kernel.txx 92 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664
  1. /**
  2. * \file kernel.txx
  3. * \author Dhairya Malhotra, dhairya.malhotra@gmail.com
  4. * \date 12-20-2011
  5. * \brief This file contains the implementation of the struct Kernel and also the
  6. * implementation of various kernels for FMM.
  7. */
  8. #include <cmath>
  9. #include <cstdlib>
  10. #include <vector>
  11. #include <mem_mgr.hpp>
  12. #include <profile.hpp>
  13. #include <vector.hpp>
  14. #include <matrix.hpp>
  15. #include <precomp_mat.hpp>
  16. #include <intrin_wrapper.hpp>
  17. #include <cheb_utils.hpp>
  18. namespace pvfmm{
  19. /**
  20. * \brief Constructor.
  21. */
  22. template <class T>
  23. Kernel<T>::Kernel(Ker_t poten, Ker_t dbl_poten, const char* name, int dim_, std::pair<int,int> k_dim,
  24. size_t dev_poten, size_t dev_dbl_poten){
  25. dim=dim_;
  26. ker_dim[0]=k_dim.first;
  27. ker_dim[1]=k_dim.second;
  28. ker_poten=poten;
  29. dbl_layer_poten=dbl_poten;
  30. ker_name=std::string(name);
  31. dev_ker_poten=dev_poten;
  32. dev_dbl_layer_poten=dev_dbl_poten;
  33. k_s2m=NULL;
  34. k_s2l=NULL;
  35. k_s2t=NULL;
  36. k_m2m=NULL;
  37. k_m2l=NULL;
  38. k_m2t=NULL;
  39. k_l2l=NULL;
  40. k_l2t=NULL;
  41. vol_poten=NULL;
  42. scale_invar=true;
  43. src_scal.Resize(ker_dim[0]); src_scal.SetZero();
  44. trg_scal.Resize(ker_dim[1]); trg_scal.SetZero();
  45. perm_vec.Resize(Perm_Count);
  46. for(size_t p_type=0;p_type<C_Perm;p_type++){
  47. perm_vec[p_type ]=Permutation<T>(ker_dim[0]);
  48. perm_vec[p_type+C_Perm]=Permutation<T>(ker_dim[1]);
  49. }
  50. init=false;
  51. }
  52. /**
  53. * \brief Initialize the kernel.
  54. */
  55. template <class T>
  56. void Kernel<T>::Initialize(bool verbose) const{
  57. if(init) return;
  58. init=true;
  59. T eps=1.0;
  60. while(eps+(T)1.0>1.0) eps*=0.5;
  61. T scal=1.0;
  62. if(ker_dim[0]*ker_dim[1]>0){ // Determine scaling
  63. Matrix<T> M_scal(ker_dim[0],ker_dim[1]);
  64. size_t N=1024;
  65. T eps_=N*eps;
  66. T src_coord[3]={0,0,0};
  67. std::vector<T> trg_coord1(N*COORD_DIM);
  68. Matrix<T> M1(N,ker_dim[0]*ker_dim[1]);
  69. while(true){
  70. T abs_sum=0;
  71. for(size_t i=0;i<N/2;i++){
  72. T x,y,z,r;
  73. do{
  74. x=(drand48()-0.5);
  75. y=(drand48()-0.5);
  76. z=(drand48()-0.5);
  77. r=pvfmm::sqrt<T>(x*x+y*y+z*z);
  78. }while(r<0.25);
  79. trg_coord1[i*COORD_DIM+0]=x*scal;
  80. trg_coord1[i*COORD_DIM+1]=y*scal;
  81. trg_coord1[i*COORD_DIM+2]=z*scal;
  82. }
  83. for(size_t i=N/2;i<N;i++){
  84. T x,y,z,r;
  85. do{
  86. x=(drand48()-0.5);
  87. y=(drand48()-0.5);
  88. z=(drand48()-0.5);
  89. r=pvfmm::sqrt<T>(x*x+y*y+z*z);
  90. }while(r<0.25);
  91. trg_coord1[i*COORD_DIM+0]=x*1.0/scal;
  92. trg_coord1[i*COORD_DIM+1]=y*1.0/scal;
  93. trg_coord1[i*COORD_DIM+2]=z*1.0/scal;
  94. }
  95. for(size_t i=0;i<N;i++){
  96. BuildMatrix(&src_coord [ 0], 1,
  97. &trg_coord1[i*COORD_DIM], 1, &(M1[i][0]));
  98. for(size_t j=0;j<ker_dim[0]*ker_dim[1];j++){
  99. abs_sum+=pvfmm::fabs<T>(M1[i][j]);
  100. }
  101. }
  102. if(abs_sum>pvfmm::sqrt<T>(eps) || scal<eps) break;
  103. scal=scal*0.5;
  104. }
  105. std::vector<T> trg_coord2(N*COORD_DIM);
  106. Matrix<T> M2(N,ker_dim[0]*ker_dim[1]);
  107. for(size_t i=0;i<N*COORD_DIM;i++){
  108. trg_coord2[i]=trg_coord1[i]*0.5;
  109. }
  110. for(size_t i=0;i<N;i++){
  111. BuildMatrix(&src_coord [ 0], 1,
  112. &trg_coord2[i*COORD_DIM], 1, &(M2[i][0]));
  113. }
  114. T max_val=0;
  115. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++){
  116. T dot11=0, dot22=0;
  117. for(size_t j=0;j<N;j++){
  118. dot11+=M1[j][i]*M1[j][i];
  119. dot22+=M2[j][i]*M2[j][i];
  120. }
  121. max_val=std::max<T>(max_val,dot11);
  122. max_val=std::max<T>(max_val,dot22);
  123. }
  124. if(scale_invar)
  125. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++){
  126. T dot11=0, dot12=0, dot22=0;
  127. for(size_t j=0;j<N;j++){
  128. dot11+=M1[j][i]*M1[j][i];
  129. dot12+=M1[j][i]*M2[j][i];
  130. dot22+=M2[j][i]*M2[j][i];
  131. }
  132. if(dot11>max_val*eps &&
  133. dot22>max_val*eps ){
  134. T s=dot12/dot11;
  135. M_scal[0][i]=pvfmm::log<T>(s)/pvfmm::log<T>(2.0);
  136. T err=pvfmm::sqrt<T>(0.5*(dot22/dot11)/(s*s)-0.5);
  137. if(err>eps_){
  138. scale_invar=false;
  139. M_scal[0][i]=0.0;
  140. }
  141. //assert(M_scal[0][i]>=0.0); // Kernel function must decay
  142. }else if(dot11>max_val*eps ||
  143. dot22>max_val*eps ){
  144. scale_invar=false;
  145. M_scal[0][i]=0.0;
  146. }else{
  147. M_scal[0][i]=-1;
  148. }
  149. }
  150. src_scal.Resize(ker_dim[0]); src_scal.SetZero();
  151. trg_scal.Resize(ker_dim[1]); trg_scal.SetZero();
  152. if(scale_invar){
  153. Matrix<T> b(ker_dim[0]*ker_dim[1]+1,1); b.SetZero();
  154. mem::memcopy(&b[0][0],&M_scal[0][0],ker_dim[0]*ker_dim[1]*sizeof(T));
  155. Matrix<T> M(ker_dim[0]*ker_dim[1]+1,ker_dim[0]+ker_dim[1]); M.SetZero();
  156. M[ker_dim[0]*ker_dim[1]][0]=1;
  157. for(size_t i0=0;i0<ker_dim[0];i0++)
  158. for(size_t i1=0;i1<ker_dim[1];i1++){
  159. size_t j=i0*ker_dim[1]+i1;
  160. if(b[j][0]>0){
  161. M[j][ 0+ i0]=1;
  162. M[j][i1+ker_dim[0]]=1;
  163. }
  164. }
  165. Matrix<T> x=M.pinv()*b;
  166. for(size_t i=0;i<ker_dim[0];i++){
  167. src_scal[i]=x[i][0];
  168. }
  169. for(size_t i=0;i<ker_dim[1];i++){
  170. trg_scal[i]=x[ker_dim[0]+i][0];
  171. }
  172. for(size_t i0=0;i0<ker_dim[0];i0++)
  173. for(size_t i1=0;i1<ker_dim[1];i1++){
  174. if(M_scal[i0][i1]>=0){
  175. if(pvfmm::fabs<T>(src_scal[i0]+trg_scal[i1]-M_scal[i0][i1])>eps_){
  176. scale_invar=false;
  177. }
  178. }
  179. }
  180. }
  181. if(!scale_invar){
  182. src_scal.SetZero();
  183. trg_scal.SetZero();
  184. //std::cout<<ker_name<<" not-scale-invariant\n";
  185. }
  186. }
  187. if(ker_dim[0]*ker_dim[1]>0){ // Determine symmetry
  188. size_t N=1024;
  189. T eps_=N*eps;
  190. T src_coord[3]={0,0,0};
  191. std::vector<T> trg_coord1(N*COORD_DIM);
  192. std::vector<T> trg_coord2(N*COORD_DIM);
  193. for(size_t i=0;i<N/2;i++){
  194. T x,y,z,r;
  195. do{
  196. x=(drand48()-0.5);
  197. y=(drand48()-0.5);
  198. z=(drand48()-0.5);
  199. r=pvfmm::sqrt<T>(x*x+y*y+z*z);
  200. }while(r<0.25);
  201. trg_coord1[i*COORD_DIM+0]=x*scal;
  202. trg_coord1[i*COORD_DIM+1]=y*scal;
  203. trg_coord1[i*COORD_DIM+2]=z*scal;
  204. }
  205. for(size_t i=N/2;i<N;i++){
  206. T x,y,z,r;
  207. do{
  208. x=(drand48()-0.5);
  209. y=(drand48()-0.5);
  210. z=(drand48()-0.5);
  211. r=pvfmm::sqrt<T>(x*x+y*y+z*z);
  212. }while(r<0.25);
  213. trg_coord1[i*COORD_DIM+0]=x*1.0/scal;
  214. trg_coord1[i*COORD_DIM+1]=y*1.0/scal;
  215. trg_coord1[i*COORD_DIM+2]=z*1.0/scal;
  216. }
  217. for(size_t p_type=0;p_type<C_Perm;p_type++){ // For each symmetry transform
  218. switch(p_type){ // Set trg_coord2
  219. case ReflecX:
  220. for(size_t i=0;i<N;i++){
  221. trg_coord2[i*COORD_DIM+0]=-trg_coord1[i*COORD_DIM+0];
  222. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+1];
  223. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+2];
  224. }
  225. break;
  226. case ReflecY:
  227. for(size_t i=0;i<N;i++){
  228. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+0];
  229. trg_coord2[i*COORD_DIM+1]=-trg_coord1[i*COORD_DIM+1];
  230. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+2];
  231. }
  232. break;
  233. case ReflecZ:
  234. for(size_t i=0;i<N;i++){
  235. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+0];
  236. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+1];
  237. trg_coord2[i*COORD_DIM+2]=-trg_coord1[i*COORD_DIM+2];
  238. }
  239. break;
  240. case SwapXY:
  241. for(size_t i=0;i<N;i++){
  242. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+1];
  243. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+0];
  244. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+2];
  245. }
  246. break;
  247. case SwapXZ:
  248. for(size_t i=0;i<N;i++){
  249. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+2];
  250. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+1];
  251. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+0];
  252. }
  253. break;
  254. default:
  255. for(size_t i=0;i<N;i++){
  256. trg_coord2[i*COORD_DIM+0]= trg_coord1[i*COORD_DIM+0];
  257. trg_coord2[i*COORD_DIM+1]= trg_coord1[i*COORD_DIM+1];
  258. trg_coord2[i*COORD_DIM+2]= trg_coord1[i*COORD_DIM+2];
  259. }
  260. }
  261. Matrix<long long> M11, M22;
  262. {
  263. Matrix<T> M1(N,ker_dim[0]*ker_dim[1]); M1.SetZero();
  264. Matrix<T> M2(N,ker_dim[0]*ker_dim[1]); M2.SetZero();
  265. for(size_t i=0;i<N;i++){
  266. BuildMatrix(&src_coord [ 0], 1,
  267. &trg_coord1[i*COORD_DIM], 1, &(M1[i][0]));
  268. BuildMatrix(&src_coord [ 0], 1,
  269. &trg_coord2[i*COORD_DIM], 1, &(M2[i][0]));
  270. }
  271. Matrix<T> dot11(ker_dim[0]*ker_dim[1],ker_dim[0]*ker_dim[1]);dot11.SetZero();
  272. Matrix<T> dot12(ker_dim[0]*ker_dim[1],ker_dim[0]*ker_dim[1]);dot12.SetZero();
  273. Matrix<T> dot22(ker_dim[0]*ker_dim[1],ker_dim[0]*ker_dim[1]);dot22.SetZero();
  274. std::vector<T> norm1(ker_dim[0]*ker_dim[1]);
  275. std::vector<T> norm2(ker_dim[0]*ker_dim[1]);
  276. {
  277. for(size_t k=0;k<N;k++)
  278. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++)
  279. for(size_t j=0;j<ker_dim[0]*ker_dim[1];j++){
  280. dot11[i][j]+=M1[k][i]*M1[k][j];
  281. dot12[i][j]+=M1[k][i]*M2[k][j];
  282. dot22[i][j]+=M2[k][i]*M2[k][j];
  283. }
  284. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++){
  285. norm1[i]=pvfmm::sqrt<T>(dot11[i][i]);
  286. norm2[i]=pvfmm::sqrt<T>(dot22[i][i]);
  287. }
  288. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++)
  289. for(size_t j=0;j<ker_dim[0]*ker_dim[1];j++){
  290. dot11[i][j]/=(norm1[i]*norm1[j]);
  291. dot12[i][j]/=(norm1[i]*norm2[j]);
  292. dot22[i][j]/=(norm2[i]*norm2[j]);
  293. }
  294. }
  295. long long flag=1;
  296. M11.Resize(ker_dim[0],ker_dim[1]); M11.SetZero();
  297. M22.Resize(ker_dim[0],ker_dim[1]); M22.SetZero();
  298. for(size_t i=0;i<ker_dim[0]*ker_dim[1];i++){
  299. if(norm1[i]>eps_ && M11[0][i]==0){
  300. for(size_t j=0;j<ker_dim[0]*ker_dim[1];j++){
  301. if(pvfmm::fabs<T>(norm1[i]-norm1[j])<eps_ && pvfmm::fabs<T>(pvfmm::fabs<T>(dot11[i][j])-1.0)<eps_){
  302. M11[0][j]=(dot11[i][j]>0?flag:-flag);
  303. }
  304. if(pvfmm::fabs<T>(norm1[i]-norm2[j])<eps_ && pvfmm::fabs<T>(pvfmm::fabs<T>(dot12[i][j])-1.0)<eps_){
  305. M22[0][j]=(dot12[i][j]>0?flag:-flag);
  306. }
  307. }
  308. flag++;
  309. }
  310. }
  311. }
  312. Matrix<long long> P1, P2;
  313. { // P1
  314. Matrix<long long>& P=P1;
  315. Matrix<long long> M1=M11;
  316. Matrix<long long> M2=M22;
  317. for(size_t i=0;i<M1.Dim(0);i++){
  318. for(size_t j=0;j<M1.Dim(1);j++){
  319. if(M1[i][j]<0) M1[i][j]=-M1[i][j];
  320. if(M2[i][j]<0) M2[i][j]=-M2[i][j];
  321. }
  322. std::sort(&M1[i][0],&M1[i][M1.Dim(1)]);
  323. std::sort(&M2[i][0],&M2[i][M2.Dim(1)]);
  324. }
  325. P.Resize(M1.Dim(0),M1.Dim(0));
  326. for(size_t i=0;i<M1.Dim(0);i++)
  327. for(size_t j=0;j<M1.Dim(0);j++){
  328. P[i][j]=1;
  329. for(size_t k=0;k<M1.Dim(1);k++)
  330. if(M1[i][k]!=M2[j][k]){
  331. P[i][j]=0;
  332. break;
  333. }
  334. }
  335. }
  336. { // P2
  337. Matrix<long long>& P=P2;
  338. Matrix<long long> M1=M11.Transpose();
  339. Matrix<long long> M2=M22.Transpose();
  340. for(size_t i=0;i<M1.Dim(0);i++){
  341. for(size_t j=0;j<M1.Dim(1);j++){
  342. if(M1[i][j]<0) M1[i][j]=-M1[i][j];
  343. if(M2[i][j]<0) M2[i][j]=-M2[i][j];
  344. }
  345. std::sort(&M1[i][0],&M1[i][M1.Dim(1)]);
  346. std::sort(&M2[i][0],&M2[i][M2.Dim(1)]);
  347. }
  348. P.Resize(M1.Dim(0),M1.Dim(0));
  349. for(size_t i=0;i<M1.Dim(0);i++)
  350. for(size_t j=0;j<M1.Dim(0);j++){
  351. P[i][j]=1;
  352. for(size_t k=0;k<M1.Dim(1);k++)
  353. if(M1[i][k]!=M2[j][k]){
  354. P[i][j]=0;
  355. break;
  356. }
  357. }
  358. }
  359. std::vector<Permutation<long long> > P1vec, P2vec;
  360. { // P1vec
  361. Matrix<long long>& Pmat=P1;
  362. std::vector<Permutation<long long> >& Pvec=P1vec;
  363. Permutation<long long> P(Pmat.Dim(0));
  364. Vector<PERM_INT_T>& perm=P.perm;
  365. perm.SetZero();
  366. // First permutation
  367. for(size_t i=0;i<P.Dim();i++)
