compression.tex 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623
  1. % vim: set foldmethod=marker foldmarker=<<<,>>>:
  2. \begin{FIframe}{Problem Setup - Stokes Mobility}{} %<<<
  3. \vspace{-1em}
  4. \begin{columns}
  5. \column{0.7\textwidth}
  6. \begin{itemize}
  7. \item $n$ identical rigid discs ~~$\Omega = \sum\limits_{i=1}^{n} \Omega_i$
  8. given radius $R$, ~centers $\vct{x}^c_i$, ~forces $\vct{F}_i$, ~torques $T_i$,
  9. \vspace{1.8ex}
  10. \only<1>{
  11. velocity ~$\vct{V}(\vct{x}) = \vct{v}_i + \vct{\omega}_i \times (\vct{x}-\vct{x}^c_i)$.
  12. }%
  13. \only<2>{
  14. velocity ~{\color{red}$\vct{V}(\vct{x}) = \vct{v}_i + \vct{\omega}_i \times (\vct{x}-\vct{x}^c_i)$}.
  15. }
  16. \vspace{1.4em}
  17. \item Stokesian fluid in $\Real^3 \setminus \Omega$
  18. \vspace{0.7ex}
  19. \qquad $\displaystyle \Delta \vct{u} - \nabla p = 0, ~~\nabla \cdot \vct{u} = 0,$ \\
  20. \vspace{0.6ex}
  21. \qquad $\displaystyle \vct{u} \rightarrow 0$ ~as~ $\vct{x} \rightarrow \infty$.
  22. \vspace{1.3em}
  23. \item Boundary conditions on $\partial\Omega$,
  24. \vspace{0.6ex}
  25. \only<1>{\qquad $\displaystyle \vct{u} = \vct{V} + \vct{u}_s$.}
  26. \only<2>{\qquad $\displaystyle \vct{u} = {\color{red}\vct{V}} + \vct{u}_s$.}
  27. \end{itemize}
  28. \vspace{1em}
  29. \qquad\quad
  30. \only<1>{\phantom{\color{red} unknown: $\vct{V}(\vct{u}_i, \vct{\omega}_i)$}}
  31. \only<2>{\color{red} unknown: $\vct{V}(\vct{u}_i, \vct{\omega}_i)$}
  32. \column{0.3\textwidth}
  33. \centering
  34. \resizebox{0.99\textwidth}{!}{\begin{tikzpicture}
  35. %\node[anchor=south west,inner sep=0] at (0,0) {\includegraphics[angle=90,origin=c,width=4cm]{figs/rigid-bodies.png}};
  36. \draw[color=blue, line width=1pt, fill=gray!50] (2.19,0.975) circle (0.76cm);
  37. \draw[color=blue, line width=1pt, fill=gray!50] (1.5,-1.4) circle (0.76cm);
  38. \draw[color=blue, line width=1pt, fill=gray!50] (3.1,-2.0) circle (0.76cm);
  39. \draw[color=black, line width=1pt, fill=black] (2.19,0.975) circle (0.03cm);
  40. \node at (2.28,0.72) {$\vct{x}^c_1$};
  41. \draw[ultra thick, -latex] (2.3,1.07) to (3,1.5);
  42. \node at (3.35, 1.6) {$\vct{F}_1$};
  43. %\node (a) at (1.41, 0.975) {};
  44. %\node (b) at (2.19, 1.755) {};
  45. %\draw[thick, -latex] (a) arc [out=140,in=60, looseness=3] (b);
  46. \draw[-latex, ultra thick] (1.3,0.975) arc
  47. [
  48. start angle=180,
  49. end angle=90,
  50. x radius=0.85cm,
  51. y radius=0.85cm
  52. ] ;
  53. \node at (1.35, 1.85) {$T_1$};
  54. %\draw[color=red, ultra thick] (2.7,0.9) circle (1pt);
  55. %\node at (2.5, 0.5) {\color{red} \Large $x$};
  56. %\draw[ultra thick, -latex] (4.3,0.45) to (3.1,0.5);
  57. %\node [rotate=-6] at (5.55, 0.25) {log singularity};
