|
@@ -0,0 +1,1789 @@
|
|
|
|
+#ifndef _SCTL_BOUNDARY_QUADRATURE_HPP_
|
|
|
|
+#define _SCTL_BOUNDARY_QUADRATURE_HPP_
|
|
|
|
+
|
|
|
|
+#include <mutex>
|
|
|
|
+#include <atomic>
|
|
|
|
+#include <tuple>
|
|
|
|
+
|
|
|
|
+namespace SCTL_NAMESPACE {
|
|
|
|
+
|
|
|
|
+template <class Real, Integer DIM, Integer ORDER> class Basis {
|
|
|
|
+ public:
|
|
|
|
+ using ValueType = Real;
|
|
|
|
+
|
|
|
|
+ // class EvalOperator {
|
|
|
|
+ // public:
|
|
|
|
+ // };
|
|
|
|
+ using EvalOpType = Matrix<ValueType>;
|
|
|
|
+
|
|
|
|
+ static constexpr Long Dim() {
|
|
|
|
+ return DIM;
|
|
|
|
+ }
|
|
|
|
+ static constexpr Long Size() {
|
|
|
|
+ return pow<DIM,Long>(ORDER);
|
|
|
|
+ }
|
|
|
|
+ static const Matrix<ValueType>& Nodes() {
|
|
|
|
+ static Matrix<ValueType> nodes_(DIM,Size());
|
|
|
|
+ auto nodes_1d = [](Integer i) {
|
|
|
|
+ return 0.5 - 0.5 * sctl::cos<ValueType>((2*i+1) * const_pi<ValueType>() / (2*ORDER));
|
|
|
|
+ };
|
|
|
|
+ { // Set nodes_
|
|
|
|
+ static std::mutex mutex;
|
|
|
|
+ static std::atomic<Integer> first_time(true);
|
|
|
|
+ if (first_time.load(std::memory_order_relaxed)) {
|
|
|
|
+ std::lock_guard<std::mutex> guard(mutex);
|
|
|
|
+ if (first_time.load(std::memory_order_relaxed)) {
|
|
|
|
+ Integer N = 1;
|
|
|
|
+ for (Integer d = 0; d < DIM; d++) {
|
|
|
|
+ for (Integer j = 0; j < ORDER; j++) {
|
|
|
|
+ for (Integer i = 0; i < N; i++) {
|
|
|
|
+ for (Integer k = 0; k < d; k++) {
|
|
|
|
+ nodes_[k][j*N+i] = nodes_[k][i];
|
|
|
|
+ }
|
|
|
|
+ nodes_[d][j*N+i] = nodes_1d(j);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ N *= ORDER;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ std::atomic_thread_fence(std::memory_order_seq_cst);
|
|
|
|
+ first_time.store(false);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ return nodes_;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ static void Grad(Vector<Basis>& dX, const Vector<Basis>& X) {
|
|
|
|
+ static Matrix<ValueType> GradOp[DIM];
|
|
|
|
+ static std::mutex mutex;
|
|
|
|
+ static std::atomic<Integer> first_time(true);
|
|
|
|
+ if (first_time.load(std::memory_order_relaxed)) {
|
|
|
|
+ std::lock_guard<std::mutex> guard(mutex);
|
|
|
|
+ if (first_time.load(std::memory_order_relaxed)) {
|
|
|
|
+ { // Set GradOp
|
|
|
|
+ auto nodes = Basis<ValueType,1,ORDER>::Nodes();
|
|
|
|
+ SCTL_ASSERT(nodes.Dim(1) == ORDER);
|
|
|
|
+ Matrix<ValueType> M(ORDER, ORDER);
|
|
|
|
+ for (Integer i = 0; i < ORDER; i++) { // Set M
|
|
|
|
+ Real x = nodes[0][i];
|
|
|
|
+ for (Integer j = 0; j < ORDER; j++) {
|
|
|
|
+ M[j][i] = 0;
|
|
|
|
+ for (Integer l = 0; l < ORDER; l++) {
|
|
|
|
+ if (l != j) {
|
|
|
|
+ Real M_ = 1;
|
|
|
|
+ for (Integer k = 0; k < ORDER; k++) {
|
|
|
|
+ if (k != j && k != l) M_ *= (x - nodes[0][k]);
|
|
|
|
+ if (k != j) M_ /= (nodes[0][j] - nodes[0][k]);
|
|
|
|
+ }
|
|
|
|
+ M[j][i] += M_;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ for (Integer d = 0; d < DIM; d++) {
|
|
|
|
+ GradOp[d].ReInit(Size(), Size());
|
|
|
|
+ GradOp[d] = 0;
|
|
|
|
+ Integer stride0 = sctl::pow<Integer>(ORDER, d);
|
|
|
|
+ Integer repeat0 = sctl::pow<Integer>(ORDER, d);
|
|
|
|
+ Integer stride1 = sctl::pow<Integer>(ORDER, d+1);
|
|
|
|
+ Integer repeat1 = sctl::pow<Integer>(ORDER, DIM-d-1);
|
|
|
|
+ for (Integer k1 = 0; k1 < repeat1; k1++) {
|
|
|
|
+ for (Integer i = 0; i < ORDER; i++) {
|
|
|
|
+ for (Integer j = 0; j < ORDER; j++) {
|
|
|
|
+ for (Integer k0 = 0; k0 < repeat0; k0++) {
|
|
|
|
+ GradOp[d][k1*stride1 + i*stride0 + k0][k1*stride1 + j*stride0 + k0] = M[i][j];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ std::atomic_thread_fence(std::memory_order_seq_cst);
|
|
|
|
+ first_time.store(false);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (dX.Dim() != X.Dim()*DIM) dX.ReInit(X.Dim()*DIM);
|
|
|
|
+ for (Long i = 0; i < X.Dim(); i++) {
|
|
|
|
+ const Matrix<ValueType> Vi(1, Size(), (Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_, false);
|
|
|
|
+ for (Integer k = 0; k < DIM; k++) {
|
|
|
|
+ Matrix<ValueType> Vo(1, Size(), dX[i*DIM+k].NodeValues_, false);
|
|
|
|
+ Matrix<ValueType>::GEMM(Vo, Vi, GradOp[k]);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ static EvalOpType SetupEval(const Matrix<ValueType>& X) {
|
|
|
|
+ Long N = X.Dim(1);
|
|
|
|
+ SCTL_ASSERT(X.Dim(0) == DIM);
|
|
|
|
+ Matrix<ValueType> M(Size(), N);
|
|
|
|
+ { // Set M
|
|
|
|
+ auto nodes = Basis<ValueType,1,ORDER>::Nodes();
|
|
|
|
+ Integer NN = nodes.Dim(1);
|
|
|
|
+ Matrix<ValueType> M_(NN, DIM*N);
|
|
|
|
+ for (Long i = 0; i < DIM*N; i++) {
|
|
|
|
+ ValueType x = X[0][i];
|
|
|
|
+ for (Integer j = 0; j < NN; j++) {
|
|
|
|
+ ValueType y = 1;
|
|
|
|
+ for (Integer k = 0; k < NN; k++) {
|
|
|
|
+ y *= (j==k ? 1 : (nodes[0][k] - x) / (nodes[0][k] - nodes[0][j]));
|
|
|
|
+ }
|
|
|
|
+ M_[j][i] = y;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ if (DIM == 1) {
|
|
|
|
+ SCTL_ASSERT(M.Dim(0) == M_.Dim(0));
|
|
|
|
+ SCTL_ASSERT(M.Dim(1) == M_.Dim(1));
|
|
|
|
+ M = M_;
|
|
|
|
+ } else {
|
|
|
|
+ Integer NNN = 1;
|
|
|
|
+ M = 1;
|
|
|
|
+ for (Integer d = 0; d < DIM; d++) {
|
|
|
|
+ for (Integer k = 1; k < NN; k++) {
|
|
|
|
+ for (Integer j = 0; j < NNN; j++) {
|
|
|
|
+ for (Long i = 0; i < N; i++) {
|
|
|
|
+ M[k*NNN+j][i] = M[j][i] * M_[k][d*N+i];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ { // k = 0
|
|
|
|
+ for (Integer j = 0; j < NNN; j++) {
|
|
|
|
+ for (Long i = 0; i < N; i++) {
|
|
|
|
+ M[j][i] *= M_[0][d*N+i];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ NNN *= NN;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ return M;
|
|
|
|
+ }
|
|
|
|
+ static void Eval(Matrix<ValueType>& Y, const Vector<Basis>& X, const EvalOpType& M) {
|
|
|
|
+ Long N0 = X.Dim();
|
|
|
|
+ Long N1 = M.Dim(1);
|
|
|
|
+ SCTL_ASSERT(M.Dim(0) == Size());
|
|
|
|
+ if (Y.Dim(0) != N0 || Y.Dim(1) != N1) Y.ReInit(N0, N1);
|
|
|
|
+ for (Long i = 0; i < N0; i++) {
|
|
|
|
+ const Matrix<ValueType> X_(1,Size(),(Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_,false);
|
|
|
|
+ Matrix<ValueType> Y_(1,N1,Y[i],false);
|
|
|
|
+ Matrix<ValueType>::GEMM(Y_,X_,M);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ const ValueType& operator[](Long i) const {
|
|
|
|
+ SCTL_ASSERT(i < Size());
|
|
|
|
+ return NodeValues_[i];
|
|
|
|
+ }
|
|
|
|
+ ValueType& operator[](Long i) {
|
|
|
|
+ SCTL_ASSERT(i < Size());
|
|
|
|
+ return NodeValues_[i];
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ private:
|
|
|
|
+ StaticArray<ValueType,Size()> NodeValues_;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+template <Integer COORD_DIM, class Basis> class ElemList {
|
|
|
|
+ public:
|
|
|
|
+
|
|
|
|
+ using CoordBasis = Basis;
|
|
|
|
+ using CoordType = typename CoordBasis::ValueType;
|
|
|
|
+
|
|
|
|
+ static constexpr Integer CoordDim() {
|
|
|
|
+ return COORD_DIM;
|
|
|
|
+ }
|
|
|
|
+ static constexpr Integer ElemDim() {
|
|
|
|
+ return CoordBasis::Dim();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ ElemList(Long Nelem = 0) {
|
|
|
|
+ ReInit(Nelem);
|
|
|
|
+ }
|
|
|
|
+ void ReInit(Long Nelem = 0) {
|
|
|
|
+ Nelem_ = Nelem;
|
|
|
|
+ X_.ReInit(Nelem_ * COORD_DIM);
|
|
|
|
+ }
|
|
|
|
+ void ReInit(const Vector<CoordBasis>& X) {
|
|
|
|
+ Nelem_ = X.Dim() / COORD_DIM;
|
|
|
|
+ SCTL_ASSERT(X.Dim() == Nelem_ * COORD_DIM);
|
|
|
|
+ X_ = X;
|
|
|
|
+ }
|
|
|
|
+ Long NElem() const {
|
|
|
|
+ return Nelem_;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ CoordBasis& operator()(Long elem, Integer dim) {
|
|
|
|
+ SCTL_ASSERT(elem >= 0 && elem < Nelem_);
|
|
|
|
+ SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
|
|
|
|
+ return X_[elem*COORD_DIM+dim];
|
|
|
|
+ }
|
|
|
|
+ const CoordBasis& operator()(Long elem, Integer dim) const {
|
|
|
|
+ SCTL_ASSERT(elem >= 0 && elem < Nelem_);
|
|
|
|
+ SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
|
|
|
|
+ return X_[elem*COORD_DIM+dim];
|
|
|
|
+ }
|
|
|
|
+ const Vector<CoordBasis>& ElemVector() const {
|
|
|
|
+ return X_;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ private:
|
|
|
|
+ static_assert(CoordBasis::Dim() <= CoordDim(), "Basis dimension can not be greater than COORD_DIM.");
|
|
|
|
+ Vector<CoordBasis> X_;
|
|
|
|
+ Long Nelem_;
|
|
|
|
+
|
|
|
|
+ mutable Vector<CoordBasis> dX_;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+template <class Real> class Quadrature {
|
|
|
|
+
|
|
|
|
+ static Real machine_epsilon() {
|
|
|
|
+ Real eps=1;
|
|
|
|
+ while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
|
|
|
|
+ return eps;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ template <Integer DIM> static void DuffyQuad(Matrix<Real>& nodes, Vector<Real>& weights, const Vector<Real>& coord, Integer order, Real adapt = -1.0) {
|
|
|
|
+ SCTL_ASSERT(coord.Dim() == DIM);
|
|
|
|
+ static Real eps = machine_epsilon()*16;
|
|
|
|
+
|
|
|
|
+ Matrix<Real> qx;
|
|
|
|
+ Vector<Real> qw;
|
|
|
|
+ { // Set qx, qw
|
|
|
|
+ Vector<Real> qx0, qw0;
|
|
|
|
+ ChebBasis<Real>::quad_rule(order, qx0, qw0);