  368. for(size_t j=0;j<P.Dim();j++){
  369. if(Pmat[i][j]){
  370. perm[i]=j;
  371. break;
  372. }
  373. }
  374. Vector<PERM_INT_T> perm_tmp;
  375. while(true){ // Next permutation
  376. perm_tmp=perm;
  377. std::sort(&perm_tmp[0],&perm_tmp[0]+perm_tmp.Dim());
  378. for(size_t i=0;i<perm_tmp.Dim();i++){
  379. if(perm_tmp[i]!=i) break;
  380. if(i==perm_tmp.Dim()-1){
  381. Pvec.push_back(P);
  382. }
  383. }
  384. bool last=false;
  385. for(size_t i=0;i<P.Dim();i++){
  386. PERM_INT_T tmp=perm[i];
  387. for(size_t j=perm[i]+1;j<P.Dim();j++){
  388. if(Pmat[i][j]){
  389. perm[i]=j;
  390. break;
  391. }
  392. }
  393. if(perm[i]>tmp) break;
  394. for(size_t j=0;j<P.Dim();j++){
  395. if(Pmat[i][j]){
  396. perm[i]=j;
  397. break;
  398. }
  399. }
  400. if(i==P.Dim()-1) last=true;
  401. }
  402. if(last) break;
  403. }
  404. }
  405. { // P2vec
  406. Matrix<long long>& Pmat=P2;
  407. std::vector<Permutation<long long> >& Pvec=P2vec;
  408. Permutation<long long> P(Pmat.Dim(0));
  409. Vector<PERM_INT_T>& perm=P.perm;
  410. perm.SetZero();
  411. // First permutation
  412. for(size_t i=0;i<P.Dim();i++)
  413. for(size_t j=0;j<P.Dim();j++){
  414. if(Pmat[i][j]){
  415. perm[i]=j;
  416. break;
  417. }
  418. }
  419. Vector<PERM_INT_T> perm_tmp;
  420. while(true){ // Next permutation
  421. perm_tmp=perm;
  422. std::sort(&perm_tmp[0],&perm_tmp[0]+perm_tmp.Dim());
  423. for(size_t i=0;i<perm_tmp.Dim();i++){
  424. if(perm_tmp[i]!=i) break;
  425. if(i==perm_tmp.Dim()-1){
  426. Pvec.push_back(P);
  427. }
  428. }
  429. bool last=false;
  430. for(size_t i=0;i<P.Dim();i++){
  431. PERM_INT_T tmp=perm[i];
  432. for(size_t j=perm[i]+1;j<P.Dim();j++){
  433. if(Pmat[i][j]){
  434. perm[i]=j;
  435. break;
  436. }
  437. }
  438. if(perm[i]>tmp) break;
  439. for(size_t j=0;j<P.Dim();j++){
  440. if(Pmat[i][j]){
  441. perm[i]=j;
  442. break;
  443. }
  444. }
  445. if(i==P.Dim()-1) last=true;
  446. }
  447. if(last) break;
  448. }
  449. }
  450. { // Find pairs which acutally work (neglect scaling)
  451. std::vector<Permutation<long long> > P1vec_, P2vec_;
  452. Matrix<long long> M1=M11;
  453. Matrix<long long> M2=M22;
  454. for(size_t i=0;i<M1.Dim(0);i++){
  455. for(size_t j=0;j<M1.Dim(1);j++){
  456. if(M1[i][j]<0) M1[i][j]=-M1[i][j];
  457. if(M2[i][j]<0) M2[i][j]=-M2[i][j];
  458. }
  459. }
  460. Matrix<long long> M;
  461. for(size_t i=0;i<P1vec.size();i++)
  462. for(size_t j=0;j<P2vec.size();j++){
  463. M=P1vec[i]*M2*P2vec[j];
  464. for(size_t k=0;k<M.Dim(0)*M.Dim(1);k++){
  465. if(M[0][k]!=M1[0][k]) break;
  466. if(k==M.Dim(0)*M.Dim(1)-1){
  467. P1vec_.push_back(P1vec[i]);
  468. P2vec_.push_back(P2vec[j]);
  469. }
  470. }
  471. }
  472. P1vec=P1vec_;
  473. P2vec=P2vec_;
  474. }
  475. Permutation<T> P1_, P2_;
  476. { // Find pairs which acutally work
  477. for(size_t k=0;k<P1vec.size();k++){
  478. Permutation<long long> P1=P1vec[k];
  479. Permutation<long long> P2=P2vec[k];
  480. Matrix<long long> M1= M11 ;
  481. Matrix<long long> M2=P1*M22*P2;
  482. Matrix<T> M(M1.Dim(0)*M1.Dim(1)+1,M1.Dim(0)+M1.Dim(1));
  483. M.SetZero(); M[M1.Dim(0)*M1.Dim(1)][0]=1.0;
  484. for(size_t i=0;i<M1.Dim(0);i++)
  485. for(size_t j=0;j<M1.Dim(1);j++){
  486. size_t k=i*M1.Dim(1)+j;
  487. M[k][ i]= M1[i][j];
  488. M[k][M1.Dim(0)+j]=-M2[i][j];
  489. }
  490. M=M.pinv();
  491. { // Construct new permutation
  492. Permutation<long long> P1_(M1.Dim(0));
  493. Permutation<long long> P2_(M1.Dim(1));
  494. for(size_t i=0;i<M1.Dim(0);i++){
  495. P1_.scal[i]=(M[i][M1.Dim(0)*M1.Dim(1)]>0?1:-1);
  496. }
  497. for(size_t i=0;i<M1.Dim(1);i++){
  498. P2_.scal[i]=(M[M1.Dim(0)+i][M1.Dim(0)*M1.Dim(1)]>0?1:-1);
  499. }
  500. P1=P1_*P1 ;
  501. P2=P2 *P2_;
  502. }
  503. bool done=true;
  504. Matrix<long long> Merr=P1*M22*P2-M11;
  505. for(size_t i=0;i<Merr.Dim(0)*Merr.Dim(1);i++){
  506. if(Merr[0][i]){
  507. done=false;
  508. break;
  509. }
  510. }
  511. { // Check if permutation is symmetric
  512. Permutation<long long> P1_=P1.Transpose();
  513. Permutation<long long> P2_=P2.Transpose();
  514. for(size_t i=0;i<P1.Dim();i++){
  515. if(P1_.perm[i]!=P1.perm[i] || P1_.scal[i]!=P1.scal[i]){
  516. done=false;
  517. break;
  518. }
  519. }
  520. for(size_t i=0;i<P2.Dim();i++){
  521. if(P2_.perm[i]!=P2.perm[i] || P2_.scal[i]!=P2.scal[i]){
  522. done=false;
  523. break;
  524. }
  525. }
  526. }
  527. if(done){
  528. P1_=Permutation<T>(P1.Dim());
  529. P2_=Permutation<T>(P2.Dim());
  530. for(size_t i=0;i<P1.Dim();i++){
  531. P1_.perm[i]=P1.perm[i];
  532. P1_.scal[i]=P1.scal[i];
  533. }
  534. for(size_t i=0;i<P2.Dim();i++){
  535. P2_.perm[i]=P2.perm[i];
  536. P2_.scal[i]=P2.scal[i];
  537. }
  538. break;
  539. }
  540. }
  541. assert(P1_.Dim() && P2_.Dim());
  542. }
  543. //std::cout<<P1_<<'\n';
  544. //std::cout<<P2_<<'\n';
  545. perm_vec[p_type ]=P1_;
  546. perm_vec[p_type+C_Perm]=P2_;
  547. }
  548. for(size_t i=0;i<2*C_Perm;i++){
  549. if(perm_vec[i].Dim()==0){
  550. perm_vec.Resize(0);
  551. std::cout<<"no-symmetry for: "<<ker_name<<'\n';
  552. break;
  553. }
  554. }
  555. }
  556. if(verbose){ // Display kernel information
  557. std::cout<<"\n";
  558. std::cout<<"Kernel Name : "<<ker_name<<'\n';
  559. std::cout<<"Precision : "<<(double)eps<<'\n';
  560. std::cout<<"Symmetry : "<<(perm_vec.Dim()>0?"yes":"no")<<'\n';
  561. std::cout<<"Scale Invariant: "<<(scale_invar?"yes":"no")<<'\n';
  562. if(scale_invar && ker_dim[0]*ker_dim[1]>0){
  563. std::cout<<"Scaling Matrix :\n";
  564. Matrix<T> Src(ker_dim[0],1);
  565. Matrix<T> Trg(1,ker_dim[1]);
  566. for(size_t i=0;i<ker_dim[0];i++) Src[i][0]=pvfmm::pow<T>(2.0,src_scal[i]);
  567. for(size_t i=0;i<ker_dim[1];i++) Trg[0][i]=pvfmm::pow<T>(2.0,trg_scal[i]);
  568. std::cout<<Src*Trg;
  569. }
  570. if(ker_dim[0]*ker_dim[1]>0){ // Accuracy of multipole expansion
  571. std::cout<<"Multipole Error: ";
  572. for(T rad=1.0; rad>1.0e-2; rad*=0.5){
  573. int m=8; // multipole order
  574. std::vector<T> equiv_surf;
  575. std::vector<T> check_surf;
  576. for(int i0=0;i0<m;i0++){
  577. for(int i1=0;i1<m;i1++){
  578. for(int i2=0;i2<m;i2++){
  579. if(i0== 0 || i1== 0 || i2== 0 ||
  580. i0==m-1 || i1==m-1 || i2==m-1){
  581. // Range: [-1/3,1/3]^3
  582. T x=((T)2*i0-(m-1))/(m-1)/3;
  583. T y=((T)2*i1-(m-1))/(m-1)/3;
  584. T z=((T)2*i2-(m-1))/(m-1)/3;
  585. equiv_surf.push_back(x*RAD0*rad);
  586. equiv_surf.push_back(y*RAD0*rad);
  587. equiv_surf.push_back(z*RAD0*rad);
  588. check_surf.push_back(x*RAD1*rad);
  589. check_surf.push_back(y*RAD1*rad);
  590. check_surf.push_back(z*RAD1*rad);
  591. }
  592. }
  593. }
  594. }
  595. size_t n_equiv=equiv_surf.size()/COORD_DIM;
  596. size_t n_check=equiv_surf.size()/COORD_DIM;
  597. size_t n_src=m*m;
  598. size_t n_trg=m*m;
  599. std::vector<T> src_coord;
  600. std::vector<T> trg_coord;
  601. for(size_t i=0;i<n_src*COORD_DIM;i++){
  602. src_coord.push_back((2*drand48()-1)/3*rad);
  603. }
  604. for(size_t i=0;i<n_trg;i++){
  605. T x,y,z,r;
  606. do{
  607. x=(drand48()-0.5);
  608. y=(drand48()-0.5);
  609. z=(drand48()-0.5);
  610. r=pvfmm::sqrt<T>(x*x+y*y+z*z);
  611. }while(r==0.0);
  612. trg_coord.push_back(x/r*pvfmm::sqrt<T>((T)COORD_DIM)*rad*(1.0+drand48()));
  613. trg_coord.push_back(y/r*pvfmm::sqrt<T>((T)COORD_DIM)*rad*(1.0+drand48()));
  614. trg_coord.push_back(z/r*pvfmm::sqrt<T>((T)COORD_DIM)*rad*(1.0+drand48()));
  615. }
  616. Matrix<T> M_s2c(n_src*ker_dim[0],n_check*ker_dim[1]);
  617. BuildMatrix( &src_coord[0], n_src,
  618. &check_surf[0], n_check, &(M_s2c[0][0]));
  619. Matrix<T> M_e2c(n_equiv*ker_dim[0],n_check*ker_dim[1]);
  620. BuildMatrix(&equiv_surf[0], n_equiv,
  621. &check_surf[0], n_check, &(M_e2c[0][0]));
  622. Matrix<T> M_c2e0, M_c2e1;
  623. {
  624. Matrix<T> U,S,V;
  625. M_e2c.SVD(U,S,V);
  626. T eps=1, max_S=0;
  627. while(eps*(T)0.5+(T)1.0>1.0) eps*=0.5;
  628. for(size_t i=0;i<std::min(S.Dim(0),S.Dim(1));i++){
  629. if(pvfmm::fabs<T>(S[i][i])>max_S) max_S=pvfmm::fabs<T>(S[i][i]);
  630. }
  631. for(size_t i=0;i<S.Dim(0);i++) S[i][i]=(S[i][i]>eps*max_S*4?1.0/S[i][i]:0.0);
  632. M_c2e0=V.Transpose()*S;
  633. M_c2e1=U.Transpose();
  634. }
  635. Matrix<T> M_e2t(n_equiv*ker_dim[0],n_trg*ker_dim[1]);
  636. BuildMatrix(&equiv_surf[0], n_equiv,
  637. &trg_coord[0], n_trg , &(M_e2t[0][0]));
  638. Matrix<T> M_s2t(n_src*ker_dim[0],n_trg*ker_dim[1]);
  639. BuildMatrix( &src_coord[0], n_src,
  640. &trg_coord[0], n_trg , &(M_s2t[0][0]));
  641. Matrix<T> M=(M_s2c*M_c2e0)*(M_c2e1*M_e2t)-M_s2t;
  642. T max_error=0, max_value=0;
  643. for(size_t i=0;i<M.Dim(0);i++)
  644. for(size_t j=0;j<M.Dim(1);j++){
  645. max_error=std::max<T>(max_error,pvfmm::fabs<T>(M [i][j]));
  646. max_value=std::max<T>(max_value,pvfmm::fabs<T>(M_s2t[i][j]));
  647. }
  648. std::cout<<(double)(max_error/max_value)<<' ';
  649. if(scale_invar) break;
  650. }
  651. std::cout<<"\n";
  652. }
  653. if(ker_dim[0]*ker_dim[1]>0){ // Accuracy of local expansion
  654. std::cout<<"Local-exp Error: ";
  655. for(T rad=1.0; rad>1.0e-2; rad*=0.5){
  656. int m=8; // multipole order
  657. std::vector<T> equiv_surf;
  658. std::vector<T> check_surf;
  659. for(int i0=0;i0<m;i0++){
  660. for(int i1=0;i1<m;i1++){
  661. for(int i2=0;i2<m;i2++){
  662. if(i0== 0 || i1== 0 || i2== 0 ||
  663. i0==m-1 || i1==m-1 || i2==m-1){
  664. // Range: [-1/3,1/3]^3
  665. T x=((T)2*i0-(m-1))/(m-1)/3;
  666. T y=((T)2*i1-(m-1))/(m-1)/3;
  667. T z=((T)2*i2-(m-1))/(m-1)/3;
  668. equiv_surf.push_back(x*RAD1*rad);
  669. equiv_surf.push_back(y*RAD1*rad);
  670. equiv_surf.push_back(z*RAD1*rad);
  671. check_surf.push_back(x*RAD0*rad);
  672. check_surf.push_back(y*RAD0*rad);
  673. check_surf.push_back(z*RAD0*rad);
  674. }
  675. }
  676. }
  677. }
  678. size_t n_equiv=equiv_surf.size()/COORD_DIM;
  679. size_t n_check=equiv_surf.size()/COORD_DIM;
  680. size_t n_src=m*m;
  681. size_t n_trg=m*m;
  682. std::vector<T> src_coord;
  683. std::vector<T> trg_coord;
  684. for(size_t i=0;i<n_trg*COORD_DIM;i++){
  685. trg_coord.push_back((2*drand48()-1)/3*rad);
  686. }
  687. for(size_t i=0;i<n_src;i++){
  688. T x,y,z,r;
  689. do{
  690. x=(drand48()-0.5);
  691. y=(drand48()-0.5);
  692. z=(drand48()-0.5);
  693. r=pvfmm::sqrt<T>(x*x+y*y+z*z);
  694. }while(r==0.0);
  695. src_coord.push_back(x/r*pvfmm::sqrt<T>((T)COORD_DIM)*rad*(1.0+drand48()));
  696. src_coord.push_back(y/r*pvfmm::sqrt<T>((T)COORD_DIM)*rad*(1.0+drand48()));
  697. src_coord.push_back(z/r*pvfmm::sqrt<T>((T)COORD_DIM)*rad*(1.0+drand48()));
  698. }
  699. Matrix<T> M_s2c(n_src*ker_dim[0],n_check*ker_dim[1]);
  700. BuildMatrix( &src_coord[0], n_src,
  701. &check_surf[0], n_check, &(M_s2c[0][0]));
  702. Matrix<T> M_e2c(n_equiv*ker_dim[0],n_check*ker_dim[1]);
  703. BuildMatrix(&equiv_surf[0], n_equiv,
  704. &check_surf[0], n_check, &(M_e2c[0][0]));
  705. Matrix<T> M_c2e0, M_c2e1;
  706. {
  707. Matrix<T> U,S,V;
  708. M_e2c.SVD(U,S,V);
  709. T eps=1, max_S=0;
  710. while(eps*(T)0.5+(T)1.0>1.0) eps*=0.5;
  711. for(size_t i=0;i<std::min(S.Dim(0),S.Dim(1));i++){
  712. if(pvfmm::fabs<T>(S[i][i])>max_S) max_S=pvfmm::fabs<T>(S[i][i]);
  713. }
  714. for(size_t i=0;i<S.Dim(0);i++) S[i][i]=(S[i][i]>eps*max_S*4?1.0/S[i][i]:0.0);
  715. M_c2e0=V.Transpose()*S;
  716. M_c2e1=U.Transpose();
  717. }
  718. Matrix<T> M_e2t(n_equiv*ker_dim[0],n_trg*ker_dim[1]);
  719. BuildMatrix(&equiv_surf[0], n_equiv,
  720. &trg_coord[0], n_trg , &(M_e2t[0][0]));
  721. Matrix<T> M_s2t(n_src*ker_dim[0],n_trg*ker_dim[1]);
  722. BuildMatrix( &src_coord[0], n_src,
  723. &trg_coord[0], n_trg , &(M_s2t[0][0]));
  724. Matrix<T> M=(M_s2c*M_c2e0)*(M_c2e1*M_e2t)-M_s2t;
  725. T max_error=0, max_value=0;
  726. for(size_t i=0;i<M.Dim(0);i++)
  727. for(size_t j=0;j<M.Dim(1);j++){
  728. max_error=std::max<T>(max_error,pvfmm::fabs<T>(M [i][j]));
  729. max_value=std::max<T>(max_value,pvfmm::fabs<T>(M_s2t[i][j]));
  730. }
  731. std::cout<<(double)(max_error/max_value)<<' ';
  732. if(scale_invar) break;
  733. }
  734. std::cout<<"\n";
  735. }
  736. if(vol_poten && ker_dim[0]*ker_dim[1]>0){ // Check if the volume potential is consistent with integral of kernel.
