boundary_quadrature.hpp 214 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902
  1. #ifndef _SCTL_BOUNDARY_QUADRATURE_HPP_
  2. #define _SCTL_BOUNDARY_QUADRATURE_HPP_
  3. #include <biest.hpp>
  4. #include <mutex>
  5. #include <atomic>
  6. #include <tuple>
  7. namespace SCTL_NAMESPACE {
  8. template <class Real, Integer DIM, Integer ORDER> class Basis {
  9. public:
  10. using ValueType = Real;
  11. // class EvalOperator {
  12. // public:
  13. // };
  14. using EvalOpType = Matrix<ValueType>;
  15. static constexpr Long Dim() {
  16. return DIM;
  17. }
  18. static constexpr Long Size() {
  19. return pow<DIM,Long>(ORDER);
  20. }
  21. static const Matrix<ValueType>& Nodes() {
  22. static Matrix<ValueType> nodes_(DIM,Size());
  23. auto nodes_1d = [](Integer i) {
  24. return 0.5 - 0.5 * sctl::cos<ValueType>((2*i+1) * const_pi<ValueType>() / (2*ORDER));
  25. };
  26. { // Set nodes_
  27. static std::mutex mutex;
  28. static std::atomic<Integer> first_time(true);
  29. if (first_time.load(std::memory_order_relaxed)) {
  30. std::lock_guard<std::mutex> guard(mutex);
  31. if (first_time.load(std::memory_order_relaxed)) {
  32. Integer N = 1;
  33. for (Integer d = 0; d < DIM; d++) {
  34. for (Integer j = 0; j < ORDER; j++) {
  35. for (Integer i = 0; i < N; i++) {
  36. for (Integer k = 0; k < d; k++) {
  37. nodes_[k][j*N+i] = nodes_[k][i];
  38. }
  39. nodes_[d][j*N+i] = nodes_1d(j);
  40. }
  41. }
  42. N *= ORDER;
  43. }
  44. std::atomic_thread_fence(std::memory_order_seq_cst);
  45. first_time.store(false);
  46. }
  47. }
  48. }
  49. return nodes_;
  50. }
  51. static const Vector<ValueType>& QuadWts() {
  52. static Vector<ValueType> wts(Size());
  53. { // Set nodes_
  54. static std::mutex mutex;
  55. static std::atomic<Integer> first_time(true);
  56. if (first_time.load(std::memory_order_relaxed)) {
  57. std::lock_guard<std::mutex> guard(mutex);
  58. if (first_time.load(std::memory_order_relaxed)) {
  59. StaticArray<ValueType,ORDER> wts_1d;
  60. { // Set wts_1d
  61. Vector<ValueType> x_(ORDER);
  62. ChebBasis<ValueType>::template Nodes<1>(ORDER, x_);
  63. Vector<ValueType> V_cheb(ORDER * ORDER);
  64. { // Set V_cheb
  65. Vector<ValueType> I(ORDER*ORDER);
  66. I = 0;
  67. for (Long i = 0; i < ORDER; i++) I[i*ORDER+i] = 1;
  68. ChebBasis<ValueType>::template Approx<1>(ORDER, I, V_cheb);
  69. }
  70. Matrix<ValueType> M(ORDER, ORDER, V_cheb.begin());
  71. Vector<ValueType> w_sample(ORDER);
  72. for (Integer i = 0; i < ORDER; i++) {
  73. w_sample[i] = (i % 2 ? 0 : -(ORDER/(ValueType)(i*i-1)));
  74. }
  75. for (Integer j = 0; j < ORDER; j++) {
  76. wts_1d[j] = 0;
  77. for (Integer i = 0; i < ORDER; i++) {
  78. wts_1d[j] += M[j][i] * w_sample[i] / ORDER;
  79. }
  80. }
  81. }
  82. wts[0] = 1;
  83. Integer N = 1;
  84. for (Integer d = 0; d < DIM; d++) {
  85. for (Integer j = 1; j < ORDER; j++) {
  86. for (Integer i = 0; i < N; i++) {
  87. wts[j*N+i] = wts[i] * wts_1d[j];
  88. }
  89. }
  90. for (Integer i = 0; i < N; i++) {
  91. wts[i] *= wts_1d[0];
  92. }
  93. N *= ORDER;
  94. }
  95. std::atomic_thread_fence(std::memory_order_seq_cst);
  96. first_time.store(false);
  97. }
  98. }
  99. }
  100. return wts;
  101. }
  102. static void Grad(Vector<Basis>& dX, const Vector<Basis>& X) {
  103. static Matrix<ValueType> GradOp[DIM];
  104. static std::mutex mutex;
  105. static std::atomic<Integer> first_time(true);
  106. if (first_time.load(std::memory_order_relaxed)) {
  107. std::lock_guard<std::mutex> guard(mutex);
  108. if (first_time.load(std::memory_order_relaxed)) {
  109. { // Set GradOp
  110. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  111. SCTL_ASSERT(nodes.Dim(1) == ORDER);
  112. Matrix<ValueType> M(ORDER, ORDER);
  113. for (Integer i = 0; i < ORDER; i++) { // Set M
  114. Real x = nodes[0][i];
  115. for (Integer j = 0; j < ORDER; j++) {
  116. M[j][i] = 0;
  117. for (Integer l = 0; l < ORDER; l++) {
  118. if (l != j) {
  119. Real M_ = 1;
  120. for (Integer k = 0; k < ORDER; k++) {
  121. if (k != j && k != l) M_ *= (x - nodes[0][k]);
  122. if (k != j) M_ /= (nodes[0][j] - nodes[0][k]);
  123. }
  124. M[j][i] += M_;
  125. }
  126. }
  127. }
  128. }
  129. for (Integer d = 0; d < DIM; d++) {
  130. GradOp[d].ReInit(Size(), Size());
  131. GradOp[d] = 0;
  132. Integer stride0 = sctl::pow<Integer>(ORDER, d);
  133. Integer repeat0 = sctl::pow<Integer>(ORDER, d);
  134. Integer stride1 = sctl::pow<Integer>(ORDER, d+1);
  135. Integer repeat1 = sctl::pow<Integer>(ORDER, DIM-d-1);
  136. for (Integer k1 = 0; k1 < repeat1; k1++) {
  137. for (Integer i = 0; i < ORDER; i++) {
  138. for (Integer j = 0; j < ORDER; j++) {
  139. for (Integer k0 = 0; k0 < repeat0; k0++) {
  140. GradOp[d][k1*stride1 + i*stride0 + k0][k1*stride1 + j*stride0 + k0] = M[i][j];
  141. }
  142. }
  143. }
  144. }
  145. }
  146. }
  147. std::atomic_thread_fence(std::memory_order_seq_cst);
  148. first_time.store(false);
  149. }
  150. }
  151. if (dX.Dim() != X.Dim()*DIM) dX.ReInit(X.Dim()*DIM);
  152. for (Long i = 0; i < X.Dim(); i++) {
  153. const Matrix<ValueType> Vi(1, Size(), (Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_, false);
  154. for (Integer k = 0; k < DIM; k++) {
  155. Matrix<ValueType> Vo(1, Size(), dX[i*DIM+k].NodeValues_, false);
  156. Matrix<ValueType>::GEMM(Vo, Vi, GradOp[k]);
  157. }
  158. }
  159. }
  160. static EvalOpType SetupEval(const Matrix<ValueType>& X) {
  161. Long N = X.Dim(1);
  162. SCTL_ASSERT(X.Dim(0) == DIM);
  163. Matrix<ValueType> M(Size(), N);
  164. { // Set M
  165. auto nodes = Basis<ValueType,1,ORDER>::Nodes();
  166. Integer NN = Basis<ValueType,1,ORDER>::Size();
  167. Matrix<ValueType> M_(NN, DIM*N);
  168. for (Long i = 0; i < DIM*N; i++) {
  169. ValueType x = X[0][i];
  170. for (Integer j = 0; j < NN; j++) {
  171. ValueType y = 1;
  172. for (Integer k = 0; k < NN; k++) {
  173. y *= (j==k ? 1 : (nodes[0][k] - x) / (nodes[0][k] - nodes[0][j]));
  174. }
  175. M_[j][i] = y;
  176. }
  177. }
  178. if (DIM == 1) {
  179. SCTL_ASSERT(M.Dim(0) == M_.Dim(0));
  180. SCTL_ASSERT(M.Dim(1) == M_.Dim(1));
  181. M = M_;
  182. } else {
  183. Integer NNN = 1;
  184. M = 1;
  185. for (Integer d = 0; d < DIM; d++) {
  186. for (Integer k = 1; k < NN; k++) {
  187. for (Integer j = 0; j < NNN; j++) {
  188. for (Long i = 0; i < N; i++) {
  189. M[k*NNN+j][i] = M[j][i] * M_[k][d*N+i];
  190. }
  191. }
  192. }
  193. { // k = 0
  194. for (Integer j = 0; j < NNN; j++) {
  195. for (Long i = 0; i < N; i++) {
  196. M[j][i] *= M_[0][d*N+i];
  197. }
  198. }
  199. }
  200. NNN *= NN;
  201. }
  202. }
  203. }
  204. return M;
  205. }
  206. static void Eval(Matrix<ValueType>& Y, const Vector<Basis>& X, const EvalOpType& M) {
  207. Long N0 = X.Dim();
  208. Long N1 = M.Dim(1);
  209. SCTL_ASSERT(M.Dim(0) == Size());
  210. if (Y.Dim(0) != N0 || Y.Dim(1) != N1) Y.ReInit(N0, N1);
  211. for (Long i = 0; i < N0; i++) {
  212. const Matrix<ValueType> X_(1,Size(),(Iterator<ValueType>)(ConstIterator<ValueType>)X[i].NodeValues_,false);
  213. Matrix<ValueType> Y_(1,N1,Y[i],false);
  214. Matrix<ValueType>::GEMM(Y_,X_,M);
  215. }
  216. }
  217. Basis operator+(Basis X) const {
  218. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] + X[i];
  219. return X;
  220. }
  221. Basis operator-(Basis X) const {
  222. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] - X[i];
  223. return X;
  224. }
  225. Basis operator*(Basis X) const {
  226. for (Long i = 0; i < Size(); i++) X[i] = (*this)[i] * X[i];
  227. return X;
  228. }
  229. Basis operator*(Real a) const {
  230. Basis X = (*this);
  231. for (Long i = 0; i < Size(); i++) X[i] *= a;
  232. return X;
  233. }
  234. Basis operator+(Real a) const {
  235. Basis X = (*this);
  236. for (Long i = 0; i < Size(); i++) X[i] += a;
  237. return X;
  238. }
  239. Basis& operator+=(const Basis& X) {
  240. for (Long i = 0; i < Size(); i++) (*this)[i] += X[i];
  241. return *this;
  242. }
  243. Basis& operator-=(const Basis& X) {
  244. for (Long i = 0; i < Size(); i++) (*this)[i] -= X[i];
  245. return *this;
  246. }
  247. Basis& operator*=(const Basis& X) {
  248. for (Long i = 0; i < Size(); i++) (*this)[i] *= X[i];
  249. return *this;
  250. }
  251. Basis& operator*=(Real a) {
  252. for (Long i = 0; i < Size(); i++) (*this)[i] *= a;
  253. return *this;
  254. }
  255. Basis& operator+=(Real a) {
  256. for (Long i = 0; i < Size(); i++) (*this)[i] += a;
  257. return *this;
  258. }
  259. Basis& operator=(Real a) {
  260. for (Long i = 0; i < Size(); i++) (*this)[i] = a;
  261. return *this;
  262. }
  263. const ValueType& operator[](Long i) const {
  264. SCTL_ASSERT(i < Size());
  265. return NodeValues_[i];
  266. }
  267. ValueType& operator[](Long i) {
  268. SCTL_ASSERT(i < Size());
  269. return NodeValues_[i];
  270. }
  271. private:
  272. StaticArray<ValueType,Size()> NodeValues_;
  273. };
  274. template <Integer COORD_DIM, class Basis> class ElemList {
  275. public:
  276. using CoordBasis = Basis;
  277. using CoordType = typename CoordBasis::ValueType;
  278. static constexpr Integer CoordDim() {
  279. return COORD_DIM;
  280. }
  281. static constexpr Integer ElemDim() {
  282. return CoordBasis::Dim();
  283. }
  284. ElemList(Long Nelem = 0) {
  285. ReInit(Nelem);
  286. }
  287. void ReInit(Long Nelem = 0) {
  288. Nelem_ = Nelem;
  289. X_.ReInit(Nelem_ * COORD_DIM);
  290. }
  291. void ReInit(const Vector<CoordBasis>& X) {
  292. Nelem_ = X.Dim() / COORD_DIM;
  293. SCTL_ASSERT(X.Dim() == Nelem_ * COORD_DIM);
  294. X_ = X;
  295. }
  296. Long NElem() const {
  297. return Nelem_;
  298. }
  299. CoordBasis& operator()(Long elem, Integer dim) {
  300. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  301. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  302. return X_[elem*COORD_DIM+dim];
  303. }
  304. const CoordBasis& operator()(Long elem, Integer dim) const {
  305. SCTL_ASSERT(elem >= 0 && elem < Nelem_);
  306. SCTL_ASSERT(dim >= 0 && dim < COORD_DIM);
  307. return X_[elem*COORD_DIM+dim];
  308. }
  309. const Vector<CoordBasis>& ElemVector() const {
  310. return X_;
  311. }
  312. private:
  313. static_assert(CoordBasis::Dim() <= CoordDim(), "Basis dimension can not be greater than COORD_DIM.");
  314. Vector<CoordBasis> X_;
  315. Long Nelem_;
  316. mutable Vector<CoordBasis> dX_;
  317. };
  318. template <class Real> class Quadrature {
  319. static Real machine_epsilon() {
  320. Real eps=1;
  321. while(eps*(Real)0.5+(Real)1.0>1.0) eps*=0.5;
  322. return eps;
  323. }
  324. template <Integer DIM> static void DuffyQuad(Matrix<Real>& nodes, Vector<Real>& weights, const Vector<Real>& coord, Integer order, Real adapt = -1.0) {
  325. SCTL_ASSERT(coord.Dim() == DIM);
  326. static Real eps = machine_epsilon()*16;
  327. Matrix<Real> qx;
  328. Vector<Real> qw;
  329. { // Set qx, qw
  330. Vector<Real> qx0, qw0;
  331. ChebBasis<Real>::quad_rule(order, qx0, qw0);
  332. Integer N = sctl::pow<DIM,Integer>(order);
  333. qx.ReInit(DIM,N);
  334. qw.ReInit(N);
  335. qw[0] = 1;
  336. Integer N_ = 1;
  337. for (Integer d = 0; d < DIM; d++) {
  338. for (Integer j = 0; j < order; j++) {
  339. for (Integer i = 0; i < N_; i++) {
  340. for (Integer k = 0; k < d; k++) {
  341. qx[k][j*N_+i] = qx[k][i];
  342. }
  343. qx[d][j*N_+i] = qx0[j];
  344. qw[j*N_+i] = qw[i];
  345. }
  346. }
  347. for (Integer j = 0; j < order; j++) {
  348. for (Integer i = 0; i < N_; i++) {
  349. qw[j*N_+i] *= qw0[j];
  350. }
  351. }
  352. N_ *= order;
  353. }
  354. }
  355. Vector<Real> X;
  356. { // Set X
  357. StaticArray<Real,2*DIM+2> X_;
  358. X_[0] = 0;
  359. X_[1] = adapt;
  360. for (Integer i = 0; i < DIM; i++) {
  361. X_[2*i+2] = sctl::fabs<Real>(coord[i]);
  362. X_[2*i+3] = sctl::fabs<Real>(coord[i]-1);
  363. }
  364. std::sort((Iterator<Real>)X_, (Iterator<Real>)X_+2*DIM+2);
  365. X.PushBack(std::max<Real>(0, X_[2*DIM]-1));
  366. for (Integer i = 0; i < 2*DIM+2; i++) {
  367. if (X[X.Dim()-1] < X_[i]) {
  368. if (X.Dim())
  369. X.PushBack(X_[i]);
  370. }
  371. }
  372. /////////////////////////////////////////////////////////////////////////////////////////////////
  373. Vector<Real> r(1);
  374. r[0] = X[0];
  375. for (Integer i = 1; i < X.Dim(); i++) {
  376. while (r[r.Dim() - 1] > 0.0 && (order*0.5) * r[r.Dim() - 1] < X[i]) r.PushBack((order*0.5) * r[r.Dim() - 1]); // TODO
  377. r.PushBack(X[i]);
  378. }
  379. X = r;
  380. /////////////////////////////////////////////////////////////////////////////////////////////////
  381. }
  382. Vector<Real> nds, wts;
  383. for (Integer k = 0; k < X.Dim()-1; k++) {
  384. for (Integer dd = 0; dd < 2*DIM; dd++) {
  385. Integer d0 = (dd>>1);
  386. StaticArray<Real,2*DIM> range0, range1;
  387. { // Set range0, range1
  388. Integer d1 = (dd%2?1:-1);
  389. for (Integer d = 0; d < DIM; d++) {
  390. range0[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k] ));
  391. range0[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k] ));
  392. range1[d*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d] - X[k+1]));
  393. range1[d*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d] + X[k+1]));
  394. }
  395. range0[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  396. range0[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+0]));
  397. range1[d0*2+0] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  398. range1[d0*2+1] = std::max<Real>(0,std::min<Real>(1,coord[d0] + d1*X[k+1]));
  399. }
  400. { // if volume(range0, range1) == 0 then continue
  401. Real v0 = 1, v1 = 1;
  402. for (Integer d = 0; d < DIM; d++) {
  403. if (d == d0) {
  404. v0 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  405. v1 *= sctl::fabs<Real>(range0[d*2+0]-range1[d*2+0]);
  406. } else {
  407. v0 *= range0[d*2+1]-range0[d*2+0];
  408. v1 *= range1[d*2+1]-range1[d*2+0];
  409. }
  410. }
  411. if (v0 < eps && v1 < eps) continue;
  412. }
  413. for (Integer i = 0; i < qx.Dim(1); i++) { // Set nds, wts
  414. Real w = qw[i];
  415. Real z = qx[d0][i];
  416. for (Integer d = 0; d < DIM; d++) {
  417. Real y = qx[d][i];
  418. nds.PushBack((range0[d*2+0]*(1-y) + range0[d*2+1]*y)*(1-z) + (range1[d*2+0]*(1-y) + range1[d*2+1]*y)*z);
  419. if (d == d0) {
  420. w *= abs(range1[d*2+0] - range0[d*2+0]);
  421. } else {
  422. w *= (range0[d*2+1] - range0[d*2+0])*(1-z) + (range1[d*2+1] - range1[d*2+0])*z;
  423. }
  424. }
  425. wts.PushBack(w);
  426. }
  427. }
  428. }
  429. nodes = Matrix<Real>(nds.Dim()/DIM,DIM,nds.begin()).Transpose();
  430. weights = wts;
  431. }
  432. template <Integer DIM> static void TensorProductGaussQuad(Matrix<Real>& nodes, Vector<Real>& weights, Integer order) {
  433. Vector<Real> coord(DIM);
  434. coord = 0;
  435. coord[0] = -10;
  436. DuffyQuad<DIM>(nodes, weights, coord, order);
  437. }
  438. template <class DensityBasis, class ElemList, class Kernel> static void SetupSingular(Matrix<Real>& M_singular, const Matrix<Real>& trg_nds, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular = 10, Integer order_direct = 10, Real Rqbx = 0) {
  439. using CoordBasis = typename ElemList::CoordBasis;
  440. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  441. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  442. constexpr Integer CoordDim = ElemList::CoordDim();
  443. constexpr Integer ElemDim = ElemList::ElemDim();
  444. constexpr Integer KDIM0 = Kernel::SrcDim();
  445. constexpr Integer KDIM1 = Kernel::TrgDim();
  446. const Long Nelem = elem_lst.NElem();
  447. const Integer Ntrg = trg_nds.Dim(1);
  448. SCTL_ASSERT(trg_nds.Dim(0) == ElemDim);
  449. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  450. Vector<CoordBasis> dX;
  451. CoordBasis::Grad(dX, X);
  452. Vector<Real> Xt, Xnt;
  453. { // Set Xt, Xnt
  454. auto Meval = CoordBasis::SetupEval(trg_nds);
  455. eval_basis(Xt, X, CoordDim, trg_nds.Dim(1), Meval);
  456. Xnt = Xt;
  457. Vector<Real> dX_;
  458. eval_basis(dX_, dX, 2*CoordDim, trg_nds.Dim(1), Meval);
  459. for (Long i = 0; i < Ntrg; i++) {
  460. for (Long j = 0; j < Nelem; j++) {
  461. auto Xn = Xnt.begin() + (j*Ntrg+i)*CoordDim;
  462. auto dX0 = dX_.begin() + (j*Ntrg+i)*2*CoordDim;
  463. StaticArray<Real,CoordDim> normal;
  464. normal[0] = dX0[2]*dX0[5] - dX0[4]*dX0[3];
  465. normal[1] = dX0[4]*dX0[1] - dX0[0]*dX0[5];
  466. normal[2] = dX0[0]*dX0[3] - dX0[2]*dX0[1];
  467. Real Xa = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  468. Real invXa = 1/Xa;
  469. normal[0] *= invXa;
  470. normal[1] *= invXa;
  471. normal[2] *= invXa;
  472. Real sqrt_Xa = sqrt<Real>(Xa);
  473. Xn[0] = normal[0]*sqrt_Xa*Rqbx;
  474. Xn[1] = normal[1]*sqrt_Xa*Rqbx;
  475. Xn[2] = normal[2]*sqrt_Xa*Rqbx;
  476. }
  477. }
  478. }
  479. SCTL_ASSERT(Xt.Dim() == Nelem * Ntrg * CoordDim);
  480. auto& M = M_singular;
  481. M.ReInit(Nelem * KDIM0 * DensityBasis::Size(), KDIM1 * Ntrg);
  482. #pragma omp parallel for schedule(static)
  483. for (Long i = 0; i < Ntrg; i++) { // Set M (singular)
  484. Matrix<Real> quad_nds;
  485. Vector<Real> quad_wts;
  486. { // Set quad_nds, quad_wts
  487. StaticArray<Real,ElemDim> trg_node_;
  488. for (Integer k = 0; k < ElemDim; k++) {
  489. trg_node_[k] = trg_nds[k][i];
  490. }
  491. Vector<Real> trg_node(ElemDim, trg_node_, false);
  492. DuffyQuad<ElemDim>(quad_nds, quad_wts, trg_node, order_singular, fabs(Rqbx));
  493. }
  494. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  495. Integer Nnds = quad_wts.Dim();
  496. Vector<Real> X_, dX_, Xa_, Xn_;
  497. { // Set X_, dX_
  498. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  499. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  500. }
  501. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  502. Long N = Nelem*Nnds;
  503. Xa_.ReInit(N);
  504. Xn_.ReInit(N*CoordDim);
  505. for (Long j = 0; j < N; j++) {
  506. StaticArray<Real,CoordDim> normal;
  507. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  508. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  509. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  510. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  511. Real invXa = 1/Xa_[j];
  512. Xn_[j*3+0] = normal[0] * invXa;
  513. Xn_[j*3+1] = normal[1] * invXa;
  514. Xn_[j*3+2] = normal[2] * invXa;
  515. }
  516. }
  517. DensityEvalOpType DensityEvalOp;
  518. if (std::is_same<CoordBasis,DensityBasis>::value) {
  519. DensityEvalOp = CoordEvalOp;
  520. } else {
  521. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  522. }
  523. for (Long j = 0; j < Nelem; j++) {
  524. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  525. if (Rqbx == 0) { // Set kernel matrix M__
  526. const Vector<Real> X0_(CoordDim, Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  527. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  528. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  529. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  530. } else {
  531. Vector<Real> X0_(CoordDim);
  532. constexpr Integer qbx_order = 6;
  533. StaticArray<Matrix<Real>,qbx_order> M___;
  534. for (Integer k = 0; k < qbx_order; k++) { // Set kernel matrix M___
  535. for (Integer kk = 0; kk < CoordDim; kk++) X0_[kk] = Xt[(j * Ntrg + i) * CoordDim + kk] + (k+1) * Xnt[(j * Ntrg + i) * CoordDim + kk];
  536. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  537. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  538. kernel.template KernelMatrix<Real>(M___[k], X0_, X__, Xn__);
  539. }
  540. for (Long k = 0; k < Nnds * KDIM0 * KDIM1; k++) {
  541. M__[0][k] = 0;
  542. M__[0][k] += 6*M___[0][0][k];
  543. M__[0][k] += -15*M___[1][0][k];
  544. M__[0][k] += 20*M___[2][0][k];
  545. M__[0][k] += -15*M___[3][0][k];
  546. M__[0][k] += 6*M___[4][0][k];
  547. M__[0][k] += -1*M___[5][0][k];
  548. }
  549. }
  550. for (Long k0 = 0; k0 < KDIM0; k0++) {