|
|
|
|
+
|
|
|
|
+ Integer N = sctl::pow<DIM,Integer>(order);
|
|
|
|
+ qx.ReInit(DIM,N);
|
|
|
|
+ qw.ReInit(N);
|
|
|
|
+ qw[0] = 1;
|
|
|
|
+
|
|
|
|
+ Integer N_ = 1;
|
|
|
|
+ for (Integer d = 0; d < DIM; d++) {
|
|
|
|
+ for (Integer j = 0; j < order; j++) {
|
|
|
|
+ for (Integer i = 0; i < N_; i++) {
|
|
|
|
+ for (Integer k = 0; k < d; k++) {
|
|
|
|
+ qx[k][j*N_+i] = qx[k][i];
|
|
|
|
+ }
|
|
|
|
+ qx[d][j*N_+i] = qx0[j];
|
|
|
|
+ qw[j*N_+i] = qw[i];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ for (Integer j = 0; j < order; j++) {
|
|
|
|
+ for (Integer i = 0; i < N_; i++) {
|
|
|
|
+ qw[j*N_+i] *= qw0[j];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ N_ *= order;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<Real> X;
|
|
|
|
+ { // Set X
|
|
|
|
+ StaticArray<Real,2*DIM+2> X_;
|
|
|
|
+ X_[0] = 0;
|
|
|
|
+ X_[1] = adapt;
|
|
|
|
+ for (Integer i = 0; i < DIM; i++) {
|
|
|
|
+ X_[2*i+2] = sctl::fabs<Real>(coord[i]);
|
|
|
|
+ X_[2*i+3] = sctl::fabs<Real>(coord[i]-1);
|
|
|
|
+ }
|
|
|
|
+ std::sort((Iterator<Real>)X_, (Iterator<Real>)X_+2*DIM+2);
|
|
|
|
+
|
|
|
|
+ X.PushBack(std::max<Real>(0, X_[2*DIM]-1));
|
|
|
|
+ for (Integer i = 0; i < 2*DIM+2; i++) {
|
|
|
|
+ if (X[X.Dim()-1] < X_[i]) {
|
|
|
|
+ if (X.Dim())
|
|
|
|
+ X.PushBack(X_[i]);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
+ Vector<Real> r(1);
|
|
|
|
+ r[0] = X[0];
|
|
|
|
+ for (Integer i = 1; i < X.Dim(); i++) {
|
|
|
|
+ while (r[r.Dim() - 1] > 0.0 && (order*0.5) * r[r.Dim() - 1] < X[i]) r.PushBack((order*0.5) * r[r.Dim() - 1]); // TODO
|
|
|
|
+ r.PushBack(X[i]);
|
|
|
|
+ }
|
|
|
|
+ X = r;
|
|
|
|
+ /////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<Real> nds, wts;
|
|
|
|
+ for (Integer k = 0; k < X.Dim()-1; k++) {
|
|
|
|
+ for (Integer dd = 0; dd < 2*DIM; dd++) {
|
|
|
|
+ Integer d0 = (dd>>1);
|
|
|
|
+ StaticArray<Real,2*DIM> range0, range1;
|
|
|
|
+ { // Set range0, range1
|
|
|
|
+ Integer d1 = (dd%2?1:-1);
|
|
|
|
+ for (Integer d = 0; d < DIM; d++) {
|
|
|
|
+ range0[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k] ));
|
|
|
|
+ range0[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k] ));
|
|
|
|
+ range1[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k+1]));
|
|
|
|
+ range1[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k+1]));
|
|
|
|
+ }
|
|
|
|
+ range0[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
|
|
|
|
+ range0[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
|
|
|
|
+ range1[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
|
|
|
|
+ range1[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
|
|
|
|
+ }
|
|
|
|
+ { // if volume(range0, range1) == 0 then continue
|
|
|
|
+ Real v0 = 1, v1 = 1;
|
|
|
|
+ for (Integer d = 0; d < DIM; d++) {
|
|
|
|
+ if (d == d0) {
|
|
|
|
+ v0 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
|
|
|
|
+ v1 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
|
|
|
|
+ } else {
|
|
|
|
+ v0 *= range0[d*2+1]-range0[d*2+0];
|
|
|
|
+ v1 *= range1[d*2+1]-range1[d*2+0];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ if (v0 < eps && v1 < eps) continue;
|
|
|
|
+ }
|
|
|
|
+ for (Integer i = 0; i < qx.Dim(1); i++) { // Set nds, wts
|
|
|
|
+ Real w = qw[i];
|
|
|
|
+ Real z = qx[d0][i];
|
|
|
|
+ for (Integer d = 0; d < DIM; d++) {
|
|
|
|
+ Real y = qx[d][i];
|
|
|
|
+ nds.PushBack((range0[d*2+0]*(1-y) + range0[d*2+1]*y)*(1-z) + (range1[d*2+0]*(1-y) + range1[d*2+1]*y)*z);
|
|
|
|
+ if (d == d0) {
|
|
|
|
+ w *= abs(range1[d*2+0] - range0[d*2+0]);
|
|
|
|
+ } else {
|
|
|
|
+ w *= (range0[d*2+1] - range0[d*2+0])*(1-z) + (range1[d*2+1] - range1[d*2+0])*z;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ wts.PushBack(w);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ nodes = Matrix<Real>(nds.Dim()/DIM,DIM,nds.begin()).Transpose();
|
|
|
|
+ weights = wts;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ template <Integer DIM> static void TensorProductGaussQuad(Matrix<Real>& nodes, Vector<Real>& weights, Integer order) {
|
|
|
|
+ Vector<Real> coord(DIM);
|
|
|
|
+ coord = 0;
|
|
|
|
+ coord[0] = -10;
|
|
|
|
+ DuffyQuad<DIM>(nodes, weights, coord, order);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ template <class DensityBasis, class ElemList, class Kernel> static void SetupSingular(Matrix<Real>& M_singular, const Matrix<Real>& trg_nds, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular = 10, Integer order_direct = 10) {
|
|
|
|
+ using CoordBasis = typename ElemList::CoordBasis;
|
|
|
|
+ using CoordEvalOpType = typename CoordBasis::EvalOpType;
|
|
|
|
+ using DensityEvalOpType = typename DensityBasis::EvalOpType;
|
|
|
|
+
|
|
|
|
+ constexpr Integer CoordDim = ElemList::CoordDim();
|
|
|
|
+ constexpr Integer ElemDim = ElemList::ElemDim();
|
|
|
|
+ constexpr Integer KDIM0 = Kernel::SrcDim();
|
|
|
|
+ constexpr Integer KDIM1 = Kernel::TrgDim();
|
|
|
|
+
|
|
|
|
+ const Long Nelem = elem_lst.NElem();
|
|
|
|
+ const Integer Ntrg = trg_nds.Dim(1);
|
|
|
|
+ SCTL_ASSERT(trg_nds.Dim(0) == ElemDim);
|
|
|
|
+
|
|
|
|
+ Vector<Real> Xt;
|
|
|
|
+ { // Set Xt
|
|
|
|
+ auto Meval = CoordBasis::SetupEval(trg_nds);
|
|
|
|
+ eval_basis(Xt, elem_lst.ElemVector(), ElemList::CoordDim(), trg_nds.Dim(1), Meval);
|
|
|
|
+ }
|
|
|
|
+ SCTL_ASSERT(Xt.Dim() == Nelem * Ntrg * CoordDim);
|
|
|
|
+
|
|
|
|
+ const Vector<CoordBasis>& X = elem_lst.ElemVector();
|
|
|
|
+ Vector<CoordBasis> dX;
|
|
|
|
+ CoordBasis::Grad(dX, X);
|
|
|
|
+
|
|
|
|
+ auto& M = M_singular;
|
|
|
|
+ M.ReInit(Nelem * KDIM0 * DensityBasis::Size(), KDIM1 * Ntrg);
|
|
|
|
+ #pragma omp parallel for schedule(static)
|
|
|
|
+ for (Long i = 0; i < Ntrg; i++) { // Set M (singular)
|
|
|
|
+ Matrix<Real> quad_nds;
|
|
|
|
+ Vector<Real> quad_wts;
|
|
|
|
+ { // Set quad_nds, quad_wts
|
|
|
|
+ StaticArray<Real,ElemDim> trg_node_;
|
|
|
|
+ for (Integer k = 0; k < ElemDim; k++) {
|
|
|
|
+ trg_node_[k] = trg_nds[k][i];
|
|
|
|
+ }
|
|
|
|
+ Vector<Real> trg_node(ElemDim, trg_node_, false);
|
|
|
|
+ DuffyQuad<ElemDim>(quad_nds, quad_wts, trg_node, order_singular);
|
|
|
|
+ }
|
|
|
|
+ const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
|
|
|
|
+ Integer Nnds = quad_wts.Dim();
|
|
|
|
+
|
|
|
|
+ Vector<Real> X_, dX_, Xa_, Xn_;
|
|
|
|
+ { // Set X_, dX_
|
|
|
|
+ eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
|
|
|
|
+ eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
|
|
|
|
+ }
|
|
|
|
+ if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
|
|
|
|
+ Long N = Nelem*Nnds;
|
|
|
|
+ Xa_.ReInit(N);
|
|
|
|
+ Xn_.ReInit(N*CoordDim);
|
|
|
|
+ for (Long j = 0; j < N; j++) {
|
|
|
|
+ StaticArray<Real,CoordDim> normal;
|
|
|
|
+ normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
|
|
|
|
+ normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
|
|
|
|
+ normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
|
|
|
|
+ Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
|
|
|
|
+ Real invXa = 1/Xa_[j];
|
|
|
|
+ Xn_[j*3+0] = normal[0] * invXa;
|
|
|
|
+ Xn_[j*3+1] = normal[1] * invXa;
|
|
|
|
+ Xn_[j*3+2] = normal[2] * invXa;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ DensityEvalOpType DensityEvalOp;
|
|
|
|
+ if (std::is_same<CoordBasis,DensityBasis>::value) {
|
|
|
|
+ DensityEvalOp = CoordEvalOp;
|
|
|
|
+ } else {
|
|
|
|
+ DensityEvalOp = DensityBasis::SetupEval(quad_nds);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (Long j = 0; j < Nelem; j++) {
|
|
|
|
+ Matrix<Real> M__(Nnds * KDIM0, KDIM1);
|
|
|
|
+ { // Set kernel matrix M__
|
|
|
|
+ const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + (j * Ntrg + i) * CoordDim, false);
|
|
|
|
+ const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
|
|
|
|
+ const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
|
|
|
|
+ kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
|
|
|
|
+ }
|
|
|
|
+ for (Long k0 = 0; k0 < KDIM0; k0++) {
|
|
|
|
+ for (Long k1 = 0; k1 < KDIM1; k1++) {
|
|
|
|
+ for (Long l = 0; l < DensityBasis::Size(); l++) {
|
|
|
|
+ Real M_lk = 0;
|
|
|
|
+ for (Long n = 0; n < Nnds; n++) {
|
|
|
|
+ Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
|
|
|
|
+ M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
|
|
|
|
+ }
|
|
|
|
+ M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] = M_lk;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ { // Set M (subtract direct)
|
|
|
|
+ Matrix<Real> quad_nds;
|
|
|
|
+ Vector<Real> quad_wts;
|
|
|
|
+ TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
|
|
|
|
+ const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
|
|
|
|
+ Integer Nnds = quad_wts.Dim();
|
|
|
|
+
|
|
|
|
+ Vector<Real> X_, dX_, Xa_, Xn_;
|
|
|
|
+ { // Set X_, dX_
|
|
|
|
+ eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
|
|
|
|
+ eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
|
|
|
|
+ }
|
|
|
|
+ if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
|
|
|
|
+ Long N = Nelem*Nnds;
|
|
|
|
+ Xa_.ReInit(N);
|
|
|
|
+ Xn_.ReInit(N*CoordDim);
|
|