  737. int m=8; // multipole order
  738. std::vector<T> equiv_surf;
  739. std::vector<T> check_surf;
  740. std::vector<T> trg_coord;
  741. for(size_t i=0;i<m*COORD_DIM;i++){
  742. trg_coord.push_back(drand48()+1.0);
  743. }
  744. for(int i0=0;i0<m;i0++){
  745. for(int i1=0;i1<m;i1++){
  746. for(int i2=0;i2<m;i2++){
  747. if(i0== 0 || i1== 0 || i2== 0 ||
  748. i0==m-1 || i1==m-1 || i2==m-1){
  749. // Range: [-1/2,1/2]^3
  750. T x=((T)2*i0-(m-1))/(m-1)/2;
  751. T y=((T)2*i1-(m-1))/(m-1)/2;
  752. T z=((T)2*i2-(m-1))/(m-1)/2;
  753. equiv_surf.push_back(x*RAD1+1.5);
  754. equiv_surf.push_back(y*RAD1+1.5);
  755. equiv_surf.push_back(z*RAD1+1.5);
  756. check_surf.push_back(x*RAD0+1.5);
  757. check_surf.push_back(y*RAD0+1.5);
  758. check_surf.push_back(z*RAD0+1.5);
  759. }
  760. }
  761. }
  762. }
  763. size_t n_equiv=equiv_surf.size()/COORD_DIM;
  764. size_t n_check=equiv_surf.size()/COORD_DIM;
  765. size_t n_trg =trg_coord .size()/COORD_DIM;
  766. Matrix<T> M_local, M_analytic;
  767. Matrix<T> T_local, T_analytic;
  768. { // Compute local expansions M_local, T_local
  769. Matrix<T> M_near(ker_dim[0],n_check*ker_dim[1]);
  770. Matrix<T> T_near(ker_dim[0],n_trg *ker_dim[1]);
  771. #pragma omp parallel for schedule(dynamic)
  772. for(size_t i=0;i<n_check;i++){ // Compute near-interaction for operator M_near
  773. std::vector<T> M_=cheb_integ<T>(0, &check_surf[i*3], 3.0, *this);
  774. for(size_t j=0; j<ker_dim[0]; j++)
  775. for(int k=0; k<ker_dim[1]; k++)
  776. M_near[j][i*ker_dim[1]+k] = M_[j+k*ker_dim[0]];
  777. }
  778. #pragma omp parallel for schedule(dynamic)
  779. for(size_t i=0;i<n_trg;i++){ // Compute near-interaction for targets T_near
  780. std::vector<T> M_=cheb_integ<T>(0, &trg_coord[i*3], 3.0, *this);
  781. for(size_t j=0; j<ker_dim[0]; j++)
  782. for(int k=0; k<ker_dim[1]; k++)
  783. T_near[j][i*ker_dim[1]+k] = M_[j+k*ker_dim[0]];
  784. }
  785. { // M_local = M_analytic - M_near
  786. M_analytic.ReInit(ker_dim[0],n_check*ker_dim[1]); M_analytic.SetZero();
  787. vol_poten(&check_surf[0],n_check,&M_analytic[0][0]);
  788. M_local=M_analytic-M_near;
  789. }
  790. { // T_local = T_analytic - T_near
  791. T_analytic.ReInit(ker_dim[0],n_trg *ker_dim[1]); T_analytic.SetZero();
  792. vol_poten(&trg_coord[0],n_trg,&T_analytic[0][0]);
  793. T_local=T_analytic-T_near;
  794. }
  795. }
  796. Matrix<T> T_err;
  797. { // Now we should be able to compute T_local from M_local
  798. Matrix<T> M_e2c(n_equiv*ker_dim[0],n_check*ker_dim[1]);
  799. BuildMatrix(&equiv_surf[0], n_equiv,
  800. &check_surf[0], n_check, &(M_e2c[0][0]));
  801. Matrix<T> M_e2t(n_equiv*ker_dim[0],n_trg *ker_dim[1]);
  802. BuildMatrix(&equiv_surf[0], n_equiv,
  803. &trg_coord [0], n_trg , &(M_e2t[0][0]));
  804. Matrix<T> M_c2e0, M_c2e1;
  805. {
  806. Matrix<T> U,S,V;
  807. M_e2c.SVD(U,S,V);
  808. T eps=1, max_S=0;
  809. while(eps*(T)0.5+(T)1.0>1.0) eps*=0.5;
  810. for(size_t i=0;i<std::min(S.Dim(0),S.Dim(1));i++){
  811. if(pvfmm::fabs<T>(S[i][i])>max_S) max_S=pvfmm::fabs<T>(S[i][i]);
  812. }
  813. for(size_t i=0;i<S.Dim(0);i++) S[i][i]=(S[i][i]>eps*max_S*4?1.0/S[i][i]:0.0);
  814. M_c2e0=V.Transpose()*S;
  815. M_c2e1=U.Transpose();
  816. }
  817. T_err=(M_local*M_c2e0)*(M_c2e1*M_e2t)-T_local;
  818. }
  819. { // Print relative error
  820. T err_sum=0, analytic_sum=0;
  821. for(size_t i=0;i<T_err .Dim(0)*T_err .Dim(1);i++) err_sum+=pvfmm::fabs<T>(T_err [0][i]);
  822. for(size_t i=0;i<T_analytic.Dim(0)*T_analytic.Dim(1);i++) analytic_sum+=pvfmm::fabs<T>(T_analytic[0][i]);
  823. std::cout<<"Volume Error : "<<err_sum/analytic_sum<<"\n";
  824. }
  825. }
  826. std::cout<<"\n";
  827. }
  828. { // Initialize auxiliary FMM kernels
  829. if(!k_s2m) k_s2m=this;
  830. if(!k_s2l) k_s2l=this;
  831. if(!k_s2t) k_s2t=this;
  832. if(!k_m2m) k_m2m=this;
  833. if(!k_m2l) k_m2l=this;
  834. if(!k_m2t) k_m2t=this;
  835. if(!k_l2l) k_l2l=this;
  836. if(!k_l2t) k_l2t=this;
  837. assert(k_s2t->ker_dim[0]==ker_dim[0]);
  838. assert(k_s2m->ker_dim[0]==k_s2l->ker_dim[0]);
  839. assert(k_s2m->ker_dim[0]==k_s2t->ker_dim[0]);
  840. assert(k_m2m->ker_dim[0]==k_m2l->ker_dim[0]);
  841. assert(k_m2m->ker_dim[0]==k_m2t->ker_dim[0]);
  842. assert(k_l2l->ker_dim[0]==k_l2t->ker_dim[0]);
  843. assert(k_s2t->ker_dim[1]==ker_dim[1]);
  844. assert(k_s2m->ker_dim[1]==k_m2m->ker_dim[1]);
  845. assert(k_s2l->ker_dim[1]==k_l2l->ker_dim[1]);
  846. assert(k_m2l->ker_dim[1]==k_l2l->ker_dim[1]);
  847. assert(k_s2t->ker_dim[1]==k_m2t->ker_dim[1]);
  848. assert(k_s2t->ker_dim[1]==k_l2t->ker_dim[1]);
  849. k_s2m->Initialize(verbose);
  850. k_s2l->Initialize(verbose);
  851. k_s2t->Initialize(verbose);
  852. k_m2m->Initialize(verbose);
  853. k_m2l->Initialize(verbose);
  854. k_m2t->Initialize(verbose);
  855. k_l2l->Initialize(verbose);
  856. k_l2t->Initialize(verbose);
  857. }
  858. }
  859. /**
  860. * \brief Compute the transformation matrix (on the source strength vector)
  861. * to get potential at target coordinates due to sources at the given
  862. * coordinates.
  863. * \param[in] r_src Coordinates of source points.
  864. * \param[in] src_cnt Number of source points.
  865. * \param[in] r_trg Coordinates of target points.
  866. * \param[in] trg_cnt Number of target points.
  867. * \param[out] k_out Output array with potential values.
  868. */
  869. template <class T>
  870. void Kernel<T>::BuildMatrix(T* r_src, int src_cnt,
  871. T* r_trg, int trg_cnt, T* k_out) const{
  872. int dim=3; //Only supporting 3D
  873. memset(k_out, 0, src_cnt*ker_dim[0]*trg_cnt*ker_dim[1]*sizeof(T));
  874. #pragma omp parallel for
  875. for(int i=0;i<src_cnt;i++) //TODO Optimize this.
  876. for(int j=0;j<ker_dim[0];j++){
  877. std::vector<T> v_src(ker_dim[0],0);
  878. v_src[j]=1.0;
  879. ker_poten(&r_src[i*dim], 1, &v_src[0], 1, r_trg, trg_cnt,
  880. &k_out[(i*ker_dim[0]+j)*trg_cnt*ker_dim[1]], NULL);
  881. }
  882. }
  883. /**
  884. * \brief Generic kernel which rearranges data for vectorization, calls the
  885. * actual uKernel and copies data to the output array in the original order.
  886. */
  887. template <class Real_t, int SRC_DIM, int TRG_DIM, void (*uKernel)(Matrix<Real_t>&, Matrix<Real_t>&, Matrix<Real_t>&, Matrix<Real_t>&)>
  888. void generic_kernel(Real_t* r_src, int src_cnt, Real_t* v_src, int dof, Real_t* r_trg, int trg_cnt, Real_t* v_trg, mem::MemoryManager* mem_mgr){
  889. assert(dof==1);
  890. int VecLen=8;
  891. if(sizeof(Real_t)==sizeof( float)) VecLen=8;
  892. if(sizeof(Real_t)==sizeof(double)) VecLen=4;
  893. #define STACK_BUFF_SIZE 4096
  894. Real_t stack_buff[STACK_BUFF_SIZE+MEM_ALIGN];
  895. Real_t* buff=NULL;
  896. Matrix<Real_t> src_coord;
  897. Matrix<Real_t> src_value;
  898. Matrix<Real_t> trg_coord;
  899. Matrix<Real_t> trg_value;
  900. { // Rearrange data in src_coord, src_coord, trg_coord, trg_value
  901. size_t src_cnt_, trg_cnt_; // counts after zero padding
  902. src_cnt_=((src_cnt+VecLen-1)/VecLen)*VecLen;
  903. trg_cnt_=((trg_cnt+VecLen-1)/VecLen)*VecLen;
  904. size_t buff_size=src_cnt_*(COORD_DIM+SRC_DIM)+
  905. trg_cnt_*(COORD_DIM+TRG_DIM);
  906. if(buff_size>STACK_BUFF_SIZE){ // Allocate buff
  907. buff=mem::aligned_new<Real_t>(buff_size, mem_mgr);
  908. }
  909. Real_t* buff_ptr=buff;
  910. if(!buff_ptr){ // use stack_buff
  911. uintptr_t ptr=(uintptr_t)stack_buff;
  912. static uintptr_t ALIGN_MINUS_ONE=MEM_ALIGN-1;
  913. static uintptr_t NOT_ALIGN_MINUS_ONE=~ALIGN_MINUS_ONE;
  914. ptr=((ptr+ALIGN_MINUS_ONE) & NOT_ALIGN_MINUS_ONE);
  915. buff_ptr=(Real_t*)ptr;
  916. }
  917. src_coord.ReInit(COORD_DIM, src_cnt_,buff_ptr,false); buff_ptr+=COORD_DIM*src_cnt_;
  918. src_value.ReInit( SRC_DIM, src_cnt_,buff_ptr,false); buff_ptr+= SRC_DIM*src_cnt_;
  919. trg_coord.ReInit(COORD_DIM, trg_cnt_,buff_ptr,false); buff_ptr+=COORD_DIM*trg_cnt_;
  920. trg_value.ReInit( TRG_DIM, trg_cnt_,buff_ptr,false);//buff_ptr+= TRG_DIM*trg_cnt_;
  921. { // Set src_coord
  922. size_t i=0;
  923. for( ;i<src_cnt ;i++){
  924. for(size_t j=0;j<COORD_DIM;j++){
  925. src_coord[j][i]=r_src[i*COORD_DIM+j];
  926. }
  927. }
  928. for( ;i<src_cnt_;i++){
  929. for(size_t j=0;j<COORD_DIM;j++){
  930. src_coord[j][i]=0;
  931. }
  932. }
  933. }
  934. { // Set src_value
  935. size_t i=0;
  936. for( ;i<src_cnt ;i++){
  937. for(size_t j=0;j<SRC_DIM;j++){
  938. src_value[j][i]=v_src[i*SRC_DIM+j];
  939. }
  940. }
  941. for( ;i<src_cnt_;i++){
  942. for(size_t j=0;j<SRC_DIM;j++){
  943. src_value[j][i]=0;
  944. }
  945. }
  946. }
  947. { // Set trg_coord
  948. size_t i=0;
  949. for( ;i<trg_cnt ;i++){
  950. for(size_t j=0;j<COORD_DIM;j++){
  951. trg_coord[j][i]=r_trg[i*COORD_DIM+j];
  952. }
  953. }
  954. for( ;i<trg_cnt_;i++){
  955. for(size_t j=0;j<COORD_DIM;j++){
  956. trg_coord[j][i]=0;
  957. }
  958. }
  959. }
  960. { // Set trg_value
  961. size_t i=0;
  962. for( ;i<trg_cnt_;i++){
  963. for(size_t j=0;j<TRG_DIM;j++){
  964. trg_value[j][i]=0;
  965. }
  966. }
  967. }
  968. }
  969. uKernel(src_coord,src_value,trg_coord,trg_value);
  970. { // Set v_trg
  971. for(size_t i=0;i<trg_cnt ;i++){
  972. for(size_t j=0;j<TRG_DIM;j++){
  973. v_trg[i*TRG_DIM+j]+=trg_value[j][i];
  974. }
  975. }
  976. }
  977. if(buff){ // Free memory: buff
  978. mem::aligned_delete<Real_t>(buff);
  979. }
  980. }
  981. ////////////////////////////////////////////////////////////////////////////////
  982. //////// LAPLACE KERNEL ////////
  983. ////////////////////////////////////////////////////////////////////////////////
  984. /**
  985. * \brief Green's function for the Poisson's equation. Kernel tensor
  986. * dimension = 1x1.
