|  | @@ -0,0 +1,1789 @@
 | 
	
		
			
				|  |  | +#ifndef _SCTL_BOUNDARY_QUADRATURE_HPP_
 | 
	
		
			
				|  |  | +#define _SCTL_BOUNDARY_QUADRATURE_HPP_
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#include <mutex>
 | 
	
		
			
				|  |  | +#include <atomic>
 | 
	
		
			
				|  |  | +#include <tuple>
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +namespace SCTL_NAMESPACE {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +template <class Real, Integer DIM, Integer ORDER> class Basis {
 | 
	
		
			
				|  |  | +  public:
 | 
	
		
			
				|  |  | +    using ValueType = Real;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // class EvalOperator {
 | 
	
		
			
				|  |  | +    //   public:
 | 
	
		
			
				|  |  | +    // };
 | 
	
		
			
				|  |  | +    using EvalOpType = Matrix<ValueType>;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    static constexpr Long Dim() {
 | 
	
		
			
				|  |  | +      return DIM;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    static constexpr Long Size() {
 | 
	
		
			
				|  |  | +      return pow<DIM,Long>(ORDER);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    static const Matrix<ValueType>& Nodes() {
 | 
	
		
			
				|  |  | +      static Matrix<ValueType> nodes_(DIM,Size());
 | 
	
		
			
				|  |  | +      auto nodes_1d = [](Integer i) {
 | 
	
		
			
				|  |  | +        return 0.5 - 0.5 * sctl::cos<ValueType>((2*i+1) * const_pi<ValueType>() / (2*ORDER));
 | 
	
		
			
				|  |  | +      };
 | 
	
		
			
				|  |  | +      { // Set nodes_
 | 
	
		
			
				|  |  | +        static std::mutex mutex;
 | 
	
		
			
				|  |  | +        static std::atomic<Integer> first_time(true);
 | 
	
		
			
				|  |  | +        if (first_time.load(std::memory_order_relaxed)) {
 | 
	
		
			
				|  |  | +          std::lock_guard<std::mutex> guard(mutex);
 | 
	
		
			
				|  |  | +          if (first_time.load(std::memory_order_relaxed)) {
 | 
	
		
			
				|  |  | +            Integer N = 1;
 | 
	
		
			
				|  |  | +            for (Integer d = 0; d < DIM; d++) {
 | 
	
		
			
				|  |  | +              for (Integer j = 0; j < ORDER; j++) {
 | 
	
		
			
				|  |  | +                for (Integer i = 0; i < N; i++) {
 | 
	
		
			
				|  |  | +                  for (Integer k = 0; k < d; k++) {
 | 
	
		
			
				|  |  | +                    nodes_[k][j*N+i] = nodes_[k][i];
 | 
	
		
			
				|  |  | +                  }
 | 
	
		
			
				|  |  | +                  nodes_[d][j*N+i] = nodes_1d(j);
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +              N *= ORDER;
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            std::atomic_thread_fence(std::memory_order_seq_cst);
 | 
	
		
			
				|  |  | +            first_time.store(false);
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      return nodes_;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    static void Grad(Vector<Basis>& dX, const Vector<Basis>& X) {
 | 
	
		
			
				|  |  | +      static Matrix<ValueType> GradOp[DIM];
 | 
	
		
			
				|  |  | +      static std::mutex mutex;
 | 
	
		
			
				|  |  | +      static std::atomic<Integer> first_time(true);
 | 
	
		
			
				|  |  | +      if (first_time.load(std::memory_order_relaxed)) {
 | 
	
		
			
				|  |  | +        std::lock_guard<std::mutex> guard(mutex);
 | 
	
		
			
				|  |  | +        if (first_time.load(std::memory_order_relaxed)) {
 | 
	
		
			
				|  |  | +          { // Set GradOp
 | 
	
		
			
				|  |  | +            auto nodes = Basis<ValueType,1,ORDER>::Nodes();
 | 
	
		
			
				|  |  | +            SCTL_ASSERT(nodes.Dim(1) == ORDER);
 | 
	
		
			
				|  |  | +            Matrix<ValueType> M(ORDER, ORDER);
 | 
	
		
			
				|  |  | +            for (Integer i = 0; i < ORDER; i++) { // Set M
 | 
	
		
			
				|  |  | +              Real x = nodes[0][i];
 | 
	
		
			
				|  |  | +              for (Integer j = 0; j < ORDER; j++) {
 | 
	
		
			
				|  |  | +                M[j][i] = 0;
 | 
	
		
			
				|  |  | +                for (Integer l = 0; l < ORDER; l++) {
 | 
	
		
			
				|  |  | +                  if (l != j) {
 | 
	
		
			
				|  |  | +                    Real M_ = 1;
 | 
	
		
			
				|  |  | +                    for (Integer k = 0; k < ORDER; k++) {
 | 
	
		
			
				|  |  | +                      if (k != j && k != l) M_ *= (x - nodes[0][k]);
 | 
	
		
			
				|  |  | +                      if (k != j) M_ /= (nodes[0][j] - nodes[0][k]);
 | 
	
		
			
				|  |  | +                    }
 | 
	
		
			
				|  |  | +                    M[j][i] += M_;
 | 
	
		
			
				|  |  | +                  }
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            for (Integer d = 0; d < DIM; d++) {
 | 
	
		
			
				|  |  | +              GradOp[d].ReInit(Size(), Size());
 | 
	
		
			
				|  |  | +              GradOp[d] = 0;
 | 
	
		
			
				|  |  | +              Integer stride0 = sctl::pow<Integer>(ORDER, d);
 | 
	
		
			
				|  |  | +              Integer repeat0 = sctl::pow<Integer>(ORDER, d);
 | 
	
		
			
				|  |  | +              Integer stride1 = sctl::pow<Integer>(ORDER, d+1);
 | 
	
		
			
				|  |  | +              Integer repeat1 = sctl::pow<Integer>(ORDER, DIM-d-1);
 | 
	
		
			
				|  |  | +              for (Integer k1 = 0; k1 < repeat1; k1++) {
 | 
	
		
			
				|  |  | +                for (Integer i = 0; i < ORDER; i++) {
 | 
	
		
			
				|  |  | +                  for (Integer j = 0; j < ORDER; j++) {
 | 
	
		
			
				|  |  | +                    for (Integer k0 = 0; k0 < repeat0; k0++) {
 | 
	
		
			
				|  |  | +                      GradOp[d][k1*stride1 + i*stride0 + k0][k1*stride1 + j*stride0 + k0] = M[i][j];
 | 
	
		
			
				|  |  | +                    }
 | 
	
		
			
				|  |  | +                  }
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          std::atomic_thread_fence(std::memory_order_seq_cst);
 | 
	
		
			
				|  |  | +          first_time.store(false);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      if (dX.Dim() != X.Dim()*DIM) dX.ReInit(X.Dim()*DIM);
 | 
	
		
			
				|  |  | +      for (Long i = 0; i < X.Dim(); i++) {
 | 
	
		
			
				|  |  | +        const Matrix<ValueType> Vi(1, Size(), (Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_, false);
 | 
	
		
			
				|  |  | +        for (Integer k = 0; k < DIM; k++) {
 | 
	
		
			
				|  |  | +          Matrix<ValueType> Vo(1, Size(), dX[i*DIM+k].NodeValues_, false);
 | 
	
		
			
				|  |  | +          Matrix<ValueType>::GEMM(Vo, Vi, GradOp[k]);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    static EvalOpType SetupEval(const Matrix<ValueType>& X) {
 | 
	
		
			
				|  |  | +      Long N = X.Dim(1);
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(X.Dim(0) == DIM);
 | 
	
		
			
				|  |  | +      Matrix<ValueType> M(Size(), N);
 | 
	
		
			
				|  |  | +      { // Set M
 | 
	
		
			
				|  |  | +        auto nodes = Basis<ValueType,1,ORDER>::Nodes();
 | 
	
		
			
				|  |  | +        Integer NN = nodes.Dim(1);
 | 
	
		
			
				|  |  | +        Matrix<ValueType> M_(NN, DIM*N);
 | 
	
		
			
				|  |  | +        for (Long i = 0; i < DIM*N; i++) {
 | 
	
		
			
				|  |  | +          ValueType x = X[0][i];
 | 
	
		
			
				|  |  | +          for (Integer j = 0; j < NN; j++) {
 | 
	
		
			
				|  |  | +            ValueType y = 1;
 | 
	
		
			
				|  |  | +            for (Integer k = 0; k < NN; k++) {
 | 
	
		
			
				|  |  | +              y *= (j==k ? 1 : (nodes[0][k] - x) / (nodes[0][k] - nodes[0][j]));
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            M_[j][i] = y;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        if (DIM == 1) {
 | 
	
		
			
				|  |  | +          SCTL_ASSERT(M.Dim(0) == M_.Dim(0));
 | 
	
		
			
				|  |  | +          SCTL_ASSERT(M.Dim(1) == M_.Dim(1));
 | 
	
		
			
				|  |  | +          M = M_;
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +          Integer NNN = 1;
 | 
	
		
			
				|  |  | +          M = 1;
 | 
	
		
			
				|  |  | +          for (Integer d = 0; d < DIM; d++) {
 | 
	
		
			
				|  |  | +            for (Integer k = 1; k < NN; k++) {
 | 
	
		
			
				|  |  | +              for (Integer j = 0; j < NNN; j++) {
 | 
	
		
			
				|  |  | +                for (Long i = 0; i < N; i++) {
 | 
	
		
			
				|  |  | +                  M[k*NNN+j][i] = M[j][i] * M_[k][d*N+i];
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            { // k = 0
 | 
	
		
			
				|  |  | +              for (Integer j = 0; j < NNN; j++) {
 | 
	
		
			
				|  |  | +                for (Long i = 0; i < N; i++) {
 | 
	
		
			
				|  |  | +                  M[j][i] *= M_[0][d*N+i];
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            NNN *= NN;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      return M;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    static void Eval(Matrix<ValueType>& Y, const Vector<Basis>& X, const EvalOpType& M) {
 | 
	
		
			
				|  |  | +      Long N0 = X.Dim();
 | 
	
		
			
				|  |  | +      Long N1 = M.Dim(1);
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(M.Dim(0) == Size());
 | 
	
		
			
				|  |  | +      if (Y.Dim(0) != N0 || Y.Dim(1) != N1) Y.ReInit(N0, N1);
 | 
	
		
			
				|  |  | +      for (Long i = 0; i < N0; i++) {
 | 
	
		
			
				|  |  | +        const Matrix<ValueType> X_(1,Size(),(Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_,false);
 | 
	
		
			
				|  |  | +        Matrix<ValueType> Y_(1,N1,Y[i],false);
 | 
	
		
			
				|  |  | +        Matrix<ValueType>::GEMM(Y_,X_,M);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    const ValueType& operator[](Long i) const {
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(i < Size());
 | 
	
		
			
				|  |  | +      return NodeValues_[i];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    ValueType& operator[](Long i) {
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(i < Size());
 | 
	
		
			
				|  |  | +      return NodeValues_[i];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  private:
 | 
	
		
			
				|  |  | +    StaticArray<ValueType,Size()> NodeValues_;
 | 
	
		
			
				|  |  | +};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +template <Integer COORD_DIM, class Basis> class ElemList {
 | 
	
		
			
				|  |  | +  public:
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    using CoordBasis = Basis;
 | 
	
		
			
				|  |  | +    using CoordType = typename CoordBasis::ValueType;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    static constexpr Integer CoordDim() {
 | 
	
		
			
				|  |  | +      return COORD_DIM;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    static constexpr Integer ElemDim() {
 | 
	
		
			
				|  |  | +      return CoordBasis::Dim();
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    ElemList(Long Nelem = 0) {
 | 
	
		
			
				|  |  | +      ReInit(Nelem);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    void ReInit(Long Nelem = 0) {
 | 
	
		
			
				|  |  | +      Nelem_ = Nelem;
 | 
	
		
			
				|  |  | +      X_.ReInit(Nelem_ * COORD_DIM);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    void ReInit(const Vector<CoordBasis>& X) {
 | 
	
		
			
				|  |  | +      Nelem_ = X.Dim() / COORD_DIM;
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(X.Dim() == Nelem_ * COORD_DIM);
 | 
	
		
			
				|  |  | +      X_ = X;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    Long NElem() const {
 | 
	
		
			
				|  |  | +      return Nelem_;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    CoordBasis& operator()(Long elem, Integer dim) {
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(elem >= 0 && elem < Nelem_);
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
 | 
	
		
			
				|  |  | +      return X_[elem*COORD_DIM+dim];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    const CoordBasis& operator()(Long elem, Integer dim) const {
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(elem >= 0 && elem < Nelem_);
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
 | 
	
		
			
				|  |  | +      return X_[elem*COORD_DIM+dim];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    const Vector<CoordBasis>& ElemVector() const {
 | 
	
		
			
				|  |  | +      return X_;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  private:
 | 
	
		
			
				|  |  | +    static_assert(CoordBasis::Dim() <= CoordDim(), "Basis dimension can not be greater than COORD_DIM.");
 | 
	
		
			
				|  |  | +    Vector<CoordBasis> X_;
 | 
	
		
			
				|  |  | +    Long Nelem_;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    mutable Vector<CoordBasis> dX_;
 | 
	
		
			
				|  |  | +};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +template <class Real> class Quadrature {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    static Real machine_epsilon() {
 | 
	
