)[0]= fft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2478. mem::memcopy(data_ptr, & fft_vec[blk0][0], fft_vec[blk0].size()*sizeof(size_t));
  2479. data_ptr+= fft_vec[blk0].size()*sizeof(size_t);
  2480. ((size_t*)data_ptr)[0]=ifft_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2481. mem::memcopy(data_ptr, &ifft_vec[blk0][0], ifft_vec[blk0].size()*sizeof(size_t));
  2482. data_ptr+=ifft_vec[blk0].size()*sizeof(size_t);
  2483. ((size_t*)data_ptr)[0]=interac_vec[blk0].size(); data_ptr+=sizeof(size_t);
  2484. mem::memcopy(data_ptr, &interac_vec[blk0][0], interac_vec[blk0].size()*sizeof(size_t));
  2485. data_ptr+=interac_vec[blk0].size()*sizeof(size_t);
  2486. ((size_t*)data_ptr)[0]=interac_dsp[blk0].size(); data_ptr+=sizeof(size_t);
  2487. mem::memcopy(data_ptr, &interac_dsp[blk0][0], interac_dsp[blk0].size()*sizeof(size_t));
  2488. data_ptr+=interac_dsp[blk0].size()*sizeof(size_t);
  2489. }
  2490. }
  2491. }
  2492. Profile::Toc();
  2493. Profile::Tic("Host2Device",&this->comm,false,25);
  2494. if(device){ // Host2Device
  2495. setup_data.interac_data. AllocDevice(true);
  2496. }
  2497. Profile::Toc();
  2498. }
  2499. template <class FMMNode>
  2500. void FMM_Pts<FMMNode>::V_List (SetupData<Real_t>& setup_data, bool device){
  2501. assert(!device); //Can not run on accelerator yet.
  2502. int np;
  2503. MPI_Comm_size(comm,&np);
  2504. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2505. if(np>1) Profile::Tic("Host2Device",&this->comm,false,25);
  2506. if(np>1) Profile::Toc();
  2507. return;
  2508. }
  2509. Profile::Tic("Host2Device",&this->comm,false,25);
  2510. int level=setup_data.level;
  2511. size_t buff_size=*((size_t*)&setup_data.interac_data[0][0]);
  2512. typename Matrix<Real_t>::Device M_d;
  2513. typename Vector<char>::Device buff;
  2514. typename Matrix<char>::Device precomp_data;
  2515. typename Matrix<char>::Device interac_data;
  2516. typename Matrix<Real_t>::Device input_data;
  2517. typename Matrix<Real_t>::Device output_data;
  2518. Matrix<Real_t>& M = this->mat->Mat(level, DC2DE_Type, 0);
  2519. if(device){
  2520. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  2521. M_d = M. AllocDevice(false);
  2522. buff = this-> dev_buffer. AllocDevice(false);
  2523. precomp_data= setup_data.precomp_data->AllocDevice(false);
  2524. interac_data= setup_data.interac_data. AllocDevice(false);
  2525. input_data = setup_data. input_data->AllocDevice(false);
  2526. output_data = setup_data. output_data->AllocDevice(false);
  2527. }else{
  2528. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  2529. M_d = M;
  2530. buff = this-> cpu_buffer;
  2531. precomp_data=*setup_data.precomp_data;
  2532. interac_data= setup_data.interac_data;
  2533. input_data =*setup_data. input_data;
  2534. output_data =*setup_data. output_data;
  2535. }
  2536. Profile::Toc();
  2537. { // Offloaded computation.
  2538. // Set interac_data.
  2539. size_t m, dof, ker_dim0, ker_dim1, n_blk0;
  2540. std::vector<Vector<size_t> > fft_vec;
  2541. std::vector<Vector<size_t> > ifft_vec;
  2542. std::vector<Vector<size_t> > interac_vec;
  2543. std::vector<Vector<size_t> > interac_dsp;
  2544. Vector<Real_t*> precomp_mat;
  2545. { // Set interac_data.