  58. %\draw[ultra thick, -latex] (10.5,-0.25) to (12.1,-0.2);
  59. %\node [rotate=-4.5] at (9.5, -0.17) {$|s-s_0|^{-\alpha}$};
  60. \end{tikzpicture}}
  61. \end{columns}
  62. \end{FIframe} %>>>
  63. \begin{FIframe}{Boundary Integral Formulation}{} %<<<
  64. \only<1>{
  65. Represent fluid velocity: ~~$\displaystyle \vct{u}(\vct{x}) = \int_{\partial\Omega} \!\!\!\! S(\vct{x}-\vct{y}) \vct{\nu}(\vct{y}) + \int_{\partial\Omega} \!\!\!\! D(\vct{x}-\vct{y}) {\color{red}\vct{\sigma}}(\vct{y}) $
  66. }
  67. \only<2->{
  68. \vspace{0.25em}
  69. Represent fluid velocity: ~~$\displaystyle \vct{u} = \StokesSL[\vct{\nu}(\vct{F}_i, T_i)] + \StokesDL[{\color{red}\vct{\sigma}}] $
  70. }
  71. \only<3->{
  72. \vspace{0.3em}
  73. and rigid body velocity: ~~$\displaystyle \vct{V} = -\sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T {\color{red}\vct{\sigma}}$
  74. }
  75. \only<4->{
  76. \vspace{1.5em}
  77. Applying boundary conditions ~ ($\displaystyle \vct{u} = \vct{V} + \vct{u}_s$ ~on~ $\partial\Omega$),
  78. \vspace{0.3em}
  79. \qquad$\qquad\displaystyle
  80. (I/2 + D) \, {\color{red}\vct{\sigma}} + \sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T {\color{red}\vct{\sigma}} = \vct{u}_s - S \, \vct{\nu}
  81. $
  82. \vspace{0.5em}{\em(Pozrikidis - Boundary Integral and Singularity Methods for Linearized Viscous Flow)}
  83. }
  84. %\vspace{0.5em}
  85. %\only<2->{Second kind integral equation \quad {\color{red} $\cdots$ but doesn't work for slender bodies!}
  86. % %, should be well-conditioned.\\
  87. % %What can possibly go wrong?
  88. % \vspace{1em}
  89. % \only<3->{\color{red} $\kappa(I/2 + D) ~\sim~ 1/(\varepsilon^{2} \log \varepsilon^{-1})$}
  90. %}
  91. \end{FIframe} %>>>
  92. \begin{frame}[t,fragile] \frametitle{{Nystr\"om Discretization}} \framesubtitle{{}} %<<<
  93. \newcommand*\drawpanels[6]{% coord, radius, start, end, count
  94. \pgfmathsetmacro{\x}{{#1}}
  95. \pgfmathsetmacro{\y}{{#2}}
  96. \pgfmathsetmacro{\r}{{#3}}
  97. \pgfmathsetmacro{\a}{{#4}}
  98. \pgfmathsetmacro{\b}{{#5}}
  99. \pgfmathsetmacro{\N}{{#6-1}}
  100. \foreach \i in {0,...,\N} {
  101. \pgfmathsetmacro{\t}{\a+\i*(\b-\a)/\N};
  102. \pgfmathsetmacro{\xx}{\r*cos(\t)};
  103. \pgfmathsetmacro{\yy}{\r*sin(\t)};
  104. \draw[black, line width=1pt] ({\x+0.96*\xx},{\y+0.96*\yy}) -- ({\x+1.04*\xx},{\y+1.04*\yy});
  105. }
  106. }
  107. \vspace{-0.8em}
  108. \resizebox{0.62\textwidth}{!}{\begin{tikzpicture}[scale=0.8]%<<<
  109. \draw[color=blue, line width=2pt, fill=gray!50] (-4.2,0) circle (4cm);
  110. \draw[color=blue, line width=2pt, fill=gray!50] ( 4.2,0) circle (4cm);
  111. \only<2->{
  112. \draw [red, line width=2pt, domain=-30:30] plot ({ 4*cos(\x)-4.2}, {4*sin(\x)});