		
			
				|  |  | +      Real eps=1;
 | 
	
		
			
				|  |  | +      while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
 | 
	
		
			
				|  |  | +      return eps;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <Integer DIM> static void DuffyQuad(Matrix<Real>& nodes, Vector<Real>& weights, const Vector<Real>& coord, Integer order, Real adapt = -1.0) {
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(coord.Dim() == DIM);
 | 
	
		
			
				|  |  | +      static Real eps = machine_epsilon()*16;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Matrix<Real> qx;
 | 
	
		
			
				|  |  | +      Vector<Real> qw;
 | 
	
		
			
				|  |  | +      { // Set qx, qw
 | 
	
		
			
				|  |  | +        Vector<Real> qx0, qw0;
 | 
	
		
			
				|  |  | +        ChebBasis<Real>::quad_rule(order, qx0, qw0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Integer N = sctl::pow<DIM,Integer>(order);
 | 
	
		
			
				|  |  | +        qx.ReInit(DIM,N);
 | 
	
		
			
				|  |  | +        qw.ReInit(N);
 | 
	
		
			
				|  |  | +        qw[0] = 1;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Integer N_ = 1;
 | 
	
		
			
				|  |  | +        for (Integer d = 0; d < DIM; d++) {
 | 
	
		
			
				|  |  | +          for (Integer j = 0; j < order; j++) {
 | 
	
		
			
				|  |  | +            for (Integer i = 0; i < N_; i++) {
 | 
	
		
			
				|  |  | +              for (Integer k = 0; k < d; k++) {
 | 
	
		
			
				|  |  | +                qx[k][j*N_+i] = qx[k][i];
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +              qx[d][j*N_+i] = qx0[j];
 | 
	
		
			
				|  |  | +              qw[j*N_+i] = qw[i];
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          for (Integer j = 0; j < order; j++) {
 | 
	
		
			
				|  |  | +            for (Integer i = 0; i < N_; i++) {
 | 
	
		
			
				|  |  | +              qw[j*N_+i] *= qw0[j];
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          N_ *= order;
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Vector<Real> X;
 | 
	
		
			
				|  |  | +      { // Set X
 | 
	
		
			
				|  |  | +        StaticArray<Real,2*DIM+2> X_;
 | 
	
		
			
				|  |  | +        X_[0] = 0;
 | 
	
		
			
				|  |  | +        X_[1] = adapt;
 | 
	
		
			
				|  |  | +        for (Integer i = 0; i < DIM; i++) {
 | 
	
		
			
				|  |  | +          X_[2*i+2] = sctl::fabs<Real>(coord[i]);
 | 
	
		
			
				|  |  | +          X_[2*i+3] = sctl::fabs<Real>(coord[i]-1);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        std::sort((Iterator<Real>)X_, (Iterator<Real>)X_+2*DIM+2);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        X.PushBack(std::max<Real>(0, X_[2*DIM]-1));
 | 
	
		
			
				|  |  | +        for (Integer i = 0; i < 2*DIM+2; i++) {
 | 
	
		
			
				|  |  | +          if (X[X.Dim()-1] < X_[i]) {
 | 
	
		
			
				|  |  | +            if (X.Dim())
 | 
	
		
			
				|  |  | +            X.PushBack(X_[i]);
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        /////////////////////////////////////////////////////////////////////////////////////////////////
 | 
	
		
			
				|  |  | +        Vector<Real> r(1);
 | 
	
		
			
				|  |  | +        r[0] = X[0];
 | 
	
		
			
				|  |  | +        for (Integer i = 1; i < X.Dim(); i++) {
 | 
	
		
			
				|  |  | +          while (r[r.Dim() - 1] > 0.0 && (order*0.5) * r[r.Dim() - 1] < X[i]) r.PushBack((order*0.5) * r[r.Dim() - 1]); // TODO
 | 
	
		
			
				|  |  | +          r.PushBack(X[i]);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        X = r;
 | 
	
		
			
				|  |  | +        /////////////////////////////////////////////////////////////////////////////////////////////////
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Vector<Real> nds, wts;
 | 
	
		
			
				|  |  | +      for (Integer k = 0; k < X.Dim()-1; k++) {
 | 
	
		
			
				|  |  | +        for (Integer dd = 0; dd < 2*DIM; dd++) {
 | 
	
		
			
				|  |  | +          Integer d0 = (dd>>1);
 | 
	
		
			
				|  |  | +          StaticArray<Real,2*DIM> range0, range1;
 | 
	
		
			
				|  |  | +          { // Set range0, range1
 | 
	
		
			
				|  |  | +            Integer d1 = (dd%2?1:-1);
 | 
	
		
			
				|  |  | +            for (Integer d = 0; d < DIM; d++) {
 | 
	
		
			
				|  |  | +              range0[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k]  ));
 | 
	
		
			
				|  |  | +              range0[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k]  ));
 | 
	
		
			
				|  |  | +              range1[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k+1]));
 | 
	
		
			
				|  |  | +              range1[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k+1]));
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            range0[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
 | 
	
		
			
				|  |  | +            range0[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
 | 
	
		
			
				|  |  | +            range1[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
 | 
	
		
			
				|  |  | +            range1[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          { // if volume(range0, range1) == 0 then continue
 | 
	
		
			
				|  |  | +            Real v0 = 1, v1 = 1;
 | 
	
		
			
				|  |  | +            for (Integer d = 0; d < DIM; d++) {
 | 
	
		
			
				|  |  | +              if (d == d0) {
 | 
	
		
			
				|  |  | +                v0 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
 | 
	
		
			
				|  |  | +                v1 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
 | 
	
		
			
				|  |  | +              } else {
 | 
	
		
			
				|  |  | +                v0 *= range0[d*2+1]-range0[d*2+0];
 | 
	
		
			
				|  |  | +                v1 *= range1[d*2+1]-range1[d*2+0];
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            if (v0 < eps && v1 < eps) continue;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          for (Integer i = 0; i < qx.Dim(1); i++) { // Set nds, wts
 | 
	
		
			
				|  |  | +            Real w = qw[i];
 | 
	
		
			
				|  |  | +            Real z = qx[d0][i];
 | 
	
		
			
				|  |  | +            for (Integer d = 0; d < DIM; d++) {
 | 
	
		
			
				|  |  | +              Real y = qx[d][i];
 | 
	
		
			
				|  |  | +              nds.PushBack((range0[d*2+0]*(1-y) + range0[d*2+1]*y)*(1-z) + (range1[d*2+0]*(1-y) + range1[d*2+1]*y)*z);
 | 
	
		
			
				|  |  | +              if (d == d0) {
 | 
	
		
			
				|  |  | +                w *= abs(range1[d*2+0] - range0[d*2+0]);
 | 
	
		
			
				|  |  | +              } else {
 | 
	
		
			
				|  |  | +                w *= (range0[d*2+1] - range0[d*2+0])*(1-z) + (range1[d*2+1] - range1[d*2+0])*z;
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            wts.PushBack(w);
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      nodes = Matrix<Real>(nds.Dim()/DIM,DIM,nds.begin()).Transpose();
 | 
	
		
			
				|  |  | +      weights = wts;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <Integer DIM> static void TensorProductGaussQuad(Matrix<Real>& nodes, Vector<Real>& weights, Integer order) {
 | 
	
		
			
				|  |  | +      Vector<Real> coord(DIM);
 | 
	
		
			
				|  |  | +      coord = 0;
 | 
	
		
			
				|  |  | +      coord[0] = -10;
 | 
	
		
			
				|  |  | +      DuffyQuad<DIM>(nodes, weights, coord, order);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <class DensityBasis, class ElemList, class Kernel> static void SetupSingular(Matrix<Real>& M_singular, const Matrix<Real>& trg_nds, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular = 10, Integer order_direct = 10) {
 | 
	
		
			
				|  |  | +      using CoordBasis = typename ElemList::CoordBasis;
 | 
	
		
			
				|  |  | +      using CoordEvalOpType = typename CoordBasis::EvalOpType;
 | 
	
		
			
				|  |  | +      using DensityEvalOpType = typename DensityBasis::EvalOpType;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      constexpr Integer CoordDim = ElemList::CoordDim();
 | 
	
		
			
				|  |  | +      constexpr Integer ElemDim = ElemList::ElemDim();
 | 
	
		
			
				|  |  | +      constexpr Integer KDIM0 = Kernel::SrcDim();
 | 
	
		
			
				|  |  | +      constexpr Integer KDIM1 = Kernel::TrgDim();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      const Long Nelem = elem_lst.NElem();
 | 
	
		
			
				|  |  | +      const Integer Ntrg = trg_nds.Dim(1);
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(trg_nds.Dim(0) == ElemDim);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Vector<Real> Xt;
 | 
	
		
			
				|  |  | +      { // Set Xt
 | 
	
		
			
				|  |  | +        auto Meval = CoordBasis::SetupEval(trg_nds);
 | 
	
		
			
				|  |  | +        eval_basis(Xt, elem_lst.ElemVector(), ElemList::CoordDim(), trg_nds.Dim(1), Meval);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(Xt.Dim() == Nelem * Ntrg * CoordDim);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      const Vector<CoordBasis>& X = elem_lst.ElemVector();
 | 
	
		
			
				|  |  | +      Vector<CoordBasis> dX;
 | 
	
		
			
				|  |  | +      CoordBasis::Grad(dX, X);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      auto& M = M_singular;
 | 
	
		
			
				|  |  | +      M.ReInit(Nelem * KDIM0 * DensityBasis::Size(), KDIM1 * Ntrg);
 | 
	
		
			
				|  |  | +      #pragma omp parallel for schedule(static)
 | 
	
		
			
				|  |  | +      for (Long i = 0; i < Ntrg; i++) { // Set M (singular)
 | 
	
		
			
				|  |  | +        Matrix<Real> quad_nds;
 | 
	
		
			
				|  |  | +        Vector<Real> quad_wts;
 | 
	
		
			
				|  |  | +        { // Set quad_nds, quad_wts
 | 
	
		
			
				|  |  | +          StaticArray<Real,ElemDim> trg_node_;
 | 
	
		
			
				|  |  | +          for (Integer k = 0; k < ElemDim; k++) {
 | 
	
		
			
				|  |  | +            trg_node_[k] = trg_nds[k][i];
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          Vector<Real> trg_node(ElemDim, trg_node_, false);
 | 
	
		
			
				|  |  | +          DuffyQuad<ElemDim>(quad_nds, quad_wts, trg_node, order_singular);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
 | 
	
		
			
				|  |  | +        Integer Nnds = quad_wts.Dim();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Real> X_, dX_, Xa_, Xn_;
 | 
	
		
			
				|  |  | +        { // Set X_, dX_
 | 
	
		
			
				|  |  | +          eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
 | 
	
		
			
				|  |  | +          eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
 | 
	
		
			
				|  |  | +          Long N = Nelem*Nnds;
 | 
	
		
			
				|  |  | +          Xa_.ReInit(N);
 | 
	
		
			
				|  |  | +          Xn_.ReInit(N*CoordDim);
 | 
	
		
			
				|  |  | +          for (Long j = 0; j < N; j++) {
 | 
	
		
			
				|  |  | +            StaticArray<Real,CoordDim> normal;
 | 
	
		
			
				|  |  | +            normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
 | 
	
		
			
				|  |  | +            normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
 | 
	
		
			
				|  |  | +            normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
 | 
	
		
			
				|  |  | +            Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
 | 
	
		
			
				|  |  | +            Real invXa = 1/Xa_[j];
 | 
	
		
			
				|  |  | +            Xn_[j*3+0] = normal[0] * invXa;
 | 
	
		
			
				|  |  | +            Xn_[j*3+1] = normal[1] * invXa;
 | 
	
		
			
				|  |  | +            Xn_[j*3+2] = normal[2] * invXa;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        DensityEvalOpType DensityEvalOp;
 | 
	
		
			
				|  |  | +        if (std::is_same<CoordBasis,DensityBasis>::value) {
 | 
	
		
			
				|  |  | +          DensityEvalOp = CoordEvalOp;
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +          DensityEvalOp = DensityBasis::SetupEval(quad_nds);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        for (Long j = 0; j < Nelem; j++) {
 | 
	
		
			
				|  |  | +          Matrix<Real> M__(Nnds * KDIM0, KDIM1);
 | 
	
		
			
				|  |  | +          { // Set kernel matrix M__
 | 
	
		
			
				|  |  | +            const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + (j * Ntrg + i) * CoordDim, false);
 | 
	
		
			
				|  |  | +            const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
 | 
	
		
			
				|  |  | +            const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
 | 
	
		
			
				|  |  | +            kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          for (Long k0 = 0; k0 < KDIM0; k0++) {
 | 
	
		
			
				|  |  | +            for (Long k1 = 0; k1 < KDIM1; k1++) {
 | 
	
		
			
				|  |  | +              for (Long l = 0; l < DensityBasis::Size(); l++) {
 | 
	
		
			
				|  |  | +                Real M_lk = 0;
 | 
	
		
			
				|  |  | +                for (Long n = 0; n < Nnds; n++) {
 | 
	
		
			
				|  |  | +                  Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
 | 
	
		
			
				|  |  | +                  M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +                M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] = M_lk;
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      { // Set M (subtract direct)
 | 
	