|
|
+ for (Long j = 0; j < N; j++) {
|
|
|
|
+ StaticArray<Real,CoordDim> normal;
|
|
|
|
+ normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
|
|
|
|
+ normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
|
|
|
|
+ normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
|
|
|
|
+ Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
|
|
|
|
+ Real invXa = 1/Xa_[j];
|
|
|
|
+ Xn_[j*3+0] = normal[0] * invXa;
|
|
|
|
+ Xn_[j*3+1] = normal[1] * invXa;
|
|
|
|
+ Xn_[j*3+2] = normal[2] * invXa;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ DensityEvalOpType DensityEvalOp;
|
|
|
|
+ if (std::is_same<CoordBasis,DensityBasis>::value) {
|
|
|
|
+ DensityEvalOp = CoordEvalOp;
|
|
|
|
+ } else {
|
|
|
|
+ DensityEvalOp = DensityBasis::SetupEval(quad_nds);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ #pragma omp parallel for schedule(static)
|
|
|
|
+ for (Long i = 0; i < Ntrg; i++) { // Subtract direct contribution
|
|
|
|
+ for (Long j = 0; j < Nelem; j++) {
|
|
|
|
+ Matrix<Real> M__(Nnds * KDIM0, KDIM1);
|
|
|
|
+ { // Set kernel matrix M__
|
|
|
|
+ const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + (j * Ntrg + i) * CoordDim, false);
|
|
|
|
+ const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
|
|
|
|
+ const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
|
|
|
|
+ kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
|
|
|
|
+ }
|
|
|
|
+ for (Long k0 = 0; k0 < KDIM0; k0++) {
|
|
|
|
+ for (Long k1 = 0; k1 < KDIM1; k1++) {
|
|
|
|
+ for (Long l = 0; l < DensityBasis::Size(); l++) {
|
|
|
|
+ Real M_lk = 0;
|
|
|
|
+ for (Long n = 0; n < Nnds; n++) {
|
|
|
|
+ Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
|
|
|
|
+ M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
|
|
|
|
+ }
|
|
|
|
+ M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] -= M_lk;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ template <class DensityBasis> static void EvalSingular(Matrix<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, Integer KDIM0_, Integer KDIM1_) {
|
|
|
|
+ if (M.Dim(0) == 0 || M.Dim(1) == 0) {
|
|
|
|
+ U.ReInit(0,0);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ const Long Ntrg = M.Dim(1) / KDIM1_;
|
|
|
|
+ SCTL_ASSERT(M.Dim(1) == KDIM1_ * Ntrg);
|
|
|
|
+
|
|
|
|
+ const Long Nelem = M.Dim(0) / (KDIM0_ * DensityBasis::Size());
|
|
|
|
+ SCTL_ASSERT(M.Dim(0) == Nelem * KDIM0_ * DensityBasis::Size());
|
|
|
|
+
|
|
|
|
+ const Integer dof = density.Dim() / (Nelem * KDIM0_);
|
|
|
|
+ SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0_);
|
|
|
|
+
|
|
|
|
+ if (U.Dim(0) != Nelem * dof * KDIM1_ || U.Dim(1) != Ntrg) {
|
|
|
|
+ U.ReInit(Nelem * dof * KDIM1_, Ntrg);
|
|
|
|
+ U = 0;
|
|
|
|
+ }
|
|
|
|
+ for (Long j = 0; j < Nelem; j++) {
|
|
|
|
+ const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_ * Ntrg, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
|
|
|
|
+ Matrix<Real> U_(dof, KDIM1_ * Ntrg, U[j*dof*KDIM1_], false);
|
|
|
|
+ Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
|
|
|
|
+ for (Long i = 0; i < dof; i++) {
|
|
|
|
+ for (Long k = 0; k < KDIM0_; k++) {
|
|
|
|
+ for (Long l = 0; l < DensityBasis::Size(); l++) {
|
|
|
|
+ F_[i][k * DensityBasis::Size() + l] = density[(j * dof + i) * KDIM0_ + k][l];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ Matrix<Real>::GEMM(U_, F_, M_);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ template <Integer DIM> struct PointData {
|
|
|
|
+ bool operator<(const PointData& p) const {
|
|
|
|
+ return mid < p.mid;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Long rank;
|
|
|
|
+ Long surf_rank;
|
|
|
|
+ Morton<DIM> mid;
|
|
|
|
+ StaticArray<Real,DIM> coord;
|
|
|
|
+ Real radius2;
|
|
|
|
+ };
|
|
|
|
+
|
|
|
|
+ template <class T1, class T2> struct Pair {
|
|
|
|
+ Pair() {}
|
|
|
|
+
|
|
|
|
+ Pair(T1 x, T2 y) : first(x), second(y) {}
|
|
|
|
+
|
|
|
|
+ bool operator<(const Pair& p) const {
|
|
|
|
+ return (first < p.first) || (((first == p.first) && (second < p.second)));
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ T1 first;
|
|
|
|
+ T2 second;
|
|
|
|
+ };
|
|
|
|
+
|
|
|
|
+ template <class ElemList> static void BuildNbrList(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const Vector<Long>& trg_surf, const ElemList& elem_lst, Real distance_factor, Real period_length, const Comm& comm) {
|
|
|
|
+ using CoordBasis = typename ElemList::CoordBasis;
|
|
|
|
+ constexpr Integer CoordDim = ElemList::CoordDim();
|
|
|
|
+ constexpr Integer ElemDim = ElemList::ElemDim();
|
|
|
|
+ using PtData = PointData<CoordDim>;
|
|
|
|
+ const Integer rank = comm.Rank();
|
|
|
|
+
|
|
|
|
+ Real R0 = 0;
|
|
|
|
+ StaticArray<Real,CoordDim> X0;
|
|
|
|
+ { // Find bounding box
|
|
|
|
+ Long N = Xt.Dim() / CoordDim;
|
|
|
|
+ SCTL_ASSERT(Xt.Dim() == N * CoordDim);
|
|
|
|
+ SCTL_ASSERT(N);
|
|
|
|
+
|
|
|
|
+ StaticArray<Real,CoordDim*2> Xloc;
|
|
|
|
+ StaticArray<Real,CoordDim*2> Xglb;
|
|
|
|
+ for (Integer k = 0; k < CoordDim; k++) {
|
|
|
|
+ Xloc[0*CoordDim+k] = Xt[k];
|
|
|
|
+ Xloc[1*CoordDim+k] = Xt[k];
|
|
|
|
+ }
|
|
|
|
+ for (Long i = 0; i < N; i++) {
|
|
|
|
+ for (Integer k = 0; k < CoordDim; k++) {
|
|
|
|
+ Xloc[0*CoordDim+k] = std::min<Real>(Xloc[0*CoordDim+k], Xt[i*CoordDim+k]);
|
|
|
|
+ Xloc[1*CoordDim+k] = std::max<Real>(Xloc[1*CoordDim+k], Xt[i*CoordDim+k]);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ comm.Allreduce((ConstIterator<Real>)Xloc+0*CoordDim, (Iterator<Real>)Xglb+0*CoordDim, CoordDim, Comm::CommOp::MIN);
|
|
|
|
+ comm.Allreduce((ConstIterator<Real>)Xloc+1*CoordDim, (Iterator<Real>)Xglb+1*CoordDim, CoordDim, Comm::CommOp::MAX);
|
|
|
|
+ for (Integer k = 0; k < CoordDim; k++) {
|
|
|
|
+ R0 = std::max(R0, Xglb[1*CoordDim+k]-Xglb[0*CoordDim+k]);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ R0 = R0 * 2.0;
|
|
|
|
+ for (Integer k = 0; k < CoordDim; k++) {
|
|
|
|
+ X0[k] = Xglb[k] - R0*0.25;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ if (period_length > 0) {
|
|
|
|
+ R0 = period_length;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<PtData> PtSrc, PtTrg;
|
|
|
|
+ Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
|
|
|
|
+ { // Set PtSrc
|
|
|
|
+ const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
|
|
|
|
+ Vector<CoordBasis> dX_elem_lst;
|
|
|
|
+ CoordBasis::Grad(dX_elem_lst, X_elem_lst);
|
|
|
|
+
|
|
|
|
+ Matrix<Real> nds;
|
|
|
|
+ Vector<Real> wts;
|
|
|
|
+ TensorProductGaussQuad<ElemDim>(nds, wts, order_upsample);
|
|
|
|
+ const Long Nnds = nds.Dim(1);
|
|
|
|
+
|
|
|
|
+ Vector<Real> X, dX;
|
|
|
|
+ const auto CoordEvalOp = CoordBasis::SetupEval(nds);
|
|
|
|
+ eval_basis(X, X_elem_lst, CoordDim, Nnds, CoordEvalOp);
|
|
|
|
+ eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, Nnds, CoordEvalOp);
|
|
|
|
+
|
|
|
|
+ const Long N = X.Dim() / CoordDim;
|
|
|
|
+ const Long Nelem = elem_lst.NElem();
|
|
|
|
+ SCTL_ASSERT(X.Dim() == N * CoordDim);
|
|
|
|
+ SCTL_ASSERT(N == Nelem * Nnds);
|
|
|
|
+
|
|
|
|
+ Long rank_offset, surf_rank_offset;
|
|
|
|
+ { // Set rank_offset, surf_rank_offset
|
|
|
|
+ comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
|
|
|
|
+ comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
|
|
|
|
+ surf_rank_offset -= Nelem;
|
|
|
|
+ rank_offset -= N;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ PtSrc.ReInit(N);
|
|
|
|
+ const Real R0inv = 1.0 / R0;
|
|
|
|
+ for (Long i = 0; i < N; i++) { // Set coord
|
|
|
|
+ for (Integer k = 0; k < CoordDim; k++) {
|
|
|
|
+ PtSrc[i].coord[k] = (X[i*CoordDim+k] - X0[k]) * R0inv;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ if (period_length > 0) { // Wrap-around coord
|
|
|
|
+ for (Long i = 0; i < N; i++) {
|
|
|
|
+ auto& x = PtSrc[i].coord;
|
|
|
|
+ for (Integer k = 0; k < CoordDim; k++) {
|
|
|
|
+ x[k] -= (Long)(x[k]);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
|
|
|
|
+ Integer depth = 0;
|
|
|
|
+ { // Set radius2, depth
|
|
|
|
+ Real radius2 = 0;
|
|
|
|
+ for (Integer k0 = 0; k0 < ElemDim; k0++) {
|
|
|
|
+ Real R2 = 0;
|
|
|
|
+ for (Integer k1 = 0; k1 < CoordDim; k1++) {
|
|
|
|
+ Real dX_ = dX[(i*CoordDim+k1)*ElemDim+k0];
|
|
|
|
+ R2 += dX_*dX_;
|
|
|
|
+ }
|
|
|
|
+ radius2 = std::max(radius2, R2);
|
|
|
|
+ }
|
|
|
|
+ radius2 *= R0inv*R0inv * distance_factor*distance_factor;
|
|
|
|
+ PtSrc[i].radius2 = radius2;
|
|
|
|
+
|
|
|
|
+ Long Rinv = (Long)(1.0/radius2);
|
|
|
|
+ while (Rinv > 0) {
|
|
|
|
+ Rinv = (Rinv>>2);
|
|
|
|
+ depth++;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ PtSrc[i].mid = Morton<CoordDim>((Iterator<Real>)PtSrc[i].coord, std::min(Morton<CoordDim>::MaxDepth(),depth));
|
|
|
|
+ PtSrc[i].rank = rank_offset + i;
|
|
|
|
+ }
|
|
|
|
+ for (Long i = 0 ; i < Nelem; i++) { // Set surf_rank
|
|
|
|
+ for (Long j = 0; j < Nnds; j++) {
|
|
|
|
+ PtSrc[i*Nnds+j].surf_rank = surf_rank_offset + i;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<PtData> PtSrcSorted;
|
|
|
|
+ comm.HyperQuickSort(PtSrc, PtSrcSorted);
|
|
|
|
+ PtSrc.Swap(PtSrcSorted);
|
|