  113. \draw [red, line width=2pt, domain=-30:30] plot ({-4*cos(\x)+4.2}, {4*sin(\x)});
  114. \draw[rounded corners=1cm,dotted,color=black!50!green, line width=2pt] (-1.5, -2.1) rectangle (1.5, 2.1) {};
  115. }
  116. \node at (-5.5, 1.5) {\LARGE $\Omega_k$};
  117. %\node at (-7.0, 3.6) {\Large $\partial\Omega_k$};
  118. \drawpanels{-4.2}{0}{4}{30}{330}{8};
  119. \drawpanels{ 4.2}{0}{4}{-150}{150}{8};
  120. \drawpanels{-4.2}{0}{4}{-15}{15}{2};
  121. \drawpanels{-4.2}{0}{4}{-7.5}{7.5}{2};
  122. \drawpanels{-4.2}{0}{4}{-3.75}{3.75}{2};
  123. \drawpanels{-4.2}{0}{4}{-1.875}{1.875}{3};
  124. %\drawpanels{-4.2}{0}{4}{-0.9375}{0.9375}{3};
  125. \drawpanels{ 4.2}{0}{4}{165}{195}{2};
  126. \drawpanels{ 4.2}{0}{4}{172.5}{187.5}{2};
  127. \drawpanels{ 4.2}{0}{4}{176.25}{183.75}{2};
  128. \drawpanels{ 4.2}{0}{4}{178.125}{181.875}{3};
  129. %\drawpanels{ 4.2}{0}{4}{179.0625}{180.9375}{3};
  130. %\draw [dashed, line width=1pt] (-4.2,0) -- (-0.2,0);
  131. \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-4.2,0) -- (-1.371,2.828);
  132. %\draw [line width=2pt, domain=0:45] plot ({1*cos(\x)-4.2}, {1*sin(\x)});
  133. \node at (-3.1, 1.6) {\Large $\radius$};
  134. \node at (-4.55,0) {\Large $\vct{x}^c_{k}$};
  135. \draw [dashed, line width=1pt] (-0.2,0) -- (-0.2,-3.55);
  136. \draw [dashed, line width=1pt] ( 0.2,0) -- ( 0.2,-3.55);
  137. \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-1.2,-3.45) -- (-0.2,-3.45);
  138. \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] ( 1.2,-3.45) -- ( 0.2,-3.45);
  139. \node at (0, -4.0) {\Large $d$};
  140. %\node at (0, 1.75) {\color{red} \Large $\Gamma_{2}$};
  141. %\node at (0, 1.25) {\color{red} \Large $\sigma_{2}$};
  142. %\node at (4.0, 3.5) {\color{blue} \huge $\Gamma_{1}$};
  143. %\node at (5.0, 3.5) {\color{blue} \Large $\sigma_{1}$};
  144. \end{tikzpicture}}%>>>
  145. \resizebox{0.38\textwidth}{!}{\begin{tikzpicture}%<<<
  146. \node[anchor=south west,inner sep=0] at (0,0) {\includegraphics[width=5cm]{figs/plot-mobility-density_.png}};
  147. \node at (-0.1, 2.1) {$\vct{\sigma}$};
  148. \end{tikzpicture}}%>>>
  149. \begin{columns}
  150. \begin{column}[T]{0.61\textwidth}
  151. \begin{itemize}
  152. \setlength\itemsep{1.5ex}
  153. \item Discretize $\partial\Omega$ into panels.
  154. \item Layer-potential operators:
  155. \begin{itemize}
  156. \item adaptive quadrature for near integrals
  157. \item special quadrature for singular integrals
  158. \end{itemize}
  159. \item Solve BIE: ~~~\scalebox{1.3}{$K \sigma = g$}
  160. \end{itemize}
  161. \end{column}
  162. \begin{column}[T]{0.39\textwidth}
  163. \only<2->{
  164. {\bf
  165. \color{red}
  166. \vspace{2em}
  167. \begin{center}
  168. Compress close-interactions,
  169. and interpolate in $d$.