		
			
				|  |  | +        Matrix<Real> quad_nds;
 | 
	
		
			
				|  |  | +        Vector<Real> quad_wts;
 | 
	
		
			
				|  |  | +        TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
 | 
	
		
			
				|  |  | +        const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
 | 
	
		
			
				|  |  | +        Integer Nnds = quad_wts.Dim();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Real> X_, dX_, Xa_, Xn_;
 | 
	
		
			
				|  |  | +        { // Set X_, dX_
 | 
	
		
			
				|  |  | +          eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
 | 
	
		
			
				|  |  | +          eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
 | 
	
		
			
				|  |  | +          Long N = Nelem*Nnds;
 | 
	
		
			
				|  |  | +          Xa_.ReInit(N);
 | 
	
		
			
				|  |  | +          Xn_.ReInit(N*CoordDim);
 | 
	
		
			
				|  |  | +          for (Long j = 0; j < N; j++) {
 | 
	
		
			
				|  |  | +            StaticArray<Real,CoordDim> normal;
 | 
	
		
			
				|  |  | +            normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
 | 
	
		
			
				|  |  | +            normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
 | 
	
		
			
				|  |  | +            normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
 | 
	
		
			
				|  |  | +            Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
 | 
	
		
			
				|  |  | +            Real invXa = 1/Xa_[j];
 | 
	
		
			
				|  |  | +            Xn_[j*3+0] = normal[0] * invXa;
 | 
	
		
			
				|  |  | +            Xn_[j*3+1] = normal[1] * invXa;
 | 
	
		
			
				|  |  | +            Xn_[j*3+2] = normal[2] * invXa;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        DensityEvalOpType DensityEvalOp;
 | 
	
		
			
				|  |  | +        if (std::is_same<CoordBasis,DensityBasis>::value) {
 | 
	
		
			
				|  |  | +          DensityEvalOp = CoordEvalOp;
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +          DensityEvalOp = DensityBasis::SetupEval(quad_nds);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        #pragma omp parallel for schedule(static)
 | 
	
		
			
				|  |  | +        for (Long i = 0; i < Ntrg; i++) { // Subtract direct contribution
 | 
	
		
			
				|  |  | +          for (Long j = 0; j < Nelem; j++) {
 | 
	
		
			
				|  |  | +            Matrix<Real> M__(Nnds * KDIM0, KDIM1);
 | 
	
		
			
				|  |  | +            { // Set kernel matrix M__
 | 
	
		
			
				|  |  | +              const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + (j * Ntrg + i) * CoordDim, false);
 | 
	
		
			
				|  |  | +              const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
 | 
	
		
			
				|  |  | +              const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
 | 
	
		
			
				|  |  | +              kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            for (Long k0 = 0; k0 < KDIM0; k0++) {
 | 
	
		
			
				|  |  | +              for (Long k1 = 0; k1 < KDIM1; k1++) {
 | 
	
		
			
				|  |  | +                for (Long l = 0; l < DensityBasis::Size(); l++) {
 | 
	
		
			
				|  |  | +                  Real M_lk = 0;
 | 
	
		
			
				|  |  | +                  for (Long n = 0; n < Nnds; n++) {
 | 
	
		
			
				|  |  | +                    Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
 | 
	
		
			
				|  |  | +                    M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
 | 
	
		
			
				|  |  | +                  }
 | 
	
		
			
				|  |  | +                  M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] -= M_lk;
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <class DensityBasis> static void EvalSingular(Matrix<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, Integer KDIM0_, Integer KDIM1_) {
 | 
	
		
			
				|  |  | +      if (M.Dim(0) == 0 || M.Dim(1) == 0) {
 | 
	
		
			
				|  |  | +        U.ReInit(0,0);
 | 
	
		
			
				|  |  | +        return;
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      const Long Ntrg = M.Dim(1) / KDIM1_;
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(M.Dim(1) == KDIM1_ * Ntrg);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      const Long Nelem = M.Dim(0) / (KDIM0_ * DensityBasis::Size());
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(M.Dim(0) == Nelem * KDIM0_ * DensityBasis::Size());
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      const Integer dof = density.Dim() / (Nelem * KDIM0_);
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0_);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      if (U.Dim(0) != Nelem * dof * KDIM1_ || U.Dim(1) != Ntrg) {
 | 
	
		
			
				|  |  | +        U.ReInit(Nelem * dof * KDIM1_, Ntrg);
 | 
	
		
			
				|  |  | +        U = 0;
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      for (Long j = 0; j < Nelem; j++) {
 | 
	
		
			
				|  |  | +        const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_ * Ntrg, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
 | 
	
		
			
				|  |  | +        Matrix<Real> U_(dof, KDIM1_ * Ntrg, U[j*dof*KDIM1_], false);
 | 
	
		
			
				|  |  | +        Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
 | 
	
		
			
				|  |  | +        for (Long i = 0; i < dof; i++) {
 | 
	
		
			
				|  |  | +          for (Long k = 0; k < KDIM0_; k++) {
 | 
	
		
			
				|  |  | +            for (Long l = 0; l < DensityBasis::Size(); l++) {
 | 
	
		
			
				|  |  | +              F_[i][k * DensityBasis::Size() + l] = density[(j * dof + i) * KDIM0_ + k][l];
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        Matrix<Real>::GEMM(U_, F_, M_);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <Integer DIM> struct PointData {
 | 
	
		
			
				|  |  | +      bool operator<(const PointData& p) const {
 | 
	
		
			
				|  |  | +        return mid < p.mid;
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Long rank;
 | 
	
		
			
				|  |  | +      Long surf_rank;
 | 
	
		
			
				|  |  | +      Morton<DIM> mid;
 | 
	
		
			
				|  |  | +      StaticArray<Real,DIM> coord;
 | 
	
		
			
				|  |  | +      Real radius2;
 | 
	
		
			
				|  |  | +    };
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <class T1, class T2> struct Pair {
 | 
	
		
			
				|  |  | +      Pair() {}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Pair(T1 x, T2 y) : first(x), second(y) {}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      bool operator<(const Pair& p) const {
 | 
	
		
			
				|  |  | +        return (first < p.first) || (((first == p.first) && (second < p.second)));
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      T1 first;
 | 
	
		
			
				|  |  | +      T2 second;
 | 
	
		
			
				|  |  | +    };
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <class ElemList> static void BuildNbrList(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const Vector<Long>& trg_surf, const ElemList& elem_lst, Real distance_factor, Real period_length, const Comm& comm) {
 | 
	
		
			
				|  |  | +      using CoordBasis = typename ElemList::CoordBasis;
 | 
	
		
			
				|  |  | +      constexpr Integer CoordDim = ElemList::CoordDim();
 | 
	
		
			
				|  |  | +      constexpr Integer ElemDim = ElemList::ElemDim();
 | 
	
		
			
				|  |  | +      using PtData = PointData<CoordDim>;
 | 
	
		
			
				|  |  | +      const Integer rank = comm.Rank();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Real R0 = 0;
 | 
	
		
			
				|  |  | +      StaticArray<Real,CoordDim> X0;
 | 
	
		
			
				|  |  | +      { // Find bounding box
 | 
	
		
			
				|  |  | +        Long N = Xt.Dim() / CoordDim;
 | 
	
		
			
				|  |  | +        SCTL_ASSERT(Xt.Dim() == N * CoordDim);
 | 
	
		
			
				|  |  | +        SCTL_ASSERT(N);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        StaticArray<Real,CoordDim*2> Xloc;
 | 
	
		
			
				|  |  | +        StaticArray<Real,CoordDim*2> Xglb;
 | 
	
		
			
				|  |  | +        for (Integer k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +          Xloc[0*CoordDim+k] = Xt[k];
 | 
	
		
			
				|  |  | +          Xloc[1*CoordDim+k] = Xt[k];
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        for (Long i = 0; i < N; i++) {
 | 
	
		
			
				|  |  | +          for (Integer k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +            Xloc[0*CoordDim+k] = std::min<Real>(Xloc[0*CoordDim+k], Xt[i*CoordDim+k]);
 | 
	
		
			
				|  |  | +            Xloc[1*CoordDim+k] = std::max<Real>(Xloc[1*CoordDim+k], Xt[i*CoordDim+k]);
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        comm.Allreduce((ConstIterator<Real>)Xloc+0*CoordDim, (Iterator<Real>)Xglb+0*CoordDim, CoordDim, Comm::CommOp::MIN);
 | 
	
		
			
				|  |  | +        comm.Allreduce((ConstIterator<Real>)Xloc+1*CoordDim, (Iterator<Real>)Xglb+1*CoordDim, CoordDim, Comm::CommOp::MAX);
 | 
	
		
			
				|  |  | +        for (Integer k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +          R0 = std::max(R0, Xglb[1*CoordDim+k]-Xglb[0*CoordDim+k]);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        R0 = R0 * 2.0;
 | 
	
		
			
				|  |  | +        for (Integer k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +          X0[k] = Xglb[k] - R0*0.25;
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      if (period_length > 0) {
 | 
	
		
			
				|  |  | +        R0 = period_length;
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Vector<PtData> PtSrc, PtTrg;
 | 
	
		
			
				|  |  | +      Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
 | 
	
		
			
				|  |  | +      { // Set PtSrc
 | 
	
		
			
				|  |  | +        const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
 | 
	
		
			
				|  |  | +        Vector<CoordBasis> dX_elem_lst;
 | 
	
		
			
				|  |  | +        CoordBasis::Grad(dX_elem_lst, X_elem_lst);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Matrix<Real> nds;
 | 
	
		
			
				|  |  | +        Vector<Real> wts;
 | 
	
		
			
				|  |  | +        TensorProductGaussQuad<ElemDim>(nds, wts, order_upsample);
 | 
	
		
			
				|  |  | +        const Long Nnds = nds.Dim(1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Real> X, dX;
 | 
	
		
			
				|  |  | +        const auto CoordEvalOp = CoordBasis::SetupEval(nds);
 | 
	
		
			
				|  |  | +        eval_basis(X, X_elem_lst, CoordDim, Nnds, CoordEvalOp);
 | 
	
		
			
				|  |  | +        eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, Nnds, CoordEvalOp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        const Long N = X.Dim() / CoordDim;
 | 
	
		
			
				|  |  | +        const Long Nelem = elem_lst.NElem();
 | 
	
		
			
				|  |  | +        SCTL_ASSERT(X.Dim() == N * CoordDim);
 | 
	
		
			
				|  |  | +        SCTL_ASSERT(N == Nelem * Nnds);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Long rank_offset, surf_rank_offset;
 | 
	
		
			
				|  |  | +        { // Set rank_offset, surf_rank_offset
 | 
	
		
			
				|  |  | +          comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
 | 
	
		
			
				|  |  | +          comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
 | 
	
		
			
				|  |  | +          surf_rank_offset -= Nelem;
 | 
	
		
			
				|  |  | +          rank_offset -= N;
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        PtSrc.ReInit(N);
 | 
	
		
			
				|  |  | +        const Real R0inv = 1.0 / R0;
 | 
	
		
			
				|  |  | +        for (Long i = 0; i < N; i++) { // Set coord
 | 
	
		
			
				|  |  | +          for (Integer k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +            PtSrc[i].coord[k] = (X[i*CoordDim+k] - X0[k]) * R0inv;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        if (period_length > 0) { // Wrap-around coord
 | 
	
		
			
				|  |  | +          for (Long i = 0; i < N; i++) {
 | 
	
		
			
				|  |  | +            auto& x = PtSrc[i].coord;
 | 
	
		
			
				|  |  | +            for (Integer k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +              x[k] -= (Long)(x[k]);
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
 | 
	
		
			
				|  |  | +          Integer depth = 0;
 | 
	
		
			
				|  |  | +          { // Set radius2, depth
 | 
	
		
			
				|  |  | +            Real radius2 = 0;
 | 
	
		
			
				|  |  | +            for (Integer k0 = 0; k0 < ElemDim; k0++) {
 | 
	
		
			
				|  |  | +              Real R2 = 0;
 | 
	
		
			
				|  |  | +              for (Integer k1 = 0; k1 < CoordDim; k1++) {
 | 
	
		
			
				|  |  | +                Real dX_ = dX[(i*CoordDim+k1)*ElemDim+k0];
 | 
	
		
			
				|  |  | +                R2 += dX_*dX_;
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +              radius2 = std::max(radius2, R2);
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            radius2 *= R0inv*R0inv * distance_factor*distance_factor;
 | 
	
		
			
				|  |  | +            PtSrc[i].radius2 = radius2;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            Long Rinv = (Long)(1.0/radius2);
 | 
	
		
			
				|  |  | +            while (Rinv > 0) {
 | 
	
		
			
				|  |  | +              Rinv = (Rinv>>2);
 | 
	
		
			
				|  |  | +              depth++;
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          PtSrc[i].mid = Morton<CoordDim>((Iterator<Real>)PtSrc[i].coord, std::min(Morton<CoordDim>::MaxDepth(),depth));
 | 
	
		
			
				|  |  | +          PtSrc[i].rank = rank_offset + i;
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        for (Long i = 0 ; i < Nelem; i++) { // Set surf_rank
 | 
	
		
			
				|  |  | +          for (Long j = 0; j < Nnds; j++) {
 | 
	
		
			
				|  |  | +            PtSrc[i*Nnds+j].surf_rank = surf_rank_offset + i;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<PtData> PtSrcSorted;
 | 
	
		
			
				|  |  | +        comm.HyperQuickSort(PtSrc, PtSrcSorted);
 | 
	
		
			
				|  |  | +        PtSrc.Swap(PtSrcSorted);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      { // Set PtTrg
 | 
	