  2546. char* data_ptr=&interac_data[0][0];
  2547. buff_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2548. m =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2549. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2550. ker_dim0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2551. ker_dim1 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2552. n_blk0 =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2553. fft_vec .resize(n_blk0);
  2554. ifft_vec.resize(n_blk0);
  2555. interac_vec.resize(n_blk0);
  2556. interac_dsp.resize(n_blk0);
  2557. Vector<size_t> interac_mat;
  2558. interac_mat.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2559. data_ptr+=sizeof(size_t)+interac_mat.Dim()*sizeof(size_t);
  2560. precomp_mat.Resize(interac_mat.Dim());
  2561. for(size_t i=0;i<interac_mat.Dim();i++){
  2562. precomp_mat[i]=(Real_t*)(precomp_data[0]+interac_mat[i]);
  2563. }
  2564. for(size_t blk0=0;blk0<n_blk0;blk0++){
  2565. fft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2566. data_ptr+=sizeof(size_t)+fft_vec[blk0].Dim()*sizeof(size_t);
  2567. ifft_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2568. data_ptr+=sizeof(size_t)+ifft_vec[blk0].Dim()*sizeof(size_t);
  2569. interac_vec[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2570. data_ptr+=sizeof(size_t)+interac_vec[blk0].Dim()*sizeof(size_t);
  2571. interac_dsp[blk0].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2572. data_ptr+=sizeof(size_t)+interac_dsp[blk0].Dim()*sizeof(size_t);
  2573. }
  2574. }
  2575. int omp_p=omp_get_max_threads();
  2576. size_t M_dim, fftsize;
  2577. {
  2578. size_t n1=m*2;
  2579. size_t n2=n1*n1;
  2580. size_t n3_=n2*(n1/2+1);
  2581. size_t chld_cnt=1UL<<COORD_DIM;
  2582. fftsize=2*n3_*chld_cnt;
  2583. M_dim=n3_;
  2584. }
  2585. for(size_t blk0=0;blk0<n_blk0;blk0++){ // interactions
  2586. size_t n_in = fft_vec[blk0].Dim();
  2587. size_t n_out=ifft_vec[blk0].Dim();
  2588. size_t input_dim=n_in *ker_dim0*dof*fftsize;
  2589. size_t output_dim=n_out*ker_dim1*dof*fftsize;
  2590. size_t buffer_dim=(ker_dim0+ker_dim1)*dof*fftsize*omp_p;
  2591. Vector<Real_t> fft_in ( input_dim, (Real_t*)&buff[ 0 ],false);
  2592. Vector<Real_t> fft_out(output_dim, (Real_t*)&buff[ input_dim *sizeof(Real_t)],false);
  2593. Vector<Real_t> buffer(buffer_dim, (Real_t*)&buff[(input_dim+output_dim)*sizeof(Real_t)],false);
  2594. { // FFT
  2595. if(np==1) Profile::Tic("FFT",&comm,false,100);
  2596. Vector<Real_t> input_data_( input_data.dim[0]* input_data.dim[1], input_data[0], false);
  2597. FFT_UpEquiv(dof, m, ker_dim0, fft_vec[blk0], input_data_, fft_in, buffer);
  2598. if(np==1) Profile::Toc();
  2599. }
  2600. { // Hadamard
  2601. #ifdef PVFMM_HAVE_PAPI
  2602. #ifdef __VERBOSE__
  2603. std::cout << "Starting counters new\n";
  2604. if (PAPI_start(EventSet) != PAPI_OK) std::cout << "handle_error3" << std::endl;
  2605. #endif
  2606. #endif
  2607. if(np==1) Profile::Tic("HadamardProduct",&comm,false,100);
  2608. VListHadamard<Real_t>(dof, M_dim, ker_dim0, ker_dim1, interac_dsp[blk0], interac_vec[blk0], precomp_mat, fft_in, fft_out);
  2609. if(np==1) Profile::Toc();
  2610. #ifdef PVFMM_HAVE_PAPI
  2611. #ifdef __VERBOSE__
  2612. if (PAPI_stop(EventSet, values) != PAPI_OK) std::cout << "handle_error4" << std::endl;
  2613. std::cout << "Stopping counters\n";
  2614. #endif
  2615. #endif
  2616. }
  2617. { // IFFT
  2618. if(np==1) Profile::Tic("IFFT",&comm,false,100);
  2619. Matrix<Real_t> M(M_d.dim[0],M_d.dim[1],M_d[0],false);
  2620. Vector<Real_t> output_data_(output_data.dim[0]*output_data.dim[1], output_data[0], false);
  2621. FFT_Check2Equiv(dof, m, ker_dim1, ifft_vec[blk0], fft_out, output_data_, buffer, M);
  2622. if(np==1) Profile::Toc();
  2623. }
  2624. }
  2625. }
  2626. }
  2627. template <class FMMNode>
  2628. void FMM_Pts<FMMNode>::Down2DownSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  2629. if(this->MultipoleOrder()==0) return;
  2630. { // Set setup_data
  2631. setup_data.level=level;
  2632. setup_data.kernel=aux_kernel;
  2633. setup_data.interac_type.resize(1);
  2634. setup_data.interac_type[0]=D2D_Type;
  2635. setup_data. input_data=&buff[1];
  2636. setup_data.output_data=&buff[1];
  2637. Vector<FMMNode_t*>& nodes_in =n_list[1];
  2638. Vector<FMMNode_t*>& nodes_out=n_list[1];
  2639. setup_data.nodes_in .clear();
  2640. setup_data.nodes_out.clear();
  2641. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1) setup_data.nodes_in .push_back(nodes_in [i]);
  2642. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level ) setup_data.nodes_out.push_back(nodes_out[i]);
  2643. }
  2644. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2645. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2646. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  2647. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  2648. for(size_t i=0;i<nodes_in .size();i++) input_vector.push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  2649. for(size_t i=0;i<nodes_out.size();i++) output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  2650. SetupInterac(setup_data,device);
  2651. }
  2652. template <class FMMNode>
  2653. void FMM_Pts<FMMNode>::Down2Down (SetupData<Real_t>& setup_data, bool device){
  2654. //Add Down2Down contribution.