  551. for (Long k1 = 0; k1 < KDIM1; k1++) {
  552. for (Long l = 0; l < DensityBasis::Size(); l++) {
  553. Real M_lk = 0;
  554. for (Long n = 0; n < Nnds; n++) {
  555. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  556. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  557. }
  558. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] = M_lk;
  559. }
  560. }
  561. }
  562. }
  563. }
  564. { // Set M (subtract direct)
  565. Matrix<Real> quad_nds;
  566. Vector<Real> quad_wts;
  567. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  568. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  569. Integer Nnds = quad_wts.Dim();
  570. Vector<Real> X_, dX_, Xa_, Xn_;
  571. { // Set X_, dX_
  572. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  573. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  574. }
  575. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  576. Long N = Nelem*Nnds;
  577. Xa_.ReInit(N);
  578. Xn_.ReInit(N*CoordDim);
  579. for (Long j = 0; j < N; j++) {
  580. StaticArray<Real,CoordDim> normal;
  581. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  582. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  583. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  584. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  585. Real invXa = 1/Xa_[j];
  586. Xn_[j*3+0] = normal[0] * invXa;
  587. Xn_[j*3+1] = normal[1] * invXa;
  588. Xn_[j*3+2] = normal[2] * invXa;
  589. }
  590. }
  591. DensityEvalOpType DensityEvalOp;
  592. if (std::is_same<CoordBasis,DensityBasis>::value) {
  593. DensityEvalOp = CoordEvalOp;
  594. } else {
  595. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  596. }
  597. #pragma omp parallel for schedule(static)
  598. for (Long i = 0; i < Ntrg; i++) { // Subtract direct contribution
  599. for (Long j = 0; j < Nelem; j++) {
  600. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  601. { // Set kernel matrix M__
  602. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + (j * Ntrg + i) * CoordDim, false);
  603. const Vector<Real> X__(Nnds * CoordDim, X_.begin() + j * Nnds * CoordDim, false);
  604. const Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + j * Nnds * CoordDim, false);
  605. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  606. }
  607. for (Long k0 = 0; k0 < KDIM0; k0++) {
  608. for (Long k1 = 0; k1 < KDIM1; k1++) {
  609. for (Long l = 0; l < DensityBasis::Size(); l++) {
  610. Real M_lk = 0;
  611. for (Long n = 0; n < Nnds; n++) {
  612. Real quad_wt = Xa_[j * Nnds + n] * quad_wts[n];
  613. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  614. }
  615. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1 * Ntrg + i] -= M_lk;
  616. }
  617. }
  618. }
  619. }
  620. }
  621. }
  622. }
  623. template <class DensityBasis> static void EvalSingular(Matrix<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, Integer KDIM0_, Integer KDIM1_) {
  624. if (M.Dim(0) == 0 || M.Dim(1) == 0) {
  625. U.ReInit(0,0);
  626. return;
  627. }
  628. const Long Ntrg = M.Dim(1) / KDIM1_;
  629. SCTL_ASSERT(M.Dim(1) == KDIM1_ * Ntrg);
  630. const Long Nelem = M.Dim(0) / (KDIM0_ * DensityBasis::Size());
  631. SCTL_ASSERT(M.Dim(0) == Nelem * KDIM0_ * DensityBasis::Size());
  632. const Integer dof = density.Dim() / (Nelem * KDIM0_);
  633. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0_);
  634. if (U.Dim(0) != Nelem * dof * KDIM1_ || U.Dim(1) != Ntrg) {
  635. U.ReInit(Nelem * dof * KDIM1_, Ntrg);
  636. U = 0;
  637. }
  638. for (Long j = 0; j < Nelem; j++) {
  639. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_ * Ntrg, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  640. Matrix<Real> U_(dof, KDIM1_ * Ntrg, U[j*dof*KDIM1_], false);
  641. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  642. for (Long i = 0; i < dof; i++) {
  643. for (Long k = 0; k < KDIM0_; k++) {
  644. for (Long l = 0; l < DensityBasis::Size(); l++) {
  645. F_[i][k * DensityBasis::Size() + l] = density[(j * dof + i) * KDIM0_ + k][l];
  646. }
  647. }
  648. }
  649. Matrix<Real>::GEMM(U_, F_, M_);
  650. }
  651. }
  652. template <Integer DIM> struct PointData {
  653. bool operator<(const PointData& p) const {
  654. return mid < p.mid;
  655. }
  656. Long rank;
  657. Long surf_rank;
  658. Morton<DIM> mid;
  659. StaticArray<Real,DIM> coord;
  660. Real radius2;
  661. };
  662. template <class T1, class T2> struct Pair {
  663. Pair() {}
  664. Pair(T1 x, T2 y) : first(x), second(y) {}
  665. bool operator<(const Pair& p) const {
  666. return (first < p.first) || (((first == p.first) && (second < p.second)));
  667. }
  668. T1 first;
  669. T2 second;
  670. };
  671. template <class ElemList> static void BuildNbrList(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const Vector<Long>& trg_surf, const ElemList& elem_lst, Real distance_factor, Real period_length, const Comm& comm) {
  672. using CoordBasis = typename ElemList::CoordBasis;
  673. constexpr Integer CoordDim = ElemList::CoordDim();
  674. constexpr Integer ElemDim = ElemList::ElemDim();
  675. using PtData = PointData<CoordDim>;
  676. const Integer rank = comm.Rank();
  677. Real R0 = 0;
  678. StaticArray<Real,CoordDim> X0;
  679. { // Find bounding box
  680. Long N = Xt.Dim() / CoordDim;
  681. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  682. SCTL_ASSERT(N);
  683. StaticArray<Real,CoordDim*2> Xloc;
  684. StaticArray<Real,CoordDim*2> Xglb;
  685. for (Integer k = 0; k < CoordDim; k++) {
  686. Xloc[0*CoordDim+k] = Xt[k];
  687. Xloc[1*CoordDim+k] = Xt[k];
  688. }
  689. for (Long i = 0; i < N; i++) {
  690. for (Integer k = 0; k < CoordDim; k++) {
  691. Xloc[0*CoordDim+k] = std::min<Real>(Xloc[0*CoordDim+k], Xt[i*CoordDim+k]);
  692. Xloc[1*CoordDim+k] = std::max<Real>(Xloc[1*CoordDim+k], Xt[i*CoordDim+k]);
  693. }
  694. }
  695. comm.Allreduce((ConstIterator<Real>)Xloc+0*CoordDim, (Iterator<Real>)Xglb+0*CoordDim, CoordDim, Comm::CommOp::MIN);
  696. comm.Allreduce((ConstIterator<Real>)Xloc+1*CoordDim, (Iterator<Real>)Xglb+1*CoordDim, CoordDim, Comm::CommOp::MAX);
  697. for (Integer k = 0; k < CoordDim; k++) {
  698. R0 = std::max(R0, Xglb[1*CoordDim+k]-Xglb[0*CoordDim+k]);
  699. }
  700. R0 = R0 * 2.0;
  701. for (Integer k = 0; k < CoordDim; k++) {
  702. X0[k] = Xglb[k] - R0*0.25;
  703. }
  704. }
  705. if (period_length > 0) {
  706. R0 = period_length;
  707. }
  708. Vector<PtData> PtSrc, PtTrg;
  709. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  710. { // Set PtSrc
  711. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  712. Vector<CoordBasis> dX_elem_lst;
  713. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  714. Matrix<Real> nds;
  715. Vector<Real> wts;
  716. TensorProductGaussQuad<ElemDim>(nds, wts, order_upsample);
  717. const Long Nnds = nds.Dim(1);
  718. Vector<Real> X, dX;
  719. const auto CoordEvalOp = CoordBasis::SetupEval(nds);
  720. eval_basis(X, X_elem_lst, CoordDim, Nnds, CoordEvalOp);
  721. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, Nnds, CoordEvalOp);
  722. const Long N = X.Dim() / CoordDim;
  723. const Long Nelem = elem_lst.NElem();
  724. SCTL_ASSERT(X.Dim() == N * CoordDim);
  725. SCTL_ASSERT(N == Nelem * Nnds);
  726. Long rank_offset, surf_rank_offset;
  727. { // Set rank_offset, surf_rank_offset
  728. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  729. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  730. surf_rank_offset -= Nelem;
  731. rank_offset -= N;
  732. }
  733. PtSrc.ReInit(N);
  734. const Real R0inv = 1.0 / R0;
  735. for (Long i = 0; i < N; i++) { // Set coord
  736. for (Integer k = 0; k < CoordDim; k++) {
  737. PtSrc[i].coord[k] = (X[i*CoordDim+k] - X0[k]) * R0inv;
  738. }
  739. }
  740. if (period_length > 0) { // Wrap-around coord
  741. for (Long i = 0; i < N; i++) {
  742. auto& x = PtSrc[i].coord;
  743. for (Integer k = 0; k < CoordDim; k++) {
  744. x[k] -= (Long)(x[k]);
  745. }
  746. }
  747. }
  748. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  749. Integer depth = 0;
  750. { // Set radius2, depth
  751. Real radius2 = 0;
  752. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  753. Real R2 = 0;
  754. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  755. Real dX_ = dX[(i*CoordDim+k1)*ElemDim+k0];
  756. R2 += dX_*dX_;
  757. }
  758. radius2 = std::max(radius2, R2);
  759. }
  760. radius2 *= R0inv*R0inv * distance_factor*distance_factor;
  761. PtSrc[i].radius2 = radius2;
  762. Long Rinv = (Long)(1.0/radius2);
  763. while (Rinv > 0) {
  764. Rinv = (Rinv>>2);
  765. depth++;
  766. }
  767. }
  768. PtSrc[i].mid = Morton<CoordDim>((Iterator<Real>)PtSrc[i].coord, std::min(Morton<CoordDim>::MaxDepth(),depth));
  769. PtSrc[i].rank = rank_offset + i;
  770. }
  771. for (Long i = 0 ; i < Nelem; i++) { // Set surf_rank
  772. for (Long j = 0; j < Nnds; j++) {
  773. PtSrc[i*Nnds+j].surf_rank = surf_rank_offset + i;
  774. }
  775. }
  776. Vector<PtData> PtSrcSorted;
  777. comm.HyperQuickSort(PtSrc, PtSrcSorted);
  778. PtSrc.Swap(PtSrcSorted);
  779. }
  780. { // Set PtTrg
  781. const Long N = Xt.Dim() / CoordDim;
  782. SCTL_ASSERT(Xt.Dim() == N * CoordDim);
  783. Long rank_offset;
  784. { // Set rank_offset
  785. comm.Scan(Ptr2ConstItr<Long>(&N,1), Ptr2Itr<Long>(&rank_offset,1), 1, Comm::CommOp::SUM);
  786. rank_offset -= N;
  787. }
  788. PtTrg.ReInit(N);
  789. const Real R0inv = 1.0 / R0;
  790. for (Long i = 0; i < N; i++) { // Set coord
  791. for (Integer k = 0; k < CoordDim; k++) {
  792. PtTrg[i].coord[k] = (Xt[i*CoordDim+k] - X0[k]) * R0inv;
  793. }
  794. }
  795. if (period_length > 0) { // Wrap-around coord
  796. for (Long i = 0; i < N; i++) {
  797. auto& x = PtTrg[i].coord;
  798. for (Integer k = 0; k < CoordDim; k++) {
  799. x[k] -= (Long)(x[k]);
  800. }
  801. }
  802. }
  803. for (Long i = 0; i < N; i++) { // Set radius2, mid, rank
  804. PtTrg[i].radius2 = 0;
  805. PtTrg[i].mid = Morton<CoordDim>((Iterator<Real>)PtTrg[i].coord);
  806. PtTrg[i].rank = rank_offset + i;
  807. }
  808. if (trg_surf.Dim()) { // Set surf_rank
  809. SCTL_ASSERT(trg_surf.Dim() == N);
  810. for (Long i = 0; i < N; i++) {
  811. PtTrg[i].surf_rank = trg_surf[i];
  812. }
  813. } else {
  814. for (Long i = 0; i < N; i++) {
  815. PtTrg[i].surf_rank = -1;
  816. }
  817. }
  818. Vector<PtData> PtTrgSorted;
  819. comm.HyperQuickSort(PtTrg, PtTrgSorted);
  820. PtTrg.Swap(PtTrgSorted);
  821. }
  822. Tree<CoordDim> tree(comm);
  823. { // Init tree
  824. Vector<Real> Xall(PtSrc.Dim()+PtTrg.Dim());
  825. { // Set Xall
  826. Xall.ReInit((PtSrc.Dim()+PtTrg.Dim())*CoordDim);
  827. Long Nsrc = PtSrc.Dim();
  828. Long Ntrg = PtTrg.Dim();
  829. for (Long i = 0; i < Nsrc; i++) {
  830. for (Integer k = 0; k < CoordDim; k++) {
  831. Xall[i*CoordDim+k] = PtSrc[i].coord[k];
  832. }
  833. }
  834. for (Long i = 0; i < Ntrg; i++) {
  835. for (Integer k = 0; k < CoordDim; k++) {
  836. Xall[(Nsrc+i)*CoordDim+k] = PtTrg[i].coord[k];
  837. }
  838. }
  839. }
  840. tree.UpdateRefinement(Xall, 1000, true, period_length>0);
  841. }
  842. { // Repartition PtSrc, PtTrg
  843. PtData splitter;
  844. splitter.mid = tree.GetPartitionMID()[rank];
  845. comm.PartitionS(PtSrc, splitter);
  846. comm.PartitionS(PtTrg, splitter);
  847. }
  848. { // Add tree data PtSrc
  849. const auto& node_mid = tree.GetNodeMID();
  850. const Long N = node_mid.Dim();
  851. SCTL_ASSERT(N);
  852. Vector<Long> dsp(N), cnt(N);
  853. for (Long i = 0; i < N; i++) {
  854. PtData m0;
  855. m0.mid = node_mid[i];
  856. dsp[i] = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  857. }
  858. for (Long i = 0; i < N-1; i++) {
  859. cnt[i] = dsp[i+1] - dsp[i];
  860. }
  861. cnt[N-1] = PtSrc.Dim() - dsp[N-1];
  862. tree.AddData("PtSrc", PtSrc, cnt);
  863. }
  864. tree.template Broadcast<PtData>("PtSrc");
  865. { // Build pair_lst
  866. Vector<Long> cnt;
  867. Vector<PtData> PtSrc;
  868. tree.GetData(PtSrc, cnt, "PtSrc");
  869. const auto& node_mid = tree.GetNodeMID();
  870. const auto& node_attr = tree.GetNodeAttr();
  871. Vector<Morton<CoordDim>> nbr_mid_tmp;
  872. for (Long i = 0; i < node_mid.Dim(); i++) {
  873. if (node_attr[i].Leaf && !node_attr[i].Ghost) {
  874. Vector<Morton<CoordDim>> child_mid;
  875. node_mid[i].Children(child_mid);
  876. for (const auto& trg_mid : child_mid) {
  877. Integer d0 = trg_mid.Depth();
  878. Vector<PtData> Src, Trg;
  879. { // Set Trg
  880. PtData m0, m1;
  881. m0.mid = trg_mid;
  882. m1.mid = trg_mid.Next();
  883. Long a = std::lower_bound(PtTrg.begin(), PtTrg.end(), m0) - PtTrg.begin();
  884. Long b = std::lower_bound(PtTrg.begin(), PtTrg.end(), m1) - PtTrg.begin();
  885. Trg.ReInit(b-a, PtTrg.begin()+a, false);
  886. if (!Trg.Dim()) continue;
  887. }
  888. Vector<std::set<Long>> near_elem(Trg.Dim());
  889. for (Integer d = 0; d <= d0; d++) {
  890. trg_mid.NbrList(nbr_mid_tmp, d, period_length>0);
  891. for (const auto& src_mid : nbr_mid_tmp) { // Set Src
  892. PtData m0, m1;
  893. m0.mid = src_mid;
  894. m1.mid = (d==d0 ? src_mid.Next() : src_mid.Ancestor(d+1));
  895. Long a = std::lower_bound(PtSrc.begin(), PtSrc.end(), m0) - PtSrc.begin();
  896. Long b = std::lower_bound(PtSrc.begin(), PtSrc.end(), m1) - PtSrc.begin();
  897. Src.ReInit(b-a, PtSrc.begin()+a, false);
  898. if (!Src.Dim()) continue;
  899. for (Long t = 0; t < Trg.Dim(); t++) { // set near_elem[t] <-- {s : dist(s,t) < radius(s)}
  900. for (Long s = 0; s < Src.Dim(); s++) {
  901. if (Trg[t].surf_rank != Src[s].surf_rank) {
  902. Real R2 = 0;
  903. for (Integer k = 0; k < CoordDim; k++) {
  904. Real dx = (Src[s].coord[k] - Trg[t].coord[k]);
  905. R2 += dx * dx;
  906. }
  907. if (R2 < Src[s].radius2) {
  908. near_elem[t].insert(Src[s].surf_rank);
  909. }
  910. }
  911. }
  912. }
  913. }
  914. }
  915. for (Long t = 0; t < Trg.Dim(); t++) { // Set pair_lst
  916. for (Long elem_idx : near_elem[t]) {
  917. pair_lst.PushBack(Pair<Long,Long>(elem_idx,Trg[t].rank));
  918. }
  919. }
  920. }
  921. }
  922. }
  923. }
  924. { // Sort and repartition pair_lst
  925. Vector<Pair<Long,Long>> pair_lst_sorted;
  926. comm.HyperQuickSort(pair_lst, pair_lst_sorted);
  927. Long surf_rank_offset;
  928. const Long Nelem = elem_lst.NElem();
  929. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&surf_rank_offset,1), 1, Comm::CommOp::SUM);
  930. surf_rank_offset -= Nelem;
  931. comm.PartitionS(pair_lst_sorted, Pair<Long,Long>(surf_rank_offset,0));
  932. pair_lst.Swap(pair_lst_sorted);
  933. }
  934. }
  935. template <class ElemList> static void BuildNbrListDeprecated(Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt, const ElemList& elem_lst, const Matrix<Real>& surf_nds, Real distance_factor) {
  936. using CoordBasis = typename ElemList::CoordBasis;
  937. constexpr Integer CoordDim = ElemList::CoordDim();
  938. constexpr Integer ElemDim = ElemList::ElemDim();
  939. const Long Nelem = elem_lst.NElem();
  940. const Long Ntrg = Xt.Dim() / CoordDim;
  941. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  942. Long Nnds, Nsurf_nds;
  943. Vector<Real> X_surf, X, dX;
  944. Integer order_upsample = (Integer)(const_pi<Real>() / distance_factor + 0.5);
  945. { // Set X, dX
  946. const Vector<CoordBasis>& X_elem_lst = elem_lst.ElemVector();
  947. Vector<CoordBasis> dX_elem_lst;
  948. CoordBasis::Grad(dX_elem_lst, X_elem_lst);
  949. Matrix<Real> nds_upsample;
  950. Vector<Real> wts_upsample;
  951. TensorProductGaussQuad<ElemDim>(nds_upsample, wts_upsample, order_upsample);
  952. Nnds = nds_upsample.Dim(1);
  953. const auto CoordEvalOp = CoordBasis::SetupEval(nds_upsample);
  954. eval_basis(X, X_elem_lst, CoordDim, nds_upsample.Dim(1), CoordEvalOp);
  955. eval_basis(dX, dX_elem_lst, CoordDim * ElemDim, nds_upsample.Dim(1), CoordEvalOp);
  956. Nsurf_nds = surf_nds.Dim(1);
  957. const auto CoordEvalOp_surf = CoordBasis::SetupEval(surf_nds);
  958. eval_basis(X_surf, X_elem_lst, CoordDim, Nsurf_nds, CoordEvalOp_surf);
  959. }
  960. Real d2 = distance_factor * distance_factor;
  961. for (Long i = 0; i < Nelem; i++) {
  962. std::set<Long> near_pts;
  963. std::set<Long> self_pts;
  964. for (Long j = 0; j < Nnds; j++) {
  965. Real R2_max = 0;
  966. StaticArray<Real, CoordDim> X0;
  967. for (Integer k = 0; k < CoordDim; k++) {
  968. X0[k] = X[(i*Nnds+j)*CoordDim+k];
  969. }
  970. for (Integer k0 = 0; k0 < ElemDim; k0++) {
  971. Real R2 = 0;
  972. for (Integer k1 = 0; k1 < CoordDim; k1++) {
  973. Real dX_ = dX[((i*Nnds+j)*CoordDim+k1)*ElemDim+k0];
  974. R2 += dX_*dX_;
  975. }
  976. R2_max = std::max(R2_max, R2*d2);
  977. }
  978. for (Long k = 0; k < Ntrg; k++) {
  979. Real R2 = 0;
  980. for (Integer l = 0; l < CoordDim; l++) {
  981. Real dX = Xt[k*CoordDim+l]- X0[l];
  982. R2 += dX * dX;
  983. }
  984. if (R2 < R2_max) near_pts.insert(k);
  985. }
  986. }
  987. for (Long j = 0; j < Nsurf_nds; j++) {
  988. StaticArray<Real, CoordDim> X0;
  989. for (Integer k = 0; k < CoordDim; k++) {
  990. X0[k] = X_surf[(i*Nsurf_nds+j)*CoordDim+k];
  991. }
  992. for (Long k = 0; k < Ntrg; k++) {
  993. Real R2 = 0;
  994. for (Integer l = 0; l < CoordDim; l++) {
  995. Real dX = Xt[k*CoordDim+l]- X0[l];
  996. R2 += dX * dX;
  997. }
  998. if (R2 == 0) self_pts.insert(k);
  999. }
  1000. }
  1001. for (Long trg_idx : self_pts) {
  1002. near_pts.erase(trg_idx);
  1003. }
  1004. for (Long trg_idx : near_pts) {
  1005. pair_lst.PushBack(Pair<Long,Long>(i,trg_idx));
  1006. }
  1007. }
  1008. }
  1009. template <class DensityBasis, class ElemList, class Kernel> static void SetupNearSingular(Matrix<Real>& M_near_singular, Vector<Pair<Long,Long>>& pair_lst, const Vector<Real>& Xt_, const Vector<Long>& trg_surf, const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1010. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1011. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1012. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1013. using CoordBasis = typename ElemList::CoordBasis;
  1014. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1015. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1016. constexpr Integer CoordDim = ElemList::CoordDim();
  1017. constexpr Integer ElemDim = ElemList::ElemDim();
  1018. constexpr Integer KDIM0 = Kernel::SrcDim();
  1019. constexpr Integer KDIM1 = Kernel::TrgDim();
  1020. const Long Nelem = elem_lst.NElem();
  1021. BuildNbrList(pair_lst, Xt_, trg_surf, elem_lst, 2.5/order_direct, period_length, comm);
  1022. const Long Ninterac = pair_lst.Dim();
  1023. Vector<Real> Xt;
  1024. { // Set Xt
  1025. Integer rank = comm.Rank();
  1026. Integer np = comm.Size();
  1027. Vector<Long> splitter_ranks;
  1028. { // Set splitter_ranks
  1029. Vector<Long> cnt(np);
  1030. const Long N = Xt_.Dim() / CoordDim;
  1031. comm.Allgather(Ptr2ConstItr<Long>(&N,1), 1, cnt.begin(), 1);
  1032. scan(splitter_ranks, cnt);
  1033. }
  1034. Vector<Long> scatter_index, recv_index, recv_cnt(np), recv_dsp(np);
  1035. { // Set scatter_index, recv_index, recv_cnt, recv_dsp
  1036. { // Set scatter_index, recv_index
  1037. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1038. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1039. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1040. }
  1041. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1042. recv_index.ReInit(scatter_pair.Dim());
  1043. scatter_index.ReInit(scatter_pair.Dim());
  1044. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1045. recv_index[i] = scatter_pair[i].first;
  1046. scatter_index[i] = scatter_pair[i].second;
  1047. }
  1048. }
  1049. for (Integer i = 0; i < np; i++) {
  1050. recv_dsp[i] = std::lower_bound(recv_index.begin(), recv_index.end(), splitter_ranks[i]) - recv_index.begin();
  1051. }
  1052. for (Integer i = 0; i < np-1; i++) {
  1053. recv_cnt[i] = recv_dsp[i+1] - recv_dsp[i];
  1054. }
  1055. recv_cnt[np-1] = recv_index.Dim() - recv_dsp[np-1];