|
|
+ }
|
|
|
|
+ { // Set PtTrg
|
|
|
|
+ const Long N = Xt.Dim() / CoordDim;
|
|
|
|
+ SCTL_ASSERT(Xt.Dim() == N * CoordDim);
|
|
|
|
+
|
|
|
|
+ Long rank_offset;
|
|
|
|
+ { // Set rank_offset
|
|
|
|
+ comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
|
|
|
|
+ rank_offset -= N;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ PtTrg.ReInit(N);
|
|
|
|
+ const Real R0inv = 1.0 / R0;
|
|
|
|
+ for (Long i = 0; i < N; i++) { // Set coord
|
|
|
|
+ for (Integer k = 0; k < CoordDim; k++) {
|
|
|
|
+ PtTrg[i].coord[k] = (Xt[i*CoordDim+k] - X0[k]) * R0inv;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ if (period_length > 0) { // Wrap-around coord
|
|
|
|
+ for (Long i = 0; i < N; i++) {
|
|
|
|
+ auto& x = PtTrg[i].coord;
|
|
|
|
+ for (Integer k = 0; k < CoordDim; k++) {
|
|
|
|
+ x[k] -= (Long)(x[k]);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
|
|
|
|
+ PtTrg[i].radius2 = 0;
|
|
|
|
+ PtTrg[i].mid = Morton<CoordDim>((Iterator<Real>)PtTrg[i].coord);
|
|
|
|
+ PtTrg[i].rank = rank_offset + i;
|
|
|
|
+ }
|
|
|
|
+ if (trg_surf.Dim()) { // Set surf_rank
|
|
|
|
+ SCTL_ASSERT(trg_surf.Dim() == N);
|
|
|
|
+ for (Long i = 0; i < N; i++) {
|
|
|
|
+ PtTrg[i].surf_rank = trg_surf[i];
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ for (Long i = 0; i < N; i++) {
|
|
|
|
+ PtTrg[i].surf_rank = -1;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<PtData> PtTrgSorted;
|
|
|
|
+ comm.HyperQuickSort(PtTrg, PtTrgSorted);
|
|
|
|
+ PtTrg.Swap(PtTrgSorted);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Tree<CoordDim> tree(comm);
|
|
|
|
+ { // Init tree
|
|
|
|
+ Vector<Real> Xall(PtSrc.Dim()+PtTrg.Dim());
|
|
|
|
+ { // Set Xall
|
|
|
|
+ Xall.ReInit((PtSrc.Dim()+PtTrg.Dim())*CoordDim);
|
|
|
|
+ Long Nsrc = PtSrc.Dim();
|
|
|
|
+ Long Ntrg = PtTrg.Dim();
|
|
|
|
+ for (Long i = 0; i < Nsrc; i++) {
|
|
|
|
+ for (Integer k = 0; k < CoordDim; k++) {
|
|
|
|
+ Xall[i*CoordDim+k] = PtSrc[i].coord[k];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ for (Long i = 0; i < Ntrg; i++) {
|
|
|
|
+ for (Integer k = 0; k < CoordDim; k++) {
|
|
|
|
+ Xall[(Nsrc+i)*CoordDim+k] = PtTrg[i].coord[k];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ tree.UpdateRefinement(Xall, 1000, true, period_length>0);
|
|
|
|
+ }
|
|
|
|
+ { // Repartition PtSrc, PtTrg
|
|
|
|
+ PtData splitter;
|
|
|
|
+ splitter.mid = tree.GetPartitionMID()[rank];
|
|
|
|
+ comm.PartitionS(PtSrc, splitter);
|
|
|
|
+ comm.PartitionS(PtTrg, splitter);
|
|
|
|
+ }
|
|
|
|
+ { // Add tree data PtSrc
|
|
|
|
+ const auto& node_mid = tree.GetNodeMID();
|
|
|
|
+ const Long N = node_mid.Dim();
|
|
|
|
+ SCTL_ASSERT(N);
|
|
|
|
+
|
|
|
|
+ Vector<Long> dsp(N), cnt(N);
|
|
|
|
+ for (Long i = 0; i < N; i++) {
|
|
|
|
+ PtData m0;
|
|
|
|
+ m0.mid = node_mid[i];
|
|
|
|
+ dsp[i] = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
|
|
|
|
+ }
|
|
|
|
+ for (Long i = 0; i < N-1; i++) {
|
|
|
|
+ cnt[i] = dsp[i+1] - dsp[i];
|
|
|
|
+ }
|
|
|
|
+ cnt[N-1] = PtSrc.Dim() - dsp[N-1];
|
|
|
|
+ tree.AddData("PtSrc", PtSrc, cnt);
|
|
|
|
+ }
|
|
|
|
+ tree.template Broadcast<PtData>("PtSrc");
|
|
|
|
+
|
|
|
|
+ { // Build pair_lst
|
|
|
|
+ Vector<Long> cnt;
|
|
|
|
+ Vector<PtData> PtSrc;
|
|
|
|
+ tree.GetData(PtSrc, cnt, "PtSrc");
|
|
|
|
+ const auto& node_mid = tree.GetNodeMID();
|
|
|
|
+ const auto& node_attr = tree.GetNodeAttr();
|
|
|
|
+
|
|
|
|
+ Vector<Morton<CoordDim>> nbr_mid_tmp;
|
|
|
|
+ for (Long i = 0; i < node_mid.Dim(); i++) {
|
|
|
|
+ if (node_attr[i].Leaf && !node_attr[i].Ghost) {
|
|
|
|
+ Vector<Morton<CoordDim>> child_mid;
|
|
|
|
+ node_mid[i].Children(child_mid);
|
|
|
|
+ for (const auto& trg_mid : child_mid) {
|
|
|
|
+ Integer d0 = trg_mid.Depth();
|
|
|
|
+ Vector<PtData> Src, Trg;
|
|
|
|
+ { // Set Trg
|
|
|
|
+ PtData m0, m1;
|
|
|
|
+ m0.mid = trg_mid;
|
|
|
|
+ m1.mid = trg_mid.Next();
|
|
|
|
+ Long a = std::lower_bound(PtTrg.begin(), PtTrg.end(), m0) - PtTrg.begin();
|
|
|
|
+ Long b = std::lower_bound(PtTrg.begin(), PtTrg.end(), m1) - PtTrg.begin();
|
|
|
|
+ Trg.ReInit(b-a, PtTrg.begin()+a, false);
|
|
|
|
+ if (!Trg.Dim()) continue;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<std::set<Long>> near_elem(Trg.Dim());
|
|
|
|
+ for (Integer d = 0; d <= d0; d++) {
|
|
|
|
+ trg_mid.NbrList(nbr_mid_tmp, d, period_length>0);
|
|
|
|
+ for (const auto& src_mid : nbr_mid_tmp) { // Set Src
|
|
|
|
+ PtData m0, m1;
|
|
|
|
+ m0.mid = src_mid;
|
|
|
|
+ m1.mid = (d==d0 ? src_mid.Next() : src_mid.Ancestor(d+1));
|
|
|
|
+ Long a = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
|
|
|
|
+ Long b = std::lower_bound(PtSrc.begin(), PtSrc.end(), m1) - PtSrc.begin();
|
|
|
|
+ Src.ReInit(b-a, PtSrc.begin()+a, false);
|
|
|
|
+ if (!Src.Dim()) continue;
|
|
|
|
+
|
|
|
|
+ for (Long t = 0; t < Trg.Dim(); t++) { // set near_elem[t] <-- {s : dist(s,t) < radius(s)}
|
|
|
|
+ for (Long s = 0; s < Src.Dim(); s++) {
|
|
|
|
+ if (Trg[t].surf_rank != Src[s].surf_rank) {
|
|
|
|
+ Real R2 = 0;
|
|
|
|
+ for (Integer k = 0; k < CoordDim; k++) {
|
|
|
|
+ Real dx = (Src[s].coord[k] - Trg[t].coord[k]);
|
|
|
|
+ R2 += dx * dx;
|
|
|
|
+ }
|
|
|
|
+ if (R2 < Src[s].radius2) {
|
|
|
|
+ near_elem[t].insert(Src[s].surf_rank);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (Long t = 0; t < Trg.Dim(); t++) { // Set pair_lst
|
|
|
|
+ for (Long elem_idx : near_elem[t]) {
|
|
|
|
+ pair_lst.PushBack(Pair<Long,Long>(elem_idx,Trg[t].rank));
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ { // Sort and repartition pair_lst
|
|
|
|
+ Vector<Pair<Long,Long>> pair_lst_sorted;
|
|
|
|
+ comm.HyperQuickSort(pair_lst, pair_lst_sorted);
|
|
|
|
+
|
|
|
|
+ Long surf_rank_offset;
|
|
|
|
+ const Long Nelem = elem_lst.NElem();
|
|
|
|
+ comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
|
|
|
|
+ surf_rank_offset -= Nelem;
|
|
|
|
+
|
|
|
|
+ comm.PartitionS(pair_lst_sorted, Pair<Long,Long>(surf_rank_offset,0));
|
|
|
|
+ pair_lst.Swap(pair_lst_sorted);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ template <class ElemList> static void BuildNbrListDeprecated(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const ElemList& elem_lst, const Matrix<Real>& surf_nds, Real distance_factor) {
|
|
|
|
+ using CoordBasis = typename ElemList::CoordBasis;
|
|
|
|
+ constexpr Integer CoordDim = ElemList::CoordDim();
|
|
|
|
+ constexpr Integer ElemDim = ElemList::ElemDim();
|
|
|
|
+ const Long Nelem = elem_lst.NElem();
|
|
|
|
+
|
|
|
|
+ const Long Ntrg = Xt.Dim() / CoordDim;
|
|
|
|
+ SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
|
|
|
|
+
|
|
|
|
+ Long Nnds, Nsurf_nds;
|
|
|
|
+ Vector<Real> X_surf, X, dX;
|
|
|
|
+ Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
|
|
|
|
+ { // Set X, dX
|
|
|
|
+ const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
|
|
|
|
+ Vector<CoordBasis> dX_elem_lst;
|
|
|
|
+ CoordBasis::Grad(dX_elem_lst, X_elem_lst);
|
|
|
|
+
|
|
|
|
+ Matrix<Real> nds_upsample;
|
|
|
|
+ Vector<Real> wts_upsample;
|
|
|
|
+ TensorProductGaussQuad<ElemDim>(nds_upsample, wts_upsample, order_upsample);
|
|
|
|
+
|
|
|
|
+ Nnds = nds_upsample.Dim(1);
|
|
|
|
+ const auto CoordEvalOp = CoordBasis::SetupEval(nds_upsample);
|
|
|
|
+ eval_basis(X, X_elem_lst, CoordDim, nds_upsample.Dim(1), CoordEvalOp);
|
|
|
|
+ eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, nds_upsample.Dim(1), CoordEvalOp);
|
|
|
|
+
|
|
|
|
+ Nsurf_nds = surf_nds.Dim(1);
|
|
|
|
+ const auto CoordEvalOp_surf = CoordBasis::SetupEval(surf_nds);
|
|
|
|
+ eval_basis(X_surf, X_elem_lst, CoordDim, Nsurf_nds, CoordEvalOp_surf);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Real d2 = distance_factor * distance_factor;
|
|
|
|
+ for (Long i = 0; i < Nelem; i++) {
|
|
|
|
+ std::set<Long> near_pts;
|
|
|
|
+ std::set<Long> self_pts;
|
|
|
|
+ for (Long j = 0; j < Nnds; j++) {
|
|
|
|
+ Real R2_max = 0;
|
|
|
|
+ StaticArray<Real, CoordDim> X0;
|
|
|
|
+ for (Integer k = 0; k < CoordDim; k++) {
|
|
|
|
+ X0[k] = X[(i*Nnds+j)*CoordDim+k];
|
|
|
|
+ }
|
|
|
|
+ for (Integer k0 = 0; k0 < ElemDim; k0++) {
|
|
|
|
+ Real R2 = 0;
|
|
|
|
+ for (Integer k1 = 0; k1 < CoordDim; k1++) {
|
|
|
|
+ Real dX_ = dX[((i*Nnds+j)*CoordDim+k1)*ElemDim+k0];
|
|
|
|
+ R2 += dX_*dX_;
|
|
|
|
+ }
|
|
|
|
+ R2_max = std::max(R2_max, R2*d2);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (Long k = 0; k < Ntrg; k++) {
|
|
|
|
+ Real R2 = 0;
|
|
|
|
+ for (Integer l = 0; l < CoordDim; l++) {
|
|
|
|
+ Real dX = Xt[k*CoordDim+l]- X0[l];
|
|
|
|
+ R2 += dX * dX;
|
|
|
|
+ }
|
|
|
|
+ if (R2 < R2_max) near_pts.insert(k);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ for (Long j = 0; j < Nsurf_nds; j++) {
|
|
|
|
+ StaticArray<Real, CoordDim> X0;
|
|
|
|
+ for (Integer k = 0; k < CoordDim; k++) {
|
|
|
|
+ X0[k] = X_surf[(i*Nsurf_nds+j)*CoordDim+k];
|
|
|
|
+ }
|
|
|
|
+ for (Long k = 0; k < Ntrg; k++) {
|
|
|
|
+ Real R2 = 0;
|
|
|
|
+ for (Integer l = 0; l < CoordDim; l++) {
|
|
|
|
+ Real dX = Xt[k*CoordDim+l]- X0[l];
|
|
|
|
+ R2 += dX * dX;
|
|
|
|