  2655. EvalList(setup_data, device);
  2656. }
  2657. template <class FMMNode>
  2658. void FMM_Pts<FMMNode>::SetupInteracPts(SetupData<Real_t>& setup_data, bool shift_src, bool shift_trg, Matrix<Real_t>* M, bool device){
  2659. int level=setup_data.level;
  2660. std::vector<Mat_Type>& interac_type_lst=setup_data.interac_type;
  2661. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  2662. std::vector<void*>& nodes_out=setup_data.nodes_out;
  2663. Matrix<Real_t>& output_data=*setup_data.output_data;
  2664. Matrix<Real_t>& input_data=*setup_data. input_data;
  2665. Matrix<Real_t>& coord_data=*setup_data. coord_data;
  2666. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector;
  2667. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector;
  2668. size_t n_in =nodes_in .size();
  2669. size_t n_out=nodes_out.size();
  2670. //setup_data.precomp_data=NULL;
  2671. // Build interac_data
  2672. Profile::Tic("Interac-Data",&this->comm,true,25);
  2673. Matrix<char>& interac_data=setup_data.interac_data;
  2674. if(n_out>0 && n_in >0){
  2675. size_t ker_dim0=setup_data.kernel->ker_dim[0];
  2676. size_t ker_dim1=setup_data.kernel->ker_dim[1];
  2677. size_t dof=1;
  2678. for(size_t i=0;i<n_in ;i++) ((FMMNode*)nodes_in [i])->node_id=i;
  2679. std::vector<size_t> trg_interac_cnt(n_out,0);
  2680. std::vector<size_t> trg_coord(n_out);
  2681. std::vector<size_t> trg_value(n_out);
  2682. std::vector<size_t> trg_cnt(n_out);
  2683. std::vector<Real_t> scaling(n_out*(ker_dim0+ker_dim1),0);
  2684. { // Set trg data
  2685. Mat_Type& interac_type=interac_type_lst[0];
  2686. for(size_t i=0;i<n_out;i++){
  2687. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2688. trg_cnt [i]=output_vector[i*2+0]->Dim()/COORD_DIM;
  2689. trg_coord[i]=(size_t)(&output_vector[i*2+0][0][0]- coord_data[0]);
  2690. trg_value[i]=(size_t)(&output_vector[i*2+1][0][0]-output_data[0]);
  2691. Real_t* s=&scaling[i*(ker_dim0+ker_dim1)];
  2692. for(size_t j=0;j<ker_dim1;j++){
  2693. if(!this->Homogen()) s[j]=1.0;
  2694. else if(interac_type==S2U_Type) s[ j]=pow(0.5, setup_data.kernel->trg_scal[j]*((FMMNode*)nodes_out[i])->Depth());
  2695. else if(interac_type== X_Type) s[ j]=pow(0.5, setup_data.kernel->trg_scal[j]*((FMMNode*)nodes_out[i])->Depth());
  2696. }
  2697. for(size_t j=0;j<ker_dim0;j++){
  2698. if(!this->Homogen()) s[ker_dim1+j]=1.0;
  2699. else if(interac_type==S2U_Type) s[ker_dim1+j]=pow(0.5, setup_data.kernel->src_scal[j]*((FMMNode*)nodes_out[i])->Depth());
  2700. else if(interac_type== X_Type) s[ker_dim1+j]=pow(0.5, setup_data.kernel->src_scal[j]*((FMMNode*)nodes_out[i])->Depth());
  2701. }
  2702. }
  2703. }
  2704. }
  2705. std::vector<std::vector<size_t> > src_cnt(n_out);
  2706. std::vector<std::vector<size_t> > src_coord(n_out);
  2707. std::vector<std::vector<size_t> > src_value(n_out);
  2708. std::vector<std::vector<Real_t> > shift_coord(n_out);
  2709. for(size_t type_indx=0; type_indx<interac_type_lst.size(); type_indx++){
  2710. Mat_Type& interac_type=interac_type_lst[type_indx];
  2711. size_t mat_cnt=this->interac_list.ListCount(interac_type);
  2712. for(size_t i=0;i<n_out;i++){ // For each target node.
  2713. if(!((FMMNode*)nodes_out[i])->IsGhost() && (level==-1 || ((FMMNode*)nodes_out[i])->Depth()==level)){
  2714. std::vector<FMMNode*>& lst=((FMMNode*)nodes_out[i])->interac_list[interac_type];
  2715. for(size_t mat_indx=0;mat_indx<mat_cnt;mat_indx++) if(lst[mat_indx]!=NULL){ // For each direction.
  2716. size_t j=lst[mat_indx]->node_id;
  2717. if(input_vector[j*4+0]->Dim()>0 || input_vector[j*4+2]->Dim()>0){
  2718. trg_interac_cnt[i]++;
  2719. { // Determine shift for periodic boundary condition
  2720. Real_t* sc=lst[mat_indx]->Coord();
  2721. Real_t* tc=((FMMNode*)nodes_out[i])->Coord();
  2722. int* rel_coord=this->interac_list.RelativeCoord(interac_type, mat_indx);
  2723. shift_coord[i].push_back((tc[0]>sc[0] && rel_coord[0]>0? 1.0:
  2724. (tc[0]<sc[0] && rel_coord[0]<0?-1.0:0.0)) +
  2725. (shift_src?sc[0]:0) - (shift_trg?tc[0]:0) );
  2726. shift_coord[i].push_back((tc[1]>sc[1] && rel_coord[1]>0? 1.0:
  2727. (tc[1]<sc[1] && rel_coord[1]<0?-1.0:0.0)) +
  2728. (shift_src?sc[1]:0) - (shift_trg?tc[1]:0) );
  2729. shift_coord[i].push_back((tc[2]>sc[2] && rel_coord[2]>0? 1.0:
  2730. (tc[2]<sc[2] && rel_coord[2]<0?-1.0:0.0)) +
  2731. (shift_src?sc[2]:0) - (shift_trg?tc[2]:0) );
  2732. }
  2733. { // Set src data
  2734. if(input_vector[j*4+0]!=NULL){
  2735. src_cnt [i].push_back(input_vector[j*4+0]->Dim()/COORD_DIM);
  2736. src_coord[i].push_back((size_t)(& input_vector[j*4+0][0][0]- coord_data[0]));
  2737. src_value[i].push_back((size_t)(& input_vector[j*4+1][0][0]- input_data[0]));
  2738. }else{
  2739. src_cnt [i].push_back(0);
  2740. src_coord[i].push_back(0);
  2741. src_value[i].push_back(0);
  2742. }
  2743. if(input_vector[j*4+2]!=NULL){
  2744. src_cnt [i].push_back(input_vector[j*4+2]->Dim()/COORD_DIM);
  2745. src_coord[i].push_back((size_t)(& input_vector[j*4+2][0][0]- coord_data[0]));
  2746. src_value[i].push_back((size_t)(& input_vector[j*4+3][0][0]- input_data[0]));
  2747. }else{
  2748. src_cnt [i].push_back(0);
  2749. src_coord[i].push_back(0);
  2750. src_value[i].push_back(0);
  2751. }
  2752. }
  2753. }
  2754. }
  2755. }
  2756. }
  2757. }
  2758. { // Set interac_data.