  170. \end{center}
  171. }
  172. }
  173. \end{column}
  174. \end{columns}
  175. \end{frame}
  176. %>>>
  177. \begin{frame}[t,fragile] \frametitle{{Compressing Close Interactions}} \framesubtitle{{}} %<<<
  178. %\resizebox{0.34\textwidth}{!}{\input{figs/tikz/disc-suspension}}
  179. \newcommand*\drawpanels[6]{% coord, radius, start, end, count
  180. \pgfmathsetmacro{\x}{{#1}}
  181. \pgfmathsetmacro{\y}{{#2}}
  182. \pgfmathsetmacro{\r}{{#3}}
  183. \pgfmathsetmacro{\a}{{#4}}
  184. \pgfmathsetmacro{\b}{{#5}}
  185. \pgfmathsetmacro{\N}{{#6-1}}
  186. \foreach \i in {0,...,\N} {
  187. \pgfmathsetmacro{\t}{\a+\i*(\b-\a)/\N};
  188. \pgfmathsetmacro{\xx}{\r*cos(\t)};
  189. \pgfmathsetmacro{\yy}{\r*sin(\t)};
  190. \draw[black, line width=1pt] ({\x+0.96*\xx},{\y+0.96*\yy}) -- ({\x+1.04*\xx},{\y+1.04*\yy});
  191. }
  192. }
  193. \vspace{-1.6em}
  194. \begin{columns}
  195. \begin{column}[T]{0.63\textwidth}
  196. \hfill
  197. \resizebox{0.99\textwidth}{!}{\begin{tikzpicture}[scale=0.8]%<<<
  198. \draw[color=blue, line width=2pt, fill=gray!50] (-4.2,0) circle (4cm);
  199. \draw[color=blue, line width=2pt, fill=gray!50] ( 4.2,0) circle (4cm);
  200. \draw [red, line width=2pt, domain=-30:30] plot ({ 4*cos(\x)-4.2}, {4*sin(\x)});
  201. \draw [red, line width=2pt, domain=-30:30] plot ({-4*cos(\x)+4.2}, {4*sin(\x)});
  202. %\draw [orange, line width=2pt, domain=-30:30] plot ({ 3.85*cos(\x)-4.2}, {3.85*sin(\x)});
  203. %\draw [orange, line width=2pt, domain=-30:30] plot ({-3.85*cos(\x)+4.2}, {3.85*sin(\x)});
  204. %\node at (-0.73,-0.6) {\color{orange} \Large $\overline{\sigma}_{2}$};
  205. %\draw[dotted,color=black!50!green, line width=2pt] (0,0) circle (2.09cm);
  206. \draw[rounded corners=1cm,dotted,color=black!50!green, line width=2pt] (-1.5, -2.1) rectangle (1.5, 2.1) {};
  207. %\draw[fill=red, opacity=0.1] (0,0) circle (2.09cm);
  208. %\node at (2.25, -1) {\color{black!50!green} \Large $\Gamma_{3}$};
  209. %\node at (-5.5, 1.5) {\huge $\Omega_k$};
  210. %\node at (-7.0, 3.6) {\Large $\partial\Omega_k$};
  211. \drawpanels{-4.2}{0}{4}{30}{330}{8};
  212. \drawpanels{ 4.2}{0}{4}{-150}{150}{8};
  213. \drawpanels{-4.2}{0}{4}{-15}{15}{2};
  214. \drawpanels{-4.2}{0}{4}{-7.5}{7.5}{2};
  215. \drawpanels{-4.2}{0}{4}{-3.75}{3.75}{2};
  216. \drawpanels{-4.2}{0}{4}{-1.875}{1.875}{3};
  217. %\drawpanels{-4.2}{0}{4}{-0.9375}{0.9375}{3};
  218. \drawpanels{ 4.2}{0}{4}{165}{195}{2};
  219. \drawpanels{ 4.2}{0}{4}{172.5}{187.5}{2};
  220. \drawpanels{ 4.2}{0}{4}{176.25}{183.75}{2};
  221. \drawpanels{ 4.2}{0}{4}{178.125}{181.875}{3};
  222. %\drawpanels{ 4.2}{0}{4}{179.0625}{180.9375}{3};
  223. %\draw [dashed, line width=1pt] (-4.2,0) -- (-0.2,0);
  224. \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-4.2,0) -- (-1.371,2.828);
