123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623 |
- % vim: set foldmethod=marker foldmarker=<<<,>>>:
- \begin{FIframe}{Problem Setup - Stokes Mobility}{} %<<<
- \vspace{-1em}
- \begin{columns}
- \column{0.7\textwidth}
- \begin{itemize}
- \item $n$ identical rigid discs ~~$\Omega = \sum\limits_{i=1}^{n} \Omega_i$
- given radius $R$, ~centers $\vct{x}^c_i$, ~forces $\vct{F}_i$, ~torques $T_i$,
- \vspace{1.8ex}
- \only<1>{
- velocity ~$\vct{V}(\vct{x}) = \vct{v}_i + \vct{\omega}_i \times (\vct{x}-\vct{x}^c_i)$.
- }%
- \only<2>{
- velocity ~{\color{red}$\vct{V}(\vct{x}) = \vct{v}_i + \vct{\omega}_i \times (\vct{x}-\vct{x}^c_i)$}.
- }
- \vspace{1.4em}
- \item Stokesian fluid in $\Real^3 \setminus \Omega$
- \vspace{0.7ex}
- \qquad $\displaystyle \Delta \vct{u} - \nabla p = 0, ~~\nabla \cdot \vct{u} = 0,$ \\
- \vspace{0.6ex}
- \qquad $\displaystyle \vct{u} \rightarrow 0$ ~as~ $\vct{x} \rightarrow \infty$.
- \vspace{1.3em}
- \item Boundary conditions on $\partial\Omega$,
- \vspace{0.6ex}
- \only<1>{\qquad $\displaystyle \vct{u} = \vct{V} + \vct{u}_s$.}
- \only<2>{\qquad $\displaystyle \vct{u} = {\color{red}\vct{V}} + \vct{u}_s$.}
- \end{itemize}
- \vspace{1em}
- \qquad\quad
- \only<1>{\phantom{\color{red} unknown: $\vct{V}(\vct{u}_i, \vct{\omega}_i)$}}
- \only<2>{\color{red} unknown: $\vct{V}(\vct{u}_i, \vct{\omega}_i)$}
- \column{0.3\textwidth}
- \centering
- \resizebox{0.99\textwidth}{!}{\begin{tikzpicture}
- %\node[anchor=south west,inner sep=0] at (0,0) {\includegraphics[angle=90,origin=c,width=4cm]{figs/rigid-bodies.png}};
- \draw[color=blue, line width=1pt, fill=gray!50] (2.19,0.975) circle (0.76cm);
- \draw[color=blue, line width=1pt, fill=gray!50] (1.5,-1.4) circle (0.76cm);
- \draw[color=blue, line width=1pt, fill=gray!50] (3.1,-2.0) circle (0.76cm);
- \draw[color=black, line width=1pt, fill=black] (2.19,0.975) circle (0.03cm);
- \node at (2.28,0.72) {$\vct{x}^c_1$};
- \draw[ultra thick, -latex] (2.3,1.07) to (3,1.5);
- \node at (3.35, 1.6) {$\vct{F}_1$};
- %\node (a) at (1.41, 0.975) {};
- %\node (b) at (2.19, 1.755) {};
- %\draw[thick, -latex] (a) arc [out=140,in=60, looseness=3] (b);
- \draw[-latex, ultra thick] (1.3,0.975) arc
- [
- start angle=180,
- end angle=90,
- x radius=0.85cm,
- y radius=0.85cm
- ] ;
- \node at (1.35, 1.85) {$T_1$};
- %\draw[color=red, ultra thick] (2.7,0.9) circle (1pt);
- %\node at (2.5, 0.5) {\color{red} \Large $x$};
- %\draw[ultra thick, -latex] (4.3,0.45) to (3.1,0.5);
- %\node [rotate=-6] at (5.55, 0.25) {log singularity};
- %\draw[ultra thick, -latex] (10.5,-0.25) to (12.1,-0.2);
- %\node [rotate=-4.5] at (9.5, -0.17) {$|s-s_0|^{-\alpha}$};
- \end{tikzpicture}}
- \end{columns}
- \end{FIframe} %>>>
- \begin{FIframe}{Boundary Integral Formulation}{} %<<<
- \only<1>{