  2759. size_t data_size=sizeof(size_t)*4;
  2760. data_size+=sizeof(size_t)+trg_interac_cnt.size()*sizeof(size_t);
  2761. data_size+=sizeof(size_t)+trg_coord.size()*sizeof(size_t);
  2762. data_size+=sizeof(size_t)+trg_value.size()*sizeof(size_t);
  2763. data_size+=sizeof(size_t)+trg_cnt .size()*sizeof(size_t);
  2764. data_size+=sizeof(size_t)+scaling .size()*sizeof(Real_t);
  2765. data_size+=sizeof(size_t)*2+(M!=NULL?M->Dim(0)*M->Dim(1)*sizeof(Real_t):0);
  2766. for(size_t i=0;i<n_out;i++){
  2767. data_size+=sizeof(size_t)+src_cnt [i].size()*sizeof(size_t);
  2768. data_size+=sizeof(size_t)+src_coord[i].size()*sizeof(size_t);
  2769. data_size+=sizeof(size_t)+src_value[i].size()*sizeof(size_t);
  2770. data_size+=sizeof(size_t)+shift_coord[i].size()*sizeof(Real_t);
  2771. }
  2772. if(data_size>interac_data.Dim(0)*interac_data.Dim(1))
  2773. interac_data.Resize(1,data_size);
  2774. char* data_ptr=&interac_data[0][0];
  2775. ((size_t*)data_ptr)[0]=data_size; data_ptr+=sizeof(size_t);
  2776. ((size_t*)data_ptr)[0]= ker_dim0; data_ptr+=sizeof(size_t);
  2777. ((size_t*)data_ptr)[0]= ker_dim1; data_ptr+=sizeof(size_t);
  2778. ((size_t*)data_ptr)[0]= dof; data_ptr+=sizeof(size_t);
  2779. ((size_t*)data_ptr)[0]=trg_interac_cnt.size(); data_ptr+=sizeof(size_t);
  2780. mem::memcopy(data_ptr, &trg_interac_cnt[0], trg_interac_cnt.size()*sizeof(size_t));
  2781. data_ptr+=trg_interac_cnt.size()*sizeof(size_t);
  2782. ((size_t*)data_ptr)[0]=trg_coord.size(); data_ptr+=sizeof(size_t);
  2783. mem::memcopy(data_ptr, &trg_coord[0], trg_coord.size()*sizeof(size_t));
  2784. data_ptr+=trg_coord.size()*sizeof(size_t);
  2785. ((size_t*)data_ptr)[0]=trg_value.size(); data_ptr+=sizeof(size_t);
  2786. mem::memcopy(data_ptr, &trg_value[0], trg_value.size()*sizeof(size_t));
  2787. data_ptr+=trg_value.size()*sizeof(size_t);
  2788. ((size_t*)data_ptr)[0]=trg_cnt.size(); data_ptr+=sizeof(size_t);
  2789. mem::memcopy(data_ptr, &trg_cnt[0], trg_cnt.size()*sizeof(size_t));
  2790. data_ptr+=trg_cnt.size()*sizeof(size_t);
  2791. ((size_t*)data_ptr)[0]=scaling.size(); data_ptr+=sizeof(size_t);
  2792. mem::memcopy(data_ptr, &scaling[0], scaling.size()*sizeof(Real_t));
  2793. data_ptr+=scaling.size()*sizeof(Real_t);
  2794. if(M!=NULL){
  2795. ((size_t*)data_ptr)[0]=M->Dim(0); data_ptr+=sizeof(size_t);
  2796. ((size_t*)data_ptr)[0]=M->Dim(1); data_ptr+=sizeof(size_t);
  2797. mem::memcopy(data_ptr, M[0][0], M->Dim(0)*M->Dim(1)*sizeof(Real_t));
  2798. data_ptr+=M->Dim(0)*M->Dim(1)*sizeof(Real_t);
  2799. }else{
  2800. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2801. ((size_t*)data_ptr)[0]=0; data_ptr+=sizeof(size_t);
  2802. }
  2803. for(size_t i=0;i<n_out;i++){
  2804. ((size_t*)data_ptr)[0]=src_cnt[i].size(); data_ptr+=sizeof(size_t);
  2805. mem::memcopy(data_ptr, &src_cnt[i][0], src_cnt[i].size()*sizeof(size_t));
  2806. data_ptr+=src_cnt[i].size()*sizeof(size_t);
  2807. ((size_t*)data_ptr)[0]=src_coord[i].size(); data_ptr+=sizeof(size_t);
  2808. mem::memcopy(data_ptr, &src_coord[i][0], src_coord[i].size()*sizeof(size_t));
  2809. data_ptr+=src_coord[i].size()*sizeof(size_t);
  2810. ((size_t*)data_ptr)[0]=src_value[i].size(); data_ptr+=sizeof(size_t);
  2811. mem::memcopy(data_ptr, &src_value[i][0], src_value[i].size()*sizeof(size_t));
  2812. data_ptr+=src_value[i].size()*sizeof(size_t);
  2813. ((size_t*)data_ptr)[0]=shift_coord[i].size(); data_ptr+=sizeof(size_t);
  2814. mem::memcopy(data_ptr, &shift_coord[i][0], shift_coord[i].size()*sizeof(Real_t));
  2815. data_ptr+=shift_coord[i].size()*sizeof(Real_t);
  2816. }