  225. %\draw [line width=2pt, domain=0:45] plot ({1*cos(\x)-4.2}, {1*sin(\x)});
  226. %\node at (-3.0, 0.5) {\Large $\theta$};
  227. \node at (-3.1, 1.6) {\Large $\radius$};
  228. \node at (-4.55,0) {\Large $\vct{x}^c_{k}$};
  229. \draw [dashed, line width=1pt] (-0.2,0) -- (-0.2,-3.55);
  230. \draw [dashed, line width=1pt] ( 0.2,0) -- ( 0.2,-3.55);
  231. \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-1.2,-3.45) -- (-0.2,-3.45);
  232. \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] ( 1.2,-3.45) -- ( 0.2,-3.45);
  233. \node at (0, -4.0) {\Large $d$};
  234. \node at (0.85, 0.35) {\color{red} \Large $\Gamma_{2}$};
  235. \node at (0.85, -0.40) {\color{red} \Large $\sigma_{2}$};
  236. \node at (4.0, 3.4) {\color{blue} \LARGE $\Gamma_{1}$};
  237. \node at (5.0, 3.4) {\color{blue} \Large $\sigma_{1}$};
  238. \end{tikzpicture}}%>>>
  239. \end{column}
  240. \begin{column}[T]{0.36\textwidth}
  241. \vspace{2em}
  242. \begin{align*}
  243. \begin{pmatrix}
  244. {\color{blue} \mathcal{K}_{11}} & {\color{black!50!green} \mathcal{K}_{12}} \\
  245. {\color{black!50!green} \mathcal{K}_{21}} & {\color{red} \mathcal{K}_{22}}
  246. \end{pmatrix}
  247. \begin{pmatrix}
  248. {\color{blue} \sigma_1 } \\
  249. {\color{red} \sigma_2 }
  250. \end{pmatrix}
  251. =
  252. \begin{pmatrix}
  253. {\color{blue} g_1 } \\
  254. {\color{red} g_2 }
  255. \end{pmatrix}
  256. \end{align*}
  257. \only<2->{
  258. Build compression using \\
  259. RCIP method of Helsing
  260. }
  261. \end{column}
  262. \end{columns}
  263. \only<3->{
  264. \vspace{0.5em}
  265. \begin{columns}
  266. \begin{column}{0.4\textwidth}
  267. Right precondition with $\mathcal{K}_{22}^{-1}$:
  268. \begin{align*}
  269. \begin{pmatrix}
  270. \mathcal{K}_{11} & \mathcal{K}_{12} \mathcal{K}_{22}^{-1} \\
  271. \mathcal{K}_{21} & I
  272. \end{pmatrix}
  273. \begin{pmatrix}
  274. \sigma_1 \\
  275. \overline{\sigma}_2
  276. \end{pmatrix}
  277. =
  278. \begin{pmatrix}
  279. g_1 \\
  280. g_2
  281. \end{pmatrix}
  282. \end{align*}
  283. where $\overline{\sigma}_2 = \mathcal{K}_{22} \sigma_2$
  284. \end{column}
  285. \begin{column}{0.2\textwidth}
  286. \only<4->{
  287. \begin{center}
  288. $\implies$
  289. coarsen
  290. \end{center}
  291. }
  292. \end{column}
  293. \begin{column}{0.4\textwidth}
  294. \only<4->{
  295. \begin{align*}
  296. \begin{pmatrix}
  297. K_{11} & K^{c}_{12} R \\
  298. K^{c}_{21} & I
  299. \end{pmatrix}
  300. \begin{pmatrix}
  301. \sigma_1 \\
  302. \overline{\sigma}^{c}_2
  303. \end{pmatrix}
  304. =
  305. \begin{pmatrix}
  306. g_1 \\
  307. g^{c}_2
  308. \end{pmatrix}
  309. \end{align*}
  310. where $R = W_c^{-1} P^{T} W_f K_{22}^{-1} P$.