- Represent fluid velocity: ~~$\displaystyle \vct{u}(\vct{x}) = \int_{\partial\Omega} \!\!\!\! S(\vct{x}-\vct{y}) \vct{\nu}(\vct{y}) + \int_{\partial\Omega} \!\!\!\! D(\vct{x}-\vct{y}) {\color{red}\vct{\sigma}}(\vct{y}) $
- }
- \only<2->{
- \vspace{0.25em}
- Represent fluid velocity: ~~$\displaystyle \vct{u} = \StokesSL[\vct{\nu}(\vct{F}_i, T_i)] + \StokesDL[{\color{red}\vct{\sigma}}] $
- }
- \only<3->{
- \vspace{0.3em}
- and rigid body velocity: ~~$\displaystyle \vct{V} = -\sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T {\color{red}\vct{\sigma}}$
- }
- \only<4->{
- \vspace{1.5em}
- Applying boundary conditions ~ ($\displaystyle \vct{u} = \vct{V} + \vct{u}_s$ ~on~ $\partial\Omega$),
- \vspace{0.3em}
- \qquad$\qquad\displaystyle
- (I/2 + D) \, {\color{red}\vct{\sigma}} + \sum_{i=1}^{6n} \mathfrak{v}_i \mathfrak{v}_i^T {\color{red}\vct{\sigma}} = \vct{u}_s - S \, \vct{\nu}
- $
- \vspace{0.5em}{\em(Pozrikidis - Boundary Integral and Singularity Methods for Linearized Viscous Flow)}
- }
- %\vspace{0.5em}
- %\only<2->{Second kind integral equation \quad {\color{red} $\cdots$ but doesn't work for slender bodies!}
- % %, should be well-conditioned.\\
- % %What can possibly go wrong?
- % \vspace{1em}
- % \only<3->{\color{red} $\kappa(I/2 + D) ~\sim~ 1/(\varepsilon^{2} \log \varepsilon^{-1})$}
- %}
- \end{FIframe} %>>>
- \begin{frame}[t,fragile] \frametitle{{Nystr\"om Discretization}} \framesubtitle{{}} %<<<
- \newcommand*\drawpanels[6]{% coord, radius, start, end, count
- \pgfmathsetmacro{\x}{{#1}}
- \pgfmathsetmacro{\y}{{#2}}
- \pgfmathsetmacro{\r}{{#3}}
- \pgfmathsetmacro{\a}{{#4}}
- \pgfmathsetmacro{\b}{{#5}}
- \pgfmathsetmacro{\N}{{#6-1}}
- \foreach \i in {0,...,\N} {
- \pgfmathsetmacro{\t}{\a+\i*(\b-\a)/\N};
- \pgfmathsetmacro{\xx}{\r*cos(\t)};
- \pgfmathsetmacro{\yy}{\r*sin(\t)};
- \draw[black, line width=1pt] ({\x+0.96*\xx},{\y+0.96*\yy}) -- ({\x+1.04*\xx},{\y+1.04*\yy});
- }
- }
- \vspace{-0.8em}
- \resizebox{0.62\textwidth}{!}{\begin{tikzpicture}[scale=0.8]%<<<
- \draw[color=blue, line width=2pt, fill=gray!50] (-4.2,0) circle (4cm);
- \draw[color=blue, line width=2pt, fill=gray!50] ( 4.2,0) circle (4cm);
- \only<2->{
- \draw [red, line width=2pt, domain=-30:30] plot ({ 4*cos(\x)-4.2}, {4*sin(\x)});
- \draw [red, line width=2pt, domain=-30:30] plot ({-4*cos(\x)+4.2}, {4*sin(\x)});
- \draw[rounded corners=1cm,dotted,color=black!50!green, line width=2pt] (-1.5, -2.1) rectangle (1.5, 2.1) {};
- }
- \node at (-5.5, 1.5) {\LARGE $\Omega_k$};
- %\node at (-7.0, 3.6) {\Large $\partial\Omega_k$};
- \drawpanels{-4.2}{0}{4}{30}{330}{8};
- \drawpanels{ 4.2}{0}{4}{-150}{150}{8};
- \drawpanels{-4.2}{0}{4}{-15}{15}{2};
- \drawpanels{-4.2}{0}{4}{-7.5}{7.5}{2};
- \drawpanels{-4.2}{0}{4}{-3.75}{3.75}{2};
- \drawpanels{-4.2}{0}{4}{-1.875}{1.875}{3};
- %\drawpanels{-4.2}{0}{4}{-0.9375}{0.9375}{3};