  1056. }
  1057. Vector<Long> send_index, send_cnt(np), send_dsp(np);
  1058. { // Set send_index, send_cnt, send_dsp
  1059. comm.Alltoall(recv_cnt.begin(), 1, send_cnt.begin(), 1);
  1060. scan(send_dsp, send_cnt);
  1061. send_index.ReInit(send_cnt[np-1] + send_dsp[np-1]);
  1062. comm.Alltoallv(recv_index.begin(), recv_cnt.begin(), recv_dsp.begin(), send_index.begin(), send_cnt.begin(), send_dsp.begin());
  1063. }
  1064. Vector<Real> Xt_send(send_index.Dim() * CoordDim);
  1065. for (Long i = 0; i < send_index.Dim(); i++) { // Set Xt_send
  1066. Long idx = send_index[i] - splitter_ranks[rank];
  1067. for (Integer k = 0; k < CoordDim; k++) {
  1068. Xt_send[i*CoordDim+k] = Xt_[idx*CoordDim+k];
  1069. }
  1070. }
  1071. Vector<Real> Xt_recv(recv_index.Dim() * CoordDim);
  1072. { // Set Xt_recv
  1073. for (Long i = 0; i < np; i++) {
  1074. send_cnt[i] *= CoordDim;
  1075. send_dsp[i] *= CoordDim;
  1076. recv_cnt[i] *= CoordDim;
  1077. recv_dsp[i] *= CoordDim;
  1078. }
  1079. comm.Alltoallv(Xt_send.begin(), send_cnt.begin(), send_dsp.begin(), Xt_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1080. }
  1081. Xt.ReInit(scatter_index.Dim() * CoordDim);
  1082. for (Long i = 0; i < scatter_index.Dim(); i++) { // Set Xt
  1083. Long idx = scatter_index[i];
  1084. for (Integer k = 0; k < CoordDim; k++) {
  1085. Xt[idx*CoordDim+k] = Xt_recv[i*CoordDim+k];
  1086. }
  1087. }
  1088. }
  1089. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1090. Vector<CoordBasis> dX;
  1091. CoordBasis::Grad(dX, X);
  1092. Long elem_rank_offset;
  1093. { // Set elem_rank_offset
  1094. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1095. elem_rank_offset -= Nelem;
  1096. }
  1097. auto& M = M_near_singular;
  1098. M.ReInit(Ninterac * KDIM0 * DensityBasis::Size(), KDIM1);
  1099. #pragma omp parallel for schedule(static)
  1100. for (Long j = 0; j < Ninterac; j++) { // Set M (near-singular)
  1101. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1102. Real adapt = -1.0;
  1103. Tensor<Real,true,ElemDim,1> u0;
  1104. { // Set u0 (project target point to the surface patch in parameter space)
  1105. ConstIterator<Real> Xt_ = Xt.begin() + j * CoordDim;
  1106. const auto& nodes = CoordBasis::Nodes();
  1107. Long min_idx = -1;
  1108. Real min_R2 = 1e10;
  1109. for (Long i = 0; i < CoordBasis::Size(); i++) {
  1110. Real R2 = 0;
  1111. for (Integer k = 0; k < CoordDim; k++) {
  1112. Real dX = X[src_idx * CoordDim + k][i] - Xt_[k];
  1113. R2 += dX * dX;
  1114. }
  1115. if (R2 < min_R2) {
  1116. min_R2 = R2;
  1117. min_idx = i;
  1118. }
  1119. }
  1120. SCTL_ASSERT(min_idx >= 0);
  1121. for (Integer k = 0; k < ElemDim; k++) {
  1122. u0(k,0) = nodes[k][min_idx];
  1123. }
  1124. for (Integer i = 0; i < 2; i++) { // iterate
  1125. Matrix<Real> X_, dX_;
  1126. for (Integer k = 0; k < ElemDim; k++) {
  1127. u0(k,0) = std::min<Real>(1.0, u0(k,0));
  1128. u0(k,0) = std::max<Real>(0.0, u0(k,0));
  1129. }
  1130. const auto eval_op = CoordBasis::SetupEval(Matrix<Real>(ElemDim,1,u0.begin(),false));
  1131. CoordBasis::Eval(X_, Vector<CoordBasis>(CoordDim,(Iterator<CoordBasis>)X.begin()+src_idx*CoordDim,false),eval_op);
  1132. CoordBasis::Eval(dX_, Vector<CoordBasis>(CoordDim*ElemDim,dX.begin()+src_idx*CoordDim*ElemDim,false),eval_op);
  1133. const Tensor<Real,false,CoordDim,1> x0((Iterator<Real>)Xt_);
  1134. const Tensor<Real,false,CoordDim,1> x(X_.begin());
  1135. const Tensor<Real,false,CoordDim,ElemDim> x_u(dX_.begin());
  1136. auto inv = [](const Tensor<Real,true,2,2>& M) {
  1137. Tensor<Real,true,2,2> Minv;
  1138. Real det_inv = 1.0 / (M(0,0)*M(1,1) - M(1,0)*M(0,1));
  1139. Minv(0,0) = M(1,1) * det_inv;
  1140. Minv(0,1) =-M(0,1) * det_inv;
  1141. Minv(1,0) =-M(1,0) * det_inv;
  1142. Minv(1,1) = M(0,0) * det_inv;
  1143. return Minv;
  1144. };
  1145. auto du = inv(x_u.RotateRight()*x_u) * x_u.RotateRight()*(x0-x);
  1146. u0 = u0 + du;
  1147. auto x_u_squared = x_u.RotateRight() * x_u;
  1148. adapt = sctl::sqrt<Real>( ((x0-x).RotateRight()*(x0-x))(0,0) / std::max<Real>(x_u_squared(0,0),x_u_squared(1,1)) );
  1149. }
  1150. }
  1151. Matrix<Real> quad_nds;
  1152. Vector<Real> quad_wts;
  1153. DuffyQuad<ElemDim>(quad_nds, quad_wts, Vector<Real>(ElemDim,u0.begin(),false), order_singular, adapt);
  1154. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1155. Integer Nnds = quad_wts.Dim();
  1156. Vector<Real> X_, dX_, Xa_, Xn_;
  1157. { // Set X_, dX_
  1158. const Vector<CoordBasis> X__(CoordDim, (Iterator<CoordBasis>)X.begin() + src_idx * CoordDim, false);
  1159. const Vector<CoordBasis> dX__(CoordDim * ElemDim, (Iterator<CoordBasis>)dX.begin() + src_idx * CoordDim * ElemDim, false);
  1160. eval_basis(X_, X__, CoordDim, Nnds, CoordEvalOp);
  1161. eval_basis(dX_, dX__, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1162. }
  1163. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1164. Xa_.ReInit(Nnds);
  1165. Xn_.ReInit(Nnds*CoordDim);
  1166. for (Long j = 0; j < Nnds; j++) {
  1167. StaticArray<Real,CoordDim> normal;
  1168. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1169. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1170. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1171. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1172. Real invXa = 1/Xa_[j];
  1173. Xn_[j*3+0] = normal[0] * invXa;
  1174. Xn_[j*3+1] = normal[1] * invXa;
  1175. Xn_[j*3+2] = normal[2] * invXa;
  1176. }
  1177. }
  1178. DensityEvalOpType DensityEvalOp;
  1179. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1180. DensityEvalOp = CoordEvalOp;
  1181. } else {
  1182. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1183. }
  1184. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1185. { // Set kernel matrix M__
  1186. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1187. kernel.template KernelMatrix<Real>(M__, X0_, X_, Xn_);
  1188. }
  1189. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1190. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1191. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1192. Real M_lk = 0;
  1193. for (Long n = 0; n < Nnds; n++) {
  1194. Real quad_wt = Xa_[n] * quad_wts[n];
  1195. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1196. }
  1197. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] = M_lk;
  1198. }
  1199. }
  1200. }
  1201. }
  1202. { // Set M (subtract direct)
  1203. Matrix<Real> quad_nds;
  1204. Vector<Real> quad_wts;
  1205. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1206. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1207. Integer Nnds = quad_wts.Dim();
  1208. Vector<Real> X_, dX_, Xa_, Xn_;
  1209. { // Set X_, dX_
  1210. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1211. eval_basis(dX_, dX, CoordDim * ElemDim, Nnds, CoordEvalOp);
  1212. }
  1213. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1214. Long N = Nelem*Nnds;
  1215. Xa_.ReInit(N);
  1216. Xn_.ReInit(N*CoordDim);
  1217. for (Long j = 0; j < N; j++) {
  1218. StaticArray<Real,CoordDim> normal;
  1219. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1220. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1221. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1222. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1223. Real invXa = 1/Xa_[j];
  1224. Xn_[j*3+0] = normal[0] * invXa;
  1225. Xn_[j*3+1] = normal[1] * invXa;
  1226. Xn_[j*3+2] = normal[2] * invXa;
  1227. }
  1228. }
  1229. DensityEvalOpType DensityEvalOp;
  1230. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1231. DensityEvalOp = CoordEvalOp;
  1232. } else {
  1233. DensityEvalOp = DensityBasis::SetupEval(quad_nds);
  1234. }
  1235. #pragma omp parallel for schedule(static)
  1236. for (Long j = 0; j < Ninterac; j++) { // Subtract direct contribution
  1237. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1238. Matrix<Real> M__(Nnds * KDIM0, KDIM1);
  1239. { // Set kernel matrix M__
  1240. const Vector<Real> X0_(CoordDim, (Iterator<Real>)Xt.begin() + j * CoordDim, false);
  1241. Vector<Real> X__(Nnds * CoordDim, X_.begin() + src_idx * Nnds * CoordDim, false);
  1242. Vector<Real> Xn__(Nnds * CoordDim, Xn_.begin() + src_idx * Nnds * CoordDim, false);
  1243. kernel.template KernelMatrix<Real>(M__, X0_, X__, Xn__);
  1244. }
  1245. for (Long k0 = 0; k0 < KDIM0; k0++) {
  1246. for (Long k1 = 0; k1 < KDIM1; k1++) {
  1247. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1248. Real M_lk = 0;
  1249. for (Long n = 0; n < Nnds; n++) {
  1250. Real quad_wt = Xa_[src_idx * Nnds + n] * quad_wts[n];
  1251. M_lk += DensityEvalOp[l][n] * quad_wt * M__[n*KDIM0+k0][k1];
  1252. }
  1253. M[(j * KDIM0 + k0) * DensityBasis::Size() + l][k1] -= M_lk;
  1254. }
  1255. }
  1256. }
  1257. }
  1258. }
  1259. }
  1260. template <class DensityBasis> static void EvalNearSingular(Vector<Real>& U, const Vector<DensityBasis>& density, const Matrix<Real>& M, const Vector<Pair<Long,Long>>& pair_lst, Long Nelem_, Long Ntrg_, Integer KDIM0_, Integer KDIM1_, const Comm& comm) {
  1261. const Long Ninterac = pair_lst.Dim();
  1262. const Integer dof = density.Dim() / Nelem_ / KDIM0_;
  1263. SCTL_ASSERT(density.Dim() == Nelem_ * dof * KDIM0_);
  1264. Long elem_rank_offset;
  1265. { // Set elem_rank_offset
  1266. comm.Scan(Ptr2ConstItr<Long>(&Nelem_,1), Ptr2Itr<Long>(&elem_rank_offset,1), 1, Comm::CommOp::SUM);
  1267. elem_rank_offset -= Nelem_;
  1268. }
  1269. Vector<Real> U_loc(Ninterac*dof*KDIM1_);
  1270. for (Long j = 0; j < Ninterac; j++) {
  1271. const Long src_idx = pair_lst[j].first - elem_rank_offset;
  1272. const Matrix<Real> M_(KDIM0_ * DensityBasis::Size(), KDIM1_, (Iterator<Real>)M[j * KDIM0_ * DensityBasis::Size()], false);
  1273. Matrix<Real> U_(dof, KDIM1_, U_loc.begin() + j*dof*KDIM1_, false);
  1274. Matrix<Real> F_(dof, KDIM0_ * DensityBasis::Size());
  1275. for (Long i = 0; i < dof; i++) {
  1276. for (Long k = 0; k < KDIM0_; k++) {
  1277. for (Long l = 0; l < DensityBasis::Size(); l++) {
  1278. F_[i][k * DensityBasis::Size() + l] = density[(src_idx * dof + i) * KDIM0_ + k][l];
  1279. }
  1280. }
  1281. }
  1282. Matrix<Real>::GEMM(U_, F_, M_);
  1283. }
  1284. if (U.Dim() != Ntrg_ * dof * KDIM1_) {
  1285. U.ReInit(Ntrg_ * dof * KDIM1_);
  1286. U = 0;
  1287. }
  1288. { // Set U
  1289. Integer rank = comm.Rank();
  1290. Integer np = comm.Size();
  1291. Vector<Long> splitter_ranks;
  1292. { // Set splitter_ranks
  1293. Vector<Long> cnt(np);
  1294. comm.Allgather(Ptr2ConstItr<Long>(&Ntrg_,1), 1, cnt.begin(), 1);
  1295. scan(splitter_ranks, cnt);
  1296. }
  1297. Vector<Long> scatter_index, send_index, send_cnt(np), send_dsp(np);
  1298. { // Set scatter_index, send_index, send_cnt, send_dsp
  1299. { // Set scatter_index, send_index
  1300. Vector<Pair<Long,Long>> scatter_pair(pair_lst.Dim());
  1301. for (Long i = 0; i < pair_lst.Dim(); i++) {
  1302. scatter_pair[i] = Pair<Long,Long>(pair_lst[i].second,i);
  1303. }
  1304. omp_par::merge_sort(scatter_pair.begin(), scatter_pair.end());
  1305. send_index.ReInit(scatter_pair.Dim());
  1306. scatter_index.ReInit(scatter_pair.Dim());
  1307. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1308. send_index[i] = scatter_pair[i].first;
  1309. scatter_index[i] = scatter_pair[i].second;
  1310. }
  1311. }
  1312. for (Integer i = 0; i < np; i++) {
  1313. send_dsp[i] = std::lower_bound(send_index.begin(), send_index.end(), splitter_ranks[i]) - send_index.begin();
  1314. }
  1315. for (Integer i = 0; i < np-1; i++) {
  1316. send_cnt[i] = send_dsp[i+1] - send_dsp[i];
  1317. }
  1318. send_cnt[np-1] = send_index.Dim() - send_dsp[np-1];
  1319. }
  1320. Vector<Long> recv_index, recv_cnt(np), recv_dsp(np);
  1321. { // Set recv_index, recv_cnt, recv_dsp
  1322. comm.Alltoall(send_cnt.begin(), 1, recv_cnt.begin(), 1);
  1323. scan(recv_dsp, recv_cnt);
  1324. recv_index.ReInit(recv_cnt[np-1] + recv_dsp[np-1]);
  1325. comm.Alltoallv(send_index.begin(), send_cnt.begin(), send_dsp.begin(), recv_index.begin(), recv_cnt.begin(), recv_dsp.begin());
  1326. }
  1327. Vector<Real> U_send(scatter_index.Dim() * dof * KDIM1_);
  1328. for (Long i = 0; i < scatter_index.Dim(); i++) {
  1329. Long idx = scatter_index[i]*dof*KDIM1_;
  1330. for (Long k = 0; k < dof * KDIM1_; k++) {
  1331. U_send[i*dof*KDIM1_ + k] = U_loc[idx + k];
  1332. }
  1333. }
  1334. Vector<Real> U_recv(recv_index.Dim() * dof * KDIM1_);
  1335. { // Set U_recv
  1336. for (Long i = 0; i < np; i++) {
  1337. send_cnt[i] *= dof * KDIM1_;
  1338. send_dsp[i] *= dof * KDIM1_;
  1339. recv_cnt[i] *= dof * KDIM1_;
  1340. recv_dsp[i] *= dof * KDIM1_;
  1341. }
  1342. comm.Alltoallv(U_send.begin(), send_cnt.begin(), send_dsp.begin(), U_recv.begin(), recv_cnt.begin(), recv_dsp.begin());
  1343. }
  1344. for (Long i = 0; i < recv_index.Dim(); i++) { // Set U
  1345. Long idx = (recv_index[i] - splitter_ranks[rank]) * dof * KDIM1_;
  1346. for (Integer k = 0; k < dof * KDIM1_; k++) {
  1347. U[idx + k] += U_recv[i*dof*KDIM1_ + k];
  1348. }
  1349. }
  1350. }
  1351. }
  1352. template <class ElemList, class DensityBasis, class Kernel> static void Direct(Vector<Real>& U, const Vector<Real>& Xt, const ElemList& elem_lst, const Vector<DensityBasis>& density, const Kernel& kernel, Integer order_direct, const Comm& comm) {
  1353. using CoordBasis = typename ElemList::CoordBasis;
  1354. using CoordEvalOpType = typename CoordBasis::EvalOpType;
  1355. using DensityEvalOpType = typename DensityBasis::EvalOpType;
  1356. constexpr Integer CoordDim = ElemList::CoordDim();
  1357. constexpr Integer ElemDim = ElemList::ElemDim();
  1358. constexpr Integer KDIM0 = Kernel::SrcDim();
  1359. constexpr Integer KDIM1 = Kernel::TrgDim();
  1360. const Long Nelem = elem_lst.NElem();
  1361. const Integer dof = density.Dim() / Nelem / KDIM0;
  1362. SCTL_ASSERT(density.Dim() == Nelem * dof * KDIM0);
  1363. Matrix<Real> quad_nds;
  1364. Vector<Real> quad_wts;
  1365. TensorProductGaussQuad<ElemDim>(quad_nds, quad_wts, order_direct);
  1366. const CoordEvalOpType CoordEvalOp = CoordBasis::SetupEval(quad_nds);
  1367. Integer Nnds = quad_wts.Dim();
  1368. const Vector<CoordBasis>& X = elem_lst.ElemVector();
  1369. Vector<CoordBasis> dX;
  1370. CoordBasis::Grad(dX, X);
  1371. Vector<Real> X_, dX_, Xa_, Xn_;
  1372. eval_basis(X_, X, CoordDim, Nnds, CoordEvalOp);
  1373. eval_basis(dX_, dX, CoordDim*ElemDim, Nnds, CoordEvalOp);
  1374. if (CoordDim == 3 && ElemDim == 2) { // Compute Xa_, Xn_
  1375. Long N = Nelem*Nnds;
  1376. Xa_.ReInit(N);
  1377. Xn_.ReInit(N*CoordDim);
  1378. for (Long j = 0; j < N; j++) {
  1379. StaticArray<Real,CoordDim> normal;
  1380. normal[0] = dX_[j*6+2]*dX_[j*6+5] - dX_[j*6+4]*dX_[j*6+3];
  1381. normal[1] = dX_[j*6+4]*dX_[j*6+1] - dX_[j*6+0]*dX_[j*6+5];
  1382. normal[2] = dX_[j*6+0]*dX_[j*6+3] - dX_[j*6+2]*dX_[j*6+1];
  1383. Xa_[j] = sctl::sqrt<Real>(normal[0]*normal[0]+normal[1]*normal[1]+normal[2]*normal[2]);
  1384. Real invXa = 1/Xa_[j];
  1385. Xn_[j*3+0] = normal[0] * invXa;
  1386. Xn_[j*3+1] = normal[1] * invXa;
  1387. Xn_[j*3+2] = normal[2] * invXa;
  1388. }
  1389. }
  1390. Vector<Real> Fa_;
  1391. { // Set Fa_
  1392. Vector<Real> F_;
  1393. if (std::is_same<CoordBasis,DensityBasis>::value) {
  1394. eval_basis(F_, density, dof * KDIM0, Nnds, CoordEvalOp);
  1395. } else {
  1396. const DensityEvalOpType EvalOp = DensityBasis::SetupEval(quad_nds);
  1397. eval_basis(F_, density, dof * KDIM0, Nnds, EvalOp);
  1398. }
  1399. Fa_.ReInit(F_.Dim());
  1400. const Integer DensityDOF = dof * KDIM0;
  1401. SCTL_ASSERT(F_.Dim() == Nelem * Nnds * DensityDOF);
  1402. for (Long j = 0; j < Nelem; j++) {
  1403. for (Integer k = 0; k < Nnds; k++) {
  1404. Long idx = j * Nnds + k;
  1405. Real quad_wt = Xa_[idx] * quad_wts[k];
  1406. for (Integer l = 0; l < DensityDOF; l++) {
  1407. Fa_[idx * DensityDOF + l] = F_[idx * DensityDOF + l] * quad_wt;
  1408. }
  1409. }
  1410. }
  1411. }
  1412. { // Evaluate potential
  1413. const Long Ntrg = Xt.Dim() / CoordDim;
  1414. SCTL_ASSERT(Xt.Dim() == Ntrg * CoordDim);
  1415. if (U.Dim() != Ntrg * dof * KDIM1) {
  1416. U.ReInit(Ntrg * dof * KDIM1);
  1417. U = 0;
  1418. }
  1419. ParticleFMM<Real,CoordDim>::Eval(U, Xt, X_, Xn_, Fa_, kernel, comm);
  1420. }
  1421. }
  1422. public:
  1423. template <class DensityBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Vector<Real>& Xt, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm) {
  1424. Xt_.ReInit(0);
  1425. M_singular.ReInit(0,0);
  1426. M_near_singular.ReInit(0,0);
  1427. pair_lst.ReInit(0);
  1428. order_direct_ = order_direct;
  1429. period_length_ = period_length;
  1430. comm_ = comm;
  1431. Profile::Tic("Setup", &comm_);
  1432. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1433. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1434. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1435. Xt_ = Xt;
  1436. M_singular.ReInit(0,0);
  1437. Profile::Tic("SetupNearSingular", &comm_);
  1438. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, Vector<Long>(), elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1439. Profile::Toc();
  1440. Profile::Toc();
  1441. }
  1442. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Setup(const ElemList& elem_lst, const Kernel& kernel, Integer order_singular, Integer order_direct, Real period_length, const Comm& comm, Real Rqbx = 0) {
  1443. Xt_.ReInit(0);
  1444. M_singular.ReInit(0,0);
  1445. M_near_singular.ReInit(0,0);
  1446. pair_lst.ReInit(0);
  1447. order_direct_ = order_direct;
  1448. period_length_ = period_length;
  1449. comm_ = comm;
  1450. Profile::Tic("Setup", &comm_);
  1451. static_assert(std::is_same<Real,typename PotentialBasis::ValueType>::value);
  1452. static_assert(std::is_same<Real,typename DensityBasis::ValueType>::value);
  1453. static_assert(std::is_same<Real,typename ElemList::CoordType>::value);
  1454. static_assert(PotentialBasis::Dim() == ElemList::ElemDim());
  1455. static_assert(DensityBasis::Dim() == ElemList::ElemDim());
  1456. Vector<Long> trg_surf;
  1457. { // Set Xt_
  1458. using CoordBasis = typename ElemList::CoordBasis;
  1459. Matrix<Real> trg_nds = PotentialBasis::Nodes();
  1460. auto Meval = CoordBasis::SetupEval(trg_nds);
  1461. eval_basis(Xt_, elem_lst.ElemVector(), ElemList::CoordDim(), trg_nds.Dim(1), Meval);
  1462. { // Set trg_surf
  1463. const Long Nelem = elem_lst.NElem();
  1464. const Long Nnds = trg_nds.Dim(1);
  1465. Long elem_offset;
  1466. { // Set elem_offset
  1467. comm.Scan(Ptr2ConstItr<Long>(&Nelem,1), Ptr2Itr<Long>(&elem_offset,1), 1, Comm::CommOp::SUM);
  1468. elem_offset -= Nelem;
  1469. }
  1470. trg_surf.ReInit(elem_lst.NElem() * trg_nds.Dim(1));
  1471. for (Long i = 0; i < Nelem; i++) {
  1472. for (Long j = 0; j < Nnds; j++) {
  1473. trg_surf[i*Nnds+j] = elem_offset + i;
  1474. }
  1475. }
  1476. }
  1477. }
  1478. Profile::Tic("SetupSingular", &comm_);
  1479. SetupSingular<DensityBasis>(M_singular, PotentialBasis::Nodes(), elem_lst, kernel, order_singular, order_direct_, Rqbx);
  1480. Profile::Toc();
  1481. Profile::Tic("SetupNearSingular", &comm_);
  1482. SetupNearSingular<DensityBasis>(M_near_singular, pair_lst, Xt_, trg_surf, elem_lst, kernel, order_singular, order_direct_, period_length_, comm_);
  1483. Profile::Toc();
  1484. Profile::Toc();
  1485. }
  1486. template <class DensityBasis, class PotentialBasis, class ElemList, class Kernel> void Eval(Vector<PotentialBasis>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) {
  1487. Profile::Tic("Eval", &comm_);
  1488. Matrix<Real> U_singular;
  1489. Vector<Real> U_direct, U_near_sing;
  1490. Profile::Tic("EvalDirect", &comm_);
  1491. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1492. Profile::Toc();
  1493. Profile::Tic("EvalSingular", &comm_);
  1494. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1495. Profile::Toc();
  1496. Profile::Tic("EvalNearSingular", &comm_);