  311. }
  312. \end{column}
  313. \end{columns}
  314. }
  315. \end{frame}
  316. %>>>
  317. \begin{FIframe}{Computing ~$R_d$~ On-the-Fly}{} %<<<
  318. {\bf Cost of computing $R_d$:}
  319. \vspace{0.4em}
  320. {\renewcommand{\arraystretch}{1.6}
  321. \begin{tabular}{ l l l }
  322. Direct: & $\mathcal{O}((q \log d)^3)$ & \\
  323. RCIP: & $\mathcal{O}(q^3 \log d)$ & $\quad \left[~ \mathcal{O}(q^6 \log d) \text{ ~in~ 3D} ~\right]$ \\
  324. \end{tabular}}
  325. \vspace{4em}
  326. \only<2->{
  327. {\bf Interpolating $R_d$:} ~~~~Interpolated Compressed Inverse Preconditioning (ICIP)
  328. \vspace{1em}
  329. \begin{columns}
  330. \column{0.35\textwidth}
  331. $\displaystyle R_{ij}(d) = \sum\limits_{k=0}^{p-1} \alpha_k T_k(\log d)$
  332. \column{0.64\textwidth}
  333. \begin{tikzpicture}%<<<
  334. % Draw the base line
  335. \draw[thick] (0,0) -- (8,0);
  336. % Draw the panel divisions
  337. \foreach \x in {0,2,4,6,8} {
  338. \draw[thick] (\x,0.2) -- (\x,-0.2);
  339. }
  340. % Add panel labels
  341. \node at (0,-0.5) {$10^{0}$};
  342. \node at (2,-0.5) {$10^{-2}$};
  343. \node at (4,-0.5) {$10^{-4}$};
  344. \node at (6,-0.5) {$10^{-6}$};
  345. \node at (8,-0.5) {$10^{-8}$};
  346. \node at (4,-1.0) {$\log d \longrightarrow$};
  347. % Compute and draw Chebyshev nodes for each panel
  348. \foreach \i in {0, 2, 4, 6} {
  349. \foreach \j in {1, 2, 3, 4, 5, 6, 7, 8} {
  350. \pgfmathsetmacro{\theta}{(2*\j-1)*180/16}
  351. \pgfmathsetmacro{\x}{\i + 1 + cos(\theta)}
  352. \filldraw[blue] (\x,0) circle (1.5pt);
  353. }
  354. }
  355. %\begin{axis}[
  356. % xmode=log,
  357. % log basis x=10,
  358. % axis x line=bottom,
  359. % axis y line=none,
  360. % xmin=1e-8, xmax=1,
  361. % xtick={1,1e-1,1e-2,1e-3,1e-4,1e-5,1e-6,1e-7,1e-8},
  362. % xticklabels={$10^0$, $$, $10^{-2}$, $$, $10^{-4}$, $$, $10^{-6}$, $$, $10^{-8}$},
  363. % tick align=outside,
  364. % enlargelimits=false,
  365. % width=12cm,
  366. % height=2cm
  367. %]
  368. %\end{axis}
  369. \end{tikzpicture}%>>>
  370. \end{columns}
  371. \vspace{1em}
  372. Interpolation cost: \quad $\mathcal{O}(q^2 p)$ \quad $\quad \left[~ \mathcal{O}(q^4 p) \text{ ~in~ 3D} ~\right]$
  373. }
  374. \end{FIframe}%>>>
  375. \begin{FIframe}{Convergence Results}{} %<<<
  376. \begin{columns}
  377. \column{0.5\textwidth}
  378. Errors (Stokes mobility with 2 discs):
  379. \column{0.5\textwidth}
  380. \resizebox{0.4\textwidth}{!}{\begin{tikzpicture}[scale=0.8]%<<<
  381. \draw[color=blue, line width=2pt, fill=gray!50] (-3.2,0) circle (3cm);
  382. \draw[color=blue, line width=2pt, fill=gray!50] ( 3.2,0) circle (3cm);
  383. \draw [dashed, line width=1pt] (-0.2,0) -- (-0.2,-3.55);
  384. \draw [dashed, line width=1pt] ( 0.2,0) -- ( 0.2,-3.55);