- \drawpanels{ 4.2}{0}{4}{165}{195}{2};
- \drawpanels{ 4.2}{0}{4}{172.5}{187.5}{2};
- \drawpanels{ 4.2}{0}{4}{176.25}{183.75}{2};
- \drawpanels{ 4.2}{0}{4}{178.125}{181.875}{3};
- %\drawpanels{ 4.2}{0}{4}{179.0625}{180.9375}{3};
- %\draw [dashed, line width=1pt] (-4.2,0) -- (-0.2,0);
- \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-4.2,0) -- (-1.371,2.828);
- %\draw [line width=2pt, domain=0:45] plot ({1*cos(\x)-4.2}, {1*sin(\x)});
- \node at (-3.1, 1.6) {\Large $\radius$};
- \node at (-4.55,0) {\Large $\vct{x}^c_{k}$};
- \draw [dashed, line width=1pt] (-0.2,0) -- (-0.2,-3.55);
- \draw [dashed, line width=1pt] ( 0.2,0) -- ( 0.2,-3.55);
- \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-1.2,-3.45) -- (-0.2,-3.45);
- \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] ( 1.2,-3.45) -- ( 0.2,-3.45);
- \node at (0, -4.0) {\Large $d$};
- %\node at (0, 1.75) {\color{red} \Large $\Gamma_{2}$};
- %\node at (0, 1.25) {\color{red} \Large $\sigma_{2}$};
- %\node at (4.0, 3.5) {\color{blue} \huge $\Gamma_{1}$};
- %\node at (5.0, 3.5) {\color{blue} \Large $\sigma_{1}$};
- \end{tikzpicture}}%>>>
- \resizebox{0.38\textwidth}{!}{\begin{tikzpicture}%<<<
- \node[anchor=south west,inner sep=0] at (0,0) {\includegraphics[width=5cm]{figs/plot-mobility-density_.png}};
- \node at (-0.1, 2.1) {$\vct{\sigma}$};
- \end{tikzpicture}}%>>>
- \begin{columns}
- \begin{column}[T]{0.61\textwidth}
- \begin{itemize}
- \setlength\itemsep{1.5ex}
- \item Discretize $\partial\Omega$ into panels.
- \item Layer-potential operators:
- \begin{itemize}
- \item adaptive quadrature for near integrals
- \item special quadrature for singular integrals
- \end{itemize}
- \item Solve BIE: ~~~\scalebox{1.3}{$K \sigma = g$}
- \end{itemize}
- \end{column}
- \begin{column}[T]{0.39\textwidth}
- \only<2->{
- {\bf
- \color{red}
- \vspace{2em}
- \begin{center}
- Compress close-interactions,
- and interpolate in $d$.
- \end{center}
- }
- }
- \end{column}
- \end{columns}
- \end{frame}
- %>>>
- \begin{frame}[t,fragile] \frametitle{{Compressing Close Interactions}} \framesubtitle{{}} %<<<
- %\resizebox{0.34\textwidth}{!}{\input{figs/tikz/disc-suspension}}
- \newcommand*\drawpanels[6]{% coord, radius, start, end, count
- \pgfmathsetmacro{\x}{{#1}}
- \pgfmathsetmacro{\y}{{#2}}
- \pgfmathsetmacro{\r}{{#3}}
- \pgfmathsetmacro{\a}{{#4}}
- \pgfmathsetmacro{\b}{{#5}}
- \pgfmathsetmacro{\N}{{#6-1}}
- \foreach \i in {0,...,\N} {
- \pgfmathsetmacro{\t}{\a+\i*(\b-\a)/\N};
- \pgfmathsetmacro{\xx}{\r*cos(\t)};
- \pgfmathsetmacro{\yy}{\r*sin(\t)};
- \draw[black, line width=1pt] ({\x+0.96*\xx},{\y+0.96*\yy}) -- ({\x+1.04*\xx},{\y+1.04*\yy});
- }
- }
- \vspace{-1.6em}
- \begin{columns}
- \begin{column}[T]{0.63\textwidth}
- \hfill
- \resizebox{0.99\textwidth}{!}{\begin{tikzpicture}[scale=0.8]%<<<