  1497. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1498. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1499. Profile::Toc();
  1500. const Long dof = U_direct.Dim() / (elements.NElem() * PotentialBasis::Size() * kernel.TrgDim());
  1501. SCTL_ASSERT(U_direct .Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1502. SCTL_ASSERT(U_near_sing.Dim() == elements.NElem() * PotentialBasis::Size() * dof * kernel.TrgDim());
  1503. if (U.Dim() != elements.NElem() * dof * kernel.TrgDim()) {
  1504. U.ReInit(elements.NElem() * dof * kernel.TrgDim());
  1505. }
  1506. for (int i = 0; i < elements.NElem(); i++) {
  1507. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1508. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1509. Real& U_ = U[i*dof*kernel.TrgDim()+k][j];
  1510. U_ = 0;
  1511. U_ += U_direct [(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1512. U_ += U_near_sing[(i*PotentialBasis::Size()+j)*dof*kernel.TrgDim()+k];
  1513. U_ *= kernel.template ScaleFactor<Real>();
  1514. }
  1515. }
  1516. }
  1517. if (U_singular.Dim(1)) {
  1518. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1519. SCTL_ASSERT(U_singular.Dim(1) == PotentialBasis::Size());
  1520. for (int i = 0; i < elements.NElem(); i++) {
  1521. for (int j = 0; j < PotentialBasis::Size(); j++) {
  1522. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1523. U[i*dof*kernel.TrgDim()+k][j] += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1524. }
  1525. }
  1526. }
  1527. }
  1528. Profile::Toc();
  1529. }
  1530. template <class DensityBasis, class ElemList, class Kernel> void Eval(Vector<Real>& U, const ElemList& elements, const Vector<DensityBasis>& F, const Kernel& kernel) {
  1531. Profile::Tic("Eval", &comm_);
  1532. Matrix<Real> U_singular;
  1533. Vector<Real> U_direct, U_near_sing;
  1534. Profile::Tic("EvalDirect", &comm_);
  1535. Direct(U_direct, Xt_, elements, F, kernel, order_direct_, comm_);
  1536. Profile::Toc();
  1537. Profile::Tic("EvalSingular", &comm_);
  1538. EvalSingular(U_singular, F, M_singular, kernel.SrcDim(), kernel.TrgDim());
  1539. Profile::Toc();
  1540. Profile::Tic("EvalNearSingular", &comm_);
  1541. EvalNearSingular(U_near_sing, F, M_near_singular, pair_lst, elements.NElem(), Xt_.Dim() / ElemList::CoordDim(), kernel.SrcDim(), kernel.TrgDim(), comm_);
  1542. SCTL_ASSERT(U_near_sing.Dim() == U_direct.Dim());
  1543. Profile::Toc();
  1544. Long Nt = Xt_.Dim() / ElemList::CoordDim();
  1545. const Long dof = U_direct.Dim() / (Nt * kernel.TrgDim());
  1546. SCTL_ASSERT(U_direct.Dim() == Nt * dof * kernel.TrgDim());
  1547. if (U.Dim() != U_direct.Dim()) {
  1548. U.ReInit(U_direct.Dim());
  1549. }
  1550. for (int i = 0; i < U.Dim(); i++) {
  1551. U[i] = (U_direct[i] + U_near_sing[i]) * kernel.template ScaleFactor<Real>();
  1552. }
  1553. if (U_singular.Dim(1)) {
  1554. SCTL_ASSERT(U_singular.Dim(0) == elements.NElem() * dof * kernel.TrgDim());
  1555. const Long Nnodes = U_singular.Dim(1);
  1556. for (int i = 0; i < elements.NElem(); i++) {
  1557. for (int j = 0; j < Nnodes; j++) {
  1558. for (int k = 0; k < dof*kernel.TrgDim(); k++) {
  1559. Real& U_ = U[(i*Nnodes+j)*dof*kernel.TrgDim()+k];
  1560. U_ += U_singular[i*dof*kernel.TrgDim()+k][j] * kernel.template ScaleFactor<Real>();
  1561. }
  1562. }
  1563. }
  1564. }
  1565. Profile::Toc();
  1566. }
  1567. template <Integer ORDER = 5> static void test(Integer order_singular = 10, Integer order_direct = 5, const Comm& comm = Comm::World()) {
  1568. constexpr Integer COORD_DIM = 3;
  1569. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1570. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1571. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1572. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1573. int np = comm.Size();
  1574. int rank = comm.Rank();
  1575. auto build_torus = [rank,np](ElemList& elements, long Nt, long Np, Real Rmajor, Real Rminor){
  1576. auto nodes = ElemList::CoordBasis::Nodes();
  1577. auto torus = [](Real theta, Real phi, Real Rmajor, Real Rminor) {
  1578. Real R = Rmajor + Rminor * cos<Real>(phi);
  1579. Real X = R * cos<Real>(theta);
  1580. Real Y = R * sin<Real>(theta);
  1581. Real Z = Rminor * sin<Real>(phi);
  1582. return std::make_tuple(X,Y,Z);
  1583. };
  1584. long start = Nt*Np*(rank+0)/np;
  1585. long end = Nt*Np*(rank+1)/np;
  1586. elements.ReInit(end - start);
  1587. for (long ii = start; ii < end; ii++) {
  1588. long i = ii / Np;
  1589. long j = ii % Np;
  1590. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1591. Real X, Y, Z;
  1592. Real theta = 2 * const_pi<Real>() * (i + nodes[0][k]) / Nt;
  1593. Real phi = 2 * const_pi<Real>() * (j + nodes[1][k]) / Np;
  1594. std::tie(X,Y,Z) = torus(theta, phi, Rmajor, Rminor);
  1595. elements(ii-start,0)[k] = X;
  1596. elements(ii-start,1)[k] = Y;
  1597. elements(ii-start,2)[k] = Z;
  1598. }
  1599. }
  1600. };
  1601. ElemList elements_src, elements_trg;
  1602. build_torus(elements_src, 28, 16, 2, 1.0);
  1603. build_torus(elements_trg, 29, 17, 2, 0.99);
  1604. Vector<Real> Xt;
  1605. Vector<PotentialBasis> U_onsurf, U_offsurf;
  1606. Vector<DensityBasis> density_sl, density_dl;
  1607. { // Set Xt, elements_src, elements_trg, density_sl, density_dl, U
  1608. Real X0[COORD_DIM] = {3,2,1};
  1609. std::function<void(Real*,Real*,Real*)> potential = [X0](Real* U, Real* X, Real* Xn) {
  1610. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1611. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1612. U[0] = Rinv;
  1613. };
  1614. std::function<void(Real*,Real*,Real*)> potential_normal_derivative = [X0](Real* U, Real* X, Real* Xn) {
  1615. Real dX[COORD_DIM] = {X[0]-X0[0],X[1]-X0[1],X[2]-X0[2]};
  1616. Real Rinv = 1/sqrt(dX[0]*dX[0]+dX[1]*dX[1]+dX[2]*dX[2]);
  1617. Real RdotN = dX[0]*Xn[0]+dX[1]*Xn[1]+dX[2]*Xn[2];
  1618. U[0] = -RdotN * Rinv*Rinv*Rinv;
  1619. };
  1620. DiscretizeSurfaceFn<COORD_DIM,1>(density_sl, elements_src, potential_normal_derivative);
  1621. DiscretizeSurfaceFn<COORD_DIM,1>(density_dl, elements_src, potential);
  1622. DiscretizeSurfaceFn<COORD_DIM,1>(U_onsurf , elements_src, potential);
  1623. DiscretizeSurfaceFn<COORD_DIM,1>(U_offsurf , elements_trg, potential);
  1624. for (long i = 0; i < elements_trg.NElem(); i++) { // Set Xt
  1625. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1626. for (int k = 0; k < COORD_DIM; k++) {
  1627. Xt.PushBack(elements_trg(i,k)[j]);
  1628. }
  1629. }
  1630. }
  1631. }
  1632. GenericKernel<Laplace3D_DxU> Laplace_DxU;
  1633. GenericKernel<Laplace3D_FxU> Laplace_FxU;
  1634. Profile::Enable(true);
  1635. if (1) { // Greeen's identity test (Laplace, on-surface)
  1636. Profile::Tic("OnSurface", &comm);
  1637. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1638. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1639. quadrature_DxU.Setup<DensityBasis, PotentialBasis>(elements_src, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1640. Vector<PotentialBasis> U_sl, U_dl;
  1641. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1642. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1643. Profile::Toc();
  1644. Real max_err = 0;
  1645. Vector<PotentialBasis> err(U_onsurf.Dim());
  1646. for (long i = 0; i < U_sl.Dim(); i++) {
  1647. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1648. err[i][j] = 0.5*U_onsurf[i][j] - (U_sl[i][j] + U_dl[i][j]);
  1649. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1650. }
  1651. }
  1652. { // Print error
  1653. Real glb_err;
  1654. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1655. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1656. }
  1657. { // Write VTK output
  1658. VTUData vtu;
  1659. vtu.AddElems(elements_src, err, ORDER);
  1660. vtu.WriteVTK("err", comm);
  1661. }
  1662. { // Write VTK output
  1663. VTUData vtu;
  1664. vtu.AddElems(elements_src, U_onsurf, ORDER);
  1665. vtu.WriteVTK("U", comm);
  1666. }
  1667. }
  1668. if (1) { // Greeen's identity test (Laplace, off-surface)
  1669. Profile::Tic("OffSurface", &comm);
  1670. Quadrature<Real> quadrature_DxU, quadrature_FxU;
  1671. quadrature_FxU.Setup<DensityBasis>(elements_src, Xt, Laplace_FxU, order_singular, order_direct, -1.0, comm);
  1672. quadrature_DxU.Setup<DensityBasis>(elements_src, Xt, Laplace_DxU, order_singular, order_direct, -1.0, comm);
  1673. Vector<Real> U_sl, U_dl;
  1674. quadrature_FxU.Eval(U_sl, elements_src, density_sl, Laplace_FxU);
  1675. quadrature_DxU.Eval(U_dl, elements_src, density_dl, Laplace_DxU);
  1676. Profile::Toc();
  1677. Real max_err = 0;
  1678. Vector<PotentialBasis> err(elements_trg.NElem());
  1679. for (long i = 0; i < elements_trg.NElem(); i++) {
  1680. for (long j = 0; j < PotentialBasis::Size(); j++) {
  1681. err[i][j] = U_offsurf[i][j] - (U_sl[i*PotentialBasis::Size()+j] + U_dl[i*PotentialBasis::Size()+j]);
  1682. max_err = std::max<Real>(max_err, fabs(err[i][j]));
  1683. }
  1684. }
  1685. { // Print error
  1686. Real glb_err;
  1687. comm.Allreduce(Ptr2ConstItr<Real>(&max_err,1), Ptr2Itr<Real>(&glb_err,1), 1, Comm::CommOp::MAX);
  1688. if (!comm.Rank()) std::cout<<"Error = "<<glb_err<<'\n';
  1689. }
  1690. { // Write VTK output
  1691. VTUData vtu;
  1692. vtu.AddElems(elements_trg, err, ORDER);
  1693. vtu.WriteVTK("err", comm);
  1694. }
  1695. { // Write VTK output
  1696. VTUData vtu;
  1697. vtu.AddElems(elements_trg, U_offsurf, ORDER);
  1698. vtu.WriteVTK("U", comm);
  1699. }
  1700. }
  1701. Profile::print(&comm);
  1702. }
  1703. static void test1() {
  1704. const Comm& comm = Comm::World();
  1705. constexpr Integer ORDER = 15;
  1706. Integer order_singular = 20;
  1707. Integer order_direct = 20;
  1708. constexpr Integer COORD_DIM = 3;
  1709. constexpr Integer ELEM_DIM = COORD_DIM-1;
  1710. using ElemList = ElemList<COORD_DIM, Basis<Real, ELEM_DIM, ORDER>>;
  1711. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  1712. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  1713. int np = comm.Size();
  1714. int rank = comm.Rank();
  1715. auto build_sphere = [rank,np](ElemList& elements, Real X, Real Y, Real Z, Real R){
  1716. auto nodes = ElemList::CoordBasis::Nodes();
  1717. long start = 2*COORD_DIM*(rank+0)/np;
  1718. long end = 2*COORD_DIM*(rank+1)/np;
  1719. elements.ReInit(end - start);
  1720. for (long ii = start; ii < end; ii++) {
  1721. long i = ii / 2;
  1722. long j = ii % 2;
  1723. for (int k = 0; k < ElemList::CoordBasis::Size(); k++) {
  1724. Real coord[COORD_DIM];
  1725. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  1726. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  1727. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  1728. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  1729. elements(ii-start,0)[k] = X + R * coord[0] / R0;
  1730. elements(ii-start,1)[k] = Y + R * coord[1] / R0;
  1731. elements(ii-start,2)[k] = Z + R * coord[2] / R0;
  1732. }
  1733. }
  1734. };
  1735. ElemList elements;
  1736. build_sphere(elements, 0.0, 0.0, 0.0, 1.00);
  1737. Vector<DensityBasis> density_sl;
  1738. { // Set density_sl
  1739. std::function<void(Real*,Real*,Real*)> sigma = [](Real* U, Real* X, Real* Xn) {
  1740. Real R = sqrt(X[0]*X[0]+X[1]*X[1]+X[2]*X[2]);
  1741. Real sinp = sqrt(X[1]*X[1] + X[2]*X[2]) / R;
  1742. Real cosp = -X[0] / R;
  1743. U[0] = -1.5;
  1744. U[1] = 0;
  1745. U[2] = 0;
  1746. };
  1747. DiscretizeSurfaceFn<COORD_DIM,3>(density_sl, elements, sigma);
  1748. }
  1749. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  1750. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  1751. Profile::Enable(true);
  1752. if (1) {
  1753. Vector<PotentialBasis> U;
  1754. Quadrature<Real> quadrature_FxU;
  1755. quadrature_FxU.Setup<DensityBasis, PotentialBasis>(elements, Stokes_FxU, order_singular, order_direct, -1.0, comm);
  1756. quadrature_FxU.Eval(U, elements, density_sl, Stokes_FxU);
  1757. { // Write VTK output
  1758. VTUData vtu;
  1759. vtu.AddElems(elements, U, ORDER);
  1760. vtu.WriteVTK("U", comm);
  1761. }
  1762. { // Write VTK output
  1763. VTUData vtu;
  1764. vtu.AddElems(elements, density_sl, ORDER);
  1765. vtu.WriteVTK("sigma", comm);
  1766. }
  1767. }
  1768. Profile::print(&comm);
  1769. }
  1770. private:
  1771. static void scan(Vector<Long>& dsp, const Vector<Long>& cnt) {
  1772. dsp.ReInit(cnt.Dim());
  1773. if (cnt.Dim()) dsp[0] = 0;
  1774. omp_par::scan(cnt.begin(), dsp.begin(), cnt.Dim());
  1775. }
  1776. template <class Basis> static void eval_basis(Vector<Real>& value, const Vector<Basis> X, Integer dof, Integer Nnds, const typename Basis::EvalOpType& EvalOp) {
  1777. Long Nelem = X.Dim() / dof;
  1778. SCTL_ASSERT(X.Dim() == Nelem * dof);
  1779. value.ReInit(Nelem*Nnds*dof);
  1780. Matrix<Real> X_(Nelem*dof, Nnds, value.begin(),false);
  1781. Basis::Eval(X_, X, EvalOp);
  1782. for (Long j = 0; j < Nelem; j++) { // Rearrange data
  1783. Matrix<Real> X(Nnds, dof, X_[j*dof], false);
  1784. X = Matrix<Real>(dof, Nnds, X_[j*dof], false).Transpose();
  1785. }
  1786. }
  1787. template <int CoordDim, int FnDim, class FnBasis, class ElemList> static void DiscretizeSurfaceFn(Vector<FnBasis>& U, const ElemList& elements, std::function<void(Real*,Real*,Real*)> fn) {
  1788. using CoordBasis = typename ElemList::CoordBasis;
  1789. const long Nelem = elements.NElem();
  1790. U.ReInit(Nelem * FnDim);
  1791. Matrix<Real> X, X_grad;
  1792. { // Set X, X_grad
  1793. Vector<CoordBasis> coord = elements.ElemVector();
  1794. Vector<CoordBasis> coord_grad;
  1795. CoordBasis::Grad(coord_grad, coord);
  1796. const auto Meval = CoordBasis::SetupEval(FnBasis::Nodes());
  1797. CoordBasis::Eval(X, coord, Meval);
  1798. CoordBasis::Eval(X_grad, coord_grad, Meval);
  1799. }
  1800. for (long i = 0; i < Nelem; i++) {
  1801. for (long j = 0; j < FnBasis::Size(); j++) {
  1802. Real X_[CoordDim], Xn[CoordDim], U_[FnDim];
  1803. for (long k = 0; k < CoordDim; k++) {
  1804. X_[k] = X[i*CoordDim+k][j];
  1805. }
  1806. { // Set Xn
  1807. Real Xu[CoordDim], Xv[CoordDim];
  1808. for (long k = 0; k < CoordDim; k++) {
  1809. Xu[k] = X_grad[(i*CoordDim+k)*2+0][j];
  1810. Xv[k] = X_grad[(i*CoordDim+k)*2+1][j];
  1811. }
  1812. Real dA = 0;
  1813. for (long k = 0; k < CoordDim; k++) {
  1814. Xn[k] = Xu[(k+1)%CoordDim] * Xv[(k+2)%CoordDim];
  1815. Xn[k] -= Xv[(k+1)%CoordDim] * Xu[(k+2)%CoordDim];
  1816. dA += Xn[k] * Xn[k];
  1817. }
  1818. dA = sqrt(dA);
  1819. for (long k = 0; k < CoordDim; k++) {
  1820. Xn[k] /= dA;
  1821. }
  1822. }
  1823. fn(U_, X_, Xn);
  1824. for (long k = 0; k < FnDim; k++) {
  1825. U[i*FnDim+k][j] = U_[k];
  1826. }
  1827. }
  1828. }
  1829. }
  1830. Vector<Real> Xt_;
  1831. Matrix<Real> M_singular;
  1832. Matrix<Real> M_near_singular;
  1833. Vector<Pair<Long,Long>> pair_lst;
  1834. Integer order_direct_;
  1835. Real period_length_;
  1836. Comm comm_;
  1837. };
  1838. template <class Real, Integer ORDER=10> class Stellarator {
  1839. private:
  1840. static constexpr Integer COORD_DIM = 3;
  1841. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  1842. using ElemBasis = Basis<Real, ELEM_DIM, ORDER>;
  1843. using ElemLst = ElemList<COORD_DIM, ElemBasis>;
  1844. struct Laplace3D_dUxF {
  1845. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1846. return 1 / (4 * const_pi<ValueType>());
  1847. }
  1848. template <class ValueType> static void Eval(ValueType (&u)[3][1], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1849. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1850. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1851. ValueType rinv3 = rinv * rinv * rinv;
  1852. u[0][0] = -r[0] * rinv3;
  1853. u[1][0] = -r[1] * rinv3;
  1854. u[2][0] = -r[2] * rinv3;
  1855. }
  1856. };
  1857. struct BiotSavart3D {
  1858. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1859. return 1 / (4 * const_pi<ValueType>());
  1860. }
  1861. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1862. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1863. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1864. ValueType rinv3 = rinv * rinv * rinv;
  1865. u[0][0] = (0) * rinv3; u[1][0] = r[2] * rinv3; u[2][0] = -r[1] * rinv3;
  1866. u[0][1] = -r[2] * rinv3; u[1][1] = (0) * rinv3; u[2][1] = r[0] * rinv3;
  1867. u[0][2] = r[1] * rinv3; u[1][2] = -r[0] * rinv3; u[2][2] = (0) * rinv3;
  1868. }
  1869. };
  1870. struct BiotSavartGrad3D {
  1871. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1872. return 1 / (4 * const_pi<ValueType>());
  1873. }
  1874. template <class ValueType> static void Eval(ValueType (&u)[3][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1875. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1876. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1877. ValueType rinv2 = rinv * rinv;
  1878. ValueType rinv3 = rinv2 * rinv;
  1879. ValueType rinv5 = rinv2 * rinv3;
  1880. u[0][0] = 0; u[1][0] = - 3 * r[2] * r[0] * rinv5; u[2][0] = 3 * r[1] * r[0] * rinv5;
  1881. u[0][1] = 0; u[1][1] = - 3 * r[2] * r[1] * rinv5; u[2][1] = -(1) * rinv3 + 3 * r[1] * r[1] * rinv5;
  1882. u[0][2] = 0; u[1][2] = (1) * rinv3 - 3 * r[2] * r[2] * rinv5; u[2][2] = 3 * r[1] * r[2] * rinv5;
  1883. u[0][3] = 3 * r[2] * r[0] * rinv5; u[1][3] = 0; u[2][3] = (1) * rinv3 - 3 * r[0] * r[0] * rinv5;
  1884. u[0][4] = 3 * r[2] * r[1] * rinv5; u[1][4] = 0; u[2][4] = - 3 * r[0] * r[1] * rinv5;
  1885. u[0][5] = -(1) * rinv3 + 3 * r[2] * r[2] * rinv5; u[1][5] = 0; u[2][5] = - 3 * r[0] * r[2] * rinv5;
  1886. u[0][6] = - 3 * r[1] * r[0] * rinv5; u[1][6] = -(1) * rinv3 + 3 * r[0] * r[0] * rinv5; u[2][6] = 0;
  1887. u[0][7] = (1) * rinv3 - 3 * r[1] * r[1] * rinv5; u[1][7] = 3 * r[0] * r[1] * rinv5; u[2][7] = 0;
  1888. u[0][8] = - 3 * r[1] * r[2] * rinv5; u[1][8] = 3 * r[0] * r[2] * rinv5; u[2][8] = 0;
  1889. }
  1890. };
  1891. struct Laplace3D_dUxD {
  1892. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1893. return 1 / (4 * const_pi<ValueType>());
  1894. }
  1895. template <class ValueType> static void Eval(ValueType (&u)[3][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1896. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1897. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1898. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1899. ValueType rinv2 = rinv * rinv;
  1900. ValueType rinv3 = rinv * rinv2;
  1901. ValueType rinv5 = rinv3 * rinv2;
  1902. u[0][0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1903. u[0][1] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1904. u[0][2] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1905. u[1][0] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1906. u[1][1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1907. u[1][2] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1908. u[2][0] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1909. u[2][1] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1910. u[2][2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1911. }
  1912. };
  1913. struct Laplace3D_DxdU {
  1914. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1915. return 1 / (4 * const_pi<ValueType>());
  1916. }
  1917. template <class ValueType> static void Eval(ValueType (&u)[1][3], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1918. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1919. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1920. ValueType rdotn = r[0]*n[0] + r[1]*n[1] + r[2]*n[2];
  1921. ValueType rinv2 = rinv * rinv;
  1922. ValueType rinv3 = rinv * rinv2;
  1923. ValueType rinv5 = rinv3 * rinv2;
  1924. u[0][0] = -n[0] * rinv3 + 3*rdotn * r[0] * rinv5;
  1925. u[0][1] = -n[1] * rinv3 + 3*rdotn * r[1] * rinv5;
  1926. u[0][2] = -n[2] * rinv3 + 3*rdotn * r[2] * rinv5;
  1927. }
  1928. };
  1929. struct Laplace3D_Fxd2U {
  1930. template <class ValueType> static constexpr ValueType ScaleFactor() {
  1931. return 1 / (4 * const_pi<ValueType>());