  2817. }
  2818. size_t buff_size=DEVICE_BUFFER_SIZE*1024l*1024l;
  2819. if(this->dev_buffer.Dim()<buff_size) this->dev_buffer.Resize(buff_size);
  2820. if(this->cpu_buffer.Dim()<buff_size) this->cpu_buffer.Resize(buff_size);
  2821. }
  2822. Profile::Toc();
  2823. Profile::Tic("Host2Device",&this->comm,false,25);
  2824. if(device){ // Host2Device
  2825. setup_data.interac_data .AllocDevice(true);
  2826. }
  2827. Profile::Toc();
  2828. }
  2829. template <class FMMNode>
  2830. template <int SYNC>
  2831. void FMM_Pts<FMMNode>::EvalListPts(SetupData<Real_t>& setup_data, bool device){
  2832. if(setup_data.interac_data.Dim(0)==0 || setup_data.interac_data.Dim(1)==0){
  2833. Profile::Tic("Host2Device",&this->comm,false,25);
  2834. Profile::Toc();
  2835. Profile::Tic("DeviceComp",&this->comm,false,20);
  2836. Profile::Toc();
  2837. return;
  2838. }
  2839. bool have_gpu=false;
  2840. #if defined(PVFMM_HAVE_CUDA)
  2841. have_gpu=true;
  2842. #endif
  2843. Profile::Tic("Host2Device",&this->comm,false,25);
  2844. typename Vector<char>::Device buff;
  2845. //typename Matrix<char>::Device precomp_data;
  2846. typename Matrix<char>::Device interac_data;
  2847. typename Matrix<Real_t>::Device coord_data;
  2848. typename Matrix<Real_t>::Device input_data;
  2849. typename Matrix<Real_t>::Device output_data;
  2850. if(device && !have_gpu){
  2851. buff = this-> dev_buffer. AllocDevice(false);
  2852. interac_data= setup_data.interac_data. AllocDevice(false);
  2853. //if(setup_data.precomp_data!=NULL) precomp_data= setup_data.precomp_data->AllocDevice(false);
  2854. if(setup_data. coord_data!=NULL) coord_data = setup_data. coord_data->AllocDevice(false);
  2855. if(setup_data. input_data!=NULL) input_data = setup_data. input_data->AllocDevice(false);
  2856. if(setup_data. output_data!=NULL) output_data = setup_data. output_data->AllocDevice(false);
  2857. }else{
  2858. buff = this-> cpu_buffer;
  2859. interac_data= setup_data.interac_data;
  2860. //if(setup_data.precomp_data!=NULL) precomp_data=*setup_data.precomp_data;
  2861. if(setup_data. coord_data!=NULL) coord_data =*setup_data. coord_data;
  2862. if(setup_data. input_data!=NULL) input_data =*setup_data. input_data;
  2863. if(setup_data. output_data!=NULL) output_data =*setup_data. output_data;
  2864. }
  2865. Profile::Toc();
  2866. size_t ptr_single_layer_kernel=(size_t)setup_data.kernel->ker_poten;
  2867. size_t ptr_double_layer_kernel=(size_t)setup_data.kernel->dbl_layer_poten;
  2868. Profile::Tic("DeviceComp",&this->comm,false,20);
  2869. int lock_idx=-1;
  2870. int wait_lock_idx=-1;
  2871. if(device) wait_lock_idx=MIC_Lock::curr_lock();
  2872. if(device) lock_idx=MIC_Lock::get_lock();
  2873. #ifdef __INTEL_OFFLOAD
  2874. if(device) ptr_single_layer_kernel=setup_data.kernel->dev_ker_poten;
  2875. if(device) ptr_double_layer_kernel=setup_data.kernel->dev_dbl_layer_poten;
  2876. #pragma offload if(device) target(mic:0) signal(&MIC_Lock::lock_vec[device?lock_idx:0])
  2877. #endif
  2878. { // Offloaded computation.
  2879. // Set interac_data.
  2880. size_t data_size;
  2881. size_t ker_dim0;
  2882. size_t ker_dim1;
  2883. size_t dof, n_out;
  2884. Vector<size_t> trg_interac_cnt;
  2885. Vector<size_t> trg_coord;
  2886. Vector<size_t> trg_value;
  2887. Vector<size_t> trg_cnt;
  2888. Vector<Real_t> scaling;
  2889. Matrix<Real_t> M;
  2890. Vector< Vector<size_t> > src_cnt;
  2891. Vector< Vector<size_t> > src_coord;
  2892. Vector< Vector<size_t> > src_value;
  2893. Vector< Vector<Real_t> > shift_coord;
  2894. { // Set interac_data.