  987. */
  988. template <class Real_t, class Vec_t=Real_t, Vec_t (*RSQRT_INTRIN)(Vec_t)=rsqrt_intrin0<Vec_t> >
  989. void laplace_poten_uKernel(Matrix<Real_t>& src_coord, Matrix<Real_t>& src_value, Matrix<Real_t>& trg_coord, Matrix<Real_t>& trg_value){
  990. #define SRC_BLK 1000
  991. size_t VecLen=sizeof(Vec_t)/sizeof(Real_t);
  992. //// Number of newton iterations
  993. size_t NWTN_ITER=0;
  994. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin0<Vec_t,Real_t>) NWTN_ITER=0;
  995. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin1<Vec_t,Real_t>) NWTN_ITER=1;
  996. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin2<Vec_t,Real_t>) NWTN_ITER=2;
  997. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin3<Vec_t,Real_t>) NWTN_ITER=3;
  998. Real_t nwtn_scal=1; // scaling factor for newton iterations
  999. for(int i=0;i<NWTN_ITER;i++){
  1000. nwtn_scal=2*nwtn_scal*nwtn_scal*nwtn_scal;
  1001. }
  1002. const Real_t OOFP = 1.0/(4*nwtn_scal*const_pi<Real_t>());
  1003. size_t src_cnt_=src_coord.Dim(1);
  1004. size_t trg_cnt_=trg_coord.Dim(1);
  1005. for(size_t sblk=0;sblk<src_cnt_;sblk+=SRC_BLK){
  1006. size_t src_cnt=src_cnt_-sblk;
  1007. if(src_cnt>SRC_BLK) src_cnt=SRC_BLK;
  1008. for(size_t t=0;t<trg_cnt_;t+=VecLen){
  1009. Vec_t tx=load_intrin<Vec_t>(&trg_coord[0][t]);
  1010. Vec_t ty=load_intrin<Vec_t>(&trg_coord[1][t]);
  1011. Vec_t tz=load_intrin<Vec_t>(&trg_coord[2][t]);
  1012. Vec_t tv=zero_intrin<Vec_t>();
  1013. for(size_t s=sblk;s<sblk+src_cnt;s++){
  1014. Vec_t dx=sub_intrin(tx,bcast_intrin<Vec_t>(&src_coord[0][s]));
  1015. Vec_t dy=sub_intrin(ty,bcast_intrin<Vec_t>(&src_coord[1][s]));
  1016. Vec_t dz=sub_intrin(tz,bcast_intrin<Vec_t>(&src_coord[2][s]));
  1017. Vec_t sv= bcast_intrin<Vec_t>(&src_value[0][s]) ;
  1018. Vec_t r2= mul_intrin(dx,dx) ;
  1019. r2=add_intrin(r2,mul_intrin(dy,dy));
  1020. r2=add_intrin(r2,mul_intrin(dz,dz));
  1021. Vec_t rinv=RSQRT_INTRIN(r2);
  1022. tv=add_intrin(tv,mul_intrin(rinv,sv));
  1023. }
  1024. Vec_t oofp=set_intrin<Vec_t,Real_t>(OOFP);
  1025. tv=add_intrin(mul_intrin(tv,oofp),load_intrin<Vec_t>(&trg_value[0][t]));
  1026. store_intrin(&trg_value[0][t],tv);
  1027. }
  1028. }
  1029. { // Add FLOPS
  1030. #ifndef __MIC__
  1031. Profile::Add_FLOP((long long)trg_cnt_*(long long)src_cnt_*(12+4*(NWTN_ITER)));
  1032. #endif
  1033. }
  1034. #undef SRC_BLK
  1035. }
  1036. template <class T, int newton_iter=0>
  1037. void laplace_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* v_trg, mem::MemoryManager* mem_mgr){
  1038. #define LAP_KER_NWTN(nwtn) if(newton_iter==nwtn) \
  1039. generic_kernel<Real_t, 1, 1, laplace_poten_uKernel<Real_t,Vec_t, rsqrt_intrin##nwtn<Vec_t,Real_t> > > \
  1040. ((Real_t*)r_src, src_cnt, (Real_t*)v_src, dof, (Real_t*)r_trg, trg_cnt, (Real_t*)v_trg, mem_mgr)
  1041. #define LAPLACE_KERNEL LAP_KER_NWTN(0); LAP_KER_NWTN(1); LAP_KER_NWTN(2); LAP_KER_NWTN(3);
  1042. if(mem::TypeTraits<T>::ID()==mem::TypeTraits<float>::ID()){
  1043. typedef float Real_t;
  1044. #if defined __MIC__
  1045. #define Vec_t Real_t
  1046. #elif defined __AVX__
  1047. #define Vec_t __m256
  1048. #elif defined __SSE3__
  1049. #define Vec_t __m128
  1050. #else
  1051. #define Vec_t Real_t
  1052. #endif
  1053. LAPLACE_KERNEL;
  1054. #undef Vec_t
  1055. }else if(mem::TypeTraits<T>::ID()==mem::TypeTraits<double>::ID()){
  1056. typedef double Real_t;
  1057. #if defined __MIC__
  1058. #define Vec_t Real_t
  1059. #elif defined __AVX__
  1060. #define Vec_t __m256d
  1061. #elif defined __SSE3__
  1062. #define Vec_t __m128d
  1063. #else
  1064. #define Vec_t Real_t
  1065. #endif
  1066. LAPLACE_KERNEL;
  1067. #undef Vec_t
  1068. }else{
  1069. typedef T Real_t;
  1070. #define Vec_t Real_t
  1071. LAPLACE_KERNEL;
  1072. #undef Vec_t
  1073. }
  1074. #undef LAP_KER_NWTN
  1075. #undef LAPLACE_KERNEL
  1076. }
  1077. template <class Real_t>
  1078. void laplace_vol_poten(const Real_t* coord, int n, Real_t* out){
  1079. for(int i=0;i<n;i++){
  1080. const Real_t* c=&coord[i*COORD_DIM];
  1081. Real_t r_2=c[0]*c[0]+c[1]*c[1]+c[2]*c[2];
  1082. out[i]=-r_2/6;
  1083. }
  1084. }
  1085. // Laplace double layer potential.
  1086. template <class Real_t, class Vec_t=Real_t, Vec_t (*RSQRT_INTRIN)(Vec_t)=rsqrt_intrin0<Vec_t> >
  1087. void laplace_dbl_uKernel(Matrix<Real_t>& src_coord, Matrix<Real_t>& src_value, Matrix<Real_t>& trg_coord, Matrix<Real_t>& trg_value){
  1088. #define SRC_BLK 500
  1089. size_t VecLen=sizeof(Vec_t)/sizeof(Real_t);
  1090. //// Number of newton iterations
  1091. size_t NWTN_ITER=0;
  1092. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin0<Vec_t,Real_t>) NWTN_ITER=0;
  1093. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin1<Vec_t,Real_t>) NWTN_ITER=1;
  1094. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin2<Vec_t,Real_t>) NWTN_ITER=2;
  1095. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin3<Vec_t,Real_t>) NWTN_ITER=3;
  1096. Real_t nwtn_scal=1; // scaling factor for newton iterations
  1097. for(int i=0;i<NWTN_ITER;i++){
  1098. nwtn_scal=2*nwtn_scal*nwtn_scal*nwtn_scal;
  1099. }
  1100. const Real_t OOFP = -1.0/(4*nwtn_scal*nwtn_scal*nwtn_scal*const_pi<Real_t>());
  1101. size_t src_cnt_=src_coord.Dim(1);
  1102. size_t trg_cnt_=trg_coord.Dim(1);
  1103. for(size_t sblk=0;sblk<src_cnt_;sblk+=SRC_BLK){
  1104. size_t src_cnt=src_cnt_-sblk;
  1105. if(src_cnt>SRC_BLK) src_cnt=SRC_BLK;
  1106. for(size_t t=0;t<trg_cnt_;t+=VecLen){
  1107. Vec_t tx=load_intrin<Vec_t>(&trg_coord[0][t]);
  1108. Vec_t ty=load_intrin<Vec_t>(&trg_coord[1][t]);
  1109. Vec_t tz=load_intrin<Vec_t>(&trg_coord[2][t]);
  1110. Vec_t tv=zero_intrin<Vec_t>();
  1111. for(size_t s=sblk;s<sblk+src_cnt;s++){
  1112. Vec_t dx=sub_intrin(tx,bcast_intrin<Vec_t>(&src_coord[0][s]));
  1113. Vec_t dy=sub_intrin(ty,bcast_intrin<Vec_t>(&src_coord[1][s]));
  1114. Vec_t dz=sub_intrin(tz,bcast_intrin<Vec_t>(&src_coord[2][s]));
  1115. Vec_t sn0= bcast_intrin<Vec_t>(&src_value[0][s]) ;
  1116. Vec_t sn1= bcast_intrin<Vec_t>(&src_value[1][s]) ;
  1117. Vec_t sn2= bcast_intrin<Vec_t>(&src_value[2][s]) ;
  1118. Vec_t sv= bcast_intrin<Vec_t>(&src_value[3][s]) ;
  1119. Vec_t r2= mul_intrin(dx,dx) ;
  1120. r2=add_intrin(r2,mul_intrin(dy,dy));
  1121. r2=add_intrin(r2,mul_intrin(dz,dz));
  1122. Vec_t rinv=RSQRT_INTRIN(r2);
  1123. Vec_t r3inv=mul_intrin(mul_intrin(rinv,rinv),rinv);
  1124. Vec_t rdotn= mul_intrin(sn0,dx);
  1125. rdotn=add_intrin(rdotn, mul_intrin(sn1,dy));
  1126. rdotn=add_intrin(rdotn, mul_intrin(sn2,dz));
  1127. sv=mul_intrin(sv,rdotn);
  1128. tv=add_intrin(tv,mul_intrin(r3inv,sv));
  1129. }
  1130. Vec_t oofp=set_intrin<Vec_t,Real_t>(OOFP);
  1131. tv=add_intrin(mul_intrin(tv,oofp),load_intrin<Vec_t>(&trg_value[0][t]));
  1132. store_intrin(&trg_value[0][t],tv);
  1133. }
  1134. }
  1135. { // Add FLOPS
  1136. #ifndef __MIC__
  1137. Profile::Add_FLOP((long long)trg_cnt_*(long long)src_cnt_*(20+4*(NWTN_ITER)));
  1138. #endif
  1139. }
  1140. #undef SRC_BLK
  1141. }
  1142. template <class T, int newton_iter=0>
  1143. void laplace_dbl_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* v_trg, mem::MemoryManager* mem_mgr){
  1144. #define LAP_KER_NWTN(nwtn) if(newton_iter==nwtn) \
  1145. generic_kernel<Real_t, 4, 1, laplace_dbl_uKernel<Real_t,Vec_t, rsqrt_intrin##nwtn<Vec_t,Real_t> > > \
  1146. ((Real_t*)r_src, src_cnt, (Real_t*)v_src, dof, (Real_t*)r_trg, trg_cnt, (Real_t*)v_trg, mem_mgr)
  1147. #define LAPLACE_KERNEL LAP_KER_NWTN(0); LAP_KER_NWTN(1); LAP_KER_NWTN(2); LAP_KER_NWTN(3);
  1148. if(mem::TypeTraits<T>::ID()==mem::TypeTraits<float>::ID()){
  1149. typedef float Real_t;
  1150. #if defined __MIC__
  1151. #define Vec_t Real_t
  1152. #elif defined __AVX__
  1153. #define Vec_t __m256
  1154. #elif defined __SSE3__
  1155. #define Vec_t __m128
  1156. #else
  1157. #define Vec_t Real_t
  1158. #endif
  1159. LAPLACE_KERNEL;
  1160. #undef Vec_t
  1161. }else if(mem::TypeTraits<T>::ID()==mem::TypeTraits<double>::ID()){
  1162. typedef double Real_t;
  1163. #if defined __MIC__
  1164. #define Vec_t Real_t
  1165. #elif defined __AVX__
  1166. #define Vec_t __m256d
  1167. #elif defined __SSE3__
  1168. #define Vec_t __m128d
  1169. #else
  1170. #define Vec_t Real_t
  1171. #endif
  1172. LAPLACE_KERNEL;
  1173. #undef Vec_t
  1174. }else{
  1175. typedef T Real_t;
  1176. #define Vec_t Real_t
  1177. LAPLACE_KERNEL;
  1178. #undef Vec_t
  1179. }
  1180. #undef LAP_KER_NWTN
  1181. #undef LAPLACE_KERNEL
  1182. }
  1183. // Laplace grdient kernel.
  1184. template <class Real_t, class Vec_t=Real_t, Vec_t (*RSQRT_INTRIN)(Vec_t)=rsqrt_intrin0<Vec_t> >
  1185. void laplace_grad_uKernel(Matrix<Real_t>& src_coord, Matrix<Real_t>& src_value, Matrix<Real_t>& trg_coord, Matrix<Real_t>& trg_value){
  1186. #define SRC_BLK 500
  1187. size_t VecLen=sizeof(Vec_t)/sizeof(Real_t);
  1188. //// Number of newton iterations
  1189. size_t NWTN_ITER=0;
  1190. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin0<Vec_t,Real_t>) NWTN_ITER=0;
  1191. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin1<Vec_t,Real_t>) NWTN_ITER=1;
  1192. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin2<Vec_t,Real_t>) NWTN_ITER=2;
  1193. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin3<Vec_t,Real_t>) NWTN_ITER=3;
  1194. Real_t nwtn_scal=1; // scaling factor for newton iterations
  1195. for(int i=0;i<NWTN_ITER;i++){
  1196. nwtn_scal=2*nwtn_scal*nwtn_scal*nwtn_scal;
  1197. }
  1198. const Real_t OOFP = -1.0/(4*nwtn_scal*nwtn_scal*nwtn_scal*const_pi<Real_t>());
  1199. size_t src_cnt_=src_coord.Dim(1);
  1200. size_t trg_cnt_=trg_coord.Dim(1);
  1201. for(size_t sblk=0;sblk<src_cnt_;sblk+=SRC_BLK){
  1202. size_t src_cnt=src_cnt_-sblk;
  1203. if(src_cnt>SRC_BLK) src_cnt=SRC_BLK;
  1204. for(size_t t=0;t<trg_cnt_;t+=VecLen){
  1205. Vec_t tx=load_intrin<Vec_t>(&trg_coord[0][t]);
  1206. Vec_t ty=load_intrin<Vec_t>(&trg_coord[1][t]);
  1207. Vec_t tz=load_intrin<Vec_t>(&trg_coord[2][t]);
  1208. Vec_t tv0=zero_intrin<Vec_t>();
  1209. Vec_t tv1=zero_intrin<Vec_t>();
  1210. Vec_t tv2=zero_intrin<Vec_t>();
  1211. for(size_t s=sblk;s<sblk+src_cnt;s++){
  1212. Vec_t dx=sub_intrin(tx,bcast_intrin<Vec_t>(&src_coord[0][s]));
  1213. Vec_t dy=sub_intrin(ty,bcast_intrin<Vec_t>(&src_coord[1][s]));
  1214. Vec_t dz=sub_intrin(tz,bcast_intrin<Vec_t>(&src_coord[2][s]));
  1215. Vec_t sv= bcast_intrin<Vec_t>(&src_value[0][s]) ;
  1216. Vec_t r2= mul_intrin(dx,dx) ;
  1217. r2=add_intrin(r2,mul_intrin(dy,dy));
  1218. r2=add_intrin(r2,mul_intrin(dz,dz));
  1219. Vec_t rinv=RSQRT_INTRIN(r2);
  1220. Vec_t r3inv=mul_intrin(mul_intrin(rinv,rinv),rinv);
  1221. sv=mul_intrin(sv,r3inv);
  1222. tv0=add_intrin(tv0,mul_intrin(sv,dx));
  1223. tv1=add_intrin(tv1,mul_intrin(sv,dy));
  1224. tv2=add_intrin(tv2,mul_intrin(sv,dz));
  1225. }
  1226. Vec_t oofp=set_intrin<Vec_t,Real_t>(OOFP);
  1227. tv0=add_intrin(mul_intrin(tv0,oofp),load_intrin<Vec_t>(&trg_value[0][t]));
  1228. tv1=add_intrin(mul_intrin(tv1,oofp),load_intrin<Vec_t>(&trg_value[1][t]));
  1229. tv2=add_intrin(mul_intrin(tv2,oofp),load_intrin<Vec_t>(&trg_value[2][t]));
  1230. store_intrin(&trg_value[0][t],tv0);
  1231. store_intrin(&trg_value[1][t],tv1);
  1232. store_intrin(&trg_value[2][t],tv2);
  1233. }
  1234. }
  1235. { // Add FLOPS
  1236. #ifndef __MIC__
  1237. Profile::Add_FLOP((long long)trg_cnt_*(long long)src_cnt_*(19+4*(NWTN_ITER)));
  1238. #endif
  1239. }
  1240. #undef SRC_BLK
  1241. }
  1242. template <class T, int newton_iter=0>
  1243. void laplace_grad(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* v_trg, mem::MemoryManager* mem_mgr){
  1244. #define LAP_KER_NWTN(nwtn) if(newton_iter==nwtn) \
  1245. generic_kernel<Real_t, 1, 3, laplace_grad_uKernel<Real_t,Vec_t, rsqrt_intrin##nwtn<Vec_t,Real_t> > > \
  1246. ((Real_t*)r_src, src_cnt, (Real_t*)v_src, dof, (Real_t*)r_trg, trg_cnt, (Real_t*)v_trg, mem_mgr)
  1247. #define LAPLACE_KERNEL LAP_KER_NWTN(0); LAP_KER_NWTN(1); LAP_KER_NWTN(2); LAP_KER_NWTN(3);
  1248. if(mem::TypeTraits<T>::ID()==mem::TypeTraits<float>::ID()){
  1249. typedef float Real_t;
  1250. #if defined __MIC__
  1251. #define Vec_t Real_t
  1252. #elif defined __AVX__
  1253. #define Vec_t __m256
  1254. #elif defined __SSE3__
  1255. #define Vec_t __m128
  1256. #else
  1257. #define Vec_t Real_t
  1258. #endif
  1259. LAPLACE_KERNEL;
  1260. #undef Vec_t
  1261. }else if(mem::TypeTraits<T>::ID()==mem::TypeTraits<double>::ID()){
  1262. typedef double Real_t;
  1263. #if defined __MIC__
  1264. #define Vec_t Real_t
  1265. #elif defined __AVX__
  1266. #define Vec_t __m256d
  1267. #elif defined __SSE3__
  1268. #define Vec_t __m128d
  1269. #else
  1270. #define Vec_t Real_t
  1271. #endif
  1272. LAPLACE_KERNEL;
  1273. #undef Vec_t
  1274. }else{
  1275. typedef T Real_t;
  1276. #define Vec_t Real_t
  1277. LAPLACE_KERNEL;
  1278. #undef Vec_t
  1279. }
  1280. #undef LAP_KER_NWTN
  1281. #undef LAPLACE_KERNEL
  1282. }
  1283. template<class T> const Kernel<T>& LaplaceKernel<T>::potential(){
  1284. static Kernel<T> potn_ker=BuildKernel<T, laplace_poten<T,1>, laplace_dbl_poten<T,1> >("laplace" , 3, std::pair<int,int>(1,1),
  1285. NULL,NULL,NULL, NULL,NULL,NULL, NULL,NULL, &laplace_vol_poten<T>);
  1286. return potn_ker;
  1287. }
  1288. template<class T> const Kernel<T>& LaplaceKernel<T>::gradient(){
  1289. static Kernel<T> potn_ker=BuildKernel<T, laplace_poten<T,1>, laplace_dbl_poten<T,1> >("laplace" , 3, std::pair<int,int>(1,1));
  1290. static Kernel<T> grad_ker=BuildKernel<T, laplace_grad <T,1> >("laplace_grad", 3, std::pair<int,int>(1,3),
  1291. &potn_ker, &potn_ker, NULL, &potn_ker, &potn_ker, NULL, &potn_ker, NULL);
  1292. return grad_ker;
  1293. }
  1294. template<> inline const Kernel<double>& LaplaceKernel<double>::potential(){
  1295. typedef double T;
  1296. static Kernel<T> potn_ker=BuildKernel<T, laplace_poten<T,2>, laplace_dbl_poten<T,2> >("laplace" , 3, std::pair<int,int>(1,1),
  1297. NULL,NULL,NULL, NULL,NULL,NULL, NULL,NULL, &laplace_vol_poten<double>);
  1298. return potn_ker;
  1299. }
  1300. template<> inline const Kernel<double>& LaplaceKernel<double>::gradient(){
  1301. typedef double T;
  1302. static Kernel<T> potn_ker=BuildKernel<T, laplace_poten<T,2>, laplace_dbl_poten<T,2> >("laplace" , 3, std::pair<int,int>(1,1));
  1303. static Kernel<T> grad_ker=BuildKernel<T, laplace_grad <T,2> >("laplace_grad", 3, std::pair<int,int>(1,3),
  1304. &potn_ker, &potn_ker, NULL, &potn_ker, &potn_ker, NULL, &potn_ker, NULL);
  1305. return grad_ker;
  1306. }
  1307. ////////////////////////////////////////////////////////////////////////////////
  1308. //////// STOKES KERNEL ////////
  1309. ////////////////////////////////////////////////////////////////////////////////
  1310. /**
  1311. * \brief Green's function for the Stokes's equation. Kernel tensor
  1312. * dimension = 3x3.