		
			
				|  |  | +        const Long N = Xt.Dim() / CoordDim;
 | 
	
		
			
				|  |  | +        SCTL_ASSERT(Xt.Dim() == N * CoordDim);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Long rank_offset;
 | 
	
		
			
				|  |  | +        { // Set rank_offset
 | 
	
		
			
				|  |  | +          comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
 | 
	
		
			
				|  |  | +          rank_offset -= N;
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        PtTrg.ReInit(N);
 | 
	
		
			
				|  |  | +        const Real R0inv = 1.0 / R0;
 | 
	
		
			
				|  |  | +        for (Long i = 0; i < N; i++) { // Set coord
 | 
	
		
			
				|  |  | +          for (Integer k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +            PtTrg[i].coord[k] = (Xt[i*CoordDim+k] - X0[k]) * R0inv;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        if (period_length > 0) { // Wrap-around coord
 | 
	
		
			
				|  |  | +          for (Long i = 0; i < N; i++) {
 | 
	
		
			
				|  |  | +            auto& x = PtTrg[i].coord;
 | 
	
		
			
				|  |  | +            for (Integer k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +              x[k] -= (Long)(x[k]);
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
 | 
	
		
			
				|  |  | +          PtTrg[i].radius2 = 0;
 | 
	
		
			
				|  |  | +          PtTrg[i].mid = Morton<CoordDim>((Iterator<Real>)PtTrg[i].coord);
 | 
	
		
			
				|  |  | +          PtTrg[i].rank = rank_offset + i;
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        if (trg_surf.Dim()) { // Set surf_rank
 | 
	
		
			
				|  |  | +          SCTL_ASSERT(trg_surf.Dim() == N);
 | 
	
		
			
				|  |  | +          for (Long i = 0; i < N; i++) {
 | 
	
		
			
				|  |  | +            PtTrg[i].surf_rank = trg_surf[i];
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +          for (Long i = 0; i < N; i++) {
 | 
	
		
			
				|  |  | +            PtTrg[i].surf_rank = -1;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<PtData> PtTrgSorted;
 | 
	
		
			
				|  |  | +        comm.HyperQuickSort(PtTrg, PtTrgSorted);
 | 
	
		
			
				|  |  | +        PtTrg.Swap(PtTrgSorted);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Tree<CoordDim> tree(comm);
 | 
	
		
			
				|  |  | +      { // Init tree
 | 
	
		
			
				|  |  | +        Vector<Real> Xall(PtSrc.Dim()+PtTrg.Dim());
 | 
	
		
			
				|  |  | +        { // Set Xall
 | 
	
		
			
				|  |  | +          Xall.ReInit((PtSrc.Dim()+PtTrg.Dim())*CoordDim);
 | 
	
		
			
				|  |  | +          Long Nsrc = PtSrc.Dim();
 | 
	
		
			
				|  |  | +          Long Ntrg = PtTrg.Dim();
 | 
	
		
			
				|  |  | +          for (Long i = 0; i < Nsrc; i++) {
 | 
	
		
			
				|  |  | +            for (Integer k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +              Xall[i*CoordDim+k] = PtSrc[i].coord[k];
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          for (Long i = 0; i < Ntrg; i++) {
 | 
	
		
			
				|  |  | +            for (Integer k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +              Xall[(Nsrc+i)*CoordDim+k] = PtTrg[i].coord[k];
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        tree.UpdateRefinement(Xall, 1000, true, period_length>0);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      { // Repartition PtSrc, PtTrg
 | 
	
		
			
				|  |  | +        PtData splitter;
 | 
	
		
			
				|  |  | +        splitter.mid = tree.GetPartitionMID()[rank];
 | 
	
		
			
				|  |  | +        comm.PartitionS(PtSrc, splitter);
 | 
	
		
			
				|  |  | +        comm.PartitionS(PtTrg, splitter);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      { // Add tree data PtSrc
 | 
	
		
			
				|  |  | +        const auto& node_mid = tree.GetNodeMID();
 | 
	
		
			
				|  |  | +        const Long N = node_mid.Dim();
 | 
	
		
			
				|  |  | +        SCTL_ASSERT(N);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Long> dsp(N), cnt(N);
 | 
	
		
			
				|  |  | +        for (Long i = 0; i < N; i++) {
 | 
	
		
			
				|  |  | +          PtData m0;
 | 
	
		
			
				|  |  | +          m0.mid = node_mid[i];
 | 
	
		
			
				|  |  | +          dsp[i] = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        for (Long i = 0; i < N-1; i++) {
 | 
	
		
			
				|  |  | +          cnt[i] = dsp[i+1] - dsp[i];
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        cnt[N-1] = PtSrc.Dim() - dsp[N-1];
 | 
	
		
			
				|  |  | +        tree.AddData("PtSrc", PtSrc, cnt);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      tree.template Broadcast<PtData>("PtSrc");
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      { // Build pair_lst
 | 
	
		
			
				|  |  | +        Vector<Long> cnt;
 | 
	
		
			
				|  |  | +        Vector<PtData> PtSrc;
 | 
	
		
			
				|  |  | +        tree.GetData(PtSrc, cnt, "PtSrc");
 | 
	
		
			
				|  |  | +        const auto& node_mid = tree.GetNodeMID();
 | 
	
		
			
				|  |  | +        const auto& node_attr = tree.GetNodeAttr();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Morton<CoordDim>> nbr_mid_tmp;
 | 
	
		
			
				|  |  | +        for (Long i = 0; i < node_mid.Dim(); i++) {
 | 
	
		
			
				|  |  | +          if (node_attr[i].Leaf && !node_attr[i].Ghost) {
 | 
	
		
			
				|  |  | +            Vector<Morton<CoordDim>> child_mid;
 | 
	
		
			
				|  |  | +            node_mid[i].Children(child_mid);
 | 
	
		
			
				|  |  | +            for (const auto& trg_mid : child_mid) {
 | 
	
		
			
				|  |  | +              Integer d0 = trg_mid.Depth();
 | 
	
		
			
				|  |  | +              Vector<PtData> Src, Trg;
 | 
	
		
			
				|  |  | +              { // Set Trg
 | 
	
		
			
				|  |  | +                PtData m0, m1;
 | 
	
		
			
				|  |  | +                m0.mid = trg_mid;
 | 
	
		
			
				|  |  | +                m1.mid = trg_mid.Next();
 | 
	
		
			
				|  |  | +                Long a = std::lower_bound(PtTrg.begin(), PtTrg.end(), m0) - PtTrg.begin();
 | 
	
		
			
				|  |  | +                Long b = std::lower_bound(PtTrg.begin(), PtTrg.end(), m1) - PtTrg.begin();
 | 
	
		
			
				|  |  | +                Trg.ReInit(b-a, PtTrg.begin()+a, false);
 | 
	
		
			
				|  |  | +                if (!Trg.Dim()) continue;
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +              Vector<std::set<Long>> near_elem(Trg.Dim());
 | 
	
		
			
				|  |  | +              for (Integer d = 0; d <= d0; d++) {
 | 
	
		
			
				|  |  | +                trg_mid.NbrList(nbr_mid_tmp, d, period_length>0);
 | 
	
		
			
				|  |  | +                for (const auto& src_mid : nbr_mid_tmp) { // Set Src
 | 
	
		
			
				|  |  | +                  PtData m0, m1;
 | 
	
		
			
				|  |  | +                  m0.mid = src_mid;
 | 
	
		
			
				|  |  | +                  m1.mid = (d==d0 ? src_mid.Next() : src_mid.Ancestor(d+1));
 | 
	
		
			
				|  |  | +                  Long a = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
 | 
	
		
			
				|  |  | +                  Long b = std::lower_bound(PtSrc.begin(), PtSrc.end(), m1) - PtSrc.begin();
 | 
	
		
			
				|  |  | +                  Src.ReInit(b-a, PtSrc.begin()+a, false);
 | 
	
		
			
				|  |  | +                  if (!Src.Dim()) continue;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +                  for (Long t = 0; t < Trg.Dim(); t++) { // set near_elem[t] <-- {s : dist(s,t) < radius(s)}
 | 
	
		
			
				|  |  | +                    for (Long s = 0; s < Src.Dim(); s++) {
 | 
	
		
			
				|  |  | +                      if (Trg[t].surf_rank != Src[s].surf_rank) {
 | 
	
		
			
				|  |  | +                        Real R2 = 0;
 | 
	
		
			
				|  |  | +                        for (Integer k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +                          Real dx = (Src[s].coord[k] - Trg[t].coord[k]);
 | 
	
		
			
				|  |  | +                          R2 += dx * dx;
 | 
	
		
			
				|  |  | +                        }
 | 
	
		
			
				|  |  | +                        if (R2 < Src[s].radius2) {
 | 
	
		
			
				|  |  | +                          near_elem[t].insert(Src[s].surf_rank);
 | 
	
		
			
				|  |  | +                        }
 | 
	
		
			
				|  |  | +                      }
 | 
	
		
			
				|  |  | +                    }
 | 
	
		
			
				|  |  | +                  }
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +              for (Long t = 0; t < Trg.Dim(); t++) { // Set pair_lst
 | 
	
		
			
				|  |  | +                for (Long elem_idx : near_elem[t]) {
 | 
	
		
			
				|  |  | +                  pair_lst.PushBack(Pair<Long,Long>(elem_idx,Trg[t].rank));
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      { // Sort and repartition pair_lst
 | 
	
		
			
				|  |  | +        Vector<Pair<Long,Long>> pair_lst_sorted;
 | 
	
		
			
				|  |  | +        comm.HyperQuickSort(pair_lst, pair_lst_sorted);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Long surf_rank_offset;
 | 
	
		
			
				|  |  | +        const Long Nelem = elem_lst.NElem();
 | 
	
		
			
				|  |  | +        comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
 | 
	
		
			
				|  |  | +        surf_rank_offset -= Nelem;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        comm.PartitionS(pair_lst_sorted, Pair<Long,Long>(surf_rank_offset,0));
 | 
	
		
			
				|  |  | +        pair_lst.Swap(pair_lst_sorted);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <class ElemList> static void BuildNbrListDeprecated(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const ElemList& elem_lst, const Matrix<Real>& surf_nds, Real distance_factor) {
 | 
	
		
			
				|  |  | +      using CoordBasis = typename ElemList::CoordBasis;
 | 
	
		
			
				|  |  | +      constexpr Integer CoordDim = ElemList::CoordDim();
 | 
	
		
			
				|  |  | +      constexpr Integer ElemDim = ElemList::ElemDim();
 | 
	
		
			
				|  |  | +      const Long Nelem = elem_lst.NElem();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      const Long Ntrg = Xt.Dim() / CoordDim;
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Long Nnds, Nsurf_nds;
 | 
	
		
			
				|  |  | +      Vector<Real> X_surf, X, dX;
 | 
	
		
			
				|  |  | +      Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
 | 
	
		
			
				|  |  | +      { // Set X, dX
 | 
	
		
			
				|  |  | +        const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
 | 
	
		
			
				|  |  | +        Vector<CoordBasis> dX_elem_lst;
 | 
	
		
			
				|  |  | +        CoordBasis::Grad(dX_elem_lst, X_elem_lst);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Matrix<Real> nds_upsample;
 | 
	
		
			
				|  |  | +        Vector<Real> wts_upsample;
 | 
	
		
			
				|  |  | +        TensorProductGaussQuad<ElemDim>(nds_upsample, wts_upsample, order_upsample);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Nnds = nds_upsample.Dim(1);
 | 
	
		
			
				|  |  | +        const auto CoordEvalOp = CoordBasis::SetupEval(nds_upsample);
 | 
	
		
			
				|  |  | +        eval_basis(X, X_elem_lst, CoordDim, nds_upsample.Dim(1), CoordEvalOp);
 | 
	
		
			
				|  |  | +        eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, nds_upsample.Dim(1), CoordEvalOp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Nsurf_nds = surf_nds.Dim(1);
 | 
	
		
			
				|  |  | +        const auto CoordEvalOp_surf = CoordBasis::SetupEval(surf_nds);
 | 
	
		
			
				|  |  | +        eval_basis(X_surf, X_elem_lst, CoordDim, Nsurf_nds, CoordEvalOp_surf);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Real d2 = distance_factor * distance_factor;
 | 
	
		
			
				|  |  | +      for (Long i = 0; i < Nelem; i++) {
 | 
	
		
			
				|  |  | +        std::set<Long> near_pts;
 | 
	
		
			
				|  |  | +        std::set<Long> self_pts;
 | 
	
		
			
				|  |  | +        for (Long j = 0; j < Nnds; j++) {
 | 
	
		
			
				|  |  | +          Real R2_max = 0;
 | 
	
		
			
				|  |  | +          StaticArray<Real, CoordDim> X0;
 | 
	
		
			
				|  |  | +          for (Integer k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +            X0[k] = X[(i*Nnds+j)*CoordDim+k];
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          for (Integer k0 = 0; k0 < ElemDim; k0++) {
 | 
	
		
			
				|  |  | +            Real R2 = 0;
 | 
	
		
			
				|  |  | +            for (Integer k1 = 0; k1 < CoordDim; k1++) {
 | 
	
		
			
				|  |  | +              Real dX_ = dX[((i*Nnds+j)*CoordDim+k1)*ElemDim+k0];
 | 
	
		
			
				|  |  | +              R2 += dX_*dX_;
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            R2_max = std::max(R2_max, R2*d2);
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +          for (Long k = 0; k < Ntrg; k++) {
 | 
	