  1932. }
  1933. template <class ValueType> static void Eval(ValueType (&u)[1][9], const ValueType (&r)[3], const ValueType (&n)[3], void* ctx_ptr) {
  1934. ValueType r2 = r[0]*r[0]+r[1]*r[1]+r[2]*r[2];
  1935. ValueType rinv = (r2>1e-16 ? 1/sqrt<ValueType>(r2) : 0);
  1936. ValueType rinv2 = rinv * rinv;
  1937. ValueType rinv3 = rinv * rinv2;
  1938. ValueType rinv5 = rinv3 * rinv2;
  1939. u[0][0+3*0] = -1 * rinv3 + 3 * r[0] * r[0] * rinv5;
  1940. u[0][1+3*0] = -0 * rinv3 + 3 * r[0] * r[1] * rinv5;
  1941. u[0][2+3*0] = -0 * rinv3 + 3 * r[0] * r[2] * rinv5;
  1942. u[0][0+3*1] = -0 * rinv3 + 3 * r[1] * r[0] * rinv5;
  1943. u[0][1+3*1] = -1 * rinv3 + 3 * r[1] * r[1] * rinv5;
  1944. u[0][2+3*1] = -0 * rinv3 + 3 * r[1] * r[2] * rinv5;
  1945. u[0][0+3*2] = -0 * rinv3 + 3 * r[2] * r[0] * rinv5;
  1946. u[0][1+3*2] = -0 * rinv3 + 3 * r[2] * r[1] * rinv5;
  1947. u[0][2+3*2] = -1 * rinv3 + 3 * r[2] * r[2] * rinv5;
  1948. }
  1949. };
  1950. static Real max_norm(const sctl::Vector<Real>& x) {
  1951. Real err = 0;
  1952. for (const auto& a : x) err = std::max(err, sctl::fabs<Real>(a));
  1953. return err;
  1954. }
  1955. public:
  1956. Stellarator(const Vector<Long>& NtNp = Vector<Long>()) {
  1957. NtNp_ = NtNp;
  1958. Long Nsurf = NtNp_.Dim() / 2;
  1959. SCTL_ASSERT(Nsurf*2 == NtNp_.Dim());
  1960. Long Nelem = 0;
  1961. elem_dsp.ReInit(Nsurf);
  1962. if (elem_dsp.Dim()) elem_dsp[0] = 0;
  1963. for (Long i = 0; i < Nsurf; i++) {
  1964. Nelem += NtNp_[i*2+0]*NtNp_[i*2+1];
  1965. if (i+1 < Nsurf) elem_dsp[i+1] = Nelem;
  1966. }
  1967. elements.ReInit(Nelem);
  1968. for (Long i = 0; i < Nsurf; i++) {
  1969. InitSurf(i);
  1970. }
  1971. }
  1972. Long ElemIdx(Long s, Long t, Long p) {
  1973. SCTL_ASSERT(0 <= s && s < elem_dsp.Dim());
  1974. SCTL_ASSERT(0 <= t && t < NtNp_[s*2+0]);
  1975. SCTL_ASSERT(0 <= p && p < NtNp_[s*2+1]);
  1976. return elem_dsp[s] + t*NtNp_[s*2+1] + p;
  1977. }
  1978. ElemBasis& Elem(Long elem, Integer dim) {
  1979. return elements(elem,dim);
  1980. }
  1981. const ElemBasis& Elem(Long elem, Integer dim) const {
  1982. return elements(elem,dim);
  1983. }
  1984. const ElemLst& GetElemList() {
  1985. return elements;
  1986. }
  1987. Long Nsurf() const {
  1988. return elem_dsp.Dim();
  1989. }
  1990. Long ElemDsp(Long s) const {
  1991. return elem_dsp[s];
  1992. }
  1993. Long NTor(Long s) const {
  1994. return NtNp_[s*2+0];
  1995. }
  1996. Long NPol(Long s) const {
  1997. return NtNp_[s*2+1];
  1998. }
  1999. static void test() {
  2000. constexpr Integer order_singular = 15;
  2001. constexpr Integer order_direct = 35;
  2002. Comm comm = Comm::World();
  2003. Profile::Enable(true);
  2004. Real gmres_tol = 1e-8;
  2005. Long max_iter = 100;
  2006. Stellarator<Real,ORDER> S;
  2007. { // Init S
  2008. Vector<Long> NtNp;
  2009. NtNp.PushBack(20);
  2010. NtNp.PushBack(4);
  2011. S = Stellarator<Real,ORDER>(NtNp);
  2012. }
  2013. auto cheb2grid = [] (const Vector<ElemBasis>& X, Long Mt, Long Mp, Long Nt, Long Np) {
  2014. const Long dof = X.Dim() / (Mt * Mp);
  2015. SCTL_ASSERT(X.Dim() == Mt * Mp *dof);
  2016. Vector<Real> Xf(dof*Nt*Np); Xf = 0;
  2017. const Long Nnodes = ElemBasis::Size();
  2018. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  2019. for (Long t = 0; t < Nt; t++) {
  2020. for (Long p = 0; p < Np; p++) {
  2021. Real theta = t / (Real)Nt;
  2022. Real phi = p / (Real)Np;
  2023. Long i = (Long)(theta * Mt);
  2024. Long j = (Long)(phi * Mp);
  2025. Real x = theta * Mt - i;
  2026. Real y = phi * Mp - j;
  2027. Long elem_idx = i * Mp + j;
  2028. Vector<Real> Interp0(ORDER);
  2029. Vector<Real> Interp1(ORDER);
  2030. { // Set Interp0, Interp1
  2031. auto node = [&Mnodes] (Long i) {
  2032. return Mnodes[0][i];
  2033. };
  2034. for (Long i = 0; i < ORDER; i++) {
  2035. Real wt_x = 1, wt_y = 1;
  2036. for (Long j = 0; j < ORDER; j++) {
  2037. if (j != i) {
  2038. wt_x *= (x - node(j)) / (node(i) - node(j));
  2039. wt_y *= (y - node(j)) / (node(i) - node(j));
  2040. }
  2041. Interp0[i] = wt_x;
  2042. Interp1[i] = wt_y;
  2043. }
  2044. }
  2045. }
  2046. for (Long ii = 0; ii < ORDER; ii++) {
  2047. for (Long jj = 0; jj < ORDER; jj++) {
  2048. Long node_idx = jj * ORDER + ii;
  2049. for (Long k = 0; k < dof; k++) {
  2050. Xf[(k*Nt+t)*Np+p] += X[elem_idx*dof+k][node_idx] * Interp0[ii] * Interp1[jj];
  2051. }
  2052. }
  2053. }
  2054. }
  2055. }
  2056. return Xf;
  2057. };
  2058. auto grid2cheb = [] (const Vector<Real>& Xf, Long Nt, Long Np, Long Mt, Long Mp) {
  2059. Long dof = Xf.Dim() / (Nt*Np);
  2060. SCTL_ASSERT(Xf.Dim() == dof*Nt*Np);
  2061. Vector<ElemBasis> X(Mt*Mp*dof);
  2062. constexpr Integer INTERP_ORDER = 12;
  2063. for (Long tt = 0; tt < Mt; tt++) {
  2064. for (Long pp = 0; pp < Mp; pp++) {
  2065. for (Long t = 0; t < ORDER; t++) {
  2066. for (Long p = 0; p < ORDER; p++) {
  2067. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  2068. Real theta = (tt + Mnodes[0][t]) / Mt;
  2069. Real phi = (pp + Mnodes[0][p]) / Mp;
  2070. Long i = (Long)(theta * Nt);
  2071. Long j = (Long)(phi * Np);
  2072. Real x = theta * Nt - i;
  2073. Real y = phi * Np - j;
  2074. Vector<Real> Interp0(INTERP_ORDER);
  2075. Vector<Real> Interp1(INTERP_ORDER);
  2076. { // Set Interp0, Interp1
  2077. auto node = [] (Long i) {
  2078. return (Real)i - (INTERP_ORDER-1)/2;
  2079. };
  2080. for (Long i = 0; i < INTERP_ORDER; i++) {
  2081. Real wt_x = 1, wt_y = 1;
  2082. for (Long j = 0; j < INTERP_ORDER; j++) {
  2083. if (j != i) {
  2084. wt_x *= (x - node(j)) / (node(i) - node(j));
  2085. wt_y *= (y - node(j)) / (node(i) - node(j));
  2086. }
  2087. Interp0[i] = wt_x;
  2088. Interp1[i] = wt_y;
  2089. }
  2090. }
  2091. }
  2092. for (Long k = 0; k < dof; k++) {
  2093. Real X0 = 0;
  2094. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  2095. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  2096. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  2097. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  2098. X0 += Interp0[ii] * Interp1[jj] * Xf[(k*Nt+idx_i)*Np+idx_j];
  2099. }
  2100. }
  2101. Long elem_idx = tt * Mp + pp;
  2102. Long node_idx = p * ORDER + t;
  2103. X[elem_idx*dof+k][node_idx] = X0;
  2104. }
  2105. }
  2106. }
  2107. }
  2108. }
  2109. return X;
  2110. };
  2111. Long Nelem = S.GetElemList().NElem();
  2112. Vector<ElemBasis> Jt(Nelem*COORD_DIM), Jp(Nelem*COORD_DIM);
  2113. auto compute_harmonic_vector_potentials = [&S,&comm,&cheb2grid,&grid2cheb,max_iter,gmres_tol](Vector<ElemBasis>& Jt, Vector<ElemBasis>& Jp) {
  2114. for (Long k = 0; k < S.Nsurf(); k++) {
  2115. Long Nt = S.NTor(k)*ORDER, Np = S.NPol(k)*ORDER;
  2116. const auto& X_ = S.GetElemList().ElemVector();
  2117. Vector<ElemBasis> X(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)X_.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2118. biest::Surface<Real> SS(Nt, Np);
  2119. biest::SurfaceOp<Real> surf_op(comm, Nt, Np);
  2120. SS.Coord() = cheb2grid(X, S.NTor(k), S.NPol(k), Nt, Np);
  2121. Vector<Real> dX, d2X;
  2122. surf_op.Grad2D(dX, SS.Coord());
  2123. surf_op.Grad2D(d2X, dX);
  2124. sctl::Vector<Real> Jt_(COORD_DIM * Nt * Np);
  2125. sctl::Vector<Real> Jp_(COORD_DIM * Nt * Np);
  2126. { // Set Jt_, Jp_
  2127. Vector<Real> DivV, InvLapDivV, GradInvLapDivV;
  2128. for (sctl::Long i = 0; i < Nt*Np; i++) { // Set V
  2129. for (sctl::Long k =0; k < COORD_DIM; k++) {
  2130. Jt_[k * Nt*Np + i] = dX[(k*2+0) * Nt*Np + i];
  2131. Jp_[k * Nt*Np + i] = dX[(k*2+1) * Nt*Np + i];
  2132. }
  2133. }
  2134. surf_op.SurfDiv(DivV, dX, Jt_);
  2135. surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jt_) / max_norm(DivV), max_iter, 1.5);
  2136. Jt_ = Jt_ - GradInvLapDivV;
  2137. surf_op.SurfDiv(DivV, dX, Jp_);
  2138. surf_op.GradInvSurfLap(GradInvLapDivV, dX, d2X, DivV, gmres_tol * max_norm(Jp_) / max_norm(DivV), max_iter, 1.5);
  2139. Jp_ = Jp_ - GradInvLapDivV;
  2140. }
  2141. Vector<ElemBasis> Jt__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)Jt.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2142. Vector<ElemBasis> Jp__(S.NTor(k)*S.NPol(k)*COORD_DIM, (Iterator<ElemBasis>)Jp.begin()+S.ElemDsp(k)*COORD_DIM, false);
  2143. Jt__ = grid2cheb(Jt_, Nt, Np, S.NTor(k), S.NPol(k));
  2144. Jp__ = grid2cheb(Jp_, Nt, Np, S.NTor(k), S.NPol(k));
  2145. }
  2146. };
  2147. compute_harmonic_vector_potentials(Jt, Jp);
  2148. Vector<ElemBasis> normal, area_elem;
  2149. auto compute_dot_prod = [](const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  2150. const Long Nelem = A.Dim() / COORD_DIM;
  2151. const Long Nnodes = ElemBasis::Size();
  2152. SCTL_ASSERT(A.Dim() == Nelem * COORD_DIM);
  2153. SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
  2154. Vector<ElemBasis> AdotB(Nelem);
  2155. for (Long i = 0; i < Nelem; i++) {
  2156. for (Long j = 0; j < Nnodes; j++) {
  2157. Real a_dot_b = 0;
  2158. a_dot_b += A[i*COORD_DIM+0][j]*B[i*COORD_DIM+0][j];
  2159. a_dot_b += A[i*COORD_DIM+1][j]*B[i*COORD_DIM+1][j];
  2160. a_dot_b += A[i*COORD_DIM+2][j]*B[i*COORD_DIM+2][j];
  2161. AdotB[i][j] = a_dot_b;
  2162. }
  2163. }
  2164. return AdotB;
  2165. };
  2166. auto compute_inner_prod = [](const Vector<ElemBasis>& area_elem, const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  2167. const auto& quad_wts = ElemBasis::QuadWts();
  2168. const Long Nnodes = ElemBasis::Size();
  2169. const Long Nelem = area_elem.Dim();
  2170. const Long dof = B.Dim() / Nelem;
  2171. Real sum = 0;
  2172. for (Long i = 0; i < Nelem; i++) {
  2173. for (Long j = 0; j < Nnodes; j++) {
  2174. Real AdotB = 0;
  2175. for (Long k = 0; k < dof; k++) {
  2176. AdotB += A[i*dof+k][j] * B[i*dof+k][j];
  2177. }
  2178. sum += AdotB * area_elem[i][j] * quad_wts[j];
  2179. }
  2180. }
  2181. return sum;
  2182. };
  2183. auto compute_norm_area_elem = [](const ElemList<COORD_DIM,ElemBasis>& elem_lst, Vector<ElemBasis>& normal, Vector<ElemBasis>& area_elem){ // Set normal, area_elem
  2184. const Vector<ElemBasis>& X = elem_lst.ElemVector();
  2185. const Long Nelem = X.Dim() / COORD_DIM;
  2186. const Long Nnodes = ElemBasis::Size();
  2187. Vector<ElemBasis> dX;
  2188. ElemBasis::Grad(dX, X);
  2189. area_elem.ReInit(Nelem);
  2190. normal.ReInit(Nelem * COORD_DIM);
  2191. for (Long i = 0; i < Nelem; i++) {
  2192. for (Long j = 0; j < Nnodes; j++) {
  2193. Tensor<Real,true,COORD_DIM> x, n;
  2194. Tensor<Real,true,COORD_DIM,2> dx;
  2195. x(0) = X[i*COORD_DIM+0][j];
  2196. x(1) = X[i*COORD_DIM+1][j];
  2197. x(2) = X[i*COORD_DIM+2][j];
  2198. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2199. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2200. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2201. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2202. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2203. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2204. n(0) = dx(1,0) * dx(2,1) - dx(2,0) * dx(1,1);
  2205. n(1) = dx(2,0) * dx(0,1) - dx(0,0) * dx(2,1);
  2206. n(2) = dx(0,0) * dx(1,1) - dx(1,0) * dx(0,1);
  2207. Real area_elem_ = sqrt<Real>(n(0)*n(0) + n(1)*n(1) + n(2)*n(2));
  2208. Real ooae = 1 / area_elem_;
  2209. n(0) *= ooae;
  2210. n(1) *= ooae;
  2211. n(2) *= ooae;
  2212. normal[i*COORD_DIM+0][j] = n(0);
  2213. normal[i*COORD_DIM+1][j] = n(1);
  2214. normal[i*COORD_DIM+2][j] = n(2);
  2215. area_elem[i][j] = area_elem_;
  2216. }
  2217. }
  2218. };
  2219. compute_norm_area_elem(S.GetElemList(), normal, area_elem);
  2220. S.quadrature_BS .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2221. S.quadrature_dBS .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.BiotSavartGrad, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2222. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  2223. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  2224. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU , order_singular, order_direct, -1.0, comm);
  2225. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF , order_singular, order_direct, -1.0, comm);
  2226. s.quadrature_dUxD .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  2227. s.quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2228. auto compute_B0_deprecated = [&S](const Real alpha) { // alpha/|r| \hat{\theta}
  2229. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2230. const Long Nelem = S.GetElemList().NElem();
  2231. const Long Nnodes = ElemBasis::Size();
  2232. Vector<ElemBasis> B0(Nelem * COORD_DIM);
  2233. for (Long i = 0; i < Nelem; i++) {
  2234. for (Long j = 0; j < Nnodes; j++) {
  2235. Tensor<Real,true,COORD_DIM> x, b0, axis;
  2236. x(0) = X[i*COORD_DIM+0][j];
  2237. x(1) = X[i*COORD_DIM+1][j];
  2238. x(2) = X[i*COORD_DIM+2][j];
  2239. axis(0) = 0;
  2240. axis(1) = 0;
  2241. axis(2) = 1;
  2242. b0(0) = axis(1) * x(2) - axis(2) * x(1);
  2243. b0(1) = axis(2) * x(0) - axis(0) * x(2);
  2244. b0(2) = axis(0) * x(1) - axis(1) * x(0);
  2245. Real scale = 1 / (b0(0)*b0(0) + b0(1)*b0(1) + b0(2)*b0(2));
  2246. b0(0) *= scale;
  2247. b0(1) *= scale;
  2248. b0(2) *= scale;
  2249. B0[i*COORD_DIM+0][j] = alpha * b0(0);
  2250. B0[i*COORD_DIM+1][j] = alpha * b0(1);
  2251. B0[i*COORD_DIM+2][j] = alpha * b0(2);
  2252. }
  2253. }
  2254. return B0;
  2255. };
  2256. auto compute_dB0_deprecated = [&S](const Real alpha) { // alpha/|r| \hat{\theta}
  2257. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2258. const Long Nelem = S.GetElemList().NElem();
  2259. const Long Nnodes = ElemBasis::Size();
  2260. Vector<ElemBasis> dB0(Nelem * COORD_DIM * COORD_DIM);
  2261. for (Long i = 0; i < Nelem; i++) {
  2262. for (Long j = 0; j < Nnodes; j++) {
  2263. Tensor<Real,true,COORD_DIM> x;
  2264. x(0) = X[i*COORD_DIM+0][j];
  2265. x(1) = X[i*COORD_DIM+1][j];
  2266. x(2) = X[i*COORD_DIM+2][j];
  2267. Real R2inv = 1 / (x(0)*x(0) + x(1)*x(1));
  2268. dB0[(i*COORD_DIM+0)*COORD_DIM+0][j] = -alpha * (2*x(0)*x(1) * R2inv*R2inv);
  2269. dB0[(i*COORD_DIM+0)*COORD_DIM+1][j] = -alpha * (-R2inv + 2*x(1)*x(1) * R2inv*R2inv);
  2270. dB0[(i*COORD_DIM+0)*COORD_DIM+2][j] = 0;
  2271. dB0[(i*COORD_DIM+1)*COORD_DIM+0][j] = -alpha * (R2inv - 2*x(0)*x(0) * R2inv*R2inv);
  2272. dB0[(i*COORD_DIM+1)*COORD_DIM+1][j] = -alpha * (-2*x(0)*x(1) * R2inv*R2inv);
  2273. dB0[(i*COORD_DIM+1)*COORD_DIM+2][j] = 0;
  2274. dB0[(i*COORD_DIM+2)*COORD_DIM+0][j] = 0;
  2275. dB0[(i*COORD_DIM+2)*COORD_DIM+1][j] = 0;
  2276. dB0[(i*COORD_DIM+2)*COORD_DIM+2][j] = 0;
  2277. }
  2278. }
  2279. return dB0;
  2280. };
  2281. auto compute_B0 = [&S, &Jp](const Real alpha) {
  2282. Vector<ElemBasis> B0;
  2283. S.quadrature_BS.Eval(B0, S.GetElemList(), Jp, S.BiotSavart);
  2284. return B0*alpha;
  2285. };
  2286. auto compute_dB0 = [&S, &Jp](const Real alpha) {
  2287. Vector<ElemBasis> dB0;
  2288. S.quadrature_dBS.Eval(dB0, S.GetElemList(), Jp, S.BiotSavartGrad);
  2289. return dB0*alpha;
  2290. };
  2291. auto compute_half_n_plus_dG = [&S, &normal](const Vector<ElemBasis>& sigma) { // B = n sigma/2 + dG[sigma]
  2292. const Long Nelem = S.GetElemList().NElem();
  2293. const Long Nnodes = ElemBasis::Size();
  2294. Vector<ElemBasis> B;
  2295. S.quadrature_FxdU.Eval(B, S.GetElemList(), sigma, S.Laplace_FxdU);
  2296. for (Long i = 0; i < Nelem; i++) {
  2297. for (Long j = 0; j < Nnodes; j++) {
  2298. for (Long k = 0; k < COORD_DIM; k++) {
  2299. B[i*COORD_DIM+k][j] -= 0.5*sigma[i][j]*normal[i*COORD_DIM+k][j];
  2300. }
  2301. }
  2302. }
  2303. return B;
  2304. };
  2305. auto compute_A11 = [&S,&normal,&compute_half_n_plus_dG,&compute_dot_prod](Vector<Real>& B_dot_n, const Vector<Real>& sigma) {
  2306. const Long Nelem = S.GetElemList().NElem();
  2307. const Long Nnodes = ElemBasis::Size();
  2308. B_dot_n.ReInit(Nelem * Nnodes);
  2309. Vector<ElemBasis> sigma_(Nelem);
  2310. for (Long i = 0; i < Nelem; i++) {
  2311. for (Long j = 0; j < Nnodes; j++) {
  2312. sigma_[i][j] = sigma[i*Nnodes+j];
  2313. }
  2314. }
  2315. Vector<ElemBasis> B_dot_n_ = compute_dot_prod(normal, compute_half_n_plus_dG(sigma_));
  2316. for (Long i = 0; i < Nelem; i++) {
  2317. for (Long j = 0; j < Nnodes; j++) {
  2318. B_dot_n[i*Nnodes+j] = B_dot_n_[i][j];
  2319. }
  2320. }
  2321. };
  2322. auto compute_A12 = [&S,&normal,&compute_dot_prod,&compute_B0](Vector<Real>& B_dot_n, const Real alpha) {
  2323. const Long Nelem = S.GetElemList().NElem();
  2324. const Long Nnodes = ElemBasis::Size();
  2325. B_dot_n.ReInit(Nelem * Nnodes);
  2326. Vector<ElemBasis> B_dot_n_ = compute_dot_prod(normal, compute_B0(alpha));
  2327. for (Long i = 0; i < Nelem; i++) {
  2328. for (Long j = 0; j < Nnodes; j++) {
  2329. B_dot_n[i*Nnodes+j] = B_dot_n_[i][j];
  2330. }
  2331. }
  2332. };
  2333. auto compute_A21 = [&S,&normal,&compute_half_n_plus_dG](const Vector<Real>& sigma) {
  2334. const Long Nelem = S.GetElemList().NElem();
  2335. const Long Nnodes = ElemBasis::Size();
  2336. Vector<ElemBasis> sigma_(Nelem);
  2337. for (Long i = 0; i < Nelem; i++) {
  2338. for (Long j = 0; j < Nnodes; j++) {
  2339. sigma_[i][j] = sigma[i*Nnodes+j];
  2340. }
  2341. }
  2342. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma_);
  2343. Vector<ElemBasis> J(Nelem * COORD_DIM);
  2344. for (Long i = 0; i < Nelem; i++) { // Set J
  2345. for (Long j = 0; j < Nnodes; j++) {
  2346. Tensor<Real,true,COORD_DIM> b, n;
  2347. b(0) = B[i*COORD_DIM+0][j];
  2348. b(1) = B[i*COORD_DIM+1][j];
  2349. b(2) = B[i*COORD_DIM+2][j];
  2350. n(0) = normal[i*COORD_DIM+0][j];
  2351. n(1) = normal[i*COORD_DIM+1][j];
  2352. n(2) = normal[i*COORD_DIM+2][j];
  2353. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  2354. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  2355. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  2356. }
  2357. }
  2358. Vector<ElemBasis> A;
  2359. S.quadrature_FxU.Eval(A, S.GetElemList(), J, S.Laplace_FxU);
  2360. Real pol_circ = 0;
  2361. { // compute pol_circ
  2362. Vector<ElemBasis> dX;
  2363. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2364. const auto& quad_wts = ElemBasis::QuadWts();
  2365. for (Long i = 0; i < Nelem; i++) {
  2366. for (Long j = 0; j < Nnodes; j++) {
  2367. pol_circ += A[i*COORD_DIM+0][j] * dX[i*COORD_DIM*2+1][j] * quad_wts[j] / S.NtNp_[0];
  2368. pol_circ += A[i*COORD_DIM+1][j] * dX[i*COORD_DIM*2+3][j] * quad_wts[j] / S.NtNp_[0];
  2369. pol_circ += A[i*COORD_DIM+2][j] * dX[i*COORD_DIM*2+5][j] * quad_wts[j] / S.NtNp_[0];
  2370. }
  2371. }
  2372. }
  2373. return pol_circ;
  2374. };
  2375. auto compute_A22 = [&S,&compute_B0,&normal](const Real alpha) {
  2376. const Long Nelem = S.GetElemList().NElem();
  2377. const Long Nnodes = ElemBasis::Size();
  2378. Vector<ElemBasis> B = compute_B0(alpha);
  2379. Vector<ElemBasis> J(Nelem * COORD_DIM);
  2380. for (Long i = 0; i < Nelem; i++) { // Set J
  2381. for (Long j = 0; j < Nnodes; j++) {
  2382. Tensor<Real,true,COORD_DIM> b, n;
  2383. b(0) = B[i*COORD_DIM+0][j];
  2384. b(1) = B[i*COORD_DIM+1][j];
  2385. b(2) = B[i*COORD_DIM+2][j];
  2386. n(0) = normal[i*COORD_DIM+0][j];
  2387. n(1) = normal[i*COORD_DIM+1][j];
  2388. n(2) = normal[i*COORD_DIM+2][j];
  2389. J[i*COORD_DIM+0][j] = n(1) * b(2) - n(2) * b(1);
  2390. J[i*COORD_DIM+1][j] = n(2) * b(0) - n(0) * b(2);
  2391. J[i*COORD_DIM+2][j] = n(0) * b(1) - n(1) * b(0);
  2392. }
  2393. }
  2394. Vector<ElemBasis> A;
  2395. S.quadrature_FxU.Eval(A, S.GetElemList(), J, S.Laplace_FxU);
  2396. Real pol_circ = 0;
  2397. { // compute pol_circ
  2398. Vector<ElemBasis> dX;
  2399. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2400. const auto& quad_wts = ElemBasis::QuadWts();
  2401. for (Long i = 0; i < Nelem; i++) {
  2402. for (Long j = 0; j < Nnodes; j++) {
  2403. pol_circ += A[i*COORD_DIM+0][j] * dX[i*COORD_DIM*2+1][j] * quad_wts[j] / S.NtNp_[0];
  2404. pol_circ += A[i*COORD_DIM+1][j] * dX[i*COORD_DIM*2+3][j] * quad_wts[j] / S.NtNp_[0];