+ }
|
|
|
|
+ if (R2 == 0) self_pts.insert(k);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ for (Long trg_idx : self_pts) {
|
|
|
|
+ near_pts.erase(trg_idx);
|
|
|
|
+ }
|
|
|
|
+ for (Long trg_idx : near_pts) {
|
|
|
|
+ pair_lst.PushBack(Pair<Long,Long>(i,trg_idx));
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ template <class DensityBasis, class ElemList, class Kernel> static void SetupNearSingular(Matrix<Real>& M_near_singular, Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt_, const Vector<Long>& trg_surf, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
|
|
|
|
+ static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
|
|
|
|
+ static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
|
|
|
|
+ static_assert(DensityBasis::Dim() == ElemList::ElemDim());
|
|
|
|
+ using CoordBasis = typename ElemList::CoordBasis;
|
|
|
|
+ using CoordEvalOpType = typename CoordBasis::EvalOpType;
|
|
|
|
+ using DensityEvalOpType = typename DensityBasis::EvalOpType;
|
|
|
|
+
|
|
|
|
+ constexpr Integer CoordDim = ElemList::CoordDim();
|
|
|
|
+ constexpr Integer ElemDim = ElemList::ElemDim();
|
|
|
|
+ constexpr Integer KDIM0 = Kernel::SrcDim();
|
|
|
|
+ constexpr Integer KDIM1 = Kernel::TrgDim();
|
|
|
|
+ const Long Nelem = elem_lst.NElem();
|
|
|
|
+
|
|
|
|
+ BuildNbrList(pair_lst, Xt_, trg_surf, elem_lst, 2.5/order_direct, period_length, comm);
|
|
|
|
+ const Long Ninterac = pair_lst.Dim();
|
|
|
|
+
|
|
|
|
+ Vector<Real> Xt;
|
|
|
|
+ { // Set Xt
|
|
|
|
+ Integer rank = comm.Rank();
|
|
|
|
+ Integer np = comm.Size();
|
|
|
|
+
|
|
|
|
+ Vector<Long> splitter_ranks;
|
|
|
|
+ { // Set splitter_ranks
|
|
|
|
+ Vector<Long> cnt(np);
|
|
|
|
+ const Long N = Xt_.Dim() / CoordDim;
|
|
|
|
+ comm.Allgather(Ptr2ConstItr<Long>(&N,1), 1, cnt.begin(), 1);
|
|
|
|
+ scan(splitter_ranks, cnt);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<Long> scatter_index, recv_index, recv_cnt(np), recv_dsp(np);
|
|
|
|
+ { // Set scatter_index, recv_index, recv_cnt, recv_dsp
|
|
|
|
+ { // Set scatter_index, recv_index
|
|
|
|
+ Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
|
|
|
|
+ for (Long i = 0; i < pair_lst.Dim(); i++) {
|
|
|
|
+ scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
|
|
|
|
+ }
|
|
|
|
+ omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
|
|
|
|
+
|
|
|
|
+ recv_index.ReInit(scatter_pair.Dim());
|
|
|
|
+ scatter_index.ReInit(scatter_pair.Dim());
|
|
|
|
+ for (Long i = 0; i < scatter_index.Dim(); i++) {
|
|
|
|
+ recv_index[i] = scatter_pair[i].first;
|
|
|
|
+ scatter_index[i] = scatter_pair[i].second;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ for (Integer i = 0; i < np; i++) {
|
|
|
|
+ recv_dsp[i] = std::lower_bound(recv_index.begin(), recv_index.end(), splitter_ranks[i]) - recv_index.begin();
|
|
|
|
+ }
|
|
|
|
+ for (Integer i = 0; i < np-1; i++) {
|
|
|
|
+ recv_cnt[i] = recv_dsp[i+1] - recv_dsp[i];
|
|
|
|
+ }
|
|
|
|
+ recv_cnt[np-1] = recv_index.Dim() - recv_dsp[np-1];
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<Long> send_index, send_cnt(np), send_dsp(np);
|
|
|
|
+ { // Set send_index, send_cnt, send_dsp
|
|
|
|
+ comm.Alltoall(recv_cnt.begin(), 1, send_cnt.begin(), 1);
|
|
|
|
+ scan(send_dsp, send_cnt);
|
|
|
|
+ send_index.ReInit(send_cnt[np-1] + send_dsp[np-1]);
|
|
|
|
+ comm.Alltoallv(recv_index.begin(), recv_cnt.begin(), recv_dsp.begin(), send_index.begin(), send_cnt.begin(), send_dsp.begin());
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<Real> Xt_send(send_index.Dim() * CoordDim);
|
|
|
|
+ for (Long i = 0; i < send_index.Dim(); i++) { // Set Xt_send
|
|
|
|
+ Long idx = send_index[i] - splitter_ranks[rank];
|
|
|
|
+ for (Integer k = 0; k < CoordDim; k++) {
|
|
|
|
+ Xt_send[i*CoordDim+k] = Xt_[idx*CoordDim+k];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<Real> Xt_recv(recv_index.Dim() * CoordDim);
|
|
|
|
+ { // Set Xt_recv
|
|
|
|
+ for (Long i = 0; i < np; i++) {
|
|
|
|
+ send_cnt[i] *= CoordDim;
|
|
|
|
+ send_dsp[i] *= CoordDim;
|
|
|
|
+ recv_cnt[i] *= CoordDim;
|
|
|
|
+ recv_dsp[i] *= CoordDim;
|
|
|
|
+ }
|
|
|
|
+ comm.Alltoallv(Xt_send.begin(), send_cnt.begin(), send_dsp.begin(), Xt_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Xt.ReInit(scatter_index.Dim() * CoordDim);
|
|
|
|
+ for (Long i = 0; i < scatter_index.Dim(); i++) { // Set Xt
|
|
|
|
+ Long idx = scatter_index[i];
|
|
|
|
+ for (Integer k = 0; k < CoordDim; k++) {
|
|
|
|
+ Xt[idx*CoordDim+k] = Xt_recv[i*CoordDim+k];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ const Vector<CoordBasis>& X = elem_lst.ElemVector();
|
|
|
|
+ Vector<CoordBasis> dX;
|
|
|
|
+ CoordBasis::Grad(dX, X);
|
|
|
|
+
|
|
|
|
+ Long elem_rank_offset;
|
|
|
|
+ { // Set elem_rank_offset
|
|
|
|
+ comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
|
|
|
|
+ elem_rank_offset -= Nelem;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ auto& M = M_near_singular;
|
|
|
|
+ M.ReInit(Ninterac * KDIM0 * DensityBasis::Size(), KDIM1);
|
|
|
|
+ #pragma omp parallel for schedule(static)
|
|
|
|
+ for (Long j = 0; j < Ninterac; j++) { // Set M (near-singular)
|
|
|
|
+ const Long src_idx = pair_lst[j].first - elem_rank_offset;
|
|
|
|
+
|
|
|
|
+ Real adapt = -1.0;
|
|
|
|
+ Tensor<Real,true,ElemDim,1> u0;
|
|
|
|
+ { // Set u0 (project target point to the surface patch in parameter space)
|
|
|
|
+ ConstIterator<Real> Xt_ = Xt.begin() + j * CoordDim;
|
|
|
|
+ const auto& nodes = CoordBasis::Nodes();
|
|
|
|
+
|
|
|
|
+ Long min_idx = -1;
|
|
|
|
+ Real min_R2 = 1e10;
|
|
|
|
+ for (Long i = 0; i < CoordBasis::Size(); i++) {
|
|
|
|
+ Real R2 = 0;
|
|
|
|
+ for (Integer k = 0; k < CoordDim; k++) {
|
|
|
|
+ Real dX = X[src_idx * CoordDim + k][i] - Xt_[k];
|
|
|
|
+ R2 += dX * dX;
|
|
|
|
+ }
|
|
|
|
+ if (R2 < min_R2) {
|
|
|
|
+ min_R2 = R2;
|
|
|
|
+ min_idx = i;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ SCTL_ASSERT(min_idx >= 0);
|
|
|
|
+ for (Integer k = 0; k < ElemDim; k++) {
|
|
|
|
+ u0(k,0) = nodes[k][min_idx];
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (Integer i = 0; i < 2; i++) { // iterate
|
|
|
|
+ Matrix<Real> X_, dX_;
|
|
|
|
+ for (Integer k = 0; k < ElemDim; k++) {
|
|
|
|
+ u0(k,0) = std::min(1.0, u0(k,0));
|
|
|
|
+ u0(k,0) = std::max(0.0, u0(k,0));
|
|
|
|
+ }
|
|
|
|
+ const auto eval_op = CoordBasis::SetupEval(Matrix<Real>(ElemDim,1,u0.begin(),false));
|
|
|
|
+ CoordBasis::Eval(X_, Vector<CoordBasis>(CoordDim,(Iterator<CoordBasis>)X.begin()+src_idx*CoordDim,false),eval_op);
|
|
|
|
+ CoordBasis::Eval(dX_, Vector<CoordBasis>(CoordDim*ElemDim,dX.begin()+src_idx*CoordDim*ElemDim,false),eval_op);
|
|
|
|
+
|
|
|
|
+ const Tensor<Real,false,CoordDim,1> x0((Iterator<Real>)Xt_);
|
|
|
|
+ const Tensor<Real,false,CoordDim,1> x(X_.begin());
|
|
|
|
+ const Tensor<Real,false,CoordDim,ElemDim> x_u(dX_.begin());
|
|
|
|
+ auto inv = [](const Tensor<Real,true,2,2>& M) {
|
|
|
|
+ Tensor<Real,true,2,2> Minv;
|
|
|
|
+ Real det_inv = 1.0 / (M(0,0)*M(1,1) - M(1,0)*M(0,1));
|
|
|
|
+ Minv(0,0) = M(1,1) * det_inv;
|
|
|
|
+ Minv(0,1) =-M(0,1) * det_inv;
|
|
|
|
+ Minv(1,0) =-M(1,0) * det_inv;
|
|
|
|
+ Minv(1,1) = M(0,0) * det_inv;
|
|
|
|
+ return Minv;
|
|
|
|
+ };
|
|
|
|
+ auto du = inv(x_u.RotateRight()*x_u) * x_u.RotateRight()*(x0-x);
|
|
|
|
+ u0 = u0 + du;
|
|
|
|
+
|
|
|
|
+ auto x_u_squared = x_u.RotateRight() * x_u;
|
|
|
|
+ adapt = sctl::sqrt<Real>( ((x0-x).RotateRight()*(x0-x))(0,0) / std::max<Real>(x_u_squared(0,0),x_u_squared(1,1)) );
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Matrix<Real> quad_nds;
|
|
|
|
+ Vector<Real> quad_wts;
|
|
|
|
+ DuffyQuad<ElemDim>(quad_nds, quad_wts, Vector<Real>(ElemDim,u0.begin(),false), order_singular, adapt);
|
|
|
|
+ const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
|
|
|
|
+ Integer Nnds = quad_wts.Dim();
|
|
|
|
+
|
|
|
|
+ Vector<Real> X_, dX_, Xa_, Xn_;
|
|
|
|
+ { // Set X_, dX_
|
|
|
|
+ const Vector<CoordBasis> X__(CoordDim, (Iterator<CoordBasis>)X.begin() + src_idx * CoordDim, false);
|
|
|
|
+ const Vector<CoordBasis> dX__(CoordDim * ElemDim, (Iterator<CoordBasis>)dX.begin() + src_idx * CoordDim * ElemDim, false);
|
|
|
|
+ eval_basis(X_, X__, CoordDim, Nnds, CoordEvalOp);
|
|
|
|
+ eval_basis(dX_, dX__, CoordDim * ElemDim, Nnds, CoordEvalOp);
|
|
|
|
+ }
|
|
|
|
+ if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
|
|
|
|
+ Xa_.ReInit(Nnds);
|
|
|
|
+ Xn_.ReInit(Nnds*CoordDim);
|
|
|
|
+ for (Long j = 0; j < Nnds; j++) {
|
|
|
|
+ StaticArray<Real,CoordDim> normal;
|
|
|
|
+ normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
|
|
|
|
+ normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
|
|
|
|
+ normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
|
|
|
|
+ Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
|
|
|
|
+ Real invXa = 1/Xa_[j];
|
|
|
|
+ Xn_[j*3+0] = normal[0] * invXa;
|
|
|
|
+ Xn_[j*3+1] = normal[1] * invXa;
|
|
|
|
+ Xn_[j*3+2] = normal[2] * invXa;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ DensityEvalOpType DensityEvalOp;