  1313. */
  1314. template <class Real_t, class Vec_t=Real_t, Vec_t (*RSQRT_INTRIN)(Vec_t)=rsqrt_intrin0<Vec_t> >
  1315. void stokes_vel_uKernel(Matrix<Real_t>& src_coord, Matrix<Real_t>& src_value, Matrix<Real_t>& trg_coord, Matrix<Real_t>& trg_value){
  1316. #define SRC_BLK 500
  1317. size_t VecLen=sizeof(Vec_t)/sizeof(Real_t);
  1318. //// Number of newton iterations
  1319. size_t NWTN_ITER=0;
  1320. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin0<Vec_t,Real_t>) NWTN_ITER=0;
  1321. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin1<Vec_t,Real_t>) NWTN_ITER=1;
  1322. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin2<Vec_t,Real_t>) NWTN_ITER=2;
  1323. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin3<Vec_t,Real_t>) NWTN_ITER=3;
  1324. Real_t nwtn_scal=1; // scaling factor for newton iterations
  1325. for(int i=0;i<NWTN_ITER;i++){
  1326. nwtn_scal=2*nwtn_scal*nwtn_scal*nwtn_scal;
  1327. }
  1328. const Real_t OOEP = 1.0/(8*nwtn_scal*const_pi<Real_t>());
  1329. Vec_t inv_nwtn_scal2=set_intrin<Vec_t,Real_t>(1.0/(nwtn_scal*nwtn_scal));
  1330. size_t src_cnt_=src_coord.Dim(1);
  1331. size_t trg_cnt_=trg_coord.Dim(1);
  1332. for(size_t sblk=0;sblk<src_cnt_;sblk+=SRC_BLK){
  1333. size_t src_cnt=src_cnt_-sblk;
  1334. if(src_cnt>SRC_BLK) src_cnt=SRC_BLK;
  1335. for(size_t t=0;t<trg_cnt_;t+=VecLen){
  1336. Vec_t tx=load_intrin<Vec_t>(&trg_coord[0][t]);
  1337. Vec_t ty=load_intrin<Vec_t>(&trg_coord[1][t]);
  1338. Vec_t tz=load_intrin<Vec_t>(&trg_coord[2][t]);
  1339. Vec_t tvx=zero_intrin<Vec_t>();
  1340. Vec_t tvy=zero_intrin<Vec_t>();
  1341. Vec_t tvz=zero_intrin<Vec_t>();
  1342. for(size_t s=sblk;s<sblk+src_cnt;s++){
  1343. Vec_t dx=sub_intrin(tx,bcast_intrin<Vec_t>(&src_coord[0][s]));
  1344. Vec_t dy=sub_intrin(ty,bcast_intrin<Vec_t>(&src_coord[1][s]));
  1345. Vec_t dz=sub_intrin(tz,bcast_intrin<Vec_t>(&src_coord[2][s]));
  1346. Vec_t svx= bcast_intrin<Vec_t>(&src_value[0][s]) ;
  1347. Vec_t svy= bcast_intrin<Vec_t>(&src_value[1][s]) ;
  1348. Vec_t svz= bcast_intrin<Vec_t>(&src_value[2][s]) ;
  1349. Vec_t r2= mul_intrin(dx,dx) ;
  1350. r2=add_intrin(r2,mul_intrin(dy,dy));
  1351. r2=add_intrin(r2,mul_intrin(dz,dz));
  1352. Vec_t rinv=RSQRT_INTRIN(r2);
  1353. Vec_t rinv2=mul_intrin(mul_intrin(rinv,rinv),inv_nwtn_scal2);
  1354. Vec_t inner_prod= mul_intrin(svx,dx) ;
  1355. inner_prod=add_intrin(inner_prod,mul_intrin(svy,dy));
  1356. inner_prod=add_intrin(inner_prod,mul_intrin(svz,dz));
  1357. inner_prod=mul_intrin(inner_prod,rinv2);
  1358. tvx=add_intrin(tvx,mul_intrin(rinv,add_intrin(svx,mul_intrin(dx,inner_prod))));
  1359. tvy=add_intrin(tvy,mul_intrin(rinv,add_intrin(svy,mul_intrin(dy,inner_prod))));
  1360. tvz=add_intrin(tvz,mul_intrin(rinv,add_intrin(svz,mul_intrin(dz,inner_prod))));
  1361. }
  1362. Vec_t ooep=set_intrin<Vec_t,Real_t>(OOEP);
  1363. tvx=add_intrin(mul_intrin(tvx,ooep),load_intrin<Vec_t>(&trg_value[0][t]));
  1364. tvy=add_intrin(mul_intrin(tvy,ooep),load_intrin<Vec_t>(&trg_value[1][t]));
  1365. tvz=add_intrin(mul_intrin(tvz,ooep),load_intrin<Vec_t>(&trg_value[2][t]));
  1366. store_intrin(&trg_value[0][t],tvx);
  1367. store_intrin(&trg_value[1][t],tvy);
  1368. store_intrin(&trg_value[2][t],tvz);
  1369. }
  1370. }
  1371. { // Add FLOPS
  1372. #ifndef __MIC__
  1373. Profile::Add_FLOP((long long)trg_cnt_*(long long)src_cnt_*(29+4*(NWTN_ITER)));
  1374. #endif
  1375. }
  1376. #undef SRC_BLK
  1377. }
  1378. template <class T, int newton_iter=0>
  1379. void stokes_vel(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* v_trg, mem::MemoryManager* mem_mgr){
  1380. #define STK_KER_NWTN(nwtn) if(newton_iter==nwtn) \
  1381. generic_kernel<Real_t, 3, 3, stokes_vel_uKernel<Real_t,Vec_t, rsqrt_intrin##nwtn<Vec_t,Real_t> > > \
  1382. ((Real_t*)r_src, src_cnt, (Real_t*)v_src, dof, (Real_t*)r_trg, trg_cnt, (Real_t*)v_trg, mem_mgr)
  1383. #define STOKES_KERNEL STK_KER_NWTN(0); STK_KER_NWTN(1); STK_KER_NWTN(2); STK_KER_NWTN(3);
  1384. if(mem::TypeTraits<T>::ID()==mem::TypeTraits<float>::ID()){
  1385. typedef float Real_t;
  1386. #if defined __MIC__
  1387. #define Vec_t Real_t
  1388. #elif defined __AVX__
  1389. #define Vec_t __m256
  1390. #elif defined __SSE3__
  1391. #define Vec_t __m128
  1392. #else
  1393. #define Vec_t Real_t
  1394. #endif
  1395. STOKES_KERNEL;
  1396. #undef Vec_t
  1397. }else if(mem::TypeTraits<T>::ID()==mem::TypeTraits<double>::ID()){
  1398. typedef double Real_t;
  1399. #if defined __MIC__
  1400. #define Vec_t Real_t
  1401. #elif defined __AVX__
  1402. #define Vec_t __m256d
  1403. #elif defined __SSE3__
  1404. #define Vec_t __m128d
  1405. #else
  1406. #define Vec_t Real_t
  1407. #endif
  1408. STOKES_KERNEL;
  1409. #undef Vec_t
  1410. }else{
  1411. typedef T Real_t;
  1412. #define Vec_t Real_t
  1413. STOKES_KERNEL;
  1414. #undef Vec_t
  1415. }
  1416. #undef STK_KER_NWTN
  1417. #undef STOKES_KERNEL
  1418. }
  1419. template <class Real_t>
  1420. void stokes_vol_poten(const Real_t* coord, int n, Real_t* out){
  1421. for(int i=0;i<n;i++){
  1422. const Real_t* c=&coord[i*COORD_DIM];
  1423. Real_t rx_2=c[1]*c[1]+c[2]*c[2];
  1424. Real_t ry_2=c[0]*c[0]+c[2]*c[2];
  1425. Real_t rz_2=c[0]*c[0]+c[1]*c[1];
  1426. out[(0*n+i)*3+0]=-rx_2/4; out[(0*n+i)*3+1]= 0; out[(0*n+i)*3+2]= 0;
  1427. out[(1*n+i)*3+0]= 0; out[(1*n+i)*3+1]=-ry_2/4; out[(1*n+i)*3+2]= 0;
  1428. out[(2*n+i)*3+0]= 0; out[(2*n+i)*3+1]= 0; out[(2*n+i)*3+2]=-rz_2/4;
  1429. }
  1430. }
  1431. template <class T>
  1432. void stokes_sym_dip(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1433. #ifndef __MIC__
  1434. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(47*dof));
  1435. #endif
  1436. const T mu=1.0;
  1437. const T OOEPMU = -1.0/(8.0*const_pi<T>()*mu);
  1438. for(int t=0;t<trg_cnt;t++){
  1439. for(int i=0;i<dof;i++){
  1440. T p[3]={0,0,0};
  1441. for(int s=0;s<src_cnt;s++){
  1442. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1443. r_trg[3*t+1]-r_src[3*s+1],
  1444. r_trg[3*t+2]-r_src[3*s+2]};
  1445. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1446. if (R!=0){
  1447. T invR2=1.0/R;
  1448. T invR=pvfmm::sqrt<T>(invR2);
  1449. T invR3=invR2*invR;
  1450. T* f=&v_src[(s*dof+i)*6+0];
  1451. T* n=&v_src[(s*dof+i)*6+3];
  1452. T r_dot_n=(n[0]*dR[0]+n[1]*dR[1]+n[2]*dR[2]);
  1453. T r_dot_f=(f[0]*dR[0]+f[1]*dR[1]+f[2]*dR[2]);
  1454. T n_dot_f=(f[0]* n[0]+f[1]* n[1]+f[2]* n[2]);
  1455. p[0] += dR[0]*(n_dot_f - 3*r_dot_n*r_dot_f*invR2)*invR3;
  1456. p[1] += dR[1]*(n_dot_f - 3*r_dot_n*r_dot_f*invR2)*invR3;
  1457. p[2] += dR[2]*(n_dot_f - 3*r_dot_n*r_dot_f*invR2)*invR3;
  1458. }
  1459. }
  1460. k_out[(t*dof+i)*3+0] += p[0]*OOEPMU;
  1461. k_out[(t*dof+i)*3+1] += p[1]*OOEPMU;
  1462. k_out[(t*dof+i)*3+2] += p[2]*OOEPMU;
  1463. }
  1464. }
  1465. }
  1466. template <class T>
  1467. void stokes_press(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1468. #ifndef __MIC__
  1469. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(17*dof));
  1470. #endif
  1471. const T OOFP = 1.0/(4.0*const_pi<T>());
  1472. for(int t=0;t<trg_cnt;t++){
  1473. for(int i=0;i<dof;i++){
  1474. T p=0;
  1475. for(int s=0;s<src_cnt;s++){
  1476. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1477. r_trg[3*t+1]-r_src[3*s+1],
  1478. r_trg[3*t+2]-r_src[3*s+2]};
  1479. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1480. if (R!=0){
  1481. T invR2=1.0/R;
  1482. T invR=pvfmm::sqrt<T>(invR2);
  1483. T invR3=invR2*invR;
  1484. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1485. v_src_[(s*dof+i)*3+1],
  1486. v_src_[(s*dof+i)*3+2]};
  1487. T inner_prod=(v_src[0]*dR[0] +
  1488. v_src[1]*dR[1] +
  1489. v_src[2]*dR[2])* invR3;
  1490. p += inner_prod;
  1491. }
  1492. }
  1493. k_out[t*dof+i] += p*OOFP;
  1494. }
  1495. }
  1496. }
  1497. template <class T>
  1498. void stokes_stress(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1499. #ifndef __MIC__
  1500. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(45*dof));
  1501. #endif
  1502. const T TOFP = -3.0/(4.0*const_pi<T>());
  1503. for(int t=0;t<trg_cnt;t++){
  1504. for(int i=0;i<dof;i++){
  1505. T p[9]={0,0,0,
  1506. 0,0,0,
  1507. 0,0,0};
  1508. for(int s=0;s<src_cnt;s++){
  1509. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1510. r_trg[3*t+1]-r_src[3*s+1],
  1511. r_trg[3*t+2]-r_src[3*s+2]};
  1512. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1513. if (R!=0){
  1514. T invR2=1.0/R;
  1515. T invR=pvfmm::sqrt<T>(invR2);
  1516. T invR3=invR2*invR;
  1517. T invR5=invR3*invR2;
  1518. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1519. v_src_[(s*dof+i)*3+1],
  1520. v_src_[(s*dof+i)*3+2]};
  1521. T inner_prod=(v_src[0]*dR[0] +
  1522. v_src[1]*dR[1] +
  1523. v_src[2]*dR[2])* invR5;
  1524. p[0] += inner_prod*dR[0]*dR[0]; p[1] += inner_prod*dR[1]*dR[0]; p[2] += inner_prod*dR[2]*dR[0];
  1525. p[3] += inner_prod*dR[0]*dR[1]; p[4] += inner_prod*dR[1]*dR[1]; p[5] += inner_prod*dR[2]*dR[1];
  1526. p[6] += inner_prod*dR[0]*dR[2]; p[7] += inner_prod*dR[1]*dR[2]; p[8] += inner_prod*dR[2]*dR[2];
  1527. }
  1528. }
  1529. k_out[(t*dof+i)*9+0] += p[0]*TOFP;
  1530. k_out[(t*dof+i)*9+1] += p[1]*TOFP;
  1531. k_out[(t*dof+i)*9+2] += p[2]*TOFP;
  1532. k_out[(t*dof+i)*9+3] += p[3]*TOFP;
  1533. k_out[(t*dof+i)*9+4] += p[4]*TOFP;
  1534. k_out[(t*dof+i)*9+5] += p[5]*TOFP;
  1535. k_out[(t*dof+i)*9+6] += p[6]*TOFP;
  1536. k_out[(t*dof+i)*9+7] += p[7]*TOFP;
  1537. k_out[(t*dof+i)*9+8] += p[8]*TOFP;
  1538. }
  1539. }
  1540. }
  1541. template <class T>
  1542. void stokes_grad(T* r_src, int src_cnt, T* v_src_, int dof, T* r_trg, int trg_cnt, T* k_out, mem::MemoryManager* mem_mgr){
  1543. #ifndef __MIC__
  1544. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(89*dof));
  1545. #endif
  1546. const T mu=1.0;
  1547. const T OOEPMU = 1.0/(8.0*const_pi<T>()*mu);
  1548. for(int t=0;t<trg_cnt;t++){
  1549. for(int i=0;i<dof;i++){
  1550. T p[9]={0,0,0,
  1551. 0,0,0,
  1552. 0,0,0};
  1553. for(int s=0;s<src_cnt;s++){
  1554. T dR[3]={r_trg[3*t ]-r_src[3*s ],
  1555. r_trg[3*t+1]-r_src[3*s+1],
  1556. r_trg[3*t+2]-r_src[3*s+2]};
  1557. T R = (dR[0]*dR[0]+dR[1]*dR[1]+dR[2]*dR[2]);
  1558. if (R!=0){
  1559. T invR2=1.0/R;
  1560. T invR=pvfmm::sqrt<T>(invR2);
  1561. T invR3=invR2*invR;
  1562. T v_src[3]={v_src_[(s*dof+i)*3 ],
  1563. v_src_[(s*dof+i)*3+1],
  1564. v_src_[(s*dof+i)*3+2]};
  1565. T inner_prod=(v_src[0]*dR[0] +
  1566. v_src[1]*dR[1] +
  1567. v_src[2]*dR[2]);
  1568. p[0] += ( inner_prod*(1-3*dR[0]*dR[0]*invR2))*invR3; //6
  1569. p[1] += (dR[1]*v_src[0]-v_src[1]*dR[0]+inner_prod*( -3*dR[1]*dR[0]*invR2))*invR3; //9
  1570. p[2] += (dR[2]*v_src[0]-v_src[2]*dR[0]+inner_prod*( -3*dR[2]*dR[0]*invR2))*invR3;
  1571. p[3] += (dR[0]*v_src[1]-v_src[0]*dR[1]+inner_prod*( -3*dR[0]*dR[1]*invR2))*invR3;
  1572. p[4] += ( inner_prod*(1-3*dR[1]*dR[1]*invR2))*invR3;
  1573. p[5] += (dR[2]*v_src[1]-v_src[2]*dR[1]+inner_prod*( -3*dR[2]*dR[1]*invR2))*invR3;
  1574. p[6] += (dR[0]*v_src[2]-v_src[0]*dR[2]+inner_prod*( -3*dR[0]*dR[2]*invR2))*invR3;
  1575. p[7] += (dR[1]*v_src[2]-v_src[1]*dR[2]+inner_prod*( -3*dR[1]*dR[2]*invR2))*invR3;
  1576. p[8] += ( inner_prod*(1-3*dR[2]*dR[2]*invR2))*invR3;
  1577. }
  1578. }
  1579. k_out[(t*dof+i)*9+0] += p[0]*OOEPMU;
  1580. k_out[(t*dof+i)*9+1] += p[1]*OOEPMU;
  1581. k_out[(t*dof+i)*9+2] += p[2]*OOEPMU;
  1582. k_out[(t*dof+i)*9+3] += p[3]*OOEPMU;
  1583. k_out[(t*dof+i)*9+4] += p[4]*OOEPMU;
  1584. k_out[(t*dof+i)*9+5] += p[5]*OOEPMU;
  1585. k_out[(t*dof+i)*9+6] += p[6]*OOEPMU;