  2405. pol_circ += A[i*COORD_DIM+2][j] * dX[i*COORD_DIM*2+5][j] * quad_wts[j] / S.NtNp_[0];
  2406. }
  2407. }
  2408. }
  2409. return pol_circ;
  2410. };
  2411. auto compute_A = [&compute_A11,&compute_A12,&compute_A21,&compute_A22] (const Vector<Real>& x) {
  2412. const Vector<Real> sigma(x.Dim()-1,(Iterator<Real>)x.begin(),false);
  2413. const Real& alpha = x[x.Dim()-1];
  2414. Vector<Real> Ax;
  2415. Ax.ReInit(x.Dim());
  2416. Vector<Real> Bdotn(x.Dim()-1,Ax.begin(),false);
  2417. Real& flux = Ax[x.Dim()-1];
  2418. Vector<Real> Adotn_0, Adotn_1;
  2419. compute_A11(Adotn_0, sigma);
  2420. compute_A12(Adotn_1, alpha);
  2421. Bdotn = Adotn_0 + Adotn_1;
  2422. flux = compute_A21(sigma) + compute_A22(alpha);
  2423. return Ax;
  2424. };
  2425. auto compute_A11adj = [&S](Vector<Real>& U, const Vector<Real>& sigma) { // A11adj = I/2 + D
  2426. const Long Nelem = S.GetElemList().NElem();
  2427. const Long Nnodes = ElemBasis::Size();
  2428. Vector<ElemBasis> sigma_(Nelem);
  2429. for (Long i = 0; i < Nelem; i++) {
  2430. for (Long j = 0; j < Nnodes; j++) {
  2431. sigma_[i][j] = sigma[i*Nnodes+j];
  2432. }
  2433. }
  2434. S.quadrature_DxU.Eval(U, S.GetElemList(), sigma_, S.Laplace_DxU);
  2435. U = sigma*(-0.5) + U;
  2436. };
  2437. auto compute_A12adj = [&S,&compute_A12,&compute_inner_prod,&area_elem](const Vector<Real>& sigma_) {
  2438. const Long Nelem = S.GetElemList().NElem();
  2439. const Long Nnodes = ElemBasis::Size();
  2440. Vector<Real> A12_sigma_;
  2441. compute_A12(A12_sigma_, 1);
  2442. Vector<ElemBasis> A12_sigma(Nelem), sigma(Nelem);
  2443. for (Long i = 0; i < Nelem; i++) {
  2444. for (Long j = 0; j < Nnodes; j++) {
  2445. sigma[i][j] = sigma_[i*Nnodes+j];
  2446. A12_sigma[i][j] = A12_sigma_[i*Nnodes+j];
  2447. }
  2448. }
  2449. return compute_inner_prod(area_elem, A12_sigma, sigma);
  2450. };
  2451. auto compute_A21adj = [&S,&area_elem,&normal](Vector<Real>& A21adj_flux, Real flux) {
  2452. const Long Nelem = S.GetElemList().NElem();
  2453. const Long Nnodes = ElemBasis::Size();
  2454. Vector<ElemBasis> density(Nelem * COORD_DIM);
  2455. { // Set density
  2456. Vector<ElemBasis> dX;
  2457. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2458. for (Long i = 0; i < Nelem; i++) {
  2459. for (Long j = 0; j < Nnodes; j++) {
  2460. Real s = 1 / (area_elem[i][j] * S.NtNp_[0]);
  2461. density[i*COORD_DIM+0][j] = dX[i*COORD_DIM*2+1][j] * s;
  2462. density[i*COORD_DIM+1][j] = dX[i*COORD_DIM*2+3][j] * s;
  2463. density[i*COORD_DIM+2][j] = dX[i*COORD_DIM*2+5][j] * s;
  2464. }
  2465. }
  2466. }
  2467. Vector<ElemBasis> Gdensity;
  2468. S.quadrature_FxU.Eval(Gdensity, S.GetElemList(), density, S.Laplace_FxU);
  2469. Vector<ElemBasis> nxGdensity(Nelem * COORD_DIM);
  2470. for (Long i = 0; i < Nelem; i++) { // Set nxGdensity
  2471. for (Long j = 0; j < Nnodes; j++) {
  2472. Tensor<Real,true,COORD_DIM> Gdensity_, n;
  2473. Gdensity_(0) = Gdensity[i*COORD_DIM+0][j];
  2474. Gdensity_(1) = Gdensity[i*COORD_DIM+1][j];
  2475. Gdensity_(2) = Gdensity[i*COORD_DIM+2][j];
  2476. n(0) = normal[i*COORD_DIM+0][j];
  2477. n(1) = normal[i*COORD_DIM+1][j];
  2478. n(2) = normal[i*COORD_DIM+2][j];
  2479. nxGdensity[i*COORD_DIM+0][j] = n(1) * Gdensity_(2) - n(2) * Gdensity_(1);
  2480. nxGdensity[i*COORD_DIM+1][j] = n(2) * Gdensity_(0) - n(0) * Gdensity_(2);
  2481. nxGdensity[i*COORD_DIM+2][j] = n(0) * Gdensity_(1) - n(1) * Gdensity_(0);
  2482. }
  2483. }
  2484. S.quadrature_dUxF.Eval(A21adj_flux, S.GetElemList(), nxGdensity, S.Laplace_dUxF);
  2485. A21adj_flux *= flux;
  2486. };
  2487. auto compute_A22adj = [&compute_A22] (const Real alpha) {
  2488. return compute_A22(alpha);
  2489. };
  2490. auto compute_Aadj = [&compute_A11adj,&compute_A12adj,&compute_A21adj,&compute_A22adj] (const Vector<Real>& x) {
  2491. const Vector<Real> sigma(x.Dim()-1,(Iterator<Real>)x.begin(),false);
  2492. const Real& alpha = x[x.Dim()-1];
  2493. Vector<Real> Ax;
  2494. Ax.ReInit(x.Dim());
  2495. Vector<Real> Bdotn(x.Dim()-1,Ax.begin(),false);
  2496. Real& flux = Ax[x.Dim()-1];
  2497. Vector<Real> Adotn_0, Adotn_1;
  2498. compute_A11adj(Adotn_0, sigma);
  2499. compute_A21adj(Adotn_1, alpha);
  2500. Bdotn = Adotn_0 + Adotn_1;
  2501. flux = compute_A12adj(sigma) + compute_A22adj(alpha);
  2502. return Ax;
  2503. };
  2504. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2505. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2506. const auto pressure = area_elem;
  2507. auto compute_gvec = [&S,&pressure] (const Vector<ElemBasis>& B) {
  2508. const Long Nelem = S.GetElemList().NElem();
  2509. const Long Nnodes = ElemBasis::Size();
  2510. SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
  2511. SCTL_ASSERT(pressure.Dim() == Nelem);
  2512. Vector<ElemBasis> gvec(Nelem);
  2513. for (Long i = 0; i < Nelem; i++) {
  2514. for (Long j = 0; j < Nnodes; j++) {
  2515. Real B2 = 0;
  2516. B2 += B[i*COORD_DIM+0][j] * B[i*COORD_DIM+0][j];
  2517. B2 += B[i*COORD_DIM+1][j] * B[i*COORD_DIM+1][j];
  2518. B2 += B[i*COORD_DIM+2][j] * B[i*COORD_DIM+2][j];
  2519. gvec[i][j] = (B2*0.5 - pressure[i][j]) * (B2*0.5 - pressure[i][j]);
  2520. }
  2521. }
  2522. return gvec;
  2523. };
  2524. auto compute_dgdB = [&S,&pressure] (const Vector<ElemBasis>& B) {
  2525. const Long Nelem = S.GetElemList().NElem();
  2526. const Long Nnodes = ElemBasis::Size();
  2527. SCTL_ASSERT(B.Dim() == Nelem * COORD_DIM);
  2528. SCTL_ASSERT(pressure.Dim() == Nelem);
  2529. Vector<ElemBasis> dgdB(Nelem*COORD_DIM);
  2530. for (Long i = 0; i < Nelem; i++) {
  2531. for (Long j = 0; j < Nnodes; j++) {
  2532. Real B2 = 0;
  2533. B2 += B[i*COORD_DIM+0][j] * B[i*COORD_DIM+0][j];
  2534. B2 += B[i*COORD_DIM+1][j] * B[i*COORD_DIM+1][j];
  2535. B2 += B[i*COORD_DIM+2][j] * B[i*COORD_DIM+2][j];
  2536. dgdB[i*COORD_DIM+0][j] = 2 * (B2*0.5 - pressure[i][j]) * B[i*COORD_DIM+0][j];
  2537. dgdB[i*COORD_DIM+1][j] = 2 * (B2*0.5 - pressure[i][j]) * B[i*COORD_DIM+1][j];
  2538. dgdB[i*COORD_DIM+2][j] = 2 * (B2*0.5 - pressure[i][j]) * B[i*COORD_DIM+2][j];
  2539. }
  2540. }
  2541. return dgdB;
  2542. };
  2543. auto compute_invA = [&S,&comm,&compute_A] (Vector<ElemBasis>& sigma, Real& alpha, Real flux) {
  2544. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_A](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  2545. (*Ax) = compute_A(x);
  2546. };
  2547. const Long Nelem = S.GetElemList().NElem();
  2548. const Long Nnodes = ElemBasis::Size();
  2549. Vector<Real> rhs_(Nelem * Nnodes + 1);
  2550. rhs_ = 0;
  2551. rhs_[Nelem * Nnodes] = flux;
  2552. Vector<Real> x_(Nelem * Nnodes + 1);
  2553. x_ = 0;
  2554. ParallelSolver<Real> linear_solver(comm, true);
  2555. linear_solver(&x_, BIOp, rhs_, 1e-8, 50);
  2556. sigma.ReInit(Nelem);
  2557. for (Long i = 0; i < Nelem; i++) {
  2558. for (Long j = 0; j < Nnodes; j++) {
  2559. sigma[i][j] = x_[i*Nnodes+j];
  2560. }
  2561. }
  2562. alpha = x_[Nelem * Nnodes];
  2563. };
  2564. Real flux = 1.0, alpha;
  2565. Vector<ElemBasis> sigma(S.GetElemList().NElem());
  2566. compute_invA(sigma, alpha, flux);
  2567. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma) + compute_B0(alpha);
  2568. Real g = compute_inner_prod(area_elem, compute_gvec(B), area_elem*0+1);
  2569. std::cout<<"g = "<<g<<'\n';
  2570. { // Write VTU
  2571. VTUData vtu;
  2572. vtu.AddElems(S.GetElemList(), sigma, ORDER);
  2573. vtu.WriteVTK("sigma", comm);
  2574. }
  2575. { // Write VTU
  2576. VTUData vtu;
  2577. vtu.AddElems(S.GetElemList(), B, ORDER);
  2578. vtu.WriteVTK("B", comm);
  2579. }
  2580. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2581. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  2582. auto compute_gradient = [&sigma,&alpha,&B, &S,&normal,&area_elem,&comm, &compute_Aadj,&compute_half_n_plus_dG,&compute_dB0,&compute_A12,&compute_A22, &compute_gvec,&compute_dgdB,&compute_B0,&compute_dot_prod,&compute_inner_prod] () {
  2583. const Long Nelem = S.GetElemList().NElem();
  2584. const Long Nnodes = ElemBasis::Size();
  2585. auto compute_dg_dnu = [&S,&compute_gvec,&compute_dgdB,&comm,&normal,&area_elem,&compute_dB0](const Vector<ElemBasis>& sigma, Real alpha, const Vector<ElemBasis>& B) { // dg_dnu = (B*B) 2H - (2 B) \cdot (n \cdnot nabla) \nabla G[sigma] + (2 B) \alpha dB0_dnu \hat{\theta} + sigma (\nabla D)^T [2 B] + (2H) sigma (\nabla G)^T [2 B]
  2586. const Long Nelem = S.GetElemList().NElem();
  2587. const Long Nnodes = ElemBasis::Size();
  2588. Vector<ElemBasis> gvec = compute_gvec(B);
  2589. Vector<ElemBasis> v = compute_dgdB(B);
  2590. Vector<ElemBasis> dg_dnu0(Nelem), dg_dnu1(Nelem), dg_dnu2(Nelem), dg_dnu3(Nelem), dg_dnu4(Nelem);
  2591. dg_dnu0 = 0;
  2592. dg_dnu1 = 0;
  2593. dg_dnu2 = 0;
  2594. dg_dnu3 = 0;
  2595. dg_dnu4 = 0;
  2596. Vector<ElemBasis> H(Nelem);
  2597. { // Set mean curvature H
  2598. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2599. Vector<ElemBasis> dX, d2X;
  2600. ElemBasis::Grad(dX, X);
  2601. ElemBasis::Grad(d2X, dX);
  2602. for (Long i = 0; i < Nelem; i++) {
  2603. for (Long j = 0; j < Nnodes; j++) {
  2604. Tensor<Real,true,2,2> I, invI, II;
  2605. for (Long k0 = 0; k0 < 2; k0++) {
  2606. for (Long k1 = 0; k1 < 2; k1++) {
  2607. I(k0,k1) = 0;
  2608. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  2609. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  2610. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  2611. II(k0,k1) = 0;
  2612. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  2613. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  2614. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  2615. }
  2616. }
  2617. { // Set invI
  2618. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  2619. invI(0,0) = I(1,1) / detI;
  2620. invI(0,1) = -I(0,1) / detI;
  2621. invI(1,0) = -I(1,0) / detI;
  2622. invI(1,1) = I(0,0) / detI;
  2623. }
  2624. { // Set H
  2625. H[i][j] = 0;
  2626. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  2627. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  2628. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  2629. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  2630. }
  2631. }
  2632. }
  2633. }
  2634. // dg_dnu0 = (B*B) 2H
  2635. for (Long i = 0; i < Nelem; i++) {
  2636. for (Long j = 0; j < Nnodes; j++) {
  2637. dg_dnu0[i][j] = 0;
  2638. dg_dnu0[i][j] += gvec[i][j] * (2.0*H[i][j]);
  2639. }
  2640. }
  2641. // dg_dnu1 = (2 B) \cdot (n \cdnot \nabla) \nabla G[sigma]
  2642. Vector<ElemBasis> d2Gsigma;
  2643. Quadrature<Real> quadrature_Fxd2U;
  2644. quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2645. quadrature_Fxd2U.Eval(d2Gsigma, S.GetElemList(), sigma, S.Laplace_Fxd2U);
  2646. for (Long i = 0; i < Nelem; i++) {
  2647. for (Long j = 0; j < Nnodes; j++) {
  2648. dg_dnu1[i][j] = 0;
  2649. dg_dnu1[i][j] -= d2Gsigma[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  2650. dg_dnu1[i][j] -= d2Gsigma[i*9+1][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  2651. dg_dnu1[i][j] -= d2Gsigma[i*9+2][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  2652. dg_dnu1[i][j] -= d2Gsigma[i*9+3][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  2653. dg_dnu1[i][j] -= d2Gsigma[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  2654. dg_dnu1[i][j] -= d2Gsigma[i*9+5][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  2655. dg_dnu1[i][j] -= d2Gsigma[i*9+6][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  2656. dg_dnu1[i][j] -= d2Gsigma[i*9+7][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  2657. dg_dnu1[i][j] -= d2Gsigma[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  2658. }
  2659. }
  2660. // dg_dnu2 = (2 B) \alpha (n \cdot \nabla) \hat{\theta} / |r|
  2661. Vector<ElemBasis> dB0 = compute_dB0(alpha);
  2662. for (Long i = 0; i < Nelem; i++) {
  2663. for (Long j = 0; j < Nnodes; j++) {
  2664. dg_dnu2[i][j] = 0;
  2665. dg_dnu2[i][j] -= dB0[i*9+0][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  2666. dg_dnu2[i][j] -= dB0[i*9+1][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  2667. dg_dnu2[i][j] -= dB0[i*9+2][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  2668. dg_dnu2[i][j] -= dB0[i*9+3][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  2669. dg_dnu2[i][j] -= dB0[i*9+4][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  2670. dg_dnu2[i][j] -= dB0[i*9+5][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  2671. dg_dnu2[i][j] -= dB0[i*9+6][j] * normal[i*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  2672. dg_dnu2[i][j] -= dB0[i*9+7][j] * normal[i*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  2673. dg_dnu2[i][j] -= dB0[i*9+8][j] * normal[i*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  2674. }
  2675. }
  2676. // dg_dnu3 = (sigma (\nabla D)^T [2 B]
  2677. Vector<ElemBasis> nablaDtv;
  2678. Quadrature<Real> quadrature_dUxD;
  2679. quadrature_dUxD.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  2680. quadrature_dUxD.Eval(nablaDtv, S.GetElemList(), v, S.Laplace_dUxD);
  2681. for (Long i = 0; i < Nelem; i++) {
  2682. for (Long j = 0; j < Nnodes; j++) {
  2683. dg_dnu3[i][j] = 0;
  2684. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  2685. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  2686. dg_dnu3[i][j] += sigma[i][j] * nablaDtv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  2687. }
  2688. }
  2689. // dg_dnu4 = (2H) sigma (\nabla G)^T [2 B]
  2690. S.quadrature_dUxF.Eval(dg_dnu4, S.GetElemList(), v, S.Laplace_dUxF);
  2691. for (Long i = 0; i < Nelem; i++) {
  2692. for (Long j = 0; j < Nnodes; j++) {
  2693. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  2694. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  2695. dg_dnu4[i][j] += 0.5 * v[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  2696. dg_dnu4[i][j] *= 2*H[i][j] * sigma[i][j];
  2697. }
  2698. }
  2699. return dg_dnu0 + dg_dnu1 + dg_dnu2 + dg_dnu3 - dg_dnu4;
  2700. };
  2701. Vector<ElemBasis> dg_dnu = compute_dg_dnu(sigma, alpha, B);
  2702. auto compute_dg_dsigma = [&S,&compute_dgdB,&normal,&compute_dot_prod](const Vector<ElemBasis>& B) { // dg_dsigma = \int 2 B \cdot (\nabla G + n/2)
  2703. Vector<ElemBasis> B_dot_gradG;
  2704. Vector<ElemBasis> dgdB = compute_dgdB(B);
  2705. S.quadrature_dUxF.Eval(B_dot_gradG, S.GetElemList(), dgdB, S.Laplace_dUxF);
  2706. return B_dot_gradG * (-1.0) + compute_dot_prod(dgdB,normal) * 0.5;
  2707. };
  2708. auto compute_dg_dalpha = [&S,&compute_dgdB,&compute_B0,&compute_inner_prod,&area_elem] (const Vector<ElemBasis>& B) {
  2709. auto dB_dalpha = compute_B0(1);
  2710. Vector<ElemBasis> dgdB = compute_dgdB(B);
  2711. return compute_inner_prod(area_elem, dgdB,dB_dalpha);
  2712. };
  2713. Vector<Real> dg_dsigma(Nelem*Nnodes+1);
  2714. { // Set dg_dsigma
  2715. Vector<ElemBasis> dg_dsigma_ = compute_dg_dsigma(B);
  2716. for (Long i = 0; i < Nelem; i++) {
  2717. for (Long j = 0; j < Nnodes; j++) {
  2718. dg_dsigma[i*Nnodes+j] = dg_dsigma_[i][j];
  2719. }
  2720. }
  2721. dg_dsigma[Nelem*Nnodes] = compute_dg_dalpha(B);
  2722. }
  2723. auto compute_invAadj = [&S,&comm,&compute_Aadj] (Vector<Real>& b) {
  2724. typename sctl::ParallelSolver<Real>::ParallelOp BIOp = [&compute_Aadj](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  2725. (*Ax) = compute_Aadj(x);
  2726. };
  2727. const Long Nelem = S.GetElemList().NElem();
  2728. const Long Nnodes = ElemBasis::Size();
  2729. Vector<Real> x(b.Dim());
  2730. x = 0;
  2731. ParallelSolver<Real> linear_solver(comm, true);
  2732. linear_solver(&x, BIOp, b, 1e-8, 50);
  2733. return x;
  2734. };
  2735. Vector<Real> dg_dsigma_invA = compute_invAadj(dg_dsigma);
  2736. auto compute_grad_adj = [&S,&area_elem] (const Vector<ElemBasis>& V) {
  2737. const Long Nelem = S.GetElemList().NElem();
  2738. const Long Nnodes = ElemBasis::Size();
  2739. Vector<ElemBasis> du_dX(Nelem*COORD_DIM*2);
  2740. { // Set du_dX
  2741. Vector<ElemBasis> dX;
  2742. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2743. auto inv2x2 = [](Tensor<Real, true, 2, 2> M) {
  2744. Tensor<Real, true, 2, 2> Mout;
  2745. Real oodet = 1 / (M(0,0) * M(1,1) - M(0,1) * M(1,0));
  2746. Mout(0,0) = M(1,1) * oodet;
  2747. Mout(0,1) = -M(0,1) * oodet;
  2748. Mout(1,0) = -M(1,0) * oodet;
  2749. Mout(1,1) = M(0,0) * oodet;
  2750. return Mout;
  2751. };
  2752. for (Long i = 0; i < Nelem; i++) {
  2753. for (Long j = 0; j < Nnodes; j++) {
  2754. Tensor<Real, true, 3, 2> dX_du;
  2755. dX_du(0,0) = dX[(i*COORD_DIM+0)*2+0][j];
  2756. dX_du(1,0) = dX[(i*COORD_DIM+1)*2+0][j];
  2757. dX_du(2,0) = dX[(i*COORD_DIM+2)*2+0][j];
  2758. dX_du(0,1) = dX[(i*COORD_DIM+0)*2+1][j];
  2759. dX_du(1,1) = dX[(i*COORD_DIM+1)*2+1][j];
  2760. dX_du(2,1) = dX[(i*COORD_DIM+2)*2+1][j];
  2761. Tensor<Real, true, 2, 2> G; // = dX_du.Transpose() * dX_du;
  2762. G(0,0) = dX_du(0,0) * dX_du(0,0) + dX_du(1,0) * dX_du(1,0) + dX_du(2,0) * dX_du(2,0);
  2763. G(0,1) = dX_du(0,0) * dX_du(0,1) + dX_du(1,0) * dX_du(1,1) + dX_du(2,0) * dX_du(2,1);
  2764. G(1,0) = dX_du(0,1) * dX_du(0,0) + dX_du(1,1) * dX_du(1,0) + dX_du(2,1) * dX_du(2,0);
  2765. G(1,1) = dX_du(0,1) * dX_du(0,1) + dX_du(1,1) * dX_du(1,1) + dX_du(2,1) * dX_du(2,1);
  2766. Tensor<Real, true, 2, 2> Ginv = inv2x2(G);
  2767. du_dX[(i*COORD_DIM+0)*2+0][j] = Ginv(0,0) * dX_du(0,0) + Ginv(0,1) * dX_du(0,1);
  2768. du_dX[(i*COORD_DIM+1)*2+0][j] = Ginv(0,0) * dX_du(1,0) + Ginv(0,1) * dX_du(1,1);
  2769. du_dX[(i*COORD_DIM+2)*2+0][j] = Ginv(0,0) * dX_du(2,0) + Ginv(0,1) * dX_du(2,1);
  2770. du_dX[(i*COORD_DIM+0)*2+1][j] = Ginv(1,0) * dX_du(0,0) + Ginv(1,1) * dX_du(0,1);
  2771. du_dX[(i*COORD_DIM+1)*2+1][j] = Ginv(1,0) * dX_du(1,0) + Ginv(1,1) * dX_du(1,1);
  2772. du_dX[(i*COORD_DIM+2)*2+1][j] = Ginv(1,0) * dX_du(2,0) + Ginv(1,1) * dX_du(2,1);
  2773. }
  2774. }
  2775. }
  2776. Vector<ElemBasis> dudX_V(Nelem*2);
  2777. for (Long i = 0; i < Nelem; i++) {
  2778. for (Long j = 0; j < Nnodes; j++) {
  2779. dudX_V[i*2+0][j] = 0;
  2780. dudX_V[i*2+1][j] = 0;
  2781. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+0)*2+0][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
  2782. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+1)*2+0][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
  2783. dudX_V[i*2+0][j] += du_dX[(i*COORD_DIM+2)*2+0][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
  2784. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+0)*2+1][j] * V[i*COORD_DIM+0][j] * area_elem[i][j];
  2785. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+1)*2+1][j] * V[i*COORD_DIM+1][j] * area_elem[i][j];
  2786. dudX_V[i*2+1][j] += du_dX[(i*COORD_DIM+2)*2+1][j] * V[i*COORD_DIM+2][j] * area_elem[i][j];
  2787. }
  2788. }
  2789. Vector<ElemBasis> grad_dudX_V;
  2790. ElemBasis::Grad(grad_dudX_V, dudX_V);
  2791. Vector<ElemBasis> grad_adj_V(Nelem);
  2792. for (Long i = 0; i < Nelem; i++) {
  2793. for (Long j = 0; j < Nnodes; j++) {
  2794. grad_adj_V[i][j] = -(grad_dudX_V[(i*2+0)*2+0][j] + grad_dudX_V[(i*2+1)*2+1][j]) / area_elem[i][j];
  2795. }
  2796. }
  2797. return grad_adj_V;
  2798. };
  2799. auto compute_u_dAdnu_v_00 = [&S,&normal,&comm,&compute_half_n_plus_dG,&compute_grad_adj] (const Vector<Real>& u_, const Vector<Real>& v_) {
  2800. const Long Nelem = S.GetElemList().NElem();
  2801. const Long Nnodes = ElemBasis::Size();
  2802. Vector<ElemBasis> u(Nelem), u_n(Nelem*COORD_DIM), v(Nelem);
  2803. for (Long i = 0; i < Nelem; i++) {
  2804. for (Long j = 0; j < Nnodes; j++) {
  2805. u[i][j] = u_[i*Nnodes+j];
  2806. v[i][j] = v_[i*Nnodes+j];
  2807. u_n[i*COORD_DIM+0][j] = u[i][j] * normal[i*COORD_DIM+0][j];
  2808. u_n[i*COORD_DIM+1][j] = u[i][j] * normal[i*COORD_DIM+1][j];
  2809. u_n[i*COORD_DIM+2][j] = u[i][j] * normal[i*COORD_DIM+2][j];
  2810. }
  2811. }
  2812. Vector<ElemBasis> dAdnu0(Nelem), dAdnu1(Nelem), dAdnu2(Nelem), dAdnu3(Nelem);
  2813. dAdnu0 = 0;
  2814. dAdnu1 = 0;