- \draw[color=blue, line width=2pt, fill=gray!50] (-4.2,0) circle (4cm);
- \draw[color=blue, line width=2pt, fill=gray!50] ( 4.2,0) circle (4cm);
- \draw [red, line width=2pt, domain=-30:30] plot ({ 4*cos(\x)-4.2}, {4*sin(\x)});
- \draw [red, line width=2pt, domain=-30:30] plot ({-4*cos(\x)+4.2}, {4*sin(\x)});
- %\draw [orange, line width=2pt, domain=-30:30] plot ({ 3.85*cos(\x)-4.2}, {3.85*sin(\x)});
- %\draw [orange, line width=2pt, domain=-30:30] plot ({-3.85*cos(\x)+4.2}, {3.85*sin(\x)});
- %\node at (-0.73,-0.6) {\color{orange} \Large $\overline{\sigma}_{2}$};
- %\draw[dotted,color=black!50!green, line width=2pt] (0,0) circle (2.09cm);
- \draw[rounded corners=1cm,dotted,color=black!50!green, line width=2pt] (-1.5, -2.1) rectangle (1.5, 2.1) {};
- %\draw[fill=red, opacity=0.1] (0,0) circle (2.09cm);
- %\node at (2.25, -1) {\color{black!50!green} \Large $\Gamma_{3}$};
- %\node at (-5.5, 1.5) {\huge $\Omega_k$};
- %\node at (-7.0, 3.6) {\Large $\partial\Omega_k$};
- \drawpanels{-4.2}{0}{4}{30}{330}{8};
- \drawpanels{ 4.2}{0}{4}{-150}{150}{8};
- \drawpanels{-4.2}{0}{4}{-15}{15}{2};
- \drawpanels{-4.2}{0}{4}{-7.5}{7.5}{2};
- \drawpanels{-4.2}{0}{4}{-3.75}{3.75}{2};
- \drawpanels{-4.2}{0}{4}{-1.875}{1.875}{3};
- %\drawpanels{-4.2}{0}{4}{-0.9375}{0.9375}{3};
- \drawpanels{ 4.2}{0}{4}{165}{195}{2};
- \drawpanels{ 4.2}{0}{4}{172.5}{187.5}{2};
- \drawpanels{ 4.2}{0}{4}{176.25}{183.75}{2};
- \drawpanels{ 4.2}{0}{4}{178.125}{181.875}{3};
- %\drawpanels{ 4.2}{0}{4}{179.0625}{180.9375}{3};
- %\draw [dashed, line width=1pt] (-4.2,0) -- (-0.2,0);
- \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-4.2,0) -- (-1.371,2.828);
- %\draw [line width=2pt, domain=0:45] plot ({1*cos(\x)-4.2}, {1*sin(\x)});
- %\node at (-3.0, 0.5) {\Large $\theta$};
- \node at (-3.1, 1.6) {\Large $\radius$};
- \node at (-4.55,0) {\Large $\vct{x}^c_{k}$};
- \draw [dashed, line width=1pt] (-0.2,0) -- (-0.2,-3.55);
- \draw [dashed, line width=1pt] ( 0.2,0) -- ( 0.2,-3.55);
- \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-1.2,-3.45) -- (-0.2,-3.45);
- \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] ( 1.2,-3.45) -- ( 0.2,-3.45);
- \node at (0, -4.0) {\Large $d$};
- \node at (0.85, 0.35) {\color{red} \Large $\Gamma_{2}$};
- \node at (0.85, -0.40) {\color{red} \Large $\sigma_{2}$};
- \node at (4.0, 3.4) {\color{blue} \LARGE $\Gamma_{1}$};
- \node at (5.0, 3.4) {\color{blue} \Large $\sigma_{1}$};
- \end{tikzpicture}}%>>>
- \end{column}
- \begin{column}[T]{0.36\textwidth}
- \vspace{2em}
- \begin{align*}
- \begin{pmatrix}
- {\color{blue} \mathcal{K}_{11}} & {\color{black!50!green} \mathcal{K}_{12}} \\
- {\color{black!50!green} \mathcal{K}_{21}} & {\color{red} \mathcal{K}_{22}}
- \end{pmatrix}
- \begin{pmatrix}
- {\color{blue} \sigma_1 } \\
- {\color{red} \sigma_2 }