  2895. char* data_ptr=&interac_data[0][0];
  2896. data_size=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2897. ker_dim0=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2898. ker_dim1=((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2899. dof =((size_t*)data_ptr)[0]; data_ptr+=sizeof(size_t);
  2900. trg_interac_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2901. data_ptr+=sizeof(size_t)+trg_interac_cnt.Dim()*sizeof(size_t);
  2902. n_out=trg_interac_cnt.Dim();
  2903. trg_coord.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2904. data_ptr+=sizeof(size_t)+trg_coord.Dim()*sizeof(size_t);
  2905. trg_value.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2906. data_ptr+=sizeof(size_t)+trg_value.Dim()*sizeof(size_t);
  2907. trg_cnt.ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2908. data_ptr+=sizeof(size_t)+trg_cnt.Dim()*sizeof(size_t);
  2909. scaling.ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2910. data_ptr+=sizeof(size_t)+scaling.Dim()*sizeof(Real_t);
  2911. M.ReInit(((size_t*)data_ptr)[0],((size_t*)data_ptr)[1],(Real_t*)(data_ptr+2*sizeof(size_t)),false);
  2912. data_ptr+=sizeof(size_t)*2+M.Dim(0)*M.Dim(1)*sizeof(Real_t);
  2913. src_cnt.Resize(n_out);
  2914. src_coord.Resize(n_out);
  2915. src_value.Resize(n_out);
  2916. shift_coord.Resize(n_out);
  2917. for(size_t i=0;i<n_out;i++){
  2918. src_cnt[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2919. data_ptr+=sizeof(size_t)+src_cnt[i].Dim()*sizeof(size_t);
  2920. src_coord[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2921. data_ptr+=sizeof(size_t)+src_coord[i].Dim()*sizeof(size_t);
  2922. src_value[i].ReInit(((size_t*)data_ptr)[0],(size_t*)(data_ptr+sizeof(size_t)),false);
  2923. data_ptr+=sizeof(size_t)+src_value[i].Dim()*sizeof(size_t);
  2924. shift_coord[i].ReInit(((size_t*)data_ptr)[0],(Real_t*)(data_ptr+sizeof(size_t)),false);
  2925. data_ptr+=sizeof(size_t)+shift_coord[i].Dim()*sizeof(Real_t);
  2926. }
  2927. }
  2928. if(device) MIC_Lock::wait_lock(wait_lock_idx);
  2929. //Compute interaction from point sources.
  2930. { // interactions
  2931. typename Kernel<Real_t>::Ker_t single_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_single_layer_kernel;
  2932. typename Kernel<Real_t>::Ker_t double_layer_kernel=(typename Kernel<Real_t>::Ker_t)ptr_double_layer_kernel;
  2933. int omp_p=omp_get_max_threads();
  2934. Vector<Real_t*> thread_buff(omp_p);
  2935. size_t thread_buff_size=buff.dim/sizeof(Real_t)/omp_p;
  2936. for(int i=0;i<omp_p;i++) thread_buff[i]=(Real_t*)&buff[i*thread_buff_size*sizeof(Real_t)];
  2937. #pragma omp parallel for schedule(dynamic)
  2938. for(size_t i=0;i<n_out;i++)
  2939. if(trg_interac_cnt[i]>0 && trg_cnt[i]>0){
  2940. int thread_id=omp_get_thread_num();
  2941. Real_t* s_coord=thread_buff[thread_id];
  2942. Real_t* t_value=output_data[0]+trg_value[i];
  2943. if(M.Dim(0)>0 && M.Dim(1)>0){
  2944. s_coord+=dof*M.Dim(0);
  2945. t_value=thread_buff[thread_id];
  2946. for(size_t j=0;j<dof*M.Dim(0);j++) t_value[j]=0;
  2947. }
  2948. size_t interac_cnt=0;
  2949. for(size_t j=0;j<trg_interac_cnt[i];j++){
  2950. if(ptr_single_layer_kernel!=(size_t)NULL){// Single layer kernel
  2951. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+0];
  2952. assert(thread_buff_size>=dof*M.Dim(0)+dof*M.Dim(1)+src_cnt[i][2*j+0]*COORD_DIM);
  2953. for(size_t k1=0;k1<src_cnt[i][2*j+0];k1++){ // Compute shifted source coordinates.
  2954. for(size_t k0=0;k0<COORD_DIM;k0++){
  2955. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  2956. }
  2957. }
  2958. single_layer_kernel( s_coord , src_cnt[i][2*j+0], input_data[0]+src_value[i][2*j+0], dof,
  2959. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value, NULL);
  2960. interac_cnt+=src_cnt[i][2*j+0]*trg_cnt[i];
  2961. }else if(src_cnt[i][2*j+0]!=0 && trg_cnt[i]!=0){
  2962. assert(ptr_single_layer_kernel); // Single-layer kernel not implemented
  2963. }
  2964. if(ptr_double_layer_kernel!=(size_t)NULL){// Double layer kernel
  2965. Real_t* src_coord_=coord_data[0]+src_coord[i][2*j+1];
  2966. assert(thread_buff_size>=dof*M.Dim(0)+dof*M.Dim(1)+src_cnt[i][2*j+1]*COORD_DIM);
  2967. for(size_t k1=0;k1<src_cnt[i][2*j+1];k1++){ // Compute shifted source coordinates.