  1586. k_out[(t*dof+i)*9+7] += p[7]*OOEPMU;
  1587. k_out[(t*dof+i)*9+8] += p[8]*OOEPMU;
  1588. }
  1589. }
  1590. }
  1591. #ifndef __MIC__
  1592. #if defined __SSE3__
  1593. namespace
  1594. {
  1595. #define IDEAL_ALIGNMENT 16
  1596. #define SIMD_LEN (int)(IDEAL_ALIGNMENT / sizeof(double))
  1597. #define DECL_SIMD_ALIGNED __declspec(align(IDEAL_ALIGNMENT))
  1598. void stokesPressureSSE(
  1599. const int ns,
  1600. const int nt,
  1601. const double *sx,
  1602. const double *sy,
  1603. const double *sz,
  1604. const double *tx,
  1605. const double *ty,
  1606. const double *tz,
  1607. const double *srcDen,
  1608. double *trgVal)
  1609. {
  1610. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1611. abort();
  1612. double OOFP = 1.0/(4.0*const_pi<double>());
  1613. __m128d temp_press;
  1614. double aux_arr[SIMD_LEN+1];
  1615. double *tempval_press;
  1616. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1617. {
  1618. tempval_press = aux_arr + 1;
  1619. if (size_t(tempval_press)%IDEAL_ALIGNMENT)
  1620. abort();
  1621. }
  1622. else
  1623. tempval_press = aux_arr;
  1624. /*! One over eight pi */
  1625. __m128d oofp = _mm_set1_pd (OOFP);
  1626. __m128d half = _mm_set1_pd (0.5);
  1627. __m128d opf = _mm_set1_pd (1.5);
  1628. __m128d zero = _mm_setzero_pd ();
  1629. // loop over sources
  1630. int i = 0;
  1631. for (; i < nt; i++) {
  1632. temp_press = _mm_setzero_pd();
  1633. __m128d txi = _mm_load1_pd (&tx[i]);
  1634. __m128d tyi = _mm_load1_pd (&ty[i]);
  1635. __m128d tzi = _mm_load1_pd (&tz[i]);
  1636. int j = 0;
  1637. // Load and calculate in groups of SIMD_LEN
  1638. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1639. __m128d sxj = _mm_load_pd (&sx[j]);
  1640. __m128d syj = _mm_load_pd (&sy[j]);
  1641. __m128d szj = _mm_load_pd (&sz[j]);
  1642. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1643. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1644. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1645. __m128d dX, dY, dZ;
  1646. __m128d dR2;
  1647. __m128d S;
  1648. dX = _mm_sub_pd(txi , sxj);
  1649. dY = _mm_sub_pd(tyi , syj);
  1650. dZ = _mm_sub_pd(tzi , szj);
  1651. sxj = _mm_mul_pd(dX, dX);
  1652. syj = _mm_mul_pd(dY, dY);
  1653. szj = _mm_mul_pd(dZ, dZ);
  1654. dR2 = _mm_add_pd(sxj, syj);
  1655. dR2 = _mm_add_pd(szj, dR2);
  1656. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  1657. __m128d xhalf = _mm_mul_pd (half, dR2);
  1658. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1659. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1660. __m128d S_d = _mm_cvtps_pd(S_s);
  1661. // To handle the condition when src and trg coincide
  1662. S_d = _mm_andnot_pd (temp, S_d);
  1663. S = _mm_mul_pd (S_d, S_d);
  1664. S = _mm_mul_pd (S, xhalf);
  1665. S = _mm_sub_pd (opf, S);
  1666. S = _mm_mul_pd (S, S_d);
  1667. __m128d dotx = _mm_mul_pd (dX, sdenx);
  1668. __m128d doty = _mm_mul_pd (dY, sdeny);
  1669. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  1670. __m128d dot_sum = _mm_add_pd (dotx, doty);
  1671. dot_sum = _mm_add_pd (dot_sum, dotz);
  1672. dot_sum = _mm_mul_pd (dot_sum, S);
  1673. dot_sum = _mm_mul_pd (dot_sum, S);
  1674. dot_sum = _mm_mul_pd (dot_sum, S);
  1675. temp_press = _mm_add_pd (dot_sum, temp_press);
  1676. }
  1677. temp_press = _mm_mul_pd (temp_press, oofp);
  1678. _mm_store_pd(tempval_press, temp_press);
  1679. for (int k = 0; k < SIMD_LEN; k++) {
  1680. trgVal[i] += tempval_press[k];
  1681. }
  1682. for (; j < ns; j++) {
  1683. double x = tx[i] - sx[j];
  1684. double y = ty[i] - sy[j];
  1685. double z = tz[i] - sz[j];
  1686. double r2 = x*x + y*y + z*z;
  1687. double r = pvfmm::sqrt<double>(r2);
  1688. double invdr;
  1689. if (r == 0)
  1690. invdr = 0;
  1691. else
  1692. invdr = 1/r;
  1693. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]) * invdr * invdr * invdr;
  1694. trgVal[i] += dot*OOFP;
  1695. }
  1696. }
  1697. return;
  1698. }
  1699. void stokesStressSSE(
  1700. const int ns,
  1701. const int nt,
  1702. const double *sx,
  1703. const double *sy,
  1704. const double *sz,
  1705. const double *tx,
  1706. const double *ty,
  1707. const double *tz,
  1708. const double *srcDen,
  1709. double *trgVal)
  1710. {
  1711. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1712. abort();
  1713. double TOFP = -3.0/(4.0*const_pi<double>());
  1714. __m128d tempxx; __m128d tempxy; __m128d tempxz;
  1715. __m128d tempyx; __m128d tempyy; __m128d tempyz;
  1716. __m128d tempzx; __m128d tempzy; __m128d tempzz;
  1717. double aux_arr[9*SIMD_LEN+1];
  1718. double *tempvalxx, *tempvalxy, *tempvalxz;
  1719. double *tempvalyx, *tempvalyy, *tempvalyz;
  1720. double *tempvalzx, *tempvalzy, *tempvalzz;
  1721. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1722. {
  1723. tempvalxx = aux_arr + 1;
  1724. if (size_t(tempvalxx)%IDEAL_ALIGNMENT)
  1725. abort();
  1726. }
  1727. else
  1728. tempvalxx = aux_arr;
  1729. tempvalxy=tempvalxx+SIMD_LEN;
  1730. tempvalxz=tempvalxy+SIMD_LEN;
  1731. tempvalyx=tempvalxz+SIMD_LEN;
  1732. tempvalyy=tempvalyx+SIMD_LEN;
  1733. tempvalyz=tempvalyy+SIMD_LEN;
  1734. tempvalzx=tempvalyz+SIMD_LEN;
  1735. tempvalzy=tempvalzx+SIMD_LEN;
  1736. tempvalzz=tempvalzy+SIMD_LEN;
  1737. /*! One over eight pi */
  1738. __m128d tofp = _mm_set1_pd (TOFP);
  1739. __m128d half = _mm_set1_pd (0.5);
  1740. __m128d opf = _mm_set1_pd (1.5);
  1741. __m128d zero = _mm_setzero_pd ();
  1742. // loop over sources
  1743. int i = 0;
  1744. for (; i < nt; i++) {
  1745. tempxx = _mm_setzero_pd(); tempxy = _mm_setzero_pd(); tempxz = _mm_setzero_pd();
  1746. tempyx = _mm_setzero_pd(); tempyy = _mm_setzero_pd(); tempyz = _mm_setzero_pd();
  1747. tempzx = _mm_setzero_pd(); tempzy = _mm_setzero_pd(); tempzz = _mm_setzero_pd();
  1748. __m128d txi = _mm_load1_pd (&tx[i]);
  1749. __m128d tyi = _mm_load1_pd (&ty[i]);
  1750. __m128d tzi = _mm_load1_pd (&tz[i]);
  1751. int j = 0;
  1752. // Load and calculate in groups of SIMD_LEN
  1753. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1754. __m128d sxj = _mm_load_pd (&sx[j]);
  1755. __m128d syj = _mm_load_pd (&sy[j]);
  1756. __m128d szj = _mm_load_pd (&sz[j]);
  1757. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1758. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1759. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1760. __m128d dX, dY, dZ;
  1761. __m128d dR2;
  1762. __m128d S;
  1763. __m128d S2;
  1764. dX = _mm_sub_pd(txi , sxj);
  1765. dY = _mm_sub_pd(tyi , syj);
  1766. dZ = _mm_sub_pd(tzi , szj);
  1767. sxj = _mm_mul_pd(dX, dX);
  1768. syj = _mm_mul_pd(dY, dY);
  1769. szj = _mm_mul_pd(dZ, dZ);
  1770. dR2 = _mm_add_pd(sxj, syj);
  1771. dR2 = _mm_add_pd(szj, dR2);
  1772. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  1773. __m128d xhalf = _mm_mul_pd (half, dR2);
  1774. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1775. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1776. __m128d S_d = _mm_cvtps_pd(S_s);
  1777. // To handle the condition when src and trg coincide
  1778. S_d = _mm_andnot_pd (temp, S_d);
  1779. S = _mm_mul_pd (S_d, S_d);
  1780. S = _mm_mul_pd (S, xhalf);
  1781. S = _mm_sub_pd (opf, S);
  1782. S = _mm_mul_pd (S, S_d);
  1783. S2 = _mm_mul_pd (S, S);
  1784. __m128d dotx = _mm_mul_pd (dX, sdenx);
  1785. __m128d doty = _mm_mul_pd (dY, sdeny);
  1786. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  1787. __m128d dot_sum = _mm_add_pd (dotx, doty);
  1788. dot_sum = _mm_add_pd (dot_sum, dotz);
  1789. dot_sum = _mm_mul_pd (dot_sum, S);
  1790. dot_sum = _mm_mul_pd (dot_sum, S2);
  1791. dot_sum = _mm_mul_pd (dot_sum, S2);
  1792. dotx = _mm_mul_pd (dot_sum, dX);
  1793. doty = _mm_mul_pd (dot_sum, dY);
  1794. dotz = _mm_mul_pd (dot_sum, dZ);
  1795. tempxx = _mm_add_pd (_mm_mul_pd(dotx,dX), tempxx);
  1796. tempxy = _mm_add_pd (_mm_mul_pd(dotx,dY), tempxy);
  1797. tempxz = _mm_add_pd (_mm_mul_pd(dotx,dZ), tempxz);
  1798. tempyx = _mm_add_pd (_mm_mul_pd(doty,dX), tempyx);
  1799. tempyy = _mm_add_pd (_mm_mul_pd(doty,dY), tempyy);
  1800. tempyz = _mm_add_pd (_mm_mul_pd(doty,dZ), tempyz);
  1801. tempzx = _mm_add_pd (_mm_mul_pd(dotz,dX), tempzx);
  1802. tempzy = _mm_add_pd (_mm_mul_pd(dotz,dY), tempzy);
  1803. tempzz = _mm_add_pd (_mm_mul_pd(dotz,dZ), tempzz);
  1804. }
  1805. tempxx = _mm_mul_pd (tempxx, tofp);
  1806. tempxy = _mm_mul_pd (tempxy, tofp);
  1807. tempxz = _mm_mul_pd (tempxz, tofp);
  1808. tempyx = _mm_mul_pd (tempyx, tofp);
  1809. tempyy = _mm_mul_pd (tempyy, tofp);
  1810. tempyz = _mm_mul_pd (tempyz, tofp);
  1811. tempzx = _mm_mul_pd (tempzx, tofp);
  1812. tempzy = _mm_mul_pd (tempzy, tofp);
  1813. tempzz = _mm_mul_pd (tempzz, tofp);
  1814. _mm_store_pd(tempvalxx, tempxx); _mm_store_pd(tempvalxy, tempxy); _mm_store_pd(tempvalxz, tempxz);
  1815. _mm_store_pd(tempvalyx, tempyx); _mm_store_pd(tempvalyy, tempyy); _mm_store_pd(tempvalyz, tempyz);
  1816. _mm_store_pd(tempvalzx, tempzx); _mm_store_pd(tempvalzy, tempzy); _mm_store_pd(tempvalzz, tempzz);
  1817. for (int k = 0; k < SIMD_LEN; k++) {
  1818. trgVal[i*9 ] += tempvalxx[k];
  1819. trgVal[i*9+1] += tempvalxy[k];
  1820. trgVal[i*9+2] += tempvalxz[k];
  1821. trgVal[i*9+3] += tempvalyx[k];
  1822. trgVal[i*9+4] += tempvalyy[k];
  1823. trgVal[i*9+5] += tempvalyz[k];
  1824. trgVal[i*9+6] += tempvalzx[k];
  1825. trgVal[i*9+7] += tempvalzy[k];
  1826. trgVal[i*9+8] += tempvalzz[k];
  1827. }
  1828. for (; j < ns; j++) {
  1829. double x = tx[i] - sx[j];
  1830. double y = ty[i] - sy[j];
  1831. double z = tz[i] - sz[j];
  1832. double r2 = x*x + y*y + z*z;
  1833. double r = pvfmm::sqrt<double>(r2);
  1834. double invdr;
  1835. if (r == 0)
  1836. invdr = 0;
  1837. else
  1838. invdr = 1/r;
  1839. double invdr2=invdr*invdr;
  1840. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]) * invdr2 * invdr2 * invdr;
  1841. double denx = dot*x;
  1842. double deny = dot*y;
  1843. double denz = dot*z;
  1844. trgVal[i*9 ] += denx*x*TOFP;
  1845. trgVal[i*9+1] += denx*y*TOFP;
  1846. trgVal[i*9+2] += denx*z*TOFP;
  1847. trgVal[i*9+3] += deny*x*TOFP;
  1848. trgVal[i*9+4] += deny*y*TOFP;
  1849. trgVal[i*9+5] += deny*z*TOFP;
  1850. trgVal[i*9+6] += denz*x*TOFP;
  1851. trgVal[i*9+7] += denz*y*TOFP;
  1852. trgVal[i*9+8] += denz*z*TOFP;
  1853. }
  1854. }
  1855. return;
  1856. }
  1857. void stokesGradSSE(
  1858. const int ns,
  1859. const int nt,
  1860. const double *sx,
  1861. const double *sy,
  1862. const double *sz,
  1863. const double *tx,
  1864. const double *ty,
  1865. const double *tz,
  1866. const double *srcDen,
  1867. double *trgVal,
  1868. const double cof )
  1869. {
  1870. if ( size_t(sx)%IDEAL_ALIGNMENT || size_t(sy)%IDEAL_ALIGNMENT || size_t(sz)%IDEAL_ALIGNMENT )
  1871. abort();
  1872. double mu = cof;
  1873. double OOEP = 1.0/(8.0*const_pi<double>());
  1874. __m128d tempxx; __m128d tempxy; __m128d tempxz;
  1875. __m128d tempyx; __m128d tempyy; __m128d tempyz;
  1876. __m128d tempzx; __m128d tempzy; __m128d tempzz;
  1877. double oomeu = 1/mu;
  1878. double aux_arr[9*SIMD_LEN+1];
  1879. double *tempvalxx, *tempvalxy, *tempvalxz;
  1880. double *tempvalyx, *tempvalyy, *tempvalyz;
  1881. double *tempvalzx, *tempvalzy, *tempvalzz;
  1882. if (size_t(aux_arr)%IDEAL_ALIGNMENT) // if aux_arr is misaligned
  1883. {
  1884. tempvalxx = aux_arr + 1;
  1885. if (size_t(tempvalxx)%IDEAL_ALIGNMENT)
  1886. abort();
  1887. }
  1888. else
  1889. tempvalxx = aux_arr;
  1890. tempvalxy=tempvalxx+SIMD_LEN;
  1891. tempvalxz=tempvalxy+SIMD_LEN;