- \end{pmatrix}
- =
- \begin{pmatrix}
- {\color{blue} g_1 } \\
- {\color{red} g_2 }
- \end{pmatrix}
- \end{align*}
- \only<2->{
- Build compression using \\
- RCIP method of Helsing
- }
- \end{column}
- \end{columns}
- \only<3->{
- \vspace{0.5em}
- \begin{columns}
- \begin{column}{0.4\textwidth}
- Right precondition with $\mathcal{K}_{22}^{-1}$:
- \begin{align*}
- \begin{pmatrix}
- \mathcal{K}_{11} & \mathcal{K}_{12} \mathcal{K}_{22}^{-1} \\
- \mathcal{K}_{21} & I
- \end{pmatrix}
- \begin{pmatrix}
- \sigma_1 \\
- \overline{\sigma}_2
- \end{pmatrix}
- =
- \begin{pmatrix}
- g_1 \\
- g_2
- \end{pmatrix}
- \end{align*}
- where $\overline{\sigma}_2 = \mathcal{K}_{22} \sigma_2$
- \end{column}
- \begin{column}{0.2\textwidth}
- \only<4->{
- \begin{center}
- $\implies$
- coarsen
- \end{center}
- }
- \end{column}
- \begin{column}{0.4\textwidth}
- \only<4->{
- \begin{align*}
- \begin{pmatrix}
- K_{11} & K^{c}_{12} R \\
- K^{c}_{21} & I
- \end{pmatrix}
- \begin{pmatrix}
- \sigma_1 \\
- \overline{\sigma}^{c}_2
- \end{pmatrix}
- =
- \begin{pmatrix}
- g_1 \\
- g^{c}_2
- \end{pmatrix}
- \end{align*}
- where $R = W_c^{-1} P^{T} W_f K_{22}^{-1} P$.
- }
- \end{column}
- \end{columns}
- }
- \end{frame}
- %>>>
- \begin{FIframe}{Computing ~$R_d$~ On-the-Fly}{} %<<<
- {\bf Cost of computing $R_d$:}
- \vspace{0.4em}
- {\renewcommand{\arraystretch}{1.6}
- \begin{tabular}{ l l l }
- Direct: & $\mathcal{O}((q \log d)^3)$ & \\
- RCIP: & $\mathcal{O}(q^3 \log d)$ & $\quad \left[~ \mathcal{O}(q^6 \log d) \text{ ~in~ 3D} ~\right]$ \\
- \end{tabular}}
- \vspace{4em}
- \only<2->{
- {\bf Interpolating $R_d$:} ~~~~Interpolated Compressed Inverse Preconditioning (ICIP)
- \vspace{1em}
- \begin{columns}
- \column{0.35\textwidth}
- $\displaystyle R_{ij}(d) = \sum\limits_{k=0}^{p-1} \alpha_k T_k(\log d)$
- \column{0.64\textwidth}
- \begin{tikzpicture}%<<<
- % Draw the base line
- \draw[thick] (0,0) -- (8,0);
- % Draw the panel divisions
- \foreach \x in {0,2,4,6,8} {
- \draw[thick] (\x,0.2) -- (\x,-0.2);
- }
- % Add panel labels
- \node at (0,-0.5) {$10^{0}$};
- \node at (2,-0.5) {$10^{-2}$};
- \node at (4,-0.5) {$10^{-4}$};
- \node at (6,-0.5) {$10^{-6}$};
- \node at (8,-0.5) {$10^{-8}$};
- \node at (4,-1.0) {$\log d \longrightarrow$};
- % Compute and draw Chebyshev nodes for each panel
- \foreach \i in {0, 2, 4, 6} {
- \foreach \j in {1, 2, 3, 4, 5, 6, 7, 8} {
- \pgfmathsetmacro{\theta}{(2*\j-1)*180/16}
- \pgfmathsetmacro{\x}{\i + 1 + cos(\theta)}
- \filldraw[blue] (\x,0) circle (1.5pt);
- }
- }
- %\begin{axis}[
- % xmode=log,
- % log basis x=10,
- % axis x line=bottom,
- % axis y line=none,
- % xmin=1e-8, xmax=1,
- % xtick={1,1e-1,1e-2,1e-3,1e-4,1e-5,1e-6,1e-7,1e-8},
- % xticklabels={$10^0$, $$, $10^{-2}$, $$, $10^{-4}$, $$, $10^{-6}$, $$, $10^{-8}$},
- % tick align=outside,