|
|
|
|
+ if (std::is_same<CoordBasis,DensityBasis>::value) {
|
|
|
|
+ DensityEvalOp = CoordEvalOp;
|
|
|
|
+ } else {
|
|
|
|
+ DensityEvalOp = DensityBasis::SetupEval(quad_nds);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Matrix<Real> M__(Nnds * KDIM0, KDIM1);
|
|
|
|
+ { // Set kernel matrix M__
|
|
|
|
+ const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
|
|
|
|
+ kernel.template KernelMatrix<Real>(M__, X0_, X_, Xn_);
|
|
|
|
+ }
|
|
|
|
+ for (Long k0 = 0; k0 < KDIM0; k0++) {
|
|
|
|
+ for (Long k1 = 0; k1 < KDIM1; k1++) {
|
|
|
|
+ for (Long l = 0; l < DensityBasis::Size(); l++) {
|
|
|
|
+ Real M_lk = 0;
|
|
|
|
+ for (Long n = 0; n < Nnds; n++) {
|
|
|
|
+ Real quad_wt = Xa_[n] * quad_wts[n];
|
|
|
|
+ M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
|
|
|
|
+ }
|
|
|
|
+ M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] = M_lk;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ { // Set M (subtract direct)
|
|
|
|
+ Matrix<Real> quad_nds;
|
|
|
|
+ Vector<Real> quad_wts;
|
|
|
|
+ TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
|
|
|
|
+ const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
|
|
|
|
+ Integer Nnds = quad_wts.Dim();
|
|
|
|
+
|
|
|
|
+ Vector<Real> X_, dX_, Xa_, Xn_;
|
|
|
|
+ { // Set X_, dX_
|
|
|
|
+ eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
|
|
|
|
+ eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
|
|
|
|
+ }
|
|
|
|
+ if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
|
|
|
|
+ Long N = Nelem*Nnds;
|
|
|
|
+ Xa_.ReInit(N);
|
|
|
|
+ Xn_.ReInit(N*CoordDim);
|
|
|
|
+ for (Long j = 0; j < N; j++) {
|
|
|
|
+ StaticArray<Real,CoordDim> normal;
|
|
|
|
+ normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
|
|
|
|
+ normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
|
|
|
|
+ normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
|
|
|
|
+ Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
|
|
|
|
+ Real invXa = 1/Xa_[j];
|
|
|
|
+ Xn_[j*3+0] = normal[0] * invXa;
|
|
|
|
+ Xn_[j*3+1] = normal[1] * invXa;
|
|
|
|
+ Xn_[j*3+2] = normal[2] * invXa;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ DensityEvalOpType DensityEvalOp;
|
|
|
|
+ if (std::is_same<CoordBasis,DensityBasis>::value) {
|
|
|
|
+ DensityEvalOp = CoordEvalOp;
|
|
|
|
+ } else {
|
|
|
|
+ DensityEvalOp = DensityBasis::SetupEval(quad_nds);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ #pragma omp parallel for schedule(static)
|
|
|
|
+ for (Long j = 0; j < Ninterac; j++) { // Subtract direct contribution
|
|
|
|
+ const Long src_idx = pair_lst[j].first - elem_rank_offset;
|
|
|
|
+
|
|
|
|
+ Matrix<Real> M__(Nnds * KDIM0, KDIM1);
|
|
|
|
+ { // Set kernel matrix M__
|
|
|
|
+ const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
|
|
|
|
+ Vector<Real> X__(Nnds * CoordDim, X_.begin() + src_idx * Nnds * CoordDim, false);
|
|
|
|
+ Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + src_idx * Nnds * CoordDim, false);
|
|
|
|
+ kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
|
|
|
|
+ }
|
|
|
|
+ for (Long k0 = 0; k0 < KDIM0; k0++) {
|
|
|
|
+ for (Long k1 = 0; k1 < KDIM1; k1++) {
|
|
|
|
+ for (Long l = 0; l < DensityBasis::Size(); l++) {
|
|
|
|
+ Real M_lk = 0;
|
|
|
|
+ for (Long n = 0; n < Nnds; n++) {
|
|
|
|
+ Real quad_wt = Xa_[src_idx * Nnds + n] * quad_wts[n];
|
|
|
|
+ M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
|
|
|
|
+ }
|
|
|
|
+ M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] -= M_lk;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ template <class DensityBasis> static void EvalNearSingular(Vector<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, const Vector<Pair<Long,Long>>& pair_lst, Long Nelem_, Long Ntrg_, Integer KDIM0_, Integer KDIM1_, const Comm& comm) {
|
|
|
|
+ const Long Ninterac = pair_lst.Dim();
|
|
|
|
+ const Integer dof = density.Dim() / Nelem_ / KDIM0_;
|
|
|
|
+ SCTL_ASSERT(density.Dim() == Nelem_ * dof * KDIM0_);
|
|
|
|
+
|
|
|
|
+ Long elem_rank_offset;
|
|
|
|
+ { // Set elem_rank_offset
|
|
|
|
+ comm.Scan(Ptr2ConstItr<Long>(&Nelem_,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
|
|
|
|
+ elem_rank_offset -= Nelem_;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<Real> U_loc(Ninterac*dof*KDIM1_);
|
|
|
|
+ for (Long j = 0; j < Ninterac; j++) {
|
|
|
|
+ const Long src_idx = pair_lst[j].first - elem_rank_offset;
|
|
|
|
+ const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
|
|
|
|
+ Matrix<Real> U_(dof, KDIM1_, U_loc.begin() + j*dof*KDIM1_, false);
|
|
|
|
+ Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
|
|
|
|
+ for (Long i = 0; i < dof; i++) {
|
|
|
|
+ for (Long k = 0; k < KDIM0_; k++) {
|
|
|
|
+ for (Long l = 0; l < DensityBasis::Size(); l++) {
|
|
|
|
+ F_[i][k * DensityBasis::Size() + l] = density[(src_idx * dof + i) * KDIM0_ + k][l];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ Matrix<Real>::GEMM(U_, F_, M_);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (U.Dim() != Ntrg_ * dof * KDIM1_) {
|
|
|
|
+ U.ReInit(Ntrg_ * dof * KDIM1_);
|
|
|
|
+ U = 0;
|
|
|
|
+ }
|
|
|
|
+ { // Set U
|
|
|
|
+ Integer rank = comm.Rank();
|
|
|
|
+ Integer np = comm.Size();
|
|
|
|
+
|
|
|
|
+ Vector<Long> splitter_ranks;
|
|
|
|
+ { // Set splitter_ranks
|
|
|
|
+ Vector<Long> cnt(np);
|
|
|
|
+ comm.Allgather(Ptr2ConstItr<Long>(&Ntrg_,1), 1, cnt.begin(), 1);
|
|
|
|
+ scan(splitter_ranks, cnt);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<Long> scatter_index, send_index, send_cnt(np), send_dsp(np);
|
|
|
|
+ { // Set scatter_index, send_index, send_cnt, send_dsp
|
|
|
|
+ { // Set scatter_index, send_index
|
|
|
|
+ Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
|
|
|
|
+ for (Long i = 0; i < pair_lst.Dim(); i++) {
|
|
|
|
+ scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
|
|
|
|
+ }
|
|
|
|
+ omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
|
|
|
|
+
|
|
|
|
+ send_index.ReInit(scatter_pair.Dim());
|
|
|
|
+ scatter_index.ReInit(scatter_pair.Dim());
|
|
|
|
+ for (Long i = 0; i < scatter_index.Dim(); i++) {
|
|
|
|
+ send_index[i] = scatter_pair[i].first;
|
|
|
|
+ scatter_index[i] = scatter_pair[i].second;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ for (Integer i = 0; i < np; i++) {
|
|
|
|
+ send_dsp[i] = std::lower_bound(send_index.begin(), send_index.end(), splitter_ranks[i]) - send_index.begin();
|
|
|
|
+ }
|
|
|
|
+ for (Integer i = 0; i < np-1; i++) {
|
|
|
|
+ send_cnt[i] = send_dsp[i+1] - send_dsp[i];
|
|
|
|
+ }
|
|
|
|
+ send_cnt[np-1] = send_index.Dim() - send_dsp[np-1];
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<Long> recv_index, recv_cnt(np), recv_dsp(np);
|
|
|
|
+ { // Set recv_index, recv_cnt, recv_dsp
|
|
|
|
+ comm.Alltoall(send_cnt.begin(), 1, recv_cnt.begin(), 1);
|
|
|
|
+ scan(recv_dsp, recv_cnt);
|
|
|
|
+ recv_index.ReInit(recv_cnt[np-1] + recv_dsp[np-1]);
|
|
|
|
+ comm.Alltoallv(send_index.begin(), send_cnt.begin(), send_dsp.begin(), recv_index.begin(), recv_cnt.begin(), recv_dsp.begin());
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<Real> U_send(scatter_index.Dim() * dof * KDIM1_);
|
|
|
|
+ for (Long i = 0; i < scatter_index.Dim(); i++) {
|
|
|
|
+ Long idx = scatter_index[i]*dof*KDIM1_;
|
|
|
|
+ for (Long k = 0; k < dof * KDIM1_; k++) {
|
|
|
|
+ U_send[i*dof*KDIM1_ + k] = U_loc[idx + k];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<Real> U_recv(recv_index.Dim() * dof * KDIM1_);
|
|
|
|
+ { // Set U_recv
|
|
|
|
+ for (Long i = 0; i < np; i++) {
|
|
|
|
+ send_cnt[i] *= dof * KDIM1_;
|
|
|
|
+ send_dsp[i] *= dof * KDIM1_;
|
|
|
|
+ recv_cnt[i] *= dof * KDIM1_;
|
|
|
|
+ recv_dsp[i] *= dof * KDIM1_;
|
|
|
|
+ }
|
|
|
|
+ comm.Alltoallv(U_send.begin(), send_cnt.begin(), send_dsp.begin(), U_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (Long i = 0; i < recv_index.Dim(); i++) { // Set U
|
|
|
|
+ Long idx = (recv_index[i] - splitter_ranks[rank]) * dof * KDIM1_;
|
|
|
|
+ for (Integer k = 0; k < dof * KDIM1_; k++) {
|
|
|
|
+ U[idx + k] += U_recv[i*dof*KDIM1_ + k];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ template <class ElemList, class DensityBasis, class Kernel> static void Direct(Vector<Real>& U, const Vector<Real>& Xt, const ElemList& elem_lst, const Vector<DensityBasis>& density, const Kernel& kernel, Integer order_direct, const Comm& comm) {
|
|
|
|
+ using CoordBasis = typename ElemList::CoordBasis;
|
|
|
|
+ using CoordEvalOpType = typename CoordBasis::EvalOpType;
|
|
|
|
+ using DensityEvalOpType = typename DensityBasis::EvalOpType;
|
|
|
|
+
|
|
|
|
+ constexpr Integer CoordDim = ElemList::CoordDim();
|
|
|
|
+ constexpr Integer ElemDim = ElemList::ElemDim();
|
|
|
|
+ constexpr Integer KDIM0 = Kernel::SrcDim();
|
|
|
|
+ constexpr Integer KDIM1 = Kernel::TrgDim();
|
|
|
|
+ const Long Nelem = elem_lst.NElem();
|
|
|
|
+ const Integer dof = density.Dim() / Nelem / KDIM0;
|
|
|
|
+ SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0);
|
|
|
|
+
|
|
|
|
+ Matrix<Real> quad_nds;
|
|
|
|
+ Vector<Real> quad_wts;
|
|
|
|
+ TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
|
|
|
|
+ const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
|
|
|
|
+ Integer Nnds = quad_wts.Dim();
|
|
|
|
+
|
|
|
|
+ const Vector<CoordBasis>& X = elem_lst.ElemVector();
|
|
|
|
+ Vector<CoordBasis> dX;
|
|
|
|
+ CoordBasis::Grad(dX, X);
|
|
|
|
+
|
|
|
|
+ Vector<Real> X_, dX_, Xa_, Xn_;
|
|
|
|
+ eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
|
|
|
|
+ eval_basis(dX_, dX, CoordDim*ElemDim, Nnds, CoordEvalOp);
|
|
|
|
+ if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
|
|
|
|
+ Long N = Nelem*Nnds;
|
|
|
|
+ Xa_.ReInit(N);
|
|
|
|
+ Xn_.ReInit(N*CoordDim);
|
|
|
|
+ for (Long j = 0; j < N; j++) {
|
|
|
|
+ StaticArray<Real,CoordDim> normal;
|
|
|
|
+ normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
|
|
|
|
+ normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
|
|
|
|
+ normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
|
|
|
|
+ Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
|
|
|
|
+ Real invXa = 1/Xa_[j];
|
|
|
|
+ Xn_[j*3+0] = normal[0] * invXa;
|
|
|
|
+ Xn_[j*3+1] = normal[1] * invXa;
|
|
|
|
+ Xn_[j*3+2] = normal[2] * invXa;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<Real> Fa_;
|
|
|
|
+ { // Set Fa_
|
|
|
|
+ Vector<Real> F_;
|
|
|
|
+ if (std::is_same<CoordBasis,DensityBasis>::value) {
|
|
|
|
+ eval_basis(F_, density, dof * KDIM0, Nnds, CoordEvalOp);
|
|
|
|
+ } else {
|
|
|
|
+ const DensityEvalOpType EvalOp = DensityBasis::SetupEval(quad_nds);
|
|
|
|
+ eval_basis(F_, density, dof * KDIM0, Nnds, EvalOp);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Fa_.ReInit(F_.Dim());
|
|
|
|
+ const Integer DensityDOF = dof * KDIM0;
|
|
|
|
+ SCTL_ASSERT(F_.Dim() == Nelem * Nnds * DensityDOF);
|
|
|
|
+ for (Long j = 0; j < Nelem; j++) {
|
|
|
|
+ for (Integer k = 0; k < Nnds; k++) {
|
|
|
|
+ Long idx = j * Nnds + k;
|
|
|
|
+ Real quad_wt = Xa_[idx] * quad_wts[k];
|
|
|
|
+ for (Integer l = 0; l < DensityDOF; l++) {
|
|
|
|
+ Fa_[idx * DensityDOF + l] = F_[idx * DensityDOF + l] * quad_wt;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ { // Evaluate potential
|
|
|
|
+ const Long Ntrg = Xt.Dim() / CoordDim;
|
|
|
|
+ SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
|
|
|
|
+ if (U.Dim() != Ntrg * dof * KDIM1) {
|
|
|
|
+ U.ReInit(Ntrg * dof * KDIM1);
|
|
|
|
+ U = 0;
|
|
|
|
+ }
|
|
|
|
+ ParticleFMM<Real,CoordDim>::Eval(U, Xt, X_, Xn_, Fa_, kernel, comm);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ public:
|
|
|
|
+
|
|
|
|
+ template <class DensityBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Vector<Real>& Xt, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
|
|
|
|
+ order_direct_ = order_direct;
|
|
|
|
+ period_length_ = period_length;
|
|
|
|
+ comm_ = comm;
|
|
|
|
+
|
|
|
|
+ Profile::Tic("Setup", &comm_);
|
|
|
|
+ static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
|
|
|
|
+ static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
|
|
|
|
+ static_assert(DensityBasis::Dim() == ElemList::ElemDim());
|
|
|
|
+
|
|
|
|
+ Xt_ = Xt;
|
|
|
|
+ M_singular.ReInit(0,0);
|
|
|
|
+
|
|
|
|
+ Profile::Tic("SetupNearSingular", &comm_);
|
|
|
|
+ SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, Vector<Long>(), elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
|
|
|
|
+ Profile::Toc();
|
|
|
|
+
|
|
|
|
+ Profile::Toc();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
|
|
|
|
+ order_direct_ = order_direct;
|
|
|
|
+ period_length_ = period_length;
|
|
|
|
+ comm_ = comm;
|
|
|
|
+
|
|
|
|
+ Profile::Tic("Setup", &comm_);
|
|
|
|
+ static_assert(std::is_same<Real,typename PotentialBasis::ValueType>::value);
|
|
|
|
+ static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
|
|
|
|
+ static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
|
|
|
|
+ static_assert(PotentialBasis::Dim() == ElemList::ElemDim());
|
|
|
|
+ static_assert(DensityBasis::Dim() == ElemList::ElemDim());
|
|
|
|
+
|
|
|
|
+ Vector<Long> trg_surf;
|
|
|
|
+ { // Set Xt_
|
|
|
|
+ using CoordBasis = typename ElemList::CoordBasis;
|
|
|
|
+ Matrix<Real> trg_nds = PotentialBasis::Nodes();
|
|
|
|
+ auto Meval = CoordBasis::SetupEval(trg_nds);
|
|
|
|
+ eval_basis(Xt_, elem_lst.ElemVector(), ElemList::CoordDim(), trg_nds.Dim(1), Meval);
|
|
|
|
+
|
|
|
|
+ { // Set trg_surf
|
|
|
|
+ const Long Nelem = elem_lst.NElem();
|
|
|
|
+ const Long Nnds = trg_nds.Dim(1);
|
|
|
|
+ Long elem_offset;
|
|
|
|
+ { // Set elem_offset
|
|
|
|
+ comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_offset,1), 1, Comm::CommOp::SUM);
|
|
|
|
+ elem_offset -= Nelem;
|
|
|
|
+ }
|
|
|
|
+ trg_surf.ReInit(elem_lst.NElem() * trg_nds.Dim(1));
|
|
|
|
+ for (Long i = 0; i < Nelem; i++) {
|
|
|
|
+ for (Long j = 0; j < Nnds; j++) {
|
|
|
|
+ trg_surf[i*Nnds+j] = elem_offset + i;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Profile::Tic("SetupSingular", &comm_);
|
|
|
|
+ SetupSingular<DensityBasis>(M_singular, PotentialBasis::Nodes(), elem_lst, kernel, order_singular, order_direct_);
|
|
|
|
+ Profile::Toc();
|
|
|
|
+
|
|
|
|
+ Profile::Tic("SetupNearSingular", &comm_);
|
|
|
|
+ SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, trg_surf, elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
|
|
|
|
+ Profile::Toc();
|
|
|
|
+
|
|
|
|
+ Profile::Toc();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Eval(Vector<PotentialBasis>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) {
|
|
|
|
+ Profile::Tic("Eval", &comm_);
|
|
|
|
+ Matrix<Real> U_singular;
|
|
|
|
+ Vector<Real> U_direct, U_near_sing;
|
|
|
|
+
|
|
|
|
+ Profile::Tic("EvalDirect", &comm_);
|
|
|
|
+ Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
|
|
|
|
+ Profile::Toc();
|
|
|
|
+
|
|
|
|
+ Profile::Tic("EvalSingular", &comm_);
|
|
|
|
+ EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
|
|
|
|
+ Profile::Toc();
|
|
|
|
+
|
|
|
|
+ Profile::Tic("EvalNearSingular", &comm_);
|
|
|
|
+ EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
|
|
|
|
+ SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
|
|
|
|
+ Profile::Toc();
|
|
|
|
+
|
|
|
|
+ if (U.Dim() != elements.NElem() * kernel.TrgDim()) {
|
|
|
|
+ U.ReInit(elements.NElem() * kernel.TrgDim());
|
|
|
|
+ }
|
|
|
|
+ for (int i = 0; i < elements.NElem(); i++) {
|
|
|
|
+ for (int j = 0; j < PotentialBasis::Size(); j++) {
|
|
|
|
+ for (int k = 0; k < kernel.TrgDim(); k++) {
|
|
|
|
+ Real& U_ = U[i*kernel.TrgDim()+k][j];
|
|
|
|
+ U_ = 0;
|
|
|
|
+ U_ += U_direct [(i*PotentialBasis::Size()+j)*kernel.TrgDim()+k];
|
|
|
|
+ U_ += U_near_sing[(i*PotentialBasis::Size()+j)*kernel.TrgDim()+k];
|
|
|
|
+ U_ += U_singular[i*kernel.TrgDim()+k][j];
|
|
|
|
+ U_ *= kernel.template ScaleFactor<Real>();
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ Profile::Toc();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ template <class DensityBasis, class ElemList, class Kernel> void Eval(Vector<Real>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) {
|
|
|
|
+ Profile::Tic("Eval", &comm_);
|
|
|
|
+ Matrix<Real> U_singular;
|
|
|
|
+ Vector<Real> U_direct, U_near_sing;
|
|
|
|
+
|
|
|
|
+ Profile::Tic("EvalDirect", &comm_);
|
|
|
|
+ Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
|
|
|
|
+ Profile::Toc();
|
|
|
|
+
|
|
|
|
+ Profile::Tic("EvalSingular", &comm_);
|
|
|
|
+ EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
|
|
|
|
+ Profile::Toc();
|
|
|
|
+
|
|
|
|
+ Profile::Tic("EvalNearSingular", &comm_);
|
|
|
|
+ EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
|
|
|
|
+ SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
|
|
|
|
+ Profile::Toc();
|
|
|
|
+
|
|
|
|
+ if (U.Dim() != U_direct.Dim()) {
|
|
|
|
+ U.ReInit(U_direct.Dim());
|
|
|
|
+ }
|
|
|
|
+ for (int i = 0; i < U.Dim(); i++) {
|
|
|
|
+ U[i] = (U_direct[i] + U_near_sing[i]) * kernel.template ScaleFactor<Real>();
|
|
|
|
+ }
|
|
|
|
+ if (U_singular.Dim(1)) {
|
|
|
|
+ for (int i = 0; i < elements.NElem(); i++) {
|
|
|
|
+ for (int j = 0; j < U_singular.Dim(1); j++) {
|
|
|
|
+ for (int k = 0; k < kernel.TrgDim(); k++) {
|
|
|
|
+ Real& U_ = U[(i*U_singular.Dim(1)+j)*kernel.TrgDim()+k];
|
|
|
|
+ U_ += U_singular[i*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ Profile::Toc();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ template <Integer ORDER = 5> static void test(Integer order_singular = 10, Integer order_direct = 5, const Comm& comm = Comm::World()) {
|
|
|
|
+ constexpr Integer COORD_DIM = 3;
|
|
|
|
+ constexpr Integer ELEM_DIM = COORD_DIM-1;
|
|
|
|
+ using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
|
|
|
|
+ using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
|
|
|
|
+ using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
|
|
|
|
+
|
|
|
|
+ int np = comm.Size();
|
|
|
|
+ int rank = comm.Rank();
|
|
|
|
+ auto build_torus = [rank,np](ElemList& elements, long Nt, long Np, Real Rmajor, Real Rminor){
|
|
|
|
+ auto nodes = ElemList::CoordBasis::Nodes();
|
|
|
|
+ auto torus = [](Real theta, Real phi, Real Rmajor, Real Rminor) {