  1892. tempvalyx=tempvalxz+SIMD_LEN;
  1893. tempvalyy=tempvalyx+SIMD_LEN;
  1894. tempvalyz=tempvalyy+SIMD_LEN;
  1895. tempvalzx=tempvalyz+SIMD_LEN;
  1896. tempvalzy=tempvalzx+SIMD_LEN;
  1897. tempvalzz=tempvalzy+SIMD_LEN;
  1898. /*! One over eight pi */
  1899. __m128d ooep = _mm_set1_pd (OOEP);
  1900. __m128d half = _mm_set1_pd (0.5);
  1901. __m128d opf = _mm_set1_pd (1.5);
  1902. __m128d three = _mm_set1_pd (3.0);
  1903. __m128d zero = _mm_setzero_pd ();
  1904. __m128d oomu = _mm_set1_pd (1/mu);
  1905. __m128d ooepmu = _mm_mul_pd(ooep,oomu);
  1906. // loop over sources
  1907. int i = 0;
  1908. for (; i < nt; i++) {
  1909. tempxx = _mm_setzero_pd(); tempxy = _mm_setzero_pd(); tempxz = _mm_setzero_pd();
  1910. tempyx = _mm_setzero_pd(); tempyy = _mm_setzero_pd(); tempyz = _mm_setzero_pd();
  1911. tempzx = _mm_setzero_pd(); tempzy = _mm_setzero_pd(); tempzz = _mm_setzero_pd();
  1912. __m128d txi = _mm_load1_pd (&tx[i]);
  1913. __m128d tyi = _mm_load1_pd (&ty[i]);
  1914. __m128d tzi = _mm_load1_pd (&tz[i]);
  1915. int j = 0;
  1916. // Load and calculate in groups of SIMD_LEN
  1917. for (; j + SIMD_LEN <= ns; j+=SIMD_LEN) {
  1918. __m128d sxj = _mm_load_pd (&sx[j]);
  1919. __m128d syj = _mm_load_pd (&sy[j]);
  1920. __m128d szj = _mm_load_pd (&sz[j]);
  1921. __m128d sdenx = _mm_set_pd (srcDen[(j+1)*3], srcDen[j*3]);
  1922. __m128d sdeny = _mm_set_pd (srcDen[(j+1)*3+1], srcDen[j*3+1]);
  1923. __m128d sdenz = _mm_set_pd (srcDen[(j+1)*3+2], srcDen[j*3+2]);
  1924. __m128d dX, dY, dZ;
  1925. __m128d dR2;
  1926. __m128d S;
  1927. __m128d S2;
  1928. __m128d S3;
  1929. dX = _mm_sub_pd(txi , sxj);
  1930. dY = _mm_sub_pd(tyi , syj);
  1931. dZ = _mm_sub_pd(tzi , szj);
  1932. sxj = _mm_mul_pd(dX, dX);
  1933. syj = _mm_mul_pd(dY, dY);
  1934. szj = _mm_mul_pd(dZ, dZ);
  1935. dR2 = _mm_add_pd(sxj, syj);
  1936. dR2 = _mm_add_pd(szj, dR2);
  1937. __m128d temp = _mm_cmpeq_pd (dR2, zero);
  1938. __m128d xhalf = _mm_mul_pd (half, dR2);
  1939. __m128 dR2_s = _mm_cvtpd_ps(dR2);
  1940. __m128 S_s = _mm_rsqrt_ps(dR2_s);
  1941. __m128d S_d = _mm_cvtps_pd(S_s);
  1942. // To handle the condition when src and trg coincide
  1943. S_d = _mm_andnot_pd (temp, S_d);
  1944. S = _mm_mul_pd (S_d, S_d);
  1945. S = _mm_mul_pd (S, xhalf);
  1946. S = _mm_sub_pd (opf, S);
  1947. S = _mm_mul_pd (S, S_d);
  1948. S2 = _mm_mul_pd (S, S);
  1949. S3 = _mm_mul_pd (S2, S);
  1950. __m128d dotx = _mm_mul_pd (dX, sdenx);
  1951. __m128d doty = _mm_mul_pd (dY, sdeny);
  1952. __m128d dotz = _mm_mul_pd (dZ, sdenz);
  1953. __m128d dot_sum = _mm_add_pd (dotx, doty);
  1954. dot_sum = _mm_add_pd (dot_sum, dotz);
  1955. dot_sum = _mm_mul_pd (dot_sum, S2);
  1956. tempxx = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dX, sdenx), _mm_mul_pd(sdenx, dX)), _mm_mul_pd(dot_sum, _mm_sub_pd(dR2 , _mm_mul_pd(three, _mm_mul_pd(dX, dX)))))),tempxx);
  1957. tempxy = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dY, sdenx), _mm_mul_pd(sdeny, dX)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dY, dX)))))),tempxy);
  1958. tempxz = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dZ, sdenx), _mm_mul_pd(sdenz, dX)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dZ, dX)))))),tempxz);
  1959. tempyx = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dX, sdeny), _mm_mul_pd(sdenx, dY)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dX, dY)))))),tempyx);
  1960. tempyy = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dY, sdeny), _mm_mul_pd(sdeny, dY)), _mm_mul_pd(dot_sum, _mm_sub_pd(dR2 , _mm_mul_pd(three, _mm_mul_pd(dY, dY)))))),tempyy);
  1961. tempyz = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dZ, sdeny), _mm_mul_pd(sdenz, dY)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dZ, dY)))))),tempyz);
  1962. tempzx = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dX, sdenz), _mm_mul_pd(sdenx, dZ)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dX, dZ)))))),tempzx);
  1963. tempzy = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dY, sdenz), _mm_mul_pd(sdeny, dZ)), _mm_mul_pd(dot_sum, _mm_sub_pd(zero, _mm_mul_pd(three, _mm_mul_pd(dY, dZ)))))),tempzy);
  1964. tempzz = _mm_add_pd(_mm_mul_pd(S3,_mm_add_pd(_mm_sub_pd(_mm_mul_pd(dZ, sdenz), _mm_mul_pd(sdenz, dZ)), _mm_mul_pd(dot_sum, _mm_sub_pd(dR2 , _mm_mul_pd(three, _mm_mul_pd(dZ, dZ)))))),tempzz);
  1965. }
  1966. tempxx = _mm_mul_pd (tempxx, ooepmu);
  1967. tempxy = _mm_mul_pd (tempxy, ooepmu);
  1968. tempxz = _mm_mul_pd (tempxz, ooepmu);
  1969. tempyx = _mm_mul_pd (tempyx, ooepmu);
  1970. tempyy = _mm_mul_pd (tempyy, ooepmu);
  1971. tempyz = _mm_mul_pd (tempyz, ooepmu);
  1972. tempzx = _mm_mul_pd (tempzx, ooepmu);
  1973. tempzy = _mm_mul_pd (tempzy, ooepmu);
  1974. tempzz = _mm_mul_pd (tempzz, ooepmu);
  1975. _mm_store_pd(tempvalxx, tempxx); _mm_store_pd(tempvalxy, tempxy); _mm_store_pd(tempvalxz, tempxz);
  1976. _mm_store_pd(tempvalyx, tempyx); _mm_store_pd(tempvalyy, tempyy); _mm_store_pd(tempvalyz, tempyz);
  1977. _mm_store_pd(tempvalzx, tempzx); _mm_store_pd(tempvalzy, tempzy); _mm_store_pd(tempvalzz, tempzz);
  1978. for (int k = 0; k < SIMD_LEN; k++) {
  1979. trgVal[i*9 ] += tempvalxx[k];
  1980. trgVal[i*9+1] += tempvalxy[k];
  1981. trgVal[i*9+2] += tempvalxz[k];
  1982. trgVal[i*9+3] += tempvalyx[k];
  1983. trgVal[i*9+4] += tempvalyy[k];
  1984. trgVal[i*9+5] += tempvalyz[k];
  1985. trgVal[i*9+6] += tempvalzx[k];
  1986. trgVal[i*9+7] += tempvalzy[k];
  1987. trgVal[i*9+8] += tempvalzz[k];
  1988. }
  1989. for (; j < ns; j++) {
  1990. double x = tx[i] - sx[j];
  1991. double y = ty[i] - sy[j];
  1992. double z = tz[i] - sz[j];
  1993. double r2 = x*x + y*y + z*z;
  1994. double r = pvfmm::sqrt<double>(r2);
  1995. double invdr;
  1996. if (r == 0)
  1997. invdr = 0;
  1998. else
  1999. invdr = 1/r;
  2000. double invdr2=invdr*invdr;
  2001. double invdr3=invdr2*invdr;
  2002. double dot = (x*srcDen[j*3] + y*srcDen[j*3+1] + z*srcDen[j*3+2]);
  2003. trgVal[i*9 ] += OOEP*oomeu*invdr3*( x*srcDen[j*3 ] - srcDen[j*3 ]*x + dot*(1-3*x*x*invdr2) );
  2004. trgVal[i*9+1] += OOEP*oomeu*invdr3*( y*srcDen[j*3 ] - srcDen[j*3+1]*x + dot*(0-3*y*x*invdr2) );
  2005. trgVal[i*9+2] += OOEP*oomeu*invdr3*( z*srcDen[j*3 ] - srcDen[j*3+2]*x + dot*(0-3*z*x*invdr2) );
  2006. trgVal[i*9+3] += OOEP*oomeu*invdr3*( x*srcDen[j*3+1] - srcDen[j*3 ]*y + dot*(0-3*x*y*invdr2) );
  2007. trgVal[i*9+4] += OOEP*oomeu*invdr3*( y*srcDen[j*3+1] - srcDen[j*3+1]*y + dot*(1-3*y*y*invdr2) );
  2008. trgVal[i*9+5] += OOEP*oomeu*invdr3*( z*srcDen[j*3+1] - srcDen[j*3+2]*y + dot*(0-3*z*y*invdr2) );
  2009. trgVal[i*9+6] += OOEP*oomeu*invdr3*( x*srcDen[j*3+2] - srcDen[j*3 ]*z + dot*(0-3*x*z*invdr2) );
  2010. trgVal[i*9+7] += OOEP*oomeu*invdr3*( y*srcDen[j*3+2] - srcDen[j*3+1]*z + dot*(0-3*y*z*invdr2) );
  2011. trgVal[i*9+8] += OOEP*oomeu*invdr3*( z*srcDen[j*3+2] - srcDen[j*3+2]*z + dot*(1-3*z*z*invdr2) );
  2012. }
  2013. }
  2014. return;
  2015. }
  2016. #undef SIMD_LEN
  2017. #define X(s,k) (s)[(k)*COORD_DIM]
  2018. #define Y(s,k) (s)[(k)*COORD_DIM+1]
  2019. #define Z(s,k) (s)[(k)*COORD_DIM+2]
  2020. void stokesPressureSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  2021. {
  2022. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  2023. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  2024. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  2025. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2026. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  2027. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2028. //1. reshuffle memory
  2029. for (int k =0;k<ns;k++){
  2030. xs[k+x_shift]=X(src,k);
  2031. ys[k+y_shift]=Y(src,k);
  2032. zs[k+z_shift]=Z(src,k);
  2033. }
  2034. for (int k=0;k<nt;k++){
  2035. xt[k]=X(trg,k);
  2036. yt[k]=Y(trg,k);
  2037. zt[k]=Z(trg,k);
  2038. }
  2039. //2. perform caclulation
  2040. stokesPressureSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  2041. return;
  2042. }
  2043. void stokesStressSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], mem::MemoryManager* mem_mgr=NULL)
  2044. {
  2045. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  2046. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  2047. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  2048. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2049. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  2050. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2051. //1. reshuffle memory
  2052. for (int k =0;k<ns;k++){
  2053. xs[k+x_shift]=X(src,k);
  2054. ys[k+y_shift]=Y(src,k);
  2055. zs[k+z_shift]=Z(src,k);
  2056. }
  2057. for (int k=0;k<nt;k++){
  2058. xt[k]=X(trg,k);
  2059. yt[k]=Y(trg,k);
  2060. zt[k]=Z(trg,k);
  2061. }
  2062. //2. perform caclulation
  2063. stokesStressSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot);
  2064. return;
  2065. }
  2066. void stokesGradSSEShuffle(const int ns, const int nt, double const src[], double const trg[], double const den[], double pot[], const double kernel_coef, mem::MemoryManager* mem_mgr=NULL)
  2067. {
  2068. std::vector<double> xs(ns+1); std::vector<double> xt(nt);
  2069. std::vector<double> ys(ns+1); std::vector<double> yt(nt);
  2070. std::vector<double> zs(ns+1); std::vector<double> zt(nt);
  2071. int x_shift = size_t(&xs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2072. int y_shift = size_t(&ys[0]) % IDEAL_ALIGNMENT ? 1:0;
  2073. int z_shift = size_t(&zs[0]) % IDEAL_ALIGNMENT ? 1:0;
  2074. //1. reshuffle memory
  2075. for (int k =0;k<ns;k++){
  2076. xs[k+x_shift]=X(src,k);
  2077. ys[k+y_shift]=Y(src,k);
  2078. zs[k+z_shift]=Z(src,k);
  2079. }
  2080. for (int k=0;k<nt;k++){
  2081. xt[k]=X(trg,k);
  2082. yt[k]=Y(trg,k);
  2083. zt[k]=Z(trg,k);
  2084. }
  2085. //2. perform caclulation
  2086. stokesGradSSE(ns,nt,&xs[x_shift],&ys[y_shift],&zs[z_shift],&xt[0],&yt[0],&zt[0],den,pot,kernel_coef);
  2087. return;
  2088. }
  2089. #undef X
  2090. #undef Y
  2091. #undef Z
  2092. #undef IDEAL_ALIGNMENT
  2093. #undef DECL_SIMD_ALIGNED
  2094. }
  2095. template <>
  2096. inline void stokes_press<double>(double* r_src, int src_cnt, double* v_src_, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  2097. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(17*dof));
  2098. stokesPressureSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mem_mgr);
  2099. return;
  2100. }
  2101. template <>
  2102. inline void stokes_stress<double>(double* r_src, int src_cnt, double* v_src_, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  2103. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(45*dof));
  2104. stokesStressSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mem_mgr);
  2105. }
  2106. template <>
  2107. inline void stokes_grad<double>(double* r_src, int src_cnt, double* v_src_, int dof, double* r_trg, int trg_cnt, double* k_out, mem::MemoryManager* mem_mgr){
  2108. Profile::Add_FLOP((long long)trg_cnt*(long long)src_cnt*(89*dof));
  2109. const double mu=1.0;
  2110. stokesGradSSEShuffle(src_cnt, trg_cnt, r_src, r_trg, v_src_, k_out, mu, mem_mgr);
  2111. }
  2112. #endif
  2113. #endif
  2114. template<class T> const Kernel<T>& StokesKernel<T>::velocity(){
  2115. static Kernel<T> ker=BuildKernel<T, stokes_vel<T,1>, stokes_sym_dip>("stokes_vel" , 3, std::pair<int,int>(3,3),
  2116. NULL,NULL,NULL, NULL,NULL,NULL, NULL,NULL, &stokes_vol_poten<T>);
  2117. return ker;
  2118. }
  2119. template<class T> const Kernel<T>& StokesKernel<T>::pressure(){