- % enlargelimits=false,
- % width=12cm,
- % height=2cm
- %]
- %\end{axis}
- \end{tikzpicture}%>>>
- \end{columns}
- \vspace{1em}
- Interpolation cost: \quad $\mathcal{O}(q^2 p)$ \quad $\quad \left[~ \mathcal{O}(q^4 p) \text{ ~in~ 3D} ~\right]$
- }
- \end{FIframe}%>>>
- \begin{FIframe}{Convergence Results}{} %<<<
- \begin{columns}
- \column{0.5\textwidth}
- Errors (Stokes mobility with 2 discs):
- \column{0.5\textwidth}
- \resizebox{0.4\textwidth}{!}{\begin{tikzpicture}[scale=0.8]%<<<
- \draw[color=blue, line width=2pt, fill=gray!50] (-3.2,0) circle (3cm);
- \draw[color=blue, line width=2pt, fill=gray!50] ( 3.2,0) circle (3cm);
- \draw [dashed, line width=1pt] (-0.2,0) -- (-0.2,-3.55);
- \draw [dashed, line width=1pt] ( 0.2,0) -- ( 0.2,-3.55);
- \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-1.2,-3.45) -- (-0.2,-3.45);
- \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] ( 1.2,-3.45) -- ( 0.2,-3.45);
- \node at (0,-4.0) {\Huge $d$};
- \end{tikzpicture}}%>>>
- \end{columns}
- \vspace{1em}
- \begin{tabular}{r r c r r r r r }
- \hline
- & ~ & Adaptive & ~ & \multicolumn{4}{c}{Interpolating $R_d$} \\
- $d$ & ~ & Discretization & ~ & $p=8$ & ~~$p=16$ & ~~$p=24$ & ~~$p=32$ \\ % & ~~$p=40$
- \hline
- 1e-1 & ~ & 7.6e-15 & ~ & 1.0e-4 & 2.9e-07 & 2.1e-09 & 9.1e-12 \\ % 3.419e-14 8.966e-15
- %1e-2 & ~ & 1.8e-13 & ~ & 2.8e-3 & 3.6e-06 & 3.6e-08 & 6.5e-10 \\ % 2.635e-12 1.552e-14
- 1e-3 & ~ & 4.4e-13 & ~ & 3.4e-5 & 5.6e-10 & 4.8e-14 & \\ % 6.656e-14 8.237e-14
- %1e-4 & ~ & 3.8e-11 & ~ & 1.5e-3 & 1.4e-09 & 1.4e-13 & \\ % 1.244e-13 8.435e-14
- 1e-5 & ~ & 9.0e-09 & ~ & 1.5e-5 & 2.1e-12 & & \\ % 1.170e-12 1.012e-12
- %1e-6 & ~ & 2.0e-07 & ~ & 6.0e-4 & 1.4e-11 & & \\ % 1.487e-11 1.936e-11
- 1e-7 & ~ & 4.3e-07 & ~ & 1.7e-5 & 4.1e-11 & & \\ % 2.812e-11
- 1e-8 & ~ & 5.3e-08 & ~ & 6.3e-4 & 3.9e-09 & & \\ % 1.220e-09
- \hline
- \end{tabular}
- \vspace{1em}
- $p$: interpolation order
- \end{FIframe}%>>>
- \begin{FIframe}{GMRES Iterations}{} %<<<
- %Iteration counts for 2-discs, and disc-chain
- \vspace{-0.8em}
- \begin{columns}[T]
- \column{0.25\textwidth}
- \centering
- Iteration counts \\
- for $\epsilon_{\text{GMRES}}$=1e-8
- \vspace{1em}
- \resizebox{0.4\textwidth}{!}{\begin{tikzpicture}[scale=0.8]%<<<
- \draw[color=blue, line width=2pt, fill=gray!50] (0,-3.2) circle (3cm);
- \draw[color=blue, line width=2pt, fill=gray!50] (0, 3.2) circle (3cm);
- \only<2->{
- \draw[color=blue, line width=2pt, fill=gray!50] (0, -9.6) circle (3cm);
- \draw[color=blue, line width=2pt, fill=gray!50] (0,-16.0) circle (3cm);
- }
- \only<3->{
- \draw[color=black, line width=2pt, fill=black] (0,-19.5) circle (0.15cm);
- \draw[color=black, line width=2pt, fill=black] (0,-20.4) circle (0.15cm);
- \draw[color=black, line width=2pt, fill=black] (0,-21.3) circle (0.15cm);