|
|
|
|
+ Real R = Rmajor + Rminor * cos<Real>(phi);
|
|
|
|
+ Real X = R * cos<Real>(theta);
|
|
|
|
+ Real Y = R * sin<Real>(theta);
|
|
|
|
+ Real Z = Rminor * sin<Real>(phi);
|
|
|
|
+ return std::make_tuple(X,Y,Z);
|
|
|
|
+ };
|
|
|
|
+
|
|
|
|
+ long start = Nt*Np*(rank+0)/np;
|
|
|
|
+ long end = Nt*Np*(rank+1)/np;
|
|
|
|
+ elements.ReInit(end - start);
|
|
|
|
+ for (long ii = start; ii < end; ii++) {
|
|
|
|
+ long i = ii / Np;
|
|
|
|
+ long j = ii % Np;
|
|
|
|
+ for (int k = 0; k < nodes.Dim(1); k++) {
|
|
|
|
+ Real X, Y, Z;
|
|
|
|
+ Real theta = 2 * const_pi<Real>() * (i + nodes[0][k]) / Nt;
|
|
|
|
+ Real phi = 2 * const_pi<Real>() * (j + nodes[1][k]) / Np;
|
|
|
|
+ std::tie(X,Y,Z) = torus(theta, phi, Rmajor, Rminor);
|
|
|
|
+ elements(ii-start,0)[k] = X;
|
|
|
|
+ elements(ii-start,1)[k] = Y;
|
|
|
|
+ elements(ii-start,2)[k] = Z;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ };
|
|
|
|
+ ElemList elements_src, elements_trg;
|
|
|
|
+ build_torus(elements_src, 28, 16, 2, 1.0);
|
|
|
|
+ build_torus(elements_trg, 29, 17, 2, 0.99);
|
|
|
|
+
|
|
|
|
+ Vector<Real> Xt;
|
|
|
|
+ Vector<PotentialBasis> U_onsurf, U_offsurf;
|
|
|
|
+ Vector<DensityBasis> density_sl, density_dl;
|
|
|
|
+ { // Set Xt, elements_src, elements_trg, density_sl, density_dl, U
|
|
|
|
+ Real X0[COORD_DIM] = {3,2,1};
|
|
|
|
+ std::function<void(Real*,Real*,Real*)> potential = [X0](Real* U, Real* X, Real* Xn) {
|
|
|
|
+ Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
|
|
|
|
+ Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
|
|
|
|
+ U[0] = Rinv;
|
|
|
|
+ };
|
|
|
|
+ std::function<void(Real*,Real*,Real*)> potential_normal_derivative = [X0](Real* U, Real* X, Real* Xn) {
|
|
|
|
+ Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
|
|
|
|
+ Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
|
|
|
|
+ Real RdotN = dX[0]*Xn[0]+dX[1]*Xn[1]+dX[2]*Xn[2];
|
|
|
|
+ U[0] = -RdotN * Rinv*Rinv*Rinv;
|
|
|
|
+ };
|
|
|
|
+
|
|
|
|
+ DiscretizeSurfaceFn<COORD_DIM,1>(density_sl, elements_src, potential_normal_derivative);
|
|
|
|
+ DiscretizeSurfaceFn<COORD_DIM,1>(density_dl, elements_src, potential);
|
|
|
|
+ DiscretizeSurfaceFn<COORD_DIM,1>(U_onsurf , elements_src, potential);
|
|
|
|
+ DiscretizeSurfaceFn<COORD_DIM,1>(U_offsurf , elements_trg, potential);
|
|
|
|
+
|
|
|
|
+ for (long i = 0; i < elements_trg.NElem(); i++) { // Set Xt
|
|
|
|
+ for (long j = 0; j < PotentialBasis::Size(); j++) {
|
|
|
|
+ for (int k = 0; k < COORD_DIM; k++) {
|
|
|
|
+ Xt.PushBack(elements_trg(i,k)[j]);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ GenericKernel<Laplace3D_DxU> Laplace_DxU;
|
|
|
|
+ GenericKernel<Laplace3D_FxU> Laplace_FxU;
|
|
|
|
+
|
|
|
|
+ Profile::Enable(true);
|
|
|
|
+ if (1) { // Greeen's identity test (Laplace, on-surface)
|
|
|
|
+ Profile::Tic("OnSurface", &comm);
|
|
|
|
+ Quadrature<Real> quadrature_DxU, quadrature_FxU;
|
|
|
|
+ quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_FxU, order_singular, order_direct, -1.0, comm);
|
|
|
|
+ quadrature_DxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_DxU, order_singular, order_direct, -1.0, comm);
|
|
|
|
+
|
|
|
|
+ Vector<PotentialBasis> U_sl, U_dl;
|
|
|
|
+ quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
|
|
|
|
+ quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
|
|
|
|
+ Profile::Toc();
|
|
|
|
+
|
|
|
|
+ Real max_err = 0;
|
|
|
|
+ Vector<PotentialBasis> err(U_onsurf.Dim());
|
|
|
|
+ for (long i = 0; i < U_sl.Dim(); i++) {
|
|
|
|
+ for (long j = 0; j < PotentialBasis::Size(); j++) {
|
|
|
|
+ err[i][j] = 0.5*U_onsurf[i][j] - (U_sl[i][j] + U_dl[i][j]);
|
|
|
|
+ max_err = std::max<Real>(max_err, fabs(err[i][j]));
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ { // Print error
|
|
|
|
+ Real glb_err;
|
|
|
|
+ comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
|
|
|
|
+ if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
|
|
|
|
+ }
|
|
|
|
+ { // Write VTK output
|
|
|
|
+ VTUData vtu;
|
|
|
|
+ vtu.AddElems(elements_src, err, ORDER);
|
|
|
|
+ vtu.WriteVTK("err", comm);
|
|
|
|
+ }
|
|
|
|
+ { // Write VTK output
|
|
|
|
+ VTUData vtu;
|
|
|
|
+ vtu.AddElems(elements_src, U_onsurf, ORDER);
|
|
|
|
+ vtu.WriteVTK("U", comm);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ if (1) { // Greeen's identity test (Laplace, off-surface)
|
|
|
|
+ Profile::Tic("OffSurface", &comm);
|
|
|
|
+ Quadrature<Real> quadrature_DxU, quadrature_FxU;
|
|
|
|
+ quadrature_FxU.Setup<DensityBasis>(elements_src, Xt, Laplace_FxU, order_singular, order_direct, -1.0, comm);
|
|
|
|
+ quadrature_DxU.Setup<DensityBasis>(elements_src, Xt, Laplace_DxU, order_singular, order_direct, -1.0, comm);
|
|
|
|
+
|
|
|
|
+ Vector<Real> U_sl, U_dl;
|
|
|
|
+ quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
|
|
|
|
+ quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
|
|
|
|
+ Profile::Toc();
|
|
|
|
+
|
|
|
|
+ Real max_err = 0;
|
|
|
|
+ Vector<PotentialBasis> err(elements_trg.NElem());
|
|
|
|
+ for (long i = 0; i < elements_trg.NElem(); i++) {
|
|
|
|
+ for (long j = 0; j < PotentialBasis::Size(); j++) {
|
|
|
|
+ err[i][j] = U_offsurf[i][j] - (U_sl[i*PotentialBasis::Size()+j] + U_dl[i*PotentialBasis::Size()+j]);
|
|
|
|
+ max_err = std::max<Real>(max_err, fabs(err[i][j]));
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ { // Print error
|
|
|
|
+ Real glb_err;
|
|
|
|
+ comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
|
|
|
|
+ if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
|
|
|
|
+ }
|
|
|
|
+ { // Write VTK output
|
|
|
|
+ VTUData vtu;
|
|
|
|
+ vtu.AddElems(elements_trg, err, ORDER);
|
|
|
|
+ vtu.WriteVTK("err", comm);
|
|
|
|
+ }
|
|
|
|
+ { // Write VTK output
|
|
|
|
+ VTUData vtu;
|
|
|
|
+ vtu.AddElems(elements_trg, U_offsurf, ORDER);
|
|
|
|
+ vtu.WriteVTK("U", comm);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ Profile::print(&comm);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ private:
|
|
|
|
+
|
|
|
|
+ static void scan(Vector<Long>& dsp, const Vector<Long>& cnt) {
|
|
|
|
+ dsp.ReInit(cnt.Dim());
|
|
|
|
+ if (cnt.Dim()) dsp[0] = 0;
|
|
|
|
+ omp_par::scan(cnt.begin(), dsp.begin(), cnt.Dim());
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ template <class Basis> static void eval_basis(Vector<Real>& value, const Vector<Basis> X, Integer dof, Integer Nnds, const typename Basis::EvalOpType& EvalOp) {
|
|
|
|
+ Long Nelem = X.Dim() / dof;
|
|
|
|
+ SCTL_ASSERT(X.Dim() == Nelem * dof);
|
|
|
|
+
|
|
|
|
+ value.ReInit(Nelem*Nnds*dof);
|
|
|
|
+ Matrix<Real> X_(Nelem*dof, Nnds, value.begin(),false);
|
|
|
|
+ Basis::Eval(X_, X, EvalOp);
|
|
|
|
+ for (Long j = 0; j < Nelem; j++) { // Rearrange data
|
|
|
|
+ Matrix<Real> X(Nnds, dof, X_[j*dof], false);
|
|
|
|
+ X = Matrix<Real>(dof, Nnds, X_[j*dof], false).Transpose();
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ template <int CoordDim, int FnDim, class Real, class FnBasis, class ElemList> static void DiscretizeSurfaceFn(Vector<FnBasis>& U, const ElemList& elements, std::function<void(Real*,Real*,Real*)> fn) {
|
|
|
|
+ using CoordBasis = typename ElemList::CoordBasis;
|
|
|
|
+ const long Nelem = elements.NElem();
|
|
|
|
+ U.ReInit(Nelem * FnDim);
|
|
|
|
+
|
|
|
|
+ Matrix<Real> X, X_grad;
|
|
|
|
+ { // Set X, X_grad
|
|
|
|
+ Vector<CoordBasis> coord = elements.ElemVector();
|
|
|
|
+ Vector<CoordBasis> coord_grad;
|
|
|
|
+ CoordBasis::Grad(coord_grad, coord);
|
|
|
|
+
|
|
|
|
+ const auto Meval = CoordBasis::SetupEval(FnBasis::Nodes());
|
|
|
|
+ CoordBasis::Eval(X, coord, Meval);
|
|
|
|
+ CoordBasis::Eval(X_grad, coord_grad, Meval);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (long i = 0; i < Nelem; i++) {
|
|
|
|
+ for (long j = 0; j < FnBasis::Size(); j++) {
|
|
|
|
+ Real X_[CoordDim], Xn[CoordDim], U_[FnDim];
|
|
|
|
+ for (long k = 0; k < CoordDim; k++) {
|
|
|
|
+ X_[k] = X[i*CoordDim+k][j];
|
|
|
|
+ }
|
|
|
|
+ { // Set Xn
|
|
|
|
+ Real Xu[CoordDim], Xv[CoordDim];
|
|
|
|
+ for (long k = 0; k < CoordDim; k++) {
|
|
|
|
+ Xu[k] = X_grad[(i*CoordDim+k)*2+0][j];
|
|
|
|
+ Xv[k] = X_grad[(i*CoordDim+k)*2+1][j];
|
|
|
|
+ }
|
|
|
|
+ Real dA = 0;
|
|
|
|
+ for (long k = 0; k < CoordDim; k++) {
|
|
|
|
+ Xn[k] = Xu[(k+1)%CoordDim] * Xv[(k+2)%CoordDim];
|
|
|
|
+ Xn[k] -= Xv[(k+1)%CoordDim] * Xu[(k+2)%CoordDim];
|
|
|
|
+ dA += Xn[k] * Xn[k];
|
|
|
|
+ }
|
|
|
|
+ dA = sqrt(dA);
|
|
|
|
+ for (long k = 0; k < CoordDim; k++) {
|
|
|
|
+ Xn[k] /= dA;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ fn(U_, X_, Xn);
|
|
|
|
+ for (long k = 0; k < FnDim; k++) {
|
|
|
|
+ U[i*FnDim+k][j] = U_[k];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector<Real> Xt_;
|
|
|
|
+ Matrix<Real> M_singular;
|
|
|
|
+ Matrix<Real> M_near_singular;
|
|
|
|
+ Vector<Pair<Long,Long>> pair_lst;
|
|
|
|
+ Integer order_direct_;
|
|
|
|
+
|
|
|
|
+ Real period_length_;
|
|
|
|
+ Comm comm_;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+} // end namespace
|
|
|
|
+
|
|
|
|
+#endif //_SCTL_BOUNDARY_QUADRATURE_HPP_
|