  2120. static Kernel<T> ker=BuildKernel<T, stokes_press >("stokes_press" , 3, std::pair<int,int>(3,1));
  2121. return ker;
  2122. }
  2123. template<class T> const Kernel<T>& StokesKernel<T>::stress(){
  2124. static Kernel<T> ker=BuildKernel<T, stokes_stress >("stokes_stress", 3, std::pair<int,int>(3,9));
  2125. return ker;
  2126. }
  2127. template<class T> const Kernel<T>& StokesKernel<T>::vel_grad(){
  2128. static Kernel<T> ker=BuildKernel<T, stokes_grad >("stokes_grad" , 3, std::pair<int,int>(3,9));
  2129. return ker;
  2130. }
  2131. template<> inline const Kernel<double>& StokesKernel<double>::velocity(){
  2132. typedef double T;
  2133. static Kernel<T> ker=BuildKernel<T, stokes_vel<T,2>, stokes_sym_dip>("stokes_vel" , 3, std::pair<int,int>(3,3),
  2134. NULL,NULL,NULL, NULL,NULL,NULL, NULL,NULL, &stokes_vol_poten<double>);
  2135. return ker;
  2136. }
  2137. ////////////////////////////////////////////////////////////////////////////////
  2138. //////// BIOT-SAVART KERNEL ////////
  2139. ////////////////////////////////////////////////////////////////////////////////
  2140. template <class Real_t, class Vec_t=Real_t, Vec_t (*RSQRT_INTRIN)(Vec_t)=rsqrt_intrin0<Vec_t> >
  2141. void biot_savart_uKernel(Matrix<Real_t>& src_coord, Matrix<Real_t>& src_value, Matrix<Real_t>& trg_coord, Matrix<Real_t>& trg_value){
  2142. #define SRC_BLK 500
  2143. size_t VecLen=sizeof(Vec_t)/sizeof(Real_t);
  2144. //// Number of newton iterations
  2145. size_t NWTN_ITER=0;
  2146. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin0<Vec_t,Real_t>) NWTN_ITER=0;
  2147. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin1<Vec_t,Real_t>) NWTN_ITER=1;
  2148. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin2<Vec_t,Real_t>) NWTN_ITER=2;
  2149. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin3<Vec_t,Real_t>) NWTN_ITER=3;
  2150. Real_t nwtn_scal=1; // scaling factor for newton iterations
  2151. for(int i=0;i<NWTN_ITER;i++){
  2152. nwtn_scal=2*nwtn_scal*nwtn_scal*nwtn_scal;
  2153. }
  2154. const Real_t OOFP = 1.0/(4*nwtn_scal*nwtn_scal*nwtn_scal*const_pi<Real_t>());
  2155. size_t src_cnt_=src_coord.Dim(1);
  2156. size_t trg_cnt_=trg_coord.Dim(1);
  2157. for(size_t sblk=0;sblk<src_cnt_;sblk+=SRC_BLK){
  2158. size_t src_cnt=src_cnt_-sblk;
  2159. if(src_cnt>SRC_BLK) src_cnt=SRC_BLK;
  2160. for(size_t t=0;t<trg_cnt_;t+=VecLen){
  2161. Vec_t tx=load_intrin<Vec_t>(&trg_coord[0][t]);
  2162. Vec_t ty=load_intrin<Vec_t>(&trg_coord[1][t]);
  2163. Vec_t tz=load_intrin<Vec_t>(&trg_coord[2][t]);
  2164. Vec_t tvx=zero_intrin<Vec_t>();
  2165. Vec_t tvy=zero_intrin<Vec_t>();
  2166. Vec_t tvz=zero_intrin<Vec_t>();
  2167. for(size_t s=sblk;s<sblk+src_cnt;s++){
  2168. Vec_t dx=sub_intrin(tx,bcast_intrin<Vec_t>(&src_coord[0][s]));
  2169. Vec_t dy=sub_intrin(ty,bcast_intrin<Vec_t>(&src_coord[1][s]));
  2170. Vec_t dz=sub_intrin(tz,bcast_intrin<Vec_t>(&src_coord[2][s]));
  2171. Vec_t svx= bcast_intrin<Vec_t>(&src_value[0][s]) ;
  2172. Vec_t svy= bcast_intrin<Vec_t>(&src_value[1][s]) ;
  2173. Vec_t svz= bcast_intrin<Vec_t>(&src_value[2][s]) ;
  2174. Vec_t r2= mul_intrin(dx,dx) ;
  2175. r2=add_intrin(r2,mul_intrin(dy,dy));
  2176. r2=add_intrin(r2,mul_intrin(dz,dz));
  2177. Vec_t rinv=RSQRT_INTRIN(r2);
  2178. Vec_t rinv3=mul_intrin(mul_intrin(rinv,rinv),rinv);
  2179. tvx=add_intrin(tvx,mul_intrin(rinv3,sub_intrin(mul_intrin(svy,dz),mul_intrin(svz,dy))));
  2180. tvy=add_intrin(tvy,mul_intrin(rinv3,sub_intrin(mul_intrin(svz,dx),mul_intrin(svx,dz))));
  2181. tvz=add_intrin(tvz,mul_intrin(rinv3,sub_intrin(mul_intrin(svx,dy),mul_intrin(svy,dx))));
  2182. }
  2183. Vec_t oofp=set_intrin<Vec_t,Real_t>(OOFP);
  2184. tvx=add_intrin(mul_intrin(tvx,oofp),load_intrin<Vec_t>(&trg_value[0][t]));
  2185. tvy=add_intrin(mul_intrin(tvy,oofp),load_intrin<Vec_t>(&trg_value[1][t]));
  2186. tvz=add_intrin(mul_intrin(tvz,oofp),load_intrin<Vec_t>(&trg_value[2][t]));
  2187. store_intrin(&trg_value[0][t],tvx);
  2188. store_intrin(&trg_value[1][t],tvy);
  2189. store_intrin(&trg_value[2][t],tvz);
  2190. }
  2191. }
  2192. { // Add FLOPS
  2193. #ifndef __MIC__
  2194. Profile::Add_FLOP((long long)trg_cnt_*(long long)src_cnt_*(29+4*(NWTN_ITER)));
  2195. #endif
  2196. }
  2197. #undef SRC_BLK
  2198. }
  2199. template <class T, int newton_iter=0>
  2200. void biot_savart(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* v_trg, mem::MemoryManager* mem_mgr){
  2201. #define BS_KER_NWTN(nwtn) if(newton_iter==nwtn) \
  2202. generic_kernel<Real_t, 3, 3, biot_savart_uKernel<Real_t,Vec_t, rsqrt_intrin##nwtn<Vec_t,Real_t> > > \
  2203. ((Real_t*)r_src, src_cnt, (Real_t*)v_src, dof, (Real_t*)r_trg, trg_cnt, (Real_t*)v_trg, mem_mgr)
  2204. #define BIOTSAVART_KERNEL BS_KER_NWTN(0); BS_KER_NWTN(1); BS_KER_NWTN(2); BS_KER_NWTN(3);
  2205. if(mem::TypeTraits<T>::ID()==mem::TypeTraits<float>::ID()){
  2206. typedef float Real_t;
  2207. #if defined __MIC__
  2208. #define Vec_t Real_t
  2209. #elif defined __AVX__
  2210. #define Vec_t __m256
  2211. #elif defined __SSE3__
  2212. #define Vec_t __m128
  2213. #else
  2214. #define Vec_t Real_t
  2215. #endif
  2216. BIOTSAVART_KERNEL;
  2217. #undef Vec_t
  2218. }else if(mem::TypeTraits<T>::ID()==mem::TypeTraits<double>::ID()){
  2219. typedef double Real_t;
  2220. #if defined __MIC__
  2221. #define Vec_t Real_t
  2222. #elif defined __AVX__
  2223. #define Vec_t __m256d
  2224. #elif defined __SSE3__
  2225. #define Vec_t __m128d
  2226. #else
  2227. #define Vec_t Real_t
  2228. #endif
  2229. BIOTSAVART_KERNEL;
  2230. #undef Vec_t
  2231. }else{
  2232. typedef T Real_t;
  2233. #define Vec_t Real_t
  2234. BIOTSAVART_KERNEL;
  2235. #undef Vec_t
  2236. }
  2237. #undef BS_KER_NWTN
  2238. #undef BIOTSAVART_KERNEL
  2239. }
  2240. template<class T> const Kernel<T>& BiotSavartKernel<T>::potential(){
  2241. static Kernel<T> ker=BuildKernel<T, biot_savart<T,1> >("biot_savart", 3, std::pair<int,int>(3,3));
  2242. return ker;
  2243. }
  2244. template<> inline const Kernel<double>& BiotSavartKernel<double>::potential(){
  2245. typedef double T;
  2246. static Kernel<T> ker=BuildKernel<T, biot_savart<T,2> >("biot_savart", 3, std::pair<int,int>(3,3));
  2247. return ker;
  2248. }
  2249. ////////////////////////////////////////////////////////////////////////////////
  2250. //////// HELMHOLTZ KERNEL ////////
  2251. ////////////////////////////////////////////////////////////////////////////////
  2252. /**
  2253. * \brief Green's function for the Helmholtz's equation. Kernel tensor
  2254. * dimension = 2x2.
  2255. */
  2256. template <class Real_t, class Vec_t=Real_t, Vec_t (*RSQRT_INTRIN)(Vec_t)=rsqrt_intrin0<Vec_t> >
  2257. void helmholtz_poten_uKernel(Matrix<Real_t>& src_coord, Matrix<Real_t>& src_value, Matrix<Real_t>& trg_coord, Matrix<Real_t>& trg_value){
  2258. #define SRC_BLK 500
  2259. size_t VecLen=sizeof(Vec_t)/sizeof(Real_t);
  2260. //// Number of newton iterations
  2261. size_t NWTN_ITER=0;
  2262. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin0<Vec_t,Real_t>) NWTN_ITER=0;
  2263. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin1<Vec_t,Real_t>) NWTN_ITER=1;
  2264. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin2<Vec_t,Real_t>) NWTN_ITER=2;
  2265. if(RSQRT_INTRIN==(Vec_t (*)(Vec_t))rsqrt_intrin3<Vec_t,Real_t>) NWTN_ITER=3;
  2266. Real_t nwtn_scal=1; // scaling factor for newton iterations
  2267. for(int i=0;i<NWTN_ITER;i++){
  2268. nwtn_scal=2*nwtn_scal*nwtn_scal*nwtn_scal;
  2269. }
  2270. const Real_t OOFP = 1.0/(4*nwtn_scal*const_pi<Real_t>());
  2271. const Vec_t mu = set_intrin<Vec_t,Real_t>(20.0*const_pi<Real_t>()/nwtn_scal);
  2272. size_t src_cnt_=src_coord.Dim(1);
  2273. size_t trg_cnt_=trg_coord.Dim(1);
  2274. for(size_t sblk=0;sblk<src_cnt_;sblk+=SRC_BLK){
  2275. size_t src_cnt=src_cnt_-sblk;
  2276. if(src_cnt>SRC_BLK) src_cnt=SRC_BLK;
  2277. for(size_t t=0;t<trg_cnt_;t+=VecLen){
  2278. Vec_t tx=load_intrin<Vec_t>(&trg_coord[0][t]);
  2279. Vec_t ty=load_intrin<Vec_t>(&trg_coord[1][t]);
  2280. Vec_t tz=load_intrin<Vec_t>(&trg_coord[2][t]);
  2281. Vec_t tvx=zero_intrin<Vec_t>();
  2282. Vec_t tvy=zero_intrin<Vec_t>();
  2283. for(size_t s=sblk;s<sblk+src_cnt;s++){
  2284. Vec_t dx=sub_intrin(tx,bcast_intrin<Vec_t>(&src_coord[0][s]));
  2285. Vec_t dy=sub_intrin(ty,bcast_intrin<Vec_t>(&src_coord[1][s]));
  2286. Vec_t dz=sub_intrin(tz,bcast_intrin<Vec_t>(&src_coord[2][s]));
  2287. Vec_t svx= bcast_intrin<Vec_t>(&src_value[0][s]) ;
  2288. Vec_t svy= bcast_intrin<Vec_t>(&src_value[1][s]) ;
  2289. Vec_t r2= mul_intrin(dx,dx) ;
  2290. r2=add_intrin(r2,mul_intrin(dy,dy));
  2291. r2=add_intrin(r2,mul_intrin(dz,dz));
  2292. Vec_t rinv=RSQRT_INTRIN(r2);
  2293. Vec_t mu_r=mul_intrin(mu,mul_intrin(r2,rinv));
  2294. Vec_t G0=mul_intrin(cos_intrin(mu_r),rinv);
  2295. Vec_t G1=mul_intrin(sin_intrin(mu_r),rinv);
  2296. tvx=add_intrin(tvx,sub_intrin(mul_intrin(svx,G0),mul_intrin(svy,G1)));
  2297. tvy=add_intrin(tvy,add_intrin(mul_intrin(svx,G1),mul_intrin(svy,G0)));
  2298. }
  2299. Vec_t oofp=set_intrin<Vec_t,Real_t>(OOFP);
  2300. tvx=add_intrin(mul_intrin(tvx,oofp),load_intrin<Vec_t>(&trg_value[0][t]));
  2301. tvy=add_intrin(mul_intrin(tvy,oofp),load_intrin<Vec_t>(&trg_value[1][t]));
  2302. store_intrin(&trg_value[0][t],tvx);
  2303. store_intrin(&trg_value[1][t],tvy);
  2304. }
  2305. }
  2306. { // Add FLOPS
  2307. #ifndef __MIC__
  2308. Profile::Add_FLOP((long long)trg_cnt_*(long long)src_cnt_*(24+4*(NWTN_ITER)));
  2309. #endif
  2310. }
  2311. #undef SRC_BLK
  2312. }
  2313. template <class T, int newton_iter=0>
  2314. void helmholtz_poten(T* r_src, int src_cnt, T* v_src, int dof, T* r_trg, int trg_cnt, T* v_trg, mem::MemoryManager* mem_mgr){
  2315. #define HELM_KER_NWTN(nwtn) if(newton_iter==nwtn) \
  2316. generic_kernel<Real_t, 2, 2, helmholtz_poten_uKernel<Real_t,Vec_t, rsqrt_intrin##nwtn<Vec_t,Real_t> > > \
  2317. ((Real_t*)r_src, src_cnt, (Real_t*)v_src, dof, (Real_t*)r_trg, trg_cnt, (Real_t*)v_trg, mem_mgr)
  2318. #define HELMHOLTZ_KERNEL HELM_KER_NWTN(0); HELM_KER_NWTN(1); HELM_KER_NWTN(2); HELM_KER_NWTN(3);
  2319. if(mem::TypeTraits<T>::ID()==mem::TypeTraits<float>::ID()){
  2320. typedef float Real_t;
  2321. #if defined __MIC__
  2322. #define Vec_t Real_t
  2323. #elif defined __AVX__
  2324. #define Vec_t __m256
  2325. #elif defined __SSE3__
  2326. #define Vec_t __m128
  2327. #else
  2328. #define Vec_t Real_t
  2329. #endif
  2330. HELMHOLTZ_KERNEL;
  2331. #undef Vec_t
  2332. }else if(mem::TypeTraits<T>::ID()==mem::TypeTraits<double>::ID()){
  2333. typedef double Real_t;
  2334. #if defined __MIC__
  2335. #define Vec_t Real_t
  2336. #elif defined __AVX__
  2337. #define Vec_t __m256d
  2338. #elif defined __SSE3__
  2339. #define Vec_t __m128d
  2340. #else
  2341. #define Vec_t Real_t
  2342. #endif
  2343. HELMHOLTZ_KERNEL;
  2344. #undef Vec_t
  2345. }else{
  2346. typedef T Real_t;
  2347. #define Vec_t Real_t
  2348. HELMHOLTZ_KERNEL;
  2349. #undef Vec_t
  2350. }
  2351. #undef HELM_KER_NWTN
  2352. #undef HELMHOLTZ_KERNEL
  2353. }
  2354. template<class T> const Kernel<T>& HelmholtzKernel<T>::potential(){
  2355. static Kernel<T> ker=BuildKernel<T, helmholtz_poten<T,1> >("helmholtz" , 3, std::pair<int,int>(2,2));
  2356. return ker;
  2357. }
  2358. template<> inline const Kernel<double>& HelmholtzKernel<double>::potential(){
  2359. typedef double T;
  2360. static Kernel<T> ker=BuildKernel<T, helmholtz_poten<T,3> >("helmholtz" , 3, std::pair<int,int>(2,2));
  2361. return ker;
  2362. }
  2363. }//end namespace