- \draw[color=blue, line width=2pt, fill=gray!50] (0,-24.8) circle (3cm);
- }
- \draw [dashed, line width=1pt] (0,-0.2) -- (-3.55,-0.2);
- \draw [dashed, line width=1pt] (0, 0.2) -- (-3.55, 0.2);
- \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-3.45,-1.2) -- (-3.45,-0.2);
- \draw [line width=2pt,-{Latex[length=10pt,width=10pt]}] (-3.45, 1.2) -- (-3.45, 0.2);
- \node at (-4.0,0) {\Huge $d$};
- \end{tikzpicture}}%>>>
- \column{0.75\textwidth}
- {\bf Adaptive discretization:}
- \only<1>{\begin{tabular}{r r r r r r r r}%<<<
- \hline
- $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & ~1e-4 & ~~~1e-5 & 1e-6 & 1e-7 \\
- \hline
- 2 & 15 & 37 & 104 & 337 & 1283 & 1848 & 2344 \\
- &&&&&&&\\
- &&&&&&&\\
- &&&&&&&\\
- &&&&&&&\\
- %\hline
- \end{tabular}
- }%>>>
- \only<2>{\begin{tabular}{r r r r r r r r}%<<<
- \hline
- $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & ~1e-4 & ~~~1e-5 & 1e-6 & 1e-7 \\
- \hline
- 2 & 15 & 37 & 104 & 337 & 1283 & 1848 & 2344 \\
- 4 & 25 & 75 & 271 & 1134 & 3770 & 5301 & 6620 \\
- &&&&&&&\\
- &&&&&&&\\
- &&&&&&&\\
- %\hline
- \end{tabular}
- }%>>>
- \only<3>{\begin{tabular}{r r r r r r r r}%<<<
- \hline
- $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & ~1e-4 & ~~~1e-5 & 1e-6 & 1e-7 \\
- \hline
- 2 & 15 & 37 & 104 & 337 & 1283 & 1848 & 2344 \\
- 4 & 25 & 75 & 271 & 1134 & 3770 & 5301 & 6620 \\
- % 8 & 32 & 124 & 494 & 1939 & 7488 &>8000 &>8000 \\
- 16 & 35 & 147 & 629 & 2754 &>8000 & & \\
- % 32 & 36 & 148 & 682 & 3092 & & & \\
- 64 & 36 & 148 & 683 & 3094 & & & \\
- %128 & 37 & 149 & 683 & 3094 & & & \\
- 256 & 37 & 149 & 683 & 3094 & & & \\
- %\hline
- \end{tabular}}%>>>
- \vspace{1.5em}
- {\bf Interpolated Compressed Inverse Preconditioning (ICIP):}
- \only<1>{\begin{tabular}{r r r r r r r r}%<<<
- \hline
- $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & 1e-4 & 1e-5 & 1e-6 & 1e-7 \\
- \hline
- 2 & 18 & 20 & 21 & 21 & 21 & 21 & 21 \\
- %\hline
- \end{tabular}
- }%>>>
- \only<2>{\begin{tabular}{r r r r r r r r}%<<<
- \hline
- $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & 1e-4 & 1e-5 & 1e-6 & 1e-7 \\
- \hline
- 2 & 18 & 20 & 21 & 21 & 21 & 21 & 21 \\
- 4 & 28 & 34 & 36 & 37 & 37 & 37 & 37 \\
- %\hline
- \end{tabular}
- }%>>>
- \only<3>{\begin{tabular}{r r r r r r r r}%<<<
- \hline
- $N_{\text{disc}}$ & $d=$1e-1 & 1e-2 & 1e-3 & 1e-4 & 1e-5 & 1e-6 & 1e-7 \\
- \hline
- 2 & 18 & 20 & 21 & 21 & 21 & 21 & 21 \\
- 4 & 28 & 34 & 36 & 37 & 37 & 37 & 37 \\
- % 8 & 38 & 52 & 54 & 53 & 57 & 57 & 57 \\
- 16 & 46 & 71 & 74 & 80 & 86 & 87 & 88 \\
- % 32 & 48 & 90 & 98 & 113 & 139 & 146 & 150 \\
- 64 & 49 & 96 & 108 & 131 & 186 & 237 & 251 \\
- %128 & 49 & 98 & 110 & 134 & 215 & 326 & 431 \\
- 256 & 49 & 98 & 110 & 134 & 220 & 371 & 608 \\
- %\hline
- \end{tabular}}%>>>
- \end{columns}
- \end{FIframe}%>>>
|