  2815. dAdnu2 = 0;
  2816. dAdnu3 = 0;
  2817. Vector<ElemBasis> H(Nelem);
  2818. { // Set mean curvature H
  2819. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  2820. Vector<ElemBasis> dX, d2X;
  2821. ElemBasis::Grad(dX, X);
  2822. ElemBasis::Grad(d2X, dX);
  2823. for (Long i = 0; i < Nelem; i++) {
  2824. for (Long j = 0; j < Nnodes; j++) {
  2825. Tensor<Real,true,2,2> I, invI, II;
  2826. for (Long k0 = 0; k0 < 2; k0++) {
  2827. for (Long k1 = 0; k1 < 2; k1++) {
  2828. I(k0,k1) = 0;
  2829. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  2830. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  2831. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  2832. II(k0,k1) = 0;
  2833. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  2834. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  2835. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  2836. }
  2837. }
  2838. { // Set invI
  2839. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  2840. invI(0,0) = I(1,1) / detI;
  2841. invI(0,1) = -I(0,1) / detI;
  2842. invI(1,0) = -I(1,0) / detI;
  2843. invI(1,1) = I(0,0) / detI;
  2844. }
  2845. { // Set H
  2846. H[i][j] = 0;
  2847. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  2848. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  2849. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  2850. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  2851. }
  2852. }
  2853. }
  2854. }
  2855. // dAdnu0 = u B \cdot grad_nu
  2856. Vector<ElemBasis> B = compute_half_n_plus_dG(v);
  2857. Vector<ElemBasis> u_B(Nelem*COORD_DIM);
  2858. for (Long i = 0; i < Nelem; i++) {
  2859. for (Long j = 0; j < Nnodes; j++) {
  2860. u_B[i*COORD_DIM+0][j] = u[i][j] * B[i*COORD_DIM+0][j];
  2861. u_B[i*COORD_DIM+1][j] = u[i][j] * B[i*COORD_DIM+1][j];
  2862. u_B[i*COORD_DIM+2][j] = u[i][j] * B[i*COORD_DIM+2][j];
  2863. }
  2864. }
  2865. dAdnu0 = compute_grad_adj(u_B)*(-1.0);
  2866. // dAdnu1 = (2H) v (I/2 + \nabla G)^T [u n]
  2867. S.quadrature_dUxF.Eval(dAdnu1, S.GetElemList(), u_n, S.Laplace_dUxF);
  2868. for (Long i = 0; i < Nelem; i++) {
  2869. for (Long j = 0; j < Nnodes; j++) {
  2870. dAdnu1[i][j] += 0.5 * u_n[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  2871. dAdnu1[i][j] += 0.5 * u_n[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  2872. dAdnu1[i][j] += 0.5 * u_n[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  2873. dAdnu1[i][j] *= -2*H[i][j] * v[i][j];
  2874. }
  2875. }
  2876. // dAdnu2 = (u n) \cdot (n \cdnot \nabla) \nabla G[v]
  2877. Vector<ElemBasis> d2G_v;
  2878. Quadrature<Real> quadrature_Fxd2U;
  2879. quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  2880. quadrature_Fxd2U.Eval(d2G_v, S.GetElemList(), v, S.Laplace_Fxd2U);
  2881. for (Long i = 0; i < Nelem; i++) {
  2882. for (Long j = 0; j < Nnodes; j++) {
  2883. dAdnu2[i][j] = 0;
  2884. dAdnu2[i][j] -= d2G_v[i*9+0][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+0][j];
  2885. dAdnu2[i][j] -= d2G_v[i*9+1][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+1][j];
  2886. dAdnu2[i][j] -= d2G_v[i*9+2][j] * normal[i*COORD_DIM+0][j] * u_n[i*COORD_DIM+2][j];
  2887. dAdnu2[i][j] -= d2G_v[i*9+3][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+0][j];
  2888. dAdnu2[i][j] -= d2G_v[i*9+4][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+1][j];
  2889. dAdnu2[i][j] -= d2G_v[i*9+5][j] * normal[i*COORD_DIM+1][j] * u_n[i*COORD_DIM+2][j];
  2890. dAdnu2[i][j] -= d2G_v[i*9+6][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+0][j];
  2891. dAdnu2[i][j] -= d2G_v[i*9+7][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+1][j];
  2892. dAdnu2[i][j] -= d2G_v[i*9+8][j] * normal[i*COORD_DIM+2][j] * u_n[i*COORD_DIM+2][j];
  2893. }
  2894. }
  2895. // dAdnu3 = (v n \cdot \nabla D[u]
  2896. Vector<ElemBasis> nablaDt_u_n;
  2897. Quadrature<Real> quadrature_dUxD;
  2898. quadrature_dUxD.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  2899. quadrature_dUxD.Eval(nablaDt_u_n, S.GetElemList(), u_n, S.Laplace_dUxD);
  2900. for (Long i = 0; i < Nelem; i++) {
  2901. for (Long j = 0; j < Nnodes; j++) {
  2902. dAdnu3[i][j] = 0;
  2903. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  2904. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  2905. dAdnu3[i][j] += v[i][j] * nablaDt_u_n[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  2906. }
  2907. }
  2908. return dAdnu0 + dAdnu1 + dAdnu2 + dAdnu3;
  2909. };
  2910. auto compute_u_dAdnu_v_01 = [&S,&comm,&compute_dB0,&normal,&area_elem,&compute_B0,&compute_grad_adj] (const Vector<Real>& u, const Vector<Real>& v) {
  2911. const Long Nelem = S.GetElemList().NElem();
  2912. const Long Nnodes = ElemBasis::Size();
  2913. Vector<ElemBasis> dAdnu(Nelem);
  2914. Vector<ElemBasis> dB0 = compute_dB0(v[Nelem*Nnodes]);
  2915. for (Long i = 0; i < Nelem; i++) {
  2916. for (Long j = 0; j < Nnodes; j++) {
  2917. Real n_n_dB0 = 0;
  2918. n_n_dB0 -= dB0[i*9+0][j] * normal[i*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  2919. n_n_dB0 -= dB0[i*9+1][j] * normal[i*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  2920. n_n_dB0 -= dB0[i*9+2][j] * normal[i*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  2921. n_n_dB0 -= dB0[i*9+3][j] * normal[i*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  2922. n_n_dB0 -= dB0[i*9+4][j] * normal[i*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  2923. n_n_dB0 -= dB0[i*9+5][j] * normal[i*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  2924. n_n_dB0 -= dB0[i*9+6][j] * normal[i*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  2925. n_n_dB0 -= dB0[i*9+7][j] * normal[i*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  2926. n_n_dB0 -= dB0[i*9+8][j] * normal[i*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  2927. dAdnu[i][j] = u[i*Nnodes+j] * n_n_dB0;
  2928. }
  2929. }
  2930. Vector<ElemBasis> B0 = compute_B0(v[Nelem*Nnodes]);
  2931. Vector<ElemBasis> u_B0(Nelem*COORD_DIM);
  2932. for (Long i = 0; i < Nelem; i++) {
  2933. for (Long j = 0; j < Nnodes; j++) {
  2934. u_B0[i*COORD_DIM+0][j] = u[i*Nnodes+j] * B0[i*COORD_DIM+0][j];
  2935. u_B0[i*COORD_DIM+1][j] = u[i*Nnodes+j] * B0[i*COORD_DIM+1][j];
  2936. u_B0[i*COORD_DIM+2][j] = u[i*Nnodes+j] * B0[i*COORD_DIM+2][j];
  2937. }
  2938. }
  2939. dAdnu -= compute_grad_adj(u_B0);
  2940. return dAdnu;
  2941. };
  2942. auto compute_u_dAdnu_v_10 = [&S,&comm,&area_elem,&normal,&compute_dot_prod,&compute_grad_adj,&compute_half_n_plus_dG] (const Vector<Real>& u, const Vector<Real>& v) {
  2943. const Long Nelem = S.GetElemList().NElem();
  2944. const Long Nnodes = ElemBasis::Size();
  2945. Vector<ElemBasis> sigma(Nelem);
  2946. for (Long i = 0; i < Nelem; i++) {
  2947. for (Long j = 0; j < Nnodes; j++) {
  2948. sigma[i][j] = v[i*Nnodes+j];
  2949. }
  2950. }
  2951. auto compute_v = [&S,&area_elem] () {
  2952. const Long Nelem = S.GetElemList().NElem();
  2953. const Long Nnodes = ElemBasis::Size();
  2954. Vector<ElemBasis> v(Nelem * COORD_DIM);
  2955. Vector<ElemBasis> dX;
  2956. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  2957. for (Long i = 0; i < Nelem; i++) {
  2958. for (Long j = 0; j < Nnodes; j++) {
  2959. Tensor<Real,true,COORD_DIM,2> dx;
  2960. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  2961. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  2962. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  2963. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  2964. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  2965. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  2966. Real s = 1 / (area_elem[i][j] * S.NtNp_[0]);
  2967. for (Long k = 0; k < COORD_DIM; k++) {
  2968. v[i*COORD_DIM+k][j] = dx(k,1) * s;
  2969. }
  2970. }
  2971. }
  2972. return v;
  2973. };
  2974. auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  2975. const Long Nelem = S.GetElemList().NElem();
  2976. const Long Nnodes = ElemBasis::Size();
  2977. Vector<ElemBasis> J(Nelem * COORD_DIM);
  2978. for (Long i = 0; i < Nelem; i++) { // Set J
  2979. for (Long j = 0; j < Nnodes; j++) {
  2980. Tensor<Real,true,COORD_DIM> a, b;
  2981. a(0) = A[i*COORD_DIM+0][j];
  2982. a(1) = A[i*COORD_DIM+1][j];
  2983. a(2) = A[i*COORD_DIM+2][j];
  2984. b(0) = B[i*COORD_DIM+0][j];
  2985. b(1) = B[i*COORD_DIM+1][j];
  2986. b(2) = B[i*COORD_DIM+2][j];
  2987. J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
  2988. J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
  2989. J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
  2990. }
  2991. }
  2992. return J;
  2993. };
  2994. auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,compute_grad_adj,sigma] () {
  2995. const Long Nelem = S.GetElemList().NElem();
  2996. const Long Nnodes = ElemBasis::Size();
  2997. Vector<ElemBasis> Gv;
  2998. Vector<ElemBasis> v = compute_v();
  2999. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3000. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3001. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3002. return compute_grad_adj(BxGv)*(-1.0);
  3003. };
  3004. auto compute_dphi_dnu1 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,&compute_dot_prod,sigma] () {
  3005. const Long Nelem = S.GetElemList().NElem();
  3006. const Long Nnodes = ElemBasis::Size();
  3007. Vector<ElemBasis> H(Nelem);
  3008. { // Set mean curvature H
  3009. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3010. Vector<ElemBasis> dX, d2X;
  3011. ElemBasis::Grad(dX, X);
  3012. ElemBasis::Grad(d2X, dX);
  3013. for (Long i = 0; i < Nelem; i++) {
  3014. for (Long j = 0; j < Nnodes; j++) {
  3015. Tensor<Real,true,2,2> I, invI, II;
  3016. for (Long k0 = 0; k0 < 2; k0++) {
  3017. for (Long k1 = 0; k1 < 2; k1++) {
  3018. I(k0,k1) = 0;
  3019. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3020. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3021. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3022. II(k0,k1) = 0;
  3023. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3024. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3025. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3026. }
  3027. }
  3028. { // Set invI
  3029. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3030. invI(0,0) = I(1,1) / detI;
  3031. invI(0,1) = -I(0,1) / detI;
  3032. invI(1,0) = -I(1,0) / detI;
  3033. invI(1,1) = I(0,0) / detI;
  3034. }
  3035. { // Set H
  3036. H[i][j] = 0;
  3037. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3038. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3039. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3040. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3041. }
  3042. }
  3043. }
  3044. }
  3045. Vector<ElemBasis> Gv;
  3046. Vector<ElemBasis> v = compute_v();
  3047. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3048. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3049. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3050. Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
  3051. Vector<ElemBasis> dphi_dnu(Nelem);
  3052. for (Long i = 0; i < Nelem; i++) {
  3053. for (Long j = 0; j < Nnodes; j++) {
  3054. dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
  3055. }
  3056. }
  3057. return dphi_dnu;
  3058. };
  3059. auto compute_dphi_dnu2 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,&compute_dot_prod,sigma] () {
  3060. const Long Nelem = S.GetElemList().NElem();
  3061. const Long Nnodes = ElemBasis::Size();
  3062. Vector<ElemBasis> H(Nelem);
  3063. { // Set mean curvature H
  3064. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3065. Vector<ElemBasis> dX, d2X;
  3066. ElemBasis::Grad(dX, X);
  3067. ElemBasis::Grad(d2X, dX);
  3068. for (Long i = 0; i < Nelem; i++) {
  3069. for (Long j = 0; j < Nnodes; j++) {
  3070. Tensor<Real,true,2,2> I, invI, II;
  3071. for (Long k0 = 0; k0 < 2; k0++) {
  3072. for (Long k1 = 0; k1 < 2; k1++) {
  3073. I(k0,k1) = 0;
  3074. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3075. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3076. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3077. II(k0,k1) = 0;
  3078. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3079. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3080. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3081. }
  3082. }
  3083. { // Set invI
  3084. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3085. invI(0,0) = I(1,1) / detI;
  3086. invI(0,1) = -I(0,1) / detI;
  3087. invI(1,0) = -I(1,0) / detI;
  3088. invI(1,1) = I(0,0) / detI;
  3089. }
  3090. { // Set H
  3091. H[i][j] = 0;
  3092. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3093. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3094. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3095. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3096. }
  3097. }
  3098. }
  3099. }
  3100. Vector<ElemBasis> GnxB;
  3101. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3102. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3103. S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
  3104. Vector<ElemBasis> v = compute_v();
  3105. Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
  3106. Vector<ElemBasis> dphi_dnu(Nelem);
  3107. for (Long i = 0; i < Nelem; i++) {
  3108. for (Long j = 0; j < Nnodes; j++) {
  3109. dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
  3110. }
  3111. }
  3112. return dphi_dnu;
  3113. };
  3114. auto compute_dphi_dnu3 = [&S,&normal,&area_elem,&compute_AxB,&compute_half_n_plus_dG,sigma] () {
  3115. const Long Nelem = S.GetElemList().NElem();
  3116. const Long Nnodes = ElemBasis::Size();
  3117. Vector<ElemBasis> GnxB;
  3118. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3119. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3120. S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
  3121. Vector<ElemBasis> H(Nelem);
  3122. { // Set mean curvature H
  3123. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3124. Vector<ElemBasis> dX, d2X;
  3125. ElemBasis::Grad(dX, X);
  3126. ElemBasis::Grad(d2X, dX);
  3127. for (Long i = 0; i < Nelem; i++) {
  3128. for (Long j = 0; j < Nnodes; j++) {
  3129. Tensor<Real,true,2,2> I, invI, II;
  3130. for (Long k0 = 0; k0 < 2; k0++) {
  3131. for (Long k1 = 0; k1 < 2; k1++) {
  3132. I(k0,k1) = 0;
  3133. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3134. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3135. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3136. II(k0,k1) = 0;
  3137. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3138. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3139. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3140. }
  3141. }
  3142. { // Set invI
  3143. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3144. invI(0,0) = I(1,1) / detI;
  3145. invI(0,1) = -I(0,1) / detI;
  3146. invI(1,0) = -I(1,0) / detI;
  3147. invI(1,1) = I(0,0) / detI;
  3148. }
  3149. { // Set H
  3150. H[i][j] = 0;
  3151. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3152. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3153. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3154. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3155. }
  3156. }
  3157. }
  3158. }
  3159. Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem);
  3160. { // Set dv_dnu1, dv_dnu2
  3161. Vector<ElemBasis> dX, dGnxB;
  3162. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3163. ElemBasis::Grad(dGnxB, GnxB);
  3164. for (Long i = 0; i < Nelem; i++) {
  3165. for (Long j = 0; j < Nnodes; j++) {
  3166. dv_dnu1[i][j] = 0;
  3167. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * dX[(i*COORD_DIM+0)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3168. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * dX[(i*COORD_DIM+1)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3169. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * dX[(i*COORD_DIM+2)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3170. dv_dnu2[i][j] = 0;
  3171. dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+0)*2+1][j] * normal[i*COORD_DIM+0][j] / (area_elem[i][j] * S.NtNp_[0]);
  3172. dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+1)*2+1][j] * normal[i*COORD_DIM+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  3173. dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+2)*2+1][j] * normal[i*COORD_DIM+2][j] / (area_elem[i][j] * S.NtNp_[0]);
  3174. }
  3175. }
  3176. }
  3177. return dv_dnu1 + dv_dnu2;
  3178. };
  3179. auto compute_dphi_dnu4 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,sigma] () {
  3180. const Long Nelem = S.GetElemList().NElem();
  3181. const Long Nnodes = ElemBasis::Size();
  3182. Vector<ElemBasis> dGnxB;
  3183. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3184. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3185. S.quadrature_FxdU.Eval(dGnxB, S.GetElemList(), nxB, S.Laplace_FxdU);
  3186. Vector<ElemBasis> v = compute_v();
  3187. Vector<ElemBasis> dphi_dnu(Nelem);
  3188. for (Long i = 0; i < Nelem; i++) {
  3189. for (Long j = 0; j < Nnodes; j++) {
  3190. Real dphi_dnu_ = 0;
  3191. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  3192. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  3193. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  3194. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  3195. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  3196. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  3197. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  3198. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  3199. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  3200. dphi_dnu[i][j] = dphi_dnu_;
  3201. }
  3202. }
  3203. return dphi_dnu;
  3204. };
  3205. auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&compute_half_n_plus_dG,sigma] () {
  3206. const Long Nelem = S.GetElemList().NElem();
  3207. const Long Nnodes = ElemBasis::Size();
  3208. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma);
  3209. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3210. Vector<ElemBasis> dGv;
  3211. Vector<ElemBasis> v = compute_v();
  3212. S.quadrature_FxdU.Eval(dGv, S.GetElemList(), v, S.Laplace_FxdU);
  3213. Vector<ElemBasis> dphi_dnu(Nelem);
  3214. for (Long i = 0; i < Nelem; i++) {
  3215. for (Long j = 0; j < Nnodes; j++) {
  3216. Real dphi_dnu_ = 0;
  3217. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
  3218. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
  3219. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
  3220. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
  3221. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
  3222. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
  3223. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
  3224. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
  3225. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
  3226. dphi_dnu[i][j] = dphi_dnu_;
  3227. }
  3228. }
  3229. return dphi_dnu;
  3230. };
  3231. auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
  3232. const Long Nelem = S.GetElemList().NElem();
  3233. const Long Nnodes = ElemBasis::Size();
  3234. Vector<ElemBasis> Gv;
  3235. Vector<ElemBasis> v = compute_v();
  3236. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3237. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3238. Vector<ElemBasis> gradB;
  3239. Quadrature<Real> quadrature_Fxd2U;
  3240. quadrature_Fxd2U.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_Fxd2U, order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3241. quadrature_Fxd2U.Eval(gradB, S.GetElemList(), sigma, S.Laplace_Fxd2U);
  3242. Vector<ElemBasis> dphi_dnu(Nelem);
  3243. for (Long i = 0; i < Nelem; i++) {
  3244. for (Long j = 0; j < Nnodes; j++) {
  3245. Real dphi_dnu_ = 0;