		
			
				|  |  | +            Real R2 = 0;
 | 
	
		
			
				|  |  | +            for (Integer l = 0; l < CoordDim; l++) {
 | 
	
		
			
				|  |  | +              Real dX = Xt[k*CoordDim+l]- X0[l];
 | 
	
		
			
				|  |  | +              R2 += dX * dX;
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            if (R2 < R2_max) near_pts.insert(k);
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        for (Long j = 0; j < Nsurf_nds; j++) {
 | 
	
		
			
				|  |  | +          StaticArray<Real, CoordDim> X0;
 | 
	
		
			
				|  |  | +          for (Integer k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +            X0[k] = X_surf[(i*Nsurf_nds+j)*CoordDim+k];
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          for (Long k = 0; k < Ntrg; k++) {
 | 
	
		
			
				|  |  | +            Real R2 = 0;
 | 
	
		
			
				|  |  | +            for (Integer l = 0; l < CoordDim; l++) {
 | 
	
		
			
				|  |  | +              Real dX = Xt[k*CoordDim+l]- X0[l];
 | 
	
		
			
				|  |  | +              R2 += dX * dX;
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            if (R2 == 0) self_pts.insert(k);
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        for (Long trg_idx : self_pts) {
 | 
	
		
			
				|  |  | +          near_pts.erase(trg_idx);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        for (Long trg_idx : near_pts) {
 | 
	
		
			
				|  |  | +          pair_lst.PushBack(Pair<Long,Long>(i,trg_idx));
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <class DensityBasis, class ElemList, class Kernel> static void SetupNearSingular(Matrix<Real>& M_near_singular, Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt_, const Vector<Long>& trg_surf, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
 | 
	
		
			
				|  |  | +      static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
 | 
	
		
			
				|  |  | +      static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
 | 
	
		
			
				|  |  | +      static_assert(DensityBasis::Dim() == ElemList::ElemDim());
 | 
	
		
			
				|  |  | +      using CoordBasis = typename ElemList::CoordBasis;
 | 
	
		
			
				|  |  | +      using CoordEvalOpType = typename CoordBasis::EvalOpType;
 | 
	
		
			
				|  |  | +      using DensityEvalOpType = typename DensityBasis::EvalOpType;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      constexpr Integer CoordDim = ElemList::CoordDim();
 | 
	
		
			
				|  |  | +      constexpr Integer ElemDim = ElemList::ElemDim();
 | 
	
		
			
				|  |  | +      constexpr Integer KDIM0 = Kernel::SrcDim();
 | 
	
		
			
				|  |  | +      constexpr Integer KDIM1 = Kernel::TrgDim();
 | 
	
		
			
				|  |  | +      const Long Nelem = elem_lst.NElem();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      BuildNbrList(pair_lst, Xt_, trg_surf, elem_lst, 2.5/order_direct, period_length, comm);
 | 
	
		
			
				|  |  | +      const Long Ninterac = pair_lst.Dim();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Vector<Real> Xt;
 | 
	
		
			
				|  |  | +      { // Set Xt
 | 
	
		
			
				|  |  | +        Integer rank = comm.Rank();
 | 
	
		
			
				|  |  | +        Integer np = comm.Size();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Long> splitter_ranks;
 | 
	
		
			
				|  |  | +        { // Set splitter_ranks
 | 
	
		
			
				|  |  | +          Vector<Long> cnt(np);
 | 
	
		
			
				|  |  | +          const Long N = Xt_.Dim() / CoordDim;
 | 
	
		
			
				|  |  | +          comm.Allgather(Ptr2ConstItr<Long>(&N,1), 1, cnt.begin(), 1);
 | 
	
		
			
				|  |  | +          scan(splitter_ranks, cnt);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Long> scatter_index, recv_index, recv_cnt(np), recv_dsp(np);
 | 
	
		
			
				|  |  | +        { // Set scatter_index, recv_index, recv_cnt, recv_dsp
 | 
	
		
			
				|  |  | +          { // Set scatter_index, recv_index
 | 
	
		
			
				|  |  | +            Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
 | 
	
		
			
				|  |  | +            for (Long i = 0; i < pair_lst.Dim(); i++) {
 | 
	
		
			
				|  |  | +              scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            recv_index.ReInit(scatter_pair.Dim());
 | 
	
		
			
				|  |  | +            scatter_index.ReInit(scatter_pair.Dim());
 | 
	
		
			
				|  |  | +            for (Long i = 0; i < scatter_index.Dim(); i++) {
 | 
	
		
			
				|  |  | +              recv_index[i] = scatter_pair[i].first;
 | 
	
		
			
				|  |  | +              scatter_index[i] = scatter_pair[i].second;
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          for (Integer i = 0; i < np; i++) {
 | 
	
		
			
				|  |  | +            recv_dsp[i] = std::lower_bound(recv_index.begin(), recv_index.end(), splitter_ranks[i]) - recv_index.begin();
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          for (Integer i = 0; i < np-1; i++) {
 | 
	
		
			
				|  |  | +            recv_cnt[i] = recv_dsp[i+1] - recv_dsp[i];
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          recv_cnt[np-1] = recv_index.Dim() - recv_dsp[np-1];
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Long> send_index, send_cnt(np), send_dsp(np);
 | 
	
		
			
				|  |  | +        { // Set send_index, send_cnt, send_dsp
 | 
	
		
			
				|  |  | +          comm.Alltoall(recv_cnt.begin(), 1, send_cnt.begin(), 1);
 | 
	
		
			
				|  |  | +          scan(send_dsp, send_cnt);
 | 
	
		
			
				|  |  | +          send_index.ReInit(send_cnt[np-1] + send_dsp[np-1]);
 | 
	
		
			
				|  |  | +          comm.Alltoallv(recv_index.begin(), recv_cnt.begin(), recv_dsp.begin(), send_index.begin(), send_cnt.begin(), send_dsp.begin());
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Real> Xt_send(send_index.Dim() * CoordDim);
 | 
	
		
			
				|  |  | +        for (Long i = 0; i < send_index.Dim(); i++) { // Set Xt_send
 | 
	
		
			
				|  |  | +          Long idx = send_index[i] - splitter_ranks[rank];
 | 
	
		
			
				|  |  | +          for (Integer k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +            Xt_send[i*CoordDim+k] = Xt_[idx*CoordDim+k];
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Real> Xt_recv(recv_index.Dim() * CoordDim);
 | 
	
		
			
				|  |  | +        { // Set Xt_recv
 | 
	
		
			
				|  |  | +          for (Long i = 0; i < np; i++) {
 | 
	
		
			
				|  |  | +            send_cnt[i] *= CoordDim;
 | 
	
		
			
				|  |  | +            send_dsp[i] *= CoordDim;
 | 
	
		
			
				|  |  | +            recv_cnt[i] *= CoordDim;
 | 
	
		
			
				|  |  | +            recv_dsp[i] *= CoordDim;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          comm.Alltoallv(Xt_send.begin(), send_cnt.begin(), send_dsp.begin(), Xt_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Xt.ReInit(scatter_index.Dim() * CoordDim);
 | 
	
		
			
				|  |  | +        for (Long i = 0; i < scatter_index.Dim(); i++) { // Set Xt
 | 
	
		
			
				|  |  | +          Long idx = scatter_index[i];
 | 
	
		
			
				|  |  | +          for (Integer k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +            Xt[idx*CoordDim+k] = Xt_recv[i*CoordDim+k];
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      const Vector<CoordBasis>& X = elem_lst.ElemVector();
 | 
	
		
			
				|  |  | +      Vector<CoordBasis> dX;
 | 
	
		
			
				|  |  | +      CoordBasis::Grad(dX, X);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Long elem_rank_offset;
 | 
	
		
			
				|  |  | +      { // Set elem_rank_offset
 | 
	
		
			
				|  |  | +        comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
 | 
	
		
			
				|  |  | +        elem_rank_offset -= Nelem;
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      auto& M = M_near_singular;
 | 
	
		
			
				|  |  | +      M.ReInit(Ninterac * KDIM0 * DensityBasis::Size(), KDIM1);
 | 
	
		
			
				|  |  | +      #pragma omp parallel for schedule(static)
 | 
	
		
			
				|  |  | +      for (Long j = 0; j < Ninterac; j++) { // Set M (near-singular)
 | 
	
		
			
				|  |  | +        const Long src_idx = pair_lst[j].first - elem_rank_offset;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Real adapt = -1.0;
 | 
	
		
			
				|  |  | +        Tensor<Real,true,ElemDim,1> u0;
 | 
	
		
			
				|  |  | +        { // Set u0 (project target point to the surface patch in parameter space)
 | 
	
		
			
				|  |  | +          ConstIterator<Real> Xt_ = Xt.begin() + j * CoordDim;
 | 
	
		
			
				|  |  | +          const auto& nodes = CoordBasis::Nodes();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +          Long min_idx = -1;
 | 
	
		
			
				|  |  | +          Real min_R2 = 1e10;
 | 
	
		
			
				|  |  | +          for (Long i = 0; i < CoordBasis::Size(); i++) {
 | 
	
		
			
				|  |  | +            Real R2 = 0;
 | 
	
		
			
				|  |  | +            for (Integer k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +              Real dX = X[src_idx * CoordDim + k][i] - Xt_[k];
 | 
	
		
			
				|  |  | +              R2 += dX * dX;
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            if (R2 < min_R2) {
 | 
	
		
			
				|  |  | +              min_R2 = R2;
 | 
	
		
			
				|  |  | +              min_idx = i;
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          SCTL_ASSERT(min_idx >= 0);
 | 
	
		
			
				|  |  | +          for (Integer k = 0; k < ElemDim; k++) {
 | 
	
		
			
				|  |  | +            u0(k,0) = nodes[k][min_idx];
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +          for (Integer i = 0; i < 2; i++) { // iterate
 | 
	
		
			
				|  |  | +            Matrix<Real> X_, dX_;
 | 
	
		
			
				|  |  | +            for (Integer k = 0; k < ElemDim; k++) {
 | 
	
		
			
				|  |  | +              u0(k,0) = std::min(1.0, u0(k,0));
 | 
	
		
			
				|  |  | +              u0(k,0) = std::max(0.0, u0(k,0));
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            const auto eval_op = CoordBasis::SetupEval(Matrix<Real>(ElemDim,1,u0.begin(),false));
 | 
	
		
			
				|  |  | +            CoordBasis::Eval(X_, Vector<CoordBasis>(CoordDim,(Iterator<CoordBasis>)X.begin()+src_idx*CoordDim,false),eval_op);
 | 
	
		
			
				|  |  | +            CoordBasis::Eval(dX_, Vector<CoordBasis>(CoordDim*ElemDim,dX.begin()+src_idx*CoordDim*ElemDim,false),eval_op);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            const Tensor<Real,false,CoordDim,1> x0((Iterator<Real>)Xt_);
 | 
	
		
			
				|  |  | +            const Tensor<Real,false,CoordDim,1> x(X_.begin());
 | 
	
		
			
				|  |  | +            const Tensor<Real,false,CoordDim,ElemDim> x_u(dX_.begin());
 | 
	
		
			
				|  |  | +            auto inv = [](const Tensor<Real,true,2,2>& M) {
 | 
	
		
			
				|  |  | +              Tensor<Real,true,2,2> Minv;
 | 
	
		
			
				|  |  | +              Real det_inv = 1.0 / (M(0,0)*M(1,1) - M(1,0)*M(0,1));
 | 
	
		
			
				|  |  | +              Minv(0,0) = M(1,1) * det_inv;
 | 
	
		
			
				|  |  | +              Minv(0,1) =-M(0,1) * det_inv;
 | 
	
		
			
				|  |  | +              Minv(1,0) =-M(1,0) * det_inv;
 | 
	
		
			
				|  |  | +              Minv(1,1) = M(0,0) * det_inv;
 | 
	
		
			
				|  |  | +              return Minv;
 | 
	
		
			
				|  |  | +            };
 | 
	
		
			
				|  |  | +            auto du = inv(x_u.RotateRight()*x_u) * x_u.RotateRight()*(x0-x);
 | 
	
		
			
				|  |  | +            u0 = u0 + du;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            auto x_u_squared = x_u.RotateRight() * x_u;
 | 
	
		
			
				|  |  | +            adapt = sctl::sqrt<Real>( ((x0-x).RotateRight()*(x0-x))(0,0) / std::max<Real>(x_u_squared(0,0),x_u_squared(1,1)) );
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Matrix<Real> quad_nds;
 | 
	
		
			
				|  |  | +        Vector<Real> quad_wts;
 | 
	
		
			
				|  |  | +        DuffyQuad<ElemDim>(quad_nds, quad_wts, Vector<Real>(ElemDim,u0.begin(),false), order_singular, adapt);
 | 
	
		
			
				|  |  | +        const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
 | 
	
		
			
				|  |  | +        Integer Nnds = quad_wts.Dim();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Real> X_, dX_, Xa_, Xn_;
 | 
	
		
			
				|  |  | +        { // Set X_, dX_
 | 
	
		
			
				|  |  | +          const Vector<CoordBasis> X__(CoordDim, (Iterator<CoordBasis>)X.begin() + src_idx * CoordDim, false);
 | 
	