  2968. for(size_t k0=0;k0<COORD_DIM;k0++){
  2969. s_coord[k1*COORD_DIM+k0]=src_coord_[k1*COORD_DIM+k0]+shift_coord[i][j*COORD_DIM+k0];
  2970. }
  2971. }
  2972. double_layer_kernel( s_coord , src_cnt[i][2*j+1], input_data[0]+src_value[i][2*j+1], dof,
  2973. coord_data[0]+trg_coord[i], trg_cnt[i] , t_value, NULL);
  2974. interac_cnt+=src_cnt[i][2*j+1]*trg_cnt[i];
  2975. }else if(src_cnt[i][2*j+1]!=0 && trg_cnt[i]!=0){
  2976. assert(ptr_double_layer_kernel); // Double-layer kernel not implemented
  2977. }
  2978. }
  2979. if(M.Dim(0)>0 && M.Dim(1)>0 && interac_cnt>0){
  2980. assert(trg_cnt[i]*ker_dim1==M.Dim(0));
  2981. assert(trg_cnt[i]*ker_dim0==M.Dim(1));
  2982. {// Scaling (ker_dim1)
  2983. Real_t* s=&scaling[i*(ker_dim0+ker_dim1)];
  2984. for(size_t j=0;j<dof*M.Dim(0);j+=ker_dim1){
  2985. for(size_t k=0;k<ker_dim1;k++){
  2986. t_value[j+k]*=s[k];
  2987. }
  2988. }
  2989. }
  2990. Matrix<Real_t> in_vec(dof, M.Dim(0), t_value, false);
  2991. Matrix<Real_t> tmp_vec(dof, M.Dim(1),dof*M.Dim(0)+t_value, false);
  2992. Matrix<Real_t>::GEMM(tmp_vec, in_vec, M, 0.0);
  2993. Matrix<Real_t> out_vec(dof, M.Dim(1), output_data[0]+trg_value[i], false);
  2994. {// Scaling (ker_dim0)
  2995. Real_t* s=&scaling[i*(ker_dim0+ker_dim1)+ker_dim1];
  2996. for(size_t j=0;j<dof*M.Dim(1);j+=ker_dim0){
  2997. for(size_t k=0;k<ker_dim0;k++){
  2998. out_vec[0][j+k]+=tmp_vec[0][j+k]*s[k];
  2999. }
  3000. }
  3001. }
  3002. }
  3003. }
  3004. }
  3005. if(device) MIC_Lock::release_lock(lock_idx);
  3006. }
  3007. #ifdef __INTEL_OFFLOAD
  3008. if(SYNC){
  3009. #pragma offload if(device) target(mic:0)
  3010. {if(device) MIC_Lock::wait_lock(lock_idx);}
  3011. }
  3012. #endif
  3013. Profile::Toc();
  3014. }
  3015. template <class FMMNode>
  3016. void FMM_Pts<FMMNode>::X_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3017. if(this->MultipoleOrder()==0) return;
  3018. { // Set setup_data
  3019. setup_data.level=level;
  3020. setup_data.kernel=aux_kernel;
  3021. setup_data.interac_type.resize(1);
  3022. setup_data.interac_type[0]=X_Type;
  3023. setup_data. input_data=&buff[4];
  3024. setup_data.output_data=&buff[1];
  3025. setup_data. coord_data=&buff[6];
  3026. Vector<FMMNode_t*>& nodes_in =n_list[4];
  3027. Vector<FMMNode_t*>& nodes_out=n_list[1];
  3028. setup_data.nodes_in .clear();
  3029. setup_data.nodes_out.clear();
  3030. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level-1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3031. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3032. }
  3033. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3034. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3035. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3036. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3037. for(size_t i=0;i<nodes_in .size();i++){
  3038. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  3039. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  3040. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  3041. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  3042. }
  3043. for(size_t i=0;i<nodes_out.size();i++){
  3044. output_vector.push_back(&dnwd_check_surf[((FMMNode*)nodes_out[i])->Depth()]);
  3045. output_vector.push_back(&((FMMData*)((FMMNode*)nodes_out[i])->FMMData())->dnward_equiv);
  3046. }
  3047. //Downward check to downward equivalent matrix.
  3048. Matrix<Real_t>& M_dc2de = this->mat->Mat(level, DC2DE_Type, 0);
  3049. this->SetupInteracPts(setup_data, false, true, &M_dc2de,device);
  3050. { // Resize device buffer
  3051. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3052. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3053. }
  3054. }
  3055. template <class FMMNode>
  3056. void FMM_Pts<FMMNode>::X_List (SetupData<Real_t>& setup_data, bool device){
  3057. //Add X_List contribution.
  3058. this->EvalListPts(setup_data, device);
  3059. }
  3060. template <class FMMNode>
  3061. void FMM_Pts<FMMNode>::W_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3062. if(this->MultipoleOrder()==0) return;
  3063. { // Set setup_data
  3064. setup_data.level=level;
  3065. setup_data.kernel=kernel;
  3066. setup_data.interac_type.resize(1);
  3067. setup_data.interac_type[0]=W_Type;
  3068. setup_data. input_data=&buff[0];
  3069. setup_data.output_data=&buff[5];
  3070. setup_data. coord_data=&buff[6];
  3071. Vector<FMMNode_t*>& nodes_in =n_list[0];
  3072. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3073. setup_data.nodes_in .clear();
  3074. setup_data.nodes_out.clear();
  3075. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level+1 || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3076. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3077. }
  3078. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3079. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3080. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3081. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3082. for(size_t i=0;i<nodes_in .size();i++){
  3083. input_vector .push_back(&upwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  3084. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->upward_equiv);
  3085. input_vector .push_back(NULL);
  3086. input_vector .push_back(NULL);
  3087. }
  3088. for(size_t i=0;i<nodes_out.size();i++){
  3089. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3090. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3091. }
  3092. this->SetupInteracPts(setup_data, true, false, NULL, device);
  3093. { // Resize device buffer
  3094. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3095. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3096. }
  3097. }
  3098. template <class FMMNode>
  3099. void FMM_Pts<FMMNode>::W_List (SetupData<Real_t>& setup_data, bool device){
  3100. //Add W_List contribution.