  385. \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-1.2,-3.45) -- (-0.2,-3.45);
  386. \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] ( 1.2,-3.45) -- ( 0.2,-3.45);
  387. \node at (0,-4.0) {\Huge $d$};
  388. \end{tikzpicture}}%>>>
  389. \end{columns}
  390. \vspace{1em}
  391. \begin{tabular}{r r c r r r r r }
  392. \hline
  393. & ~ & Adaptive & ~ & \multicolumn{4}{c}{Interpolating $R_d$} \\
  394. $d$ & ~ & Discretization & ~ & $p=8$ & ~~$p=16$ & ~~$p=24$ & ~~$p=32$ \\ % & ~~$p=40$
  395. \hline
  396. 1e-1 & ~ & 7.6e-15 & ~ & 1.0e-4 & 2.9e-07 & 2.1e-09 & 9.1e-12 \\ % 3.419e-14 8.966e-15
  397. %1e-2 & ~ & 1.8e-13 & ~ & 2.8e-3 & 3.6e-06 & 3.6e-08 & 6.5e-10 \\ % 2.635e-12 1.552e-14
  398. 1e-3 & ~ & 4.4e-13 & ~ & 3.4e-5 & 5.6e-10 & 4.8e-14 & \\ % 6.656e-14 8.237e-14
  399. %1e-4 & ~ & 3.8e-11 & ~ & 1.5e-3 & 1.4e-09 & 1.4e-13 & \\ % 1.244e-13 8.435e-14
  400. 1e-5 & ~ & 9.0e-09 & ~ & 1.5e-5 & 2.1e-12 & & \\ % 1.170e-12 1.012e-12
  401. %1e-6 & ~ & 2.0e-07 & ~ & 6.0e-4 & 1.4e-11 & & \\ % 1.487e-11 1.936e-11
  402. 1e-7 & ~ & 4.3e-07 & ~ & 1.7e-5 & 4.1e-11 & & \\ % 2.812e-11
  403. 1e-8 & ~ & 5.3e-08 & ~ & 6.3e-4 & 3.9e-09 & & \\ % 1.220e-09
  404. \hline
  405. \end{tabular}
  406. \vspace{1em}
  407. $p$: interpolation order
  408. \end{FIframe}%>>>
  409. \begin{FIframe}{GMRES Iterations}{} %<<<
  410. %Iteration counts for 2-discs, and disc-chain
  411. \vspace{-0.8em}
  412. \begin{columns}[T]
  413. \column{0.25\textwidth}
  414. \centering
  415. Iteration counts \\
  416. for $\epsilon_{\text{GMRES}}$=1e-8
  417. \vspace{1em}
  418. \resizebox{0.4\textwidth}{!}{\begin{tikzpicture}[scale=0.8]%<<<
  419. \draw[color=blue, line width=2pt, fill=gray!50] (0,-3.2) circle (3cm);
  420. \draw[color=blue, line width=2pt, fill=gray!50] (0, 3.2) circle (3cm);
  421. \only<2->{
  422. \draw[color=blue, line width=2pt, fill=gray!50] (0, -9.6) circle (3cm);
  423. \draw[color=blue, line width=2pt, fill=gray!50] (0,-16.0) circle (3cm);
  424. }
  425. \only<3->{
  426. \draw[color=black, line width=2pt, fill=black] (0,-19.5) circle (0.15cm);
  427. \draw[color=black, line width=2pt, fill=black] (0,-20.4) circle (0.15cm);
  428. \draw[color=black, line width=2pt, fill=black] (0,-21.3) circle (0.15cm);
  429. \draw[color=blue, line width=2pt, fill=gray!50] (0,-24.8) circle (3cm);
  430. }
  431. \draw [dashed, line width=1pt] (0,-0.2) -- (-3.55,-0.2);
  432. \draw [dashed, line width=1pt] (0, 0.2) -- (-3.55, 0.2);
  433. \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-3.45,-1.2) -- (-3.45,-0.2);
  434. \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-3.45, 1.2) -- (-3.45, 0.2);
  435. \node at (-4.0,0) {\Huge $d$};
  436. \end{tikzpicture}}%>>>