		
			
				|  |  | +          const Vector<CoordBasis> dX__(CoordDim * ElemDim, (Iterator<CoordBasis>)dX.begin() + src_idx * CoordDim * ElemDim, false);
 | 
	
		
			
				|  |  | +          eval_basis(X_, X__, CoordDim, Nnds, CoordEvalOp);
 | 
	
		
			
				|  |  | +          eval_basis(dX_, dX__, CoordDim * ElemDim, Nnds, CoordEvalOp);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
 | 
	
		
			
				|  |  | +          Xa_.ReInit(Nnds);
 | 
	
		
			
				|  |  | +          Xn_.ReInit(Nnds*CoordDim);
 | 
	
		
			
				|  |  | +          for (Long j = 0; j < Nnds; j++) {
 | 
	
		
			
				|  |  | +            StaticArray<Real,CoordDim> normal;
 | 
	
		
			
				|  |  | +            normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
 | 
	
		
			
				|  |  | +            normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
 | 
	
		
			
				|  |  | +            normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
 | 
	
		
			
				|  |  | +            Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
 | 
	
		
			
				|  |  | +            Real invXa = 1/Xa_[j];
 | 
	
		
			
				|  |  | +            Xn_[j*3+0] = normal[0] * invXa;
 | 
	
		
			
				|  |  | +            Xn_[j*3+1] = normal[1] * invXa;
 | 
	
		
			
				|  |  | +            Xn_[j*3+2] = normal[2] * invXa;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        DensityEvalOpType DensityEvalOp;
 | 
	
		
			
				|  |  | +        if (std::is_same<CoordBasis,DensityBasis>::value) {
 | 
	
		
			
				|  |  | +          DensityEvalOp = CoordEvalOp;
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +          DensityEvalOp = DensityBasis::SetupEval(quad_nds);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Matrix<Real> M__(Nnds * KDIM0, KDIM1);
 | 
	
		
			
				|  |  | +        { // Set kernel matrix M__
 | 
	
		
			
				|  |  | +          const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
 | 
	
		
			
				|  |  | +          kernel.template KernelMatrix<Real>(M__, X0_, X_, Xn_);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        for (Long k0 = 0; k0 < KDIM0; k0++) {
 | 
	
		
			
				|  |  | +          for (Long k1 = 0; k1 < KDIM1; k1++) {
 | 
	
		
			
				|  |  | +            for (Long l = 0; l < DensityBasis::Size(); l++) {
 | 
	
		
			
				|  |  | +              Real M_lk = 0;
 | 
	
		
			
				|  |  | +              for (Long n = 0; n < Nnds; n++) {
 | 
	
		
			
				|  |  | +                Real quad_wt = Xa_[n] * quad_wts[n];
 | 
	
		
			
				|  |  | +                M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +              M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] = M_lk;
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      { // Set M (subtract direct)
 | 
	
		
			
				|  |  | +        Matrix<Real> quad_nds;
 | 
	
		
			
				|  |  | +        Vector<Real> quad_wts;
 | 
	
		
			
				|  |  | +        TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
 | 
	
		
			
				|  |  | +        const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
 | 
	
		
			
				|  |  | +        Integer Nnds = quad_wts.Dim();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Real> X_, dX_, Xa_, Xn_;
 | 
	
		
			
				|  |  | +        { // Set X_, dX_
 | 
	
		
			
				|  |  | +          eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
 | 
	
		
			
				|  |  | +          eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
 | 
	
		
			
				|  |  | +          Long N = Nelem*Nnds;
 | 
	
		
			
				|  |  | +          Xa_.ReInit(N);
 | 
	
		
			
				|  |  | +          Xn_.ReInit(N*CoordDim);
 | 
	
		
			
				|  |  | +          for (Long j = 0; j < N; j++) {
 | 
	
		
			
				|  |  | +            StaticArray<Real,CoordDim> normal;
 | 
	
		
			
				|  |  | +            normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
 | 
	
		
			
				|  |  | +            normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
 | 
	
		
			
				|  |  | +            normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
 | 
	
		
			
				|  |  | +            Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
 | 
	
		
			
				|  |  | +            Real invXa = 1/Xa_[j];
 | 
	
		
			
				|  |  | +            Xn_[j*3+0] = normal[0] * invXa;
 | 
	
		
			
				|  |  | +            Xn_[j*3+1] = normal[1] * invXa;
 | 
	
		
			
				|  |  | +            Xn_[j*3+2] = normal[2] * invXa;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        DensityEvalOpType DensityEvalOp;
 | 
	
		
			
				|  |  | +        if (std::is_same<CoordBasis,DensityBasis>::value) {
 | 
	
		
			
				|  |  | +          DensityEvalOp = CoordEvalOp;
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +          DensityEvalOp = DensityBasis::SetupEval(quad_nds);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        #pragma omp parallel for schedule(static)
 | 
	
		
			
				|  |  | +        for (Long j = 0; j < Ninterac; j++) { // Subtract direct contribution
 | 
	
		
			
				|  |  | +          const Long src_idx = pair_lst[j].first - elem_rank_offset;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +          Matrix<Real> M__(Nnds * KDIM0, KDIM1);
 | 
	
		
			
				|  |  | +          { // Set kernel matrix M__
 | 
	
		
			
				|  |  | +            const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
 | 
	
		
			
				|  |  | +            Vector<Real> X__(Nnds * CoordDim, X_.begin() + src_idx * Nnds * CoordDim, false);
 | 
	
		
			
				|  |  | +            Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + src_idx * Nnds * CoordDim, false);
 | 
	
		
			
				|  |  | +            kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          for (Long k0 = 0; k0 < KDIM0; k0++) {
 | 
	
		
			
				|  |  | +            for (Long k1 = 0; k1 < KDIM1; k1++) {
 | 
	
		
			
				|  |  | +              for (Long l = 0; l < DensityBasis::Size(); l++) {
 | 
	
		
			
				|  |  | +                Real M_lk = 0;
 | 
	
		
			
				|  |  | +                for (Long n = 0; n < Nnds; n++) {
 | 
	
		
			
				|  |  | +                  Real quad_wt = Xa_[src_idx * Nnds + n] * quad_wts[n];
 | 
	
		
			
				|  |  | +                  M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +                M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] -= M_lk;
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <class DensityBasis> static void EvalNearSingular(Vector<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, const Vector<Pair<Long,Long>>& pair_lst, Long Nelem_, Long Ntrg_, Integer KDIM0_, Integer KDIM1_, const Comm& comm) {
 | 
	
		
			
				|  |  | +      const Long Ninterac = pair_lst.Dim();
 | 
	
		
			
				|  |  | +      const Integer dof = density.Dim() / Nelem_ / KDIM0_;
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(density.Dim() == Nelem_ * dof * KDIM0_);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Long elem_rank_offset;
 | 
	
		
			
				|  |  | +      { // Set elem_rank_offset
 | 
	
		
			
				|  |  | +        comm.Scan(Ptr2ConstItr<Long>(&Nelem_,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
 | 
	
		
			
				|  |  | +        elem_rank_offset -= Nelem_;
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Vector<Real> U_loc(Ninterac*dof*KDIM1_);
 | 
	
		
			
				|  |  | +      for (Long j = 0; j < Ninterac; j++) {
 | 
	
		
			
				|  |  | +        const Long src_idx = pair_lst[j].first - elem_rank_offset;
 | 
	
		
			
				|  |  | +        const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
 | 
	
		
			
				|  |  | +        Matrix<Real> U_(dof, KDIM1_, U_loc.begin() + j*dof*KDIM1_, false);
 | 
	
		
			
				|  |  | +        Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
 | 
	
		
			
				|  |  | +        for (Long i = 0; i < dof; i++) {
 | 
	
		
			
				|  |  | +          for (Long k = 0; k < KDIM0_; k++) {
 | 
	
		
			
				|  |  | +            for (Long l = 0; l < DensityBasis::Size(); l++) {
 | 
	
		
			
				|  |  | +              F_[i][k * DensityBasis::Size() + l] = density[(src_idx * dof + i) * KDIM0_ + k][l];
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        Matrix<Real>::GEMM(U_, F_, M_);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      if (U.Dim() != Ntrg_ * dof * KDIM1_) {
 | 
	
		
			
				|  |  | +        U.ReInit(Ntrg_ * dof * KDIM1_);
 | 
	
		
			
				|  |  | +        U = 0;
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      { // Set U
 | 
	
		
			
				|  |  | +        Integer rank = comm.Rank();
 | 
	
		
			
				|  |  | +        Integer np = comm.Size();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Long> splitter_ranks;
 | 
	
		
			
				|  |  | +        { // Set splitter_ranks
 | 
	
		
			
				|  |  | +          Vector<Long> cnt(np);
 | 
	
		
			
				|  |  | +          comm.Allgather(Ptr2ConstItr<Long>(&Ntrg_,1), 1, cnt.begin(), 1);
 | 
	
		
			
				|  |  | +          scan(splitter_ranks, cnt);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Long> scatter_index, send_index, send_cnt(np), send_dsp(np);
 | 
	
		
			
				|  |  | +        { // Set scatter_index, send_index, send_cnt, send_dsp
 | 
	
		
			
				|  |  | +          { // Set scatter_index, send_index
 | 
	
		
			
				|  |  | +            Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
 | 
	
		
			
				|  |  | +            for (Long i = 0; i < pair_lst.Dim(); i++) {
 | 
	
		
			
				|  |  | +              scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            send_index.ReInit(scatter_pair.Dim());
 | 
	
		
			
				|  |  | +            scatter_index.ReInit(scatter_pair.Dim());
 | 
	
		
			
				|  |  | +            for (Long i = 0; i < scatter_index.Dim(); i++) {
 | 
	
		
			
				|  |  | +              send_index[i] = scatter_pair[i].first;
 | 
	
		
			
				|  |  | +              scatter_index[i] = scatter_pair[i].second;
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          for (Integer i = 0; i < np; i++) {
 | 
	
		
			
				|  |  | +            send_dsp[i] = std::lower_bound(send_index.begin(), send_index.end(), splitter_ranks[i]) - send_index.begin();
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          for (Integer i = 0; i < np-1; i++) {
 | 
	
		
			
				|  |  | +            send_cnt[i] = send_dsp[i+1] - send_dsp[i];
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          send_cnt[np-1] = send_index.Dim() - send_dsp[np-1];
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Long> recv_index, recv_cnt(np), recv_dsp(np);
 | 
	
		
			
				|  |  | +        { // Set recv_index, recv_cnt, recv_dsp
 | 
	
		
			
				|  |  | +          comm.Alltoall(send_cnt.begin(), 1, recv_cnt.begin(), 1);
 | 
	
		
			
				|  |  | +          scan(recv_dsp, recv_cnt);
 | 
	
		
			
				|  |  | +          recv_index.ReInit(recv_cnt[np-1] + recv_dsp[np-1]);
 | 
	
		
			
				|  |  | +          comm.Alltoallv(send_index.begin(), send_cnt.begin(), send_dsp.begin(), recv_index.begin(), recv_cnt.begin(), recv_dsp.begin());
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Real> U_send(scatter_index.Dim() * dof * KDIM1_);
 | 
	
		
			
				|  |  | +        for (Long i = 0; i < scatter_index.Dim(); i++) {
 | 
	
		
			
				|  |  | +          Long idx = scatter_index[i]*dof*KDIM1_;
 | 
	
		
			
				|  |  | +          for (Long k = 0; k < dof * KDIM1_; k++) {
 | 
	
		
			
				|  |  | +            U_send[i*dof*KDIM1_ + k] = U_loc[idx + k];
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Real> U_recv(recv_index.Dim() * dof * KDIM1_);
 | 
	
		
			
				|  |  | +        { // Set U_recv
 | 
	
		
			
				|  |  | +          for (Long i = 0; i < np; i++) {
 | 
	
		
			
				|  |  | +            send_cnt[i] *= dof * KDIM1_;
 | 
	
		
			
				|  |  | +            send_dsp[i] *= dof * KDIM1_;
 | 
	
		
			
				|  |  | +            recv_cnt[i] *= dof * KDIM1_;
 | 
	
		
			
				|  |  | +            recv_dsp[i] *= dof * KDIM1_;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          comm.Alltoallv(U_send.begin(), send_cnt.begin(), send_dsp.begin(), U_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        for (Long i = 0; i < recv_index.Dim(); i++) { // Set U
 | 
	
		
			
				|  |  | +          Long idx = (recv_index[i] - splitter_ranks[rank]) * dof * KDIM1_;
 | 
	
		
			
				|  |  | +          for (Integer k = 0; k < dof * KDIM1_; k++) {
 | 
	
		
			
				|  |  | +            U[idx + k] += U_recv[i*dof*KDIM1_ + k];
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <class ElemList, class DensityBasis, class Kernel> static void Direct(Vector<Real>& U, const Vector<Real>& Xt, const ElemList& elem_lst, const Vector<DensityBasis>& density, const Kernel& kernel, Integer order_direct, const Comm& comm) {
 | 
	
		
			
				|  |  | +      using CoordBasis = typename ElemList::CoordBasis;
 | 
	
		
			
				|  |  | +      using CoordEvalOpType = typename CoordBasis::EvalOpType;
 | 
	
		
			
				|  |  | +      using DensityEvalOpType = typename DensityBasis::EvalOpType;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      constexpr Integer CoordDim = ElemList::CoordDim();
 | 
	