  3101. this->EvalListPts(setup_data, device);
  3102. }
  3103. template <class FMMNode>
  3104. void FMM_Pts<FMMNode>::U_ListSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3105. { // Set setup_data
  3106. setup_data.level=level;
  3107. setup_data.kernel=kernel;
  3108. setup_data.interac_type.resize(3);
  3109. setup_data.interac_type[0]=U0_Type;
  3110. setup_data.interac_type[1]=U1_Type;
  3111. setup_data.interac_type[2]=U2_Type;
  3112. setup_data. input_data=&buff[4];
  3113. setup_data.output_data=&buff[5];
  3114. setup_data. coord_data=&buff[6];
  3115. Vector<FMMNode_t*>& nodes_in =n_list[4];
  3116. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3117. setup_data.nodes_in .clear();
  3118. setup_data.nodes_out.clear();
  3119. for(size_t i=0;i<nodes_in .Dim();i++) if((level-1<=nodes_in [i]->Depth() && nodes_in [i]->Depth()<=level+1) || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3120. for(size_t i=0;i<nodes_out.Dim();i++) if(( nodes_out[i]->Depth()==level ) || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3121. }
  3122. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3123. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3124. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3125. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3126. for(size_t i=0;i<nodes_in .size();i++){
  3127. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_coord);
  3128. input_vector .push_back(&((FMMNode*)nodes_in [i])->src_value);
  3129. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_coord);
  3130. input_vector .push_back(&((FMMNode*)nodes_in [i])->surf_value);
  3131. }
  3132. for(size_t i=0;i<nodes_out.size();i++){
  3133. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3134. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3135. }
  3136. this->SetupInteracPts(setup_data, false, false, NULL, device);
  3137. { // Resize device buffer
  3138. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3139. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3140. }
  3141. }
  3142. template <class FMMNode>
  3143. void FMM_Pts<FMMNode>::U_List (SetupData<Real_t>& setup_data, bool device){
  3144. //Add U_List contribution.
  3145. this->EvalListPts(setup_data, device);
  3146. }
  3147. template <class FMMNode>
  3148. void FMM_Pts<FMMNode>::Down2TargetSetup(SetupData<Real_t>& setup_data, std::vector<Matrix<Real_t> >& buff, std::vector<Vector<FMMNode_t*> >& n_list, int level, bool device){
  3149. if(this->MultipoleOrder()==0) return;
  3150. { // Set setup_data
  3151. setup_data.level=level;
  3152. setup_data.kernel=kernel;
  3153. setup_data.interac_type.resize(1);
  3154. setup_data.interac_type[0]=D2T_Type;
  3155. setup_data. input_data=&buff[1];
  3156. setup_data.output_data=&buff[5];
  3157. setup_data. coord_data=&buff[6];
  3158. Vector<FMMNode_t*>& nodes_in =n_list[1];
  3159. Vector<FMMNode_t*>& nodes_out=n_list[5];
  3160. setup_data.nodes_in .clear();
  3161. setup_data.nodes_out.clear();
  3162. for(size_t i=0;i<nodes_in .Dim();i++) if(nodes_in [i]->Depth()==level || level==-1) setup_data.nodes_in .push_back(nodes_in [i]);
  3163. for(size_t i=0;i<nodes_out.Dim();i++) if(nodes_out[i]->Depth()==level || level==-1) setup_data.nodes_out.push_back(nodes_out[i]);
  3164. }
  3165. std::vector<void*>& nodes_in =setup_data.nodes_in ;
  3166. std::vector<void*>& nodes_out=setup_data.nodes_out;
  3167. std::vector<Vector<Real_t>*>& input_vector=setup_data. input_vector; input_vector.clear();
  3168. std::vector<Vector<Real_t>*>& output_vector=setup_data.output_vector; output_vector.clear();
  3169. for(size_t i=0;i<nodes_in .size();i++){
  3170. input_vector .push_back(&dnwd_equiv_surf[((FMMNode*)nodes_in [i])->Depth()]);
  3171. input_vector .push_back(&((FMMData*)((FMMNode*)nodes_in [i])->FMMData())->dnward_equiv);
  3172. input_vector .push_back(NULL);
  3173. input_vector .push_back(NULL);
  3174. }
  3175. for(size_t i=0;i<nodes_out.size();i++){
  3176. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_coord);
  3177. output_vector.push_back(&((FMMNode*)nodes_out[i])->trg_value);
  3178. }
  3179. this->SetupInteracPts(setup_data, true, false, NULL, device);
  3180. { // Resize device buffer
  3181. size_t n=setup_data.output_data->Dim(0)*setup_data.output_data->Dim(1)*sizeof(Real_t);
  3182. if(this->dev_buffer.Dim()<n) this->dev_buffer.Resize(n);
  3183. }
  3184. }
  3185. template <class FMMNode>
  3186. void FMM_Pts<FMMNode>::Down2Target(SetupData<Real_t>& setup_data, bool device){
  3187. //Add Down2Target contribution.
  3188. this->EvalListPts(setup_data, device);
  3189. }
  3190. template <class FMMNode>
  3191. void FMM_Pts<FMMNode>::PostProcessing(std::vector<FMMNode_t*>& nodes){
  3192. }
  3193. template <class FMMNode>
  3194. void FMM_Pts<FMMNode>::CopyOutput(FMMNode** nodes, size_t n){
  3195. }
  3196. }//end namespace