  437. \column{0.75\textwidth}
  438. {\bf Adaptive discretization:}
  439. \only<1>{\begin{tabular}{r r r r r r r r}%<<<
  440. \hline
  441. $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & ~1e-4 & ~~~1e-5 & 1e-6 & 1e-7 \\
  442. \hline
  443. 2 & 15 & 37 & 104 & 337 & 1283 & 1848 & 2344 \\
  444. &&&&&&&\\
  445. &&&&&&&\\
  446. &&&&&&&\\
  447. &&&&&&&\\
  448. %\hline
  449. \end{tabular}
  450. }%>>>
  451. \only<2>{\begin{tabular}{r r r r r r r r}%<<<
  452. \hline
  453. $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & ~1e-4 & ~~~1e-5 & 1e-6 & 1e-7 \\
  454. \hline
  455. 2 & 15 & 37 & 104 & 337 & 1283 & 1848 & 2344 \\
  456. 4 & 25 & 75 & 271 & 1134 & 3770 & 5301 & 6620 \\
  457. &&&&&&&\\
  458. &&&&&&&\\
  459. &&&&&&&\\
  460. %\hline
  461. \end{tabular}
  462. }%>>>
  463. \only<3>{\begin{tabular}{r r r r r r r r}%<<<
  464. \hline
  465. $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & ~1e-4 & ~~~1e-5 & 1e-6 & 1e-7 \\
  466. \hline
  467. 2 & 15 & 37 & 104 & 337 & 1283 & 1848 & 2344 \\
  468. 4 & 25 & 75 & 271 & 1134 & 3770 & 5301 & 6620 \\
  469. % 8 & 32 & 124 & 494 & 1939 & 7488 &>8000 &>8000 \\
  470. 16 & 35 & 147 & 629 & 2754 &>8000 & & \\
  471. % 32 & 36 & 148 & 682 & 3092 & & & \\
  472. 64 & 36 & 148 & 683 & 3094 & & & \\
  473. %128 & 37 & 149 & 683 & 3094 & & & \\
  474. 256 & 37 & 149 & 683 & 3094 & & & \\
  475. %\hline
  476. \end{tabular}}%>>>
  477. \vspace{1.5em}
  478. {\bf Interpolated Compressed Inverse Preconditioning (ICIP):}
  479. \only<1>{\begin{tabular}{r r r r r r r r}%<<<
  480. \hline
  481. $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & 1e-4 & 1e-5 & 1e-6 & 1e-7 \\
  482. \hline
  483. 2 & 18 & 20 & 21 & 21 & 21 & 21 & 21 \\
  484. %\hline
  485. \end{tabular}
  486. }%>>>
  487. \only<2>{\begin{tabular}{r r r r r r r r}%<<<
  488. \hline
  489. $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & 1e-4 & 1e-5 & 1e-6 & 1e-7 \\
  490. \hline
  491. 2 & 18 & 20 & 21 & 21 & 21 & 21 & 21 \\
  492. 4 & 28 & 34 & 36 & 37 & 37 & 37 & 37 \\
  493. %\hline
  494. \end{tabular}
  495. }%>>>
  496. \only<3>{\begin{tabular}{r r r r r r r r}%<<<
  497. \hline
  498. $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & 1e-4 & 1e-5 & 1e-6 & 1e-7 \\
  499. \hline
  500. 2 & 18 & 20 & 21 & 21 & 21 & 21 & 21 \\
  501. 4 & 28 & 34 & 36 & 37 & 37 & 37 & 37 \\
  502. % 8 & 38 & 52 & 54 & 53 & 57 & 57 & 57 \\
  503. 16 & 46 & 71 & 74 & 80 & 86 & 87 & 88 \\
  504. % 32 & 48 & 90 & 98 & 113 & 139 & 146 & 150 \\
  505. 64 & 49 & 96 & 108 & 131 & 186 & 237 & 251 \\
  506. %128 & 49 & 98 & 110 & 134 & 215 & 326 & 431 \\
  507. 256 & 49 & 98 & 110 & 134 & 220 & 371 & 608 \\
  508. %\hline
  509. \end{tabular}}%>>>
  510. \end{columns}
  511. \end{FIframe}%>>>