		
			
				|  |  | +      constexpr Integer ElemDim = ElemList::ElemDim();
 | 
	
		
			
				|  |  | +      constexpr Integer KDIM0 = Kernel::SrcDim();
 | 
	
		
			
				|  |  | +      constexpr Integer KDIM1 = Kernel::TrgDim();
 | 
	
		
			
				|  |  | +      const Long Nelem = elem_lst.NElem();
 | 
	
		
			
				|  |  | +      const Integer dof = density.Dim() / Nelem / KDIM0;
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Matrix<Real> quad_nds;
 | 
	
		
			
				|  |  | +      Vector<Real> quad_wts;
 | 
	
		
			
				|  |  | +      TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
 | 
	
		
			
				|  |  | +      const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
 | 
	
		
			
				|  |  | +      Integer Nnds = quad_wts.Dim();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      const Vector<CoordBasis>& X = elem_lst.ElemVector();
 | 
	
		
			
				|  |  | +      Vector<CoordBasis> dX;
 | 
	
		
			
				|  |  | +      CoordBasis::Grad(dX, X);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Vector<Real> X_, dX_, Xa_, Xn_;
 | 
	
		
			
				|  |  | +      eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
 | 
	
		
			
				|  |  | +      eval_basis(dX_, dX, CoordDim*ElemDim, Nnds, CoordEvalOp);
 | 
	
		
			
				|  |  | +      if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
 | 
	
		
			
				|  |  | +        Long N = Nelem*Nnds;
 | 
	
		
			
				|  |  | +        Xa_.ReInit(N);
 | 
	
		
			
				|  |  | +        Xn_.ReInit(N*CoordDim);
 | 
	
		
			
				|  |  | +        for (Long j = 0; j < N; j++) {
 | 
	
		
			
				|  |  | +          StaticArray<Real,CoordDim> normal;
 | 
	
		
			
				|  |  | +          normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
 | 
	
		
			
				|  |  | +          normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
 | 
	
		
			
				|  |  | +          normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
 | 
	
		
			
				|  |  | +          Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
 | 
	
		
			
				|  |  | +          Real invXa = 1/Xa_[j];
 | 
	
		
			
				|  |  | +          Xn_[j*3+0] = normal[0] * invXa;
 | 
	
		
			
				|  |  | +          Xn_[j*3+1] = normal[1] * invXa;
 | 
	
		
			
				|  |  | +          Xn_[j*3+2] = normal[2] * invXa;
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Vector<Real> Fa_;
 | 
	
		
			
				|  |  | +      { // Set Fa_
 | 
	
		
			
				|  |  | +        Vector<Real> F_;
 | 
	
		
			
				|  |  | +        if (std::is_same<CoordBasis,DensityBasis>::value) {
 | 
	
		
			
				|  |  | +          eval_basis(F_, density, dof * KDIM0, Nnds, CoordEvalOp);
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +          const DensityEvalOpType EvalOp = DensityBasis::SetupEval(quad_nds);
 | 
	
		
			
				|  |  | +          eval_basis(F_, density, dof * KDIM0, Nnds, EvalOp);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Fa_.ReInit(F_.Dim());
 | 
	
		
			
				|  |  | +        const Integer DensityDOF = dof * KDIM0;
 | 
	
		
			
				|  |  | +        SCTL_ASSERT(F_.Dim() == Nelem * Nnds * DensityDOF);
 | 
	
		
			
				|  |  | +        for (Long j = 0; j < Nelem; j++) {
 | 
	
		
			
				|  |  | +          for (Integer k = 0; k < Nnds; k++) {
 | 
	
		
			
				|  |  | +            Long idx = j * Nnds + k;
 | 
	
		
			
				|  |  | +            Real quad_wt = Xa_[idx] * quad_wts[k];
 | 
	
		
			
				|  |  | +            for (Integer l = 0; l < DensityDOF; l++) {
 | 
	
		
			
				|  |  | +              Fa_[idx * DensityDOF + l] = F_[idx * DensityDOF + l] * quad_wt;
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      { // Evaluate potential
 | 
	
		
			
				|  |  | +        const Long Ntrg = Xt.Dim() / CoordDim;
 | 
	
		
			
				|  |  | +        SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
 | 
	
		
			
				|  |  | +        if (U.Dim() != Ntrg * dof * KDIM1) {
 | 
	
		
			
				|  |  | +          U.ReInit(Ntrg * dof * KDIM1);
 | 
	
		
			
				|  |  | +          U = 0;
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        ParticleFMM<Real,CoordDim>::Eval(U, Xt, X_, Xn_, Fa_, kernel, comm);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  public:
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <class DensityBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Vector<Real>& Xt, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
 | 
	
		
			
				|  |  | +      order_direct_ = order_direct;
 | 
	
		
			
				|  |  | +      period_length_ = period_length;
 | 
	
		
			
				|  |  | +      comm_ = comm;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Profile::Tic("Setup", &comm_);
 | 
	
		
			
				|  |  | +      static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
 | 
	
		
			
				|  |  | +      static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
 | 
	
		
			
				|  |  | +      static_assert(DensityBasis::Dim() == ElemList::ElemDim());
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Xt_ = Xt;
 | 
	
		
			
				|  |  | +      M_singular.ReInit(0,0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Profile::Tic("SetupNearSingular", &comm_);
 | 
	
		
			
				|  |  | +      SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, Vector<Long>(), elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
 | 
	
		
			
				|  |  | +      Profile::Toc();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Profile::Toc();
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
 | 
	
		
			
				|  |  | +      order_direct_ = order_direct;
 | 
	
		
			
				|  |  | +      period_length_ = period_length;
 | 
	
		
			
				|  |  | +      comm_ = comm;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Profile::Tic("Setup", &comm_);
 | 
	
		
			
				|  |  | +      static_assert(std::is_same<Real,typename PotentialBasis::ValueType>::value);
 | 
	
		
			
				|  |  | +      static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
 | 
	
		
			
				|  |  | +      static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
 | 
	
		
			
				|  |  | +      static_assert(PotentialBasis::Dim() == ElemList::ElemDim());
 | 
	
		
			
				|  |  | +      static_assert(DensityBasis::Dim() == ElemList::ElemDim());
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Vector<Long> trg_surf;
 | 
	
		
			
				|  |  | +      { // Set Xt_
 | 
	
		
			
				|  |  | +        using CoordBasis = typename ElemList::CoordBasis;
 | 
	
		
			
				|  |  | +        Matrix<Real> trg_nds = PotentialBasis::Nodes();
 | 
	
		
			
				|  |  | +        auto Meval = CoordBasis::SetupEval(trg_nds);
 | 
	
		
			
				|  |  | +        eval_basis(Xt_, elem_lst.ElemVector(), ElemList::CoordDim(), trg_nds.Dim(1), Meval);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        { // Set trg_surf
 | 
	
		
			
				|  |  | +          const Long Nelem = elem_lst.NElem();
 | 
	
		
			
				|  |  | +          const Long Nnds  = trg_nds.Dim(1);
 | 
	
		
			
				|  |  | +          Long elem_offset;
 | 
	
		
			
				|  |  | +          { // Set elem_offset
 | 
	
		
			
				|  |  | +            comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_offset,1), 1, Comm::CommOp::SUM);
 | 
	
		
			
				|  |  | +            elem_offset -= Nelem;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          trg_surf.ReInit(elem_lst.NElem() * trg_nds.Dim(1));
 | 
	
		
			
				|  |  | +          for (Long i = 0; i < Nelem; i++) {
 | 
	
		
			
				|  |  | +            for (Long j = 0; j < Nnds; j++) {
 | 
	
		
			
				|  |  | +              trg_surf[i*Nnds+j] = elem_offset + i;
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Profile::Tic("SetupSingular", &comm_);
 | 
	
		
			
				|  |  | +      SetupSingular<DensityBasis>(M_singular, PotentialBasis::Nodes(), elem_lst, kernel, order_singular, order_direct_);
 | 
	
		
			
				|  |  | +      Profile::Toc();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Profile::Tic("SetupNearSingular", &comm_);
 | 
	
		
			
				|  |  | +      SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, trg_surf, elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
 | 
	
		
			
				|  |  | +      Profile::Toc();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Profile::Toc();
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Eval(Vector<PotentialBasis>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) {
 | 
	
		
			
				|  |  | +      Profile::Tic("Eval", &comm_);
 | 
	
		
			
				|  |  | +      Matrix<Real> U_singular;
 | 
	
		
			
				|  |  | +      Vector<Real> U_direct, U_near_sing;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Profile::Tic("EvalDirect", &comm_);
 | 
	
		
			
				|  |  | +      Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
 | 
	
		
			
				|  |  | +      Profile::Toc();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Profile::Tic("EvalSingular", &comm_);
 | 
	
		
			
				|  |  | +      EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
 | 
	
		
			
				|  |  | +      Profile::Toc();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Profile::Tic("EvalNearSingular", &comm_);
 | 
	
		
			
				|  |  | +      EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
 | 
	
		
			
				|  |  | +      Profile::Toc();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      if (U.Dim() != elements.NElem() * kernel.TrgDim()) {
 | 
	
		
			
				|  |  | +        U.ReInit(elements.NElem() * kernel.TrgDim());
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      for (int i = 0; i < elements.NElem(); i++) {
 | 
	
		
			
				|  |  | +        for (int j = 0; j < PotentialBasis::Size(); j++) {
 | 
	
		
			
				|  |  | +          for (int k = 0; k < kernel.TrgDim(); k++) {
 | 
	
		
			
				|  |  | +            Real& U_ = U[i*kernel.TrgDim()+k][j];
 | 
	
		
			
				|  |  | +            U_ = 0;
 | 
	
		
			
				|  |  | +            U_ += U_direct   [(i*PotentialBasis::Size()+j)*kernel.TrgDim()+k];
 | 
	
		
			
				|  |  | +            U_ += U_near_sing[(i*PotentialBasis::Size()+j)*kernel.TrgDim()+k];
 | 
	
		
			
				|  |  | +            U_ += U_singular[i*kernel.TrgDim()+k][j];
 | 
	
		
			
				|  |  | +            U_ *= kernel.template ScaleFactor<Real>();
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      Profile::Toc();
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <class DensityBasis, class ElemList, class Kernel> void Eval(Vector<Real>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) {
 | 
	
		
			
				|  |  | +      Profile::Tic("Eval", &comm_);
 | 
	
		
			
				|  |  | +      Matrix<Real> U_singular;
 | 
	
		
			
				|  |  | +      Vector<Real> U_direct, U_near_sing;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Profile::Tic("EvalDirect", &comm_);
 | 
	
		
			
				|  |  | +      Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
 | 
	
		
			
				|  |  | +      Profile::Toc();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Profile::Tic("EvalSingular", &comm_);
 | 
	
		
			
				|  |  | +      EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
 | 
	
		
			
				|  |  | +      Profile::Toc();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Profile::Tic("EvalNearSingular", &comm_);
 | 
	
		
			
				|  |  | +      EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
 | 
	
		
			
				|  |  | +      Profile::Toc();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      if (U.Dim() != U_direct.Dim()) {
 | 
	
		
			
				|  |  | +        U.ReInit(U_direct.Dim());
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      for (int i = 0; i < U.Dim(); i++) {
 | 
	
		
			
				|  |  | +        U[i] = (U_direct[i] + U_near_sing[i]) * kernel.template ScaleFactor<Real>();
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      if (U_singular.Dim(1)) {
 | 
	
		
			
				|  |  | +        for (int i = 0; i < elements.NElem(); i++) {
 | 
	
		
			
				|  |  | +          for (int j = 0; j < U_singular.Dim(1); j++) {
 | 
	
		
			
				|  |  | +            for (int k = 0; k < kernel.TrgDim(); k++) {
 | 
	
		
			
				|  |  | +              Real& U_ = U[(i*U_singular.Dim(1)+j)*kernel.TrgDim()+k];
 | 
	
		
			
				|  |  | +              U_ += U_singular[i*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      Profile::Toc();
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <Integer ORDER = 5> static void test(Integer order_singular = 10, Integer order_direct = 5, const Comm& comm = Comm::World()) {
 | 
	
		
			
				|  |  | +      constexpr Integer COORD_DIM = 3;
 | 
	
		
			
				|  |  | +      constexpr Integer ELEM_DIM = COORD_DIM-1;
 | 
	
		
			
				|  |  | +      using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
 | 
	
		
			
				|  |  | +      using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
 | 
	
		
			
				|  |  | +      using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      int np = comm.Size();
 | 
	
		
			
				|  |  | +      int rank = comm.Rank();
 | 
	
		
			
				|  |  | +      auto build_torus = [rank,np](ElemList& elements, long Nt, long Np, Real Rmajor, Real Rminor){
 | 
	
		
			
				|  |  | +        auto nodes = ElemList::CoordBasis::Nodes();
 | 
	
		
			
				|  |  | +        auto torus = [](Real theta, Real phi, Real Rmajor, Real Rminor) {
 | 
	
		
			
				|  |  | +          Real R = Rmajor + Rminor * cos<Real>(phi);
 | 
	
		
			
				|  |  | +          Real X = R * cos<Real>(theta);
 | 
	
		
			
				|  |  | +          Real Y = R * sin<Real>(theta);
 | 
	
		
			
				|  |  | +          Real Z = Rminor * sin<Real>(phi);
 | 
	
		
			
				|  |  | +          return std::make_tuple(X,Y,Z);
 | 
	
		
			
				|  |  | +        };
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        long start = Nt*Np*(rank+0)/np;
 | 
	
		
			
				|  |  | +        long end   = Nt*Np*(rank+1)/np;
 | 
	
		
			
				|  |  | +        elements.ReInit(end - start);
 | 
	
		
			
				|  |  | +        for (long ii = start; ii < end; ii++) {
 | 
	
		
			
				|  |  | +          long i = ii / Np;
 | 
	
		
			
				|  |  | +          long j = ii % Np;
 | 
	
		
			
				|  |  | +          for (int k = 0; k < nodes.Dim(1); k++) {
 | 
	
		
			
				|  |  | +            Real X, Y, Z;
 | 
	
		
			
				|  |  | +            Real theta = 2 * const_pi<Real>() * (i + nodes[0][k]) / Nt;
 | 
	
		
			
				|  |  | +            Real phi   = 2 * const_pi<Real>() * (j + nodes[1][k]) / Np;
 | 
	
		
			
				|  |  | +            std::tie(X,Y,Z) = torus(theta, phi, Rmajor, Rminor);
 | 
	
		
			
				|  |  | +            elements(ii-start,0)[k] = X;
 | 
	
		
			
				|  |  | +            elements(ii-start,1)[k] = Y;
 | 
	
		
			
				|  |  | +            elements(ii-start,2)[k] = Z;
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      };
 | 
	
		
			
				|  |  | +      ElemList elements_src, elements_trg;
 | 
	
		
			
				|  |  | +      build_torus(elements_src, 28, 16, 2, 1.0);
 | 
	
		
			
				|  |  | +      build_torus(elements_trg, 29, 17, 2, 0.99);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Vector<Real> Xt;
 | 
	
		
			
				|  |  | +      Vector<PotentialBasis> U_onsurf, U_offsurf;
 | 
	
		
			
				|  |  | +      Vector<DensityBasis> density_sl, density_dl;
 | 
	
		
			
				|  |  | +      { // Set Xt, elements_src, elements_trg, density_sl, density_dl, U
 | 
	
		
			
				|  |  | +        Real X0[COORD_DIM] = {3,2,1};
 | 
	
		
			
				|  |  | +        std::function<void(Real*,Real*,Real*)> potential = [X0](Real* U, Real* X, Real* Xn) {
 | 
	
		
			
				|  |  | +          Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
 | 
	
		
			
				|  |  | +          Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
 | 
	
		
			
				|  |  | +          U[0] = Rinv;
 | 
	
		
			
				|  |  | +        };
 | 
	
		
			
				|  |  | +        std::function<void(Real*,Real*,Real*)> potential_normal_derivative = [X0](Real* U, Real* X, Real* Xn) {
 | 
	
		
			
				|  |  | +          Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
 | 
	
		
			
				|  |  | +          Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
 | 
	
		
			
				|  |  | +          Real RdotN = dX[0]*Xn[0]+dX[1]*Xn[1]+dX[2]*Xn[2];
 | 
	
		
			
				|  |  | +          U[0] = -RdotN * Rinv*Rinv*Rinv;
 | 
	
		
			
				|  |  | +        };
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        DiscretizeSurfaceFn<COORD_DIM,1>(density_sl, elements_src, potential_normal_derivative);
 | 
	
		
			
				|  |  | +        DiscretizeSurfaceFn<COORD_DIM,1>(density_dl, elements_src, potential);
 | 
	
		
			
				|  |  | +        DiscretizeSurfaceFn<COORD_DIM,1>(U_onsurf  , elements_src, potential);
 | 
	
		
			
				|  |  | +        DiscretizeSurfaceFn<COORD_DIM,1>(U_offsurf , elements_trg, potential);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        for (long i = 0; i < elements_trg.NElem(); i++) { // Set Xt
 | 
	
		
			
				|  |  | +          for (long j = 0; j < PotentialBasis::Size(); j++) {
 | 
	
		
			
				|  |  | +            for (int k = 0; k < COORD_DIM; k++) {
 | 
	
		
			
				|  |  | +              Xt.PushBack(elements_trg(i,k)[j]);
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      GenericKernel<Laplace3D_DxU> Laplace_DxU;
 | 
	
		
			
				|  |  | +      GenericKernel<Laplace3D_FxU> Laplace_FxU;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Profile::Enable(true);
 | 
	
		
			
				|  |  | +      if (1) { // Greeen's identity test (Laplace, on-surface)
 | 
	
		
			
				|  |  | +        Profile::Tic("OnSurface", &comm);
 | 
	
		
			
				|  |  | +        Quadrature<Real> quadrature_DxU, quadrature_FxU;
 | 
	
		
			
				|  |  | +        quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_FxU, order_singular, order_direct, -1.0, comm);
 | 
	
		
			
				|  |  | +        quadrature_DxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_DxU, order_singular, order_direct, -1.0, comm);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<PotentialBasis> U_sl, U_dl;
 | 
	
		
			
				|  |  | +        quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
 | 
	
		
			
				|  |  | +        quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
 | 
	
		
			
				|  |  | +        Profile::Toc();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Real max_err = 0;
 | 
	
		
			
				|  |  | +        Vector<PotentialBasis> err(U_onsurf.Dim());
 | 
	
		
			
				|  |  | +        for (long i = 0; i < U_sl.Dim(); i++) {
 | 
	
		
			
				|  |  | +          for (long j = 0; j < PotentialBasis::Size(); j++) {
 | 
	
		
			
				|  |  | +            err[i][j] = 0.5*U_onsurf[i][j] - (U_sl[i][j] + U_dl[i][j]);
 | 
	
		
			
				|  |  | +            max_err = std::max<Real>(max_err, fabs(err[i][j]));
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        { // Print error
 | 
	
		
			
				|  |  | +          Real glb_err;
 | 
	
		
			
				|  |  | +          comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
 | 
	
		
			
				|  |  | +          if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        { // Write VTK output
 | 
	
		
			
				|  |  | +          VTUData vtu;
 | 
	
		
			
				|  |  | +          vtu.AddElems(elements_src, err, ORDER);
 | 
	
		
			
				|  |  | +          vtu.WriteVTK("err", comm);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        { // Write VTK output
 | 
	
		
			
				|  |  | +          VTUData vtu;
 | 
	
		
			
				|  |  | +          vtu.AddElems(elements_src, U_onsurf, ORDER);
 | 
	
		
			
				|  |  | +          vtu.WriteVTK("U", comm);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      if (1) { // Greeen's identity test (Laplace, off-surface)
 | 
	
		
			
				|  |  | +        Profile::Tic("OffSurface", &comm);
 | 
	
		
			
				|  |  | +        Quadrature<Real> quadrature_DxU, quadrature_FxU;
 | 
	
		
			
				|  |  | +        quadrature_FxU.Setup<DensityBasis>(elements_src, Xt, Laplace_FxU, order_singular, order_direct, -1.0, comm);
 | 
	
		
			
				|  |  | +        quadrature_DxU.Setup<DensityBasis>(elements_src, Xt, Laplace_DxU, order_singular, order_direct, -1.0, comm);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Vector<Real> U_sl, U_dl;
 | 
	
		
			
				|  |  | +        quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
 | 
	
		
			
				|  |  | +        quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
 | 
	
		
			
				|  |  | +        Profile::Toc();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Real max_err = 0;
 | 
	
		
			
				|  |  | +        Vector<PotentialBasis> err(elements_trg.NElem());
 | 
	
		
			
				|  |  | +        for (long i = 0; i < elements_trg.NElem(); i++) {
 | 
	
		
			
				|  |  | +          for (long j = 0; j < PotentialBasis::Size(); j++) {
 | 
	
		
			
				|  |  | +            err[i][j] = U_offsurf[i][j] - (U_sl[i*PotentialBasis::Size()+j] + U_dl[i*PotentialBasis::Size()+j]);
 | 
	
		
			
				|  |  | +            max_err = std::max<Real>(max_err, fabs(err[i][j]));
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        { // Print error
 | 
	
		
			
				|  |  | +          Real glb_err;
 | 
	
		
			
				|  |  | +          comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
 | 
	
		
			
				|  |  | +          if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        { // Write VTK output
 | 
	
		
			
				|  |  | +          VTUData vtu;
 | 
	
		
			
				|  |  | +          vtu.AddElems(elements_trg, err, ORDER);
 | 
	
		
			
				|  |  | +          vtu.WriteVTK("err", comm);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        { // Write VTK output
 | 
	
		
			
				|  |  | +          VTUData vtu;
 | 
	
		
			
				|  |  | +          vtu.AddElems(elements_trg, U_offsurf, ORDER);
 | 
	
		
			
				|  |  | +          vtu.WriteVTK("U", comm);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      Profile::print(&comm);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  private:
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    static void scan(Vector<Long>& dsp, const Vector<Long>& cnt) {
 | 
	
		
			
				|  |  | +      dsp.ReInit(cnt.Dim());
 | 
	
		
			
				|  |  | +      if (cnt.Dim()) dsp[0] = 0;
 | 
	
		
			
				|  |  | +      omp_par::scan(cnt.begin(), dsp.begin(), cnt.Dim());
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <class Basis> static void eval_basis(Vector<Real>& value, const Vector<Basis> X, Integer dof, Integer Nnds, const typename Basis::EvalOpType& EvalOp) {
 | 
	
		
			
				|  |  | +      Long Nelem = X.Dim() / dof;
 | 
	
		
			
				|  |  | +      SCTL_ASSERT(X.Dim() == Nelem * dof);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      value.ReInit(Nelem*Nnds*dof);
 | 
	
		
			
				|  |  | +      Matrix<Real> X_(Nelem*dof, Nnds, value.begin(),false);
 | 
	
		
			
				|  |  | +      Basis::Eval(X_, X, EvalOp);
 | 
	
		
			
				|  |  | +      for (Long j = 0; j < Nelem; j++) { // Rearrange data
 | 
	
		
			
				|  |  | +        Matrix<Real> X(Nnds, dof, X_[j*dof], false);
 | 
	
		
			
				|  |  | +        X = Matrix<Real>(dof, Nnds, X_[j*dof], false).Transpose();
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    template <int CoordDim, int FnDim, class Real, class FnBasis, class ElemList> static void DiscretizeSurfaceFn(Vector<FnBasis>& U, const ElemList& elements, std::function<void(Real*,Real*,Real*)> fn) {
 | 
	
		
			
				|  |  | +      using CoordBasis = typename ElemList::CoordBasis;
 | 
	
		
			
				|  |  | +      const long Nelem = elements.NElem();
 | 
	
		
			
				|  |  | +      U.ReInit(Nelem * FnDim);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Matrix<Real> X, X_grad;
 | 
	
		
			
				|  |  | +      { // Set X, X_grad
 | 
	
		
			
				|  |  | +        Vector<CoordBasis> coord = elements.ElemVector();
 | 
	
		
			
				|  |  | +        Vector<CoordBasis> coord_grad;
 | 
	
		
			
				|  |  | +        CoordBasis::Grad(coord_grad, coord);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        const auto Meval = CoordBasis::SetupEval(FnBasis::Nodes());
 | 
	
		
			
				|  |  | +        CoordBasis::Eval(X, coord, Meval);
 | 
	
		
			
				|  |  | +        CoordBasis::Eval(X_grad, coord_grad, Meval);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      for (long i = 0; i < Nelem; i++) {
 | 
	
		
			
				|  |  | +        for (long j = 0; j < FnBasis::Size(); j++) {
 | 
	
		
			
				|  |  | +          Real X_[CoordDim], Xn[CoordDim], U_[FnDim];
 | 
	
		
			
				|  |  | +          for (long k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +            X_[k] = X[i*CoordDim+k][j];
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          { // Set Xn
 | 
	
		
			
				|  |  | +            Real Xu[CoordDim], Xv[CoordDim];
 | 
	
		
			
				|  |  | +            for (long k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +              Xu[k] = X_grad[(i*CoordDim+k)*2+0][j];
 | 
	
		
			
				|  |  | +              Xv[k] = X_grad[(i*CoordDim+k)*2+1][j];
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            Real dA = 0;
 | 
	
		
			
				|  |  | +            for (long k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +              Xn[k] = Xu[(k+1)%CoordDim] * Xv[(k+2)%CoordDim];
 | 
	
		
			
				|  |  | +              Xn[k] -= Xv[(k+1)%CoordDim] * Xu[(k+2)%CoordDim];
 | 
	
		
			
				|  |  | +              dA += Xn[k] * Xn[k];
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +            dA = sqrt(dA);
 | 
	
		
			
				|  |  | +            for (long k = 0; k < CoordDim; k++) {
 | 
	
		
			
				|  |  | +              Xn[k] /= dA;
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          fn(U_, X_, Xn);
 | 
	
		
			
				|  |  | +          for (long k = 0; k < FnDim; k++) {
 | 
	
		
			
				|  |  | +            U[i*FnDim+k][j] = U_[k];
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    Vector<Real> Xt_;
 | 
	
		
			
				|  |  | +    Matrix<Real> M_singular;
 | 
	
		
			
				|  |  | +    Matrix<Real> M_near_singular;
 | 
	
		
			
				|  |  | +    Vector<Pair<Long,Long>> pair_lst;
 | 
	
		
			
				|  |  | +    Integer order_direct_;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    Real period_length_;
 | 
	
		
			
				|  |  | +    Comm comm_;
 | 
	
		
			
				|  |  | +};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +}  // end namespace
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#endif  //_SCTL_BOUNDARY_QUADRATURE_HPP_
 |