  3246. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3247. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  3248. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  3249. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  3250. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3251. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  3252. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  3253. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  3254. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3255. dphi_dnu[i][j] = dphi_dnu_;
  3256. }
  3257. }
  3258. return dphi_dnu;
  3259. };
  3260. auto compute_dphi_dnu7 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
  3261. const Long Nelem = S.GetElemList().NElem();
  3262. const Long Nnodes = ElemBasis::Size();
  3263. Vector<ElemBasis> H(Nelem);
  3264. { // Set mean curvature H
  3265. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3266. Vector<ElemBasis> dX, d2X;
  3267. ElemBasis::Grad(dX, X);
  3268. ElemBasis::Grad(d2X, dX);
  3269. for (Long i = 0; i < Nelem; i++) {
  3270. for (Long j = 0; j < Nnodes; j++) {
  3271. Tensor<Real,true,2,2> I, invI, II;
  3272. for (Long k0 = 0; k0 < 2; k0++) {
  3273. for (Long k1 = 0; k1 < 2; k1++) {
  3274. I(k0,k1) = 0;
  3275. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3276. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3277. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3278. II(k0,k1) = 0;
  3279. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3280. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3281. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3282. }
  3283. }
  3284. { // Set invI
  3285. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3286. invI(0,0) = I(1,1) / detI;
  3287. invI(0,1) = -I(0,1) / detI;
  3288. invI(1,0) = -I(1,0) / detI;
  3289. invI(1,1) = I(0,0) / detI;
  3290. }
  3291. { // Set H
  3292. H[i][j] = 0;
  3293. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3294. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3295. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3296. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3297. }
  3298. }
  3299. }
  3300. }
  3301. Vector<ElemBasis> Gv;
  3302. Vector<ElemBasis> v = compute_v();
  3303. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3304. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3305. Vector<ElemBasis> dphi_dnu(Nelem);
  3306. S.quadrature_dUxF.Eval(dphi_dnu, S.GetElemList(), nxGv, S.Laplace_dUxF);
  3307. for (Long i = 0; i < Nelem; i++) {
  3308. for (Long j = 0; j < Nnodes; j++) {
  3309. dphi_dnu[i][j] *= -2*H[i][j] * sigma[i][j];
  3310. }
  3311. }
  3312. return dphi_dnu;
  3313. };
  3314. auto compute_dphi_dnu8 = [&S,&normal,&compute_AxB,&compute_v,sigma,&comm] () {
  3315. const Long Nelem = S.GetElemList().NElem();
  3316. const Long Nnodes = ElemBasis::Size();
  3317. Vector<ElemBasis> H(Nelem);
  3318. { // Set mean curvature H
  3319. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3320. Vector<ElemBasis> dX, d2X;
  3321. ElemBasis::Grad(dX, X);
  3322. ElemBasis::Grad(d2X, dX);
  3323. for (Long i = 0; i < Nelem; i++) {
  3324. for (Long j = 0; j < Nnodes; j++) {
  3325. Tensor<Real,true,2,2> I, invI, II;
  3326. for (Long k0 = 0; k0 < 2; k0++) {
  3327. for (Long k1 = 0; k1 < 2; k1++) {
  3328. I(k0,k1) = 0;
  3329. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3330. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3331. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3332. II(k0,k1) = 0;
  3333. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3334. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3335. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3336. }
  3337. }
  3338. { // Set invI
  3339. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3340. invI(0,0) = I(1,1) / detI;
  3341. invI(0,1) = -I(0,1) / detI;
  3342. invI(1,0) = -I(1,0) / detI;
  3343. invI(1,1) = I(0,0) / detI;
  3344. }
  3345. { // Set H
  3346. H[i][j] = 0;
  3347. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3348. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3349. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3350. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3351. }
  3352. }
  3353. }
  3354. }
  3355. Vector<ElemBasis> Gv;
  3356. Vector<ElemBasis> v = compute_v();
  3357. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3358. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3359. Vector<ElemBasis> dphi_dnu(Nelem);
  3360. Vector<ElemBasis> nablaDt_nxGv;
  3361. Quadrature<Real> quadrature_dUxD;
  3362. quadrature_dUxD.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxD, order_singular, order_direct, -1.0, comm, 0.01 * pow<-2,Real>(ORDER));
  3363. quadrature_dUxD.Eval(nablaDt_nxGv, S.GetElemList(), nxGv, S.Laplace_dUxD);
  3364. for (Long i = 0; i < Nelem; i++) {
  3365. for (Long j = 0; j < Nnodes; j++) {
  3366. dphi_dnu[i][j] = 0;
  3367. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+0][j]*normal[i*COORD_DIM+0][j];
  3368. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+1][j]*normal[i*COORD_DIM+1][j];
  3369. dphi_dnu[i][j] += sigma[i][j] * nablaDt_nxGv[i*COORD_DIM+2][j]*normal[i*COORD_DIM+2][j];
  3370. }
  3371. }
  3372. return dphi_dnu;
  3373. };
  3374. auto dphi_dnu0 = compute_dphi_dnu0();
  3375. auto dphi_dnu1 = compute_dphi_dnu1();
  3376. auto dphi_dnu2 = compute_dphi_dnu2();
  3377. auto dphi_dnu3 = compute_dphi_dnu3();
  3378. auto dphi_dnu4 = compute_dphi_dnu4();
  3379. auto dphi_dnu5 = compute_dphi_dnu5();
  3380. auto dphi_dnu6 = compute_dphi_dnu6();
  3381. auto dphi_dnu7 = compute_dphi_dnu7();
  3382. auto dphi_dnu8 = compute_dphi_dnu8();
  3383. return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6+dphi_dnu7+dphi_dnu8) * u[Nelem*Nnodes];
  3384. };
  3385. auto compute_u_dAdnu_v_11 = [&S,&comm,&area_elem,&normal,&compute_dot_prod,&compute_grad_adj,&compute_B0,&compute_dB0] (const Vector<Real>& u, const Vector<Real>& v) {
  3386. const Long Nelem = S.GetElemList().NElem();
  3387. const Long Nnodes = ElemBasis::Size();
  3388. auto compute_v = [&S,&area_elem] () {
  3389. const Long Nelem = S.GetElemList().NElem();
  3390. const Long Nnodes = ElemBasis::Size();
  3391. Vector<ElemBasis> v(Nelem * COORD_DIM);
  3392. Vector<ElemBasis> dX;
  3393. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3394. for (Long i = 0; i < Nelem; i++) {
  3395. for (Long j = 0; j < Nnodes; j++) {
  3396. Tensor<Real,true,COORD_DIM,2> dx;
  3397. dx(0,0) = dX[i*COORD_DIM*2+0][j];
  3398. dx(0,1) = dX[i*COORD_DIM*2+1][j];
  3399. dx(1,0) = dX[i*COORD_DIM*2+2][j];
  3400. dx(1,1) = dX[i*COORD_DIM*2+3][j];
  3401. dx(2,0) = dX[i*COORD_DIM*2+4][j];
  3402. dx(2,1) = dX[i*COORD_DIM*2+5][j];
  3403. Real s = 1 / (area_elem[i][j] * S.NtNp_[0]);
  3404. for (Long k = 0; k < COORD_DIM; k++) {
  3405. v[i*COORD_DIM+k][j] = dx(k,1) * s;
  3406. }
  3407. }
  3408. }
  3409. return v;
  3410. };
  3411. auto compute_AxB = [&S] (const Vector<ElemBasis>& A, const Vector<ElemBasis>& B) {
  3412. const Long Nelem = S.GetElemList().NElem();
  3413. const Long Nnodes = ElemBasis::Size();
  3414. Vector<ElemBasis> J(Nelem * COORD_DIM);
  3415. for (Long i = 0; i < Nelem; i++) { // Set J
  3416. for (Long j = 0; j < Nnodes; j++) {
  3417. Tensor<Real,true,COORD_DIM> a, b;
  3418. a(0) = A[i*COORD_DIM+0][j];
  3419. a(1) = A[i*COORD_DIM+1][j];
  3420. a(2) = A[i*COORD_DIM+2][j];
  3421. b(0) = B[i*COORD_DIM+0][j];
  3422. b(1) = B[i*COORD_DIM+1][j];
  3423. b(2) = B[i*COORD_DIM+2][j];
  3424. J[i*COORD_DIM+0][j] = a(1) * b(2) - a(2) * b(1);
  3425. J[i*COORD_DIM+1][j] = a(2) * b(0) - a(0) * b(2);
  3426. J[i*COORD_DIM+2][j] = a(0) * b(1) - a(1) * b(0);
  3427. }
  3428. }
  3429. return J;
  3430. };
  3431. auto compute_dphi_dnu0 = [&S,&normal,&compute_AxB,&compute_v,&compute_dB0] () {
  3432. const Long Nelem = S.GetElemList().NElem();
  3433. const Long Nnodes = ElemBasis::Size();
  3434. Vector<ElemBasis> Gv;
  3435. Vector<ElemBasis> v = compute_v();
  3436. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3437. Vector<ElemBasis> nxGv = compute_AxB(Gv,normal);
  3438. Vector<ElemBasis> gradB = compute_dB0(1.0);
  3439. Vector<ElemBasis> dphi_dnu(Nelem);
  3440. for (Long i = 0; i < Nelem; i++) {
  3441. for (Long j = 0; j < Nnodes; j++) {
  3442. Real dphi_dnu_ = 0;
  3443. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+0][j] * normal[i*COORD_DIM+0][j];
  3444. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+1][j] * normal[i*COORD_DIM+0][j];
  3445. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+0)*COORD_DIM+2][j] * normal[i*COORD_DIM+0][j];
  3446. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+0][j] * normal[i*COORD_DIM+1][j];
  3447. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+1][j] * normal[i*COORD_DIM+1][j];
  3448. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+1)*COORD_DIM+2][j] * normal[i*COORD_DIM+1][j];
  3449. dphi_dnu_ += -nxGv[i*COORD_DIM+0][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+0][j] * normal[i*COORD_DIM+2][j];
  3450. dphi_dnu_ += -nxGv[i*COORD_DIM+1][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+1][j] * normal[i*COORD_DIM+2][j];
  3451. dphi_dnu_ += -nxGv[i*COORD_DIM+2][j] * gradB[(i*COORD_DIM+2)*COORD_DIM+2][j] * normal[i*COORD_DIM+2][j];
  3452. dphi_dnu[i][j] = dphi_dnu_;
  3453. }
  3454. }
  3455. return dphi_dnu;
  3456. };
  3457. auto compute_dphi_dnu1 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0,compute_grad_adj] () {
  3458. const Long Nelem = S.GetElemList().NElem();
  3459. const Long Nnodes = ElemBasis::Size();
  3460. Vector<ElemBasis> Gv;
  3461. Vector<ElemBasis> v = compute_v();
  3462. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3463. Vector<ElemBasis> B = compute_B0(1.0);
  3464. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3465. return compute_grad_adj(BxGv)*(-1.0);
  3466. };
  3467. auto compute_dphi_dnu2 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0,&compute_dot_prod] () {
  3468. const Long Nelem = S.GetElemList().NElem();
  3469. const Long Nnodes = ElemBasis::Size();
  3470. Vector<ElemBasis> H(Nelem);
  3471. { // Set mean curvature H
  3472. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3473. Vector<ElemBasis> dX, d2X;
  3474. ElemBasis::Grad(dX, X);
  3475. ElemBasis::Grad(d2X, dX);
  3476. for (Long i = 0; i < Nelem; i++) {
  3477. for (Long j = 0; j < Nnodes; j++) {
  3478. Tensor<Real,true,2,2> I, invI, II;
  3479. for (Long k0 = 0; k0 < 2; k0++) {
  3480. for (Long k1 = 0; k1 < 2; k1++) {
  3481. I(k0,k1) = 0;
  3482. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3483. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3484. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3485. II(k0,k1) = 0;
  3486. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3487. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3488. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3489. }
  3490. }
  3491. { // Set invI
  3492. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3493. invI(0,0) = I(1,1) / detI;
  3494. invI(0,1) = -I(0,1) / detI;
  3495. invI(1,0) = -I(1,0) / detI;
  3496. invI(1,1) = I(0,0) / detI;
  3497. }
  3498. { // Set H
  3499. H[i][j] = 0;
  3500. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3501. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3502. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3503. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3504. }
  3505. }
  3506. }
  3507. }
  3508. Vector<ElemBasis> Gv;
  3509. Vector<ElemBasis> v = compute_v();
  3510. S.quadrature_FxU.Eval(Gv, S.GetElemList(), v, S.Laplace_FxU);
  3511. Vector<ElemBasis> B = compute_B0(1.0);
  3512. Vector<ElemBasis> BxGv = compute_AxB(B,Gv);
  3513. Vector<ElemBasis> n_dot_BxGv = compute_dot_prod(normal,BxGv);
  3514. Vector<ElemBasis> dphi_dnu(Nelem);
  3515. for (Long i = 0; i < Nelem; i++) {
  3516. for (Long j = 0; j < Nnodes; j++) {
  3517. dphi_dnu[i][j] = n_dot_BxGv[i][j] * 2*H[i][j];
  3518. }
  3519. }
  3520. return dphi_dnu;
  3521. };
  3522. auto compute_dphi_dnu3 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0,&compute_dot_prod] () {
  3523. const Long Nelem = S.GetElemList().NElem();
  3524. const Long Nnodes = ElemBasis::Size();
  3525. Vector<ElemBasis> H(Nelem);
  3526. { // Set mean curvature H
  3527. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3528. Vector<ElemBasis> dX, d2X;
  3529. ElemBasis::Grad(dX, X);
  3530. ElemBasis::Grad(d2X, dX);
  3531. for (Long i = 0; i < Nelem; i++) {
  3532. for (Long j = 0; j < Nnodes; j++) {
  3533. Tensor<Real,true,2,2> I, invI, II;
  3534. for (Long k0 = 0; k0 < 2; k0++) {
  3535. for (Long k1 = 0; k1 < 2; k1++) {
  3536. I(k0,k1) = 0;
  3537. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3538. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3539. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3540. II(k0,k1) = 0;
  3541. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3542. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3543. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3544. }
  3545. }
  3546. { // Set invI
  3547. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3548. invI(0,0) = I(1,1) / detI;
  3549. invI(0,1) = -I(0,1) / detI;
  3550. invI(1,0) = -I(1,0) / detI;
  3551. invI(1,1) = I(0,0) / detI;
  3552. }
  3553. { // Set H
  3554. H[i][j] = 0;
  3555. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3556. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3557. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3558. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3559. }
  3560. }
  3561. }
  3562. }
  3563. Vector<ElemBasis> GnxB;
  3564. Vector<ElemBasis> B = compute_B0(1.0);
  3565. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3566. S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
  3567. Vector<ElemBasis> v = compute_v();
  3568. Vector<ElemBasis> v_dot_GnxB = compute_dot_prod(v,GnxB);
  3569. Vector<ElemBasis> dphi_dnu(Nelem);
  3570. for (Long i = 0; i < Nelem; i++) {
  3571. for (Long j = 0; j < Nnodes; j++) {
  3572. dphi_dnu[i][j] = v_dot_GnxB[i][j] * 2*H[i][j];
  3573. }
  3574. }
  3575. return dphi_dnu;
  3576. };
  3577. auto compute_dphi_dnu4 = [&S,&normal,&area_elem,&compute_AxB,&compute_B0] () {
  3578. const Long Nelem = S.GetElemList().NElem();
  3579. const Long Nnodes = ElemBasis::Size();
  3580. Vector<ElemBasis> GnxB;
  3581. Vector<ElemBasis> B = compute_B0(1.0);
  3582. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3583. S.quadrature_FxU.Eval(GnxB, S.GetElemList(), nxB, S.Laplace_FxU);
  3584. Vector<ElemBasis> H(Nelem);
  3585. { // Set mean curvature H
  3586. const Vector<ElemBasis> X = S.GetElemList().ElemVector();
  3587. Vector<ElemBasis> dX, d2X;
  3588. ElemBasis::Grad(dX, X);
  3589. ElemBasis::Grad(d2X, dX);
  3590. for (Long i = 0; i < Nelem; i++) {
  3591. for (Long j = 0; j < Nnodes; j++) {
  3592. Tensor<Real,true,2,2> I, invI, II;
  3593. for (Long k0 = 0; k0 < 2; k0++) {
  3594. for (Long k1 = 0; k1 < 2; k1++) {
  3595. I(k0,k1) = 0;
  3596. I(k0,k1) += dX[(i*COORD_DIM+0)*2+k0][j] * dX[(i*COORD_DIM+0)*2+k1][j];
  3597. I(k0,k1) += dX[(i*COORD_DIM+1)*2+k0][j] * dX[(i*COORD_DIM+1)*2+k1][j];
  3598. I(k0,k1) += dX[(i*COORD_DIM+2)*2+k0][j] * dX[(i*COORD_DIM+2)*2+k1][j];
  3599. II(k0,k1) = 0;
  3600. II(k0,k1) += d2X[(i*COORD_DIM+0)*4+k0*2+k1][j] * normal[i*COORD_DIM+0][j];
  3601. II(k0,k1) += d2X[(i*COORD_DIM+1)*4+k0*2+k1][j] * normal[i*COORD_DIM+1][j];
  3602. II(k0,k1) += d2X[(i*COORD_DIM+2)*4+k0*2+k1][j] * normal[i*COORD_DIM+2][j];
  3603. }
  3604. }
  3605. { // Set invI
  3606. Real detI = I(0,0)*I(1,1)-I(0,1)*I(1,0);
  3607. invI(0,0) = I(1,1) / detI;
  3608. invI(0,1) = -I(0,1) / detI;
  3609. invI(1,0) = -I(1,0) / detI;
  3610. invI(1,1) = I(0,0) / detI;
  3611. }
  3612. { // Set H
  3613. H[i][j] = 0;
  3614. H[i][j] += -0.5 * II(0,0)*invI(0,0);
  3615. H[i][j] += -0.5 * II(0,1)*invI(0,1);
  3616. H[i][j] += -0.5 * II(1,0)*invI(1,0);
  3617. H[i][j] += -0.5 * II(1,1)*invI(1,1);
  3618. }
  3619. }
  3620. }
  3621. }
  3622. Vector<ElemBasis> dv_dnu1(Nelem), dv_dnu2(Nelem);
  3623. { // Set dv_dnu1, dv_dnu2
  3624. Vector<ElemBasis> dX, dGnxB;
  3625. ElemBasis::Grad(dX, S.GetElemList().ElemVector());
  3626. ElemBasis::Grad(dGnxB, GnxB);
  3627. for (Long i = 0; i < Nelem; i++) {
  3628. for (Long j = 0; j < Nnodes; j++) {
  3629. dv_dnu1[i][j] = 0;
  3630. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+0][j] * dX[(i*COORD_DIM+0)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3631. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+1][j] * dX[(i*COORD_DIM+1)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3632. dv_dnu1[i][j] += -GnxB[i*COORD_DIM+2][j] * dX[(i*COORD_DIM+2)*2+1][j] * 2 * H[i][j] / (area_elem[i][j] * S.NtNp_[0]);
  3633. dv_dnu2[i][j] = 0;
  3634. dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+0)*2+1][j] * normal[i*COORD_DIM+0][j] / (area_elem[i][j] * S.NtNp_[0]);
  3635. dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+1)*2+1][j] * normal[i*COORD_DIM+1][j] / (area_elem[i][j] * S.NtNp_[0]);
  3636. dv_dnu2[i][j] += -dGnxB[(i*COORD_DIM+2)*2+1][j] * normal[i*COORD_DIM+2][j] / (area_elem[i][j] * S.NtNp_[0]);
  3637. }
  3638. }
  3639. }
  3640. return dv_dnu1 + dv_dnu2;
  3641. };
  3642. auto compute_dphi_dnu5 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0] () {
  3643. const Long Nelem = S.GetElemList().NElem();
  3644. const Long Nnodes = ElemBasis::Size();
  3645. Vector<ElemBasis> dGnxB;
  3646. Vector<ElemBasis> B = compute_B0(1.0);
  3647. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3648. S.quadrature_FxdU.Eval(dGnxB, S.GetElemList(), nxB, S.Laplace_FxdU);
  3649. Vector<ElemBasis> v = compute_v();
  3650. Vector<ElemBasis> dphi_dnu(Nelem);
  3651. for (Long i = 0; i < Nelem; i++) {
  3652. for (Long j = 0; j < Nnodes; j++) {
  3653. Real dphi_dnu_ = 0;
  3654. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+0][j] * v[i*COORD_DIM+0][j];
  3655. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+1][j] * v[i*COORD_DIM+0][j];
  3656. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+0)*COORD_DIM+2][j] * v[i*COORD_DIM+0][j];
  3657. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+0][j] * v[i*COORD_DIM+1][j];
  3658. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+1][j] * v[i*COORD_DIM+1][j];
  3659. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+1)*COORD_DIM+2][j] * v[i*COORD_DIM+1][j];
  3660. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+0][j] * v[i*COORD_DIM+2][j];
  3661. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+1][j] * v[i*COORD_DIM+2][j];
  3662. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGnxB[(i*COORD_DIM+2)*COORD_DIM+2][j] * v[i*COORD_DIM+2][j];
  3663. dphi_dnu[i][j] = dphi_dnu_;
  3664. }
  3665. }
  3666. return dphi_dnu;
  3667. };
  3668. auto compute_dphi_dnu6 = [&S,&normal,&compute_AxB,&compute_v,&compute_B0] () {
  3669. const Long Nelem = S.GetElemList().NElem();
  3670. const Long Nnodes = ElemBasis::Size();
  3671. Vector<ElemBasis> B = compute_B0(1.0);
  3672. Vector<ElemBasis> nxB = compute_AxB(normal,B);
  3673. Vector<ElemBasis> dGv;
  3674. Vector<ElemBasis> v = compute_v();
  3675. S.quadrature_FxdU.Eval(dGv, S.GetElemList(), v, S.Laplace_FxdU);
  3676. Vector<ElemBasis> dphi_dnu(Nelem);
  3677. for (Long i = 0; i < Nelem; i++) {
  3678. for (Long j = 0; j < Nnodes; j++) {
  3679. Real dphi_dnu_ = 0;
  3680. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+0][j] * nxB[i*COORD_DIM+0][j];
  3681. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+1][j] * nxB[i*COORD_DIM+0][j];
  3682. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+0)*COORD_DIM+2][j] * nxB[i*COORD_DIM+0][j];
  3683. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+0][j] * nxB[i*COORD_DIM+1][j];
  3684. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+1][j] * nxB[i*COORD_DIM+1][j];
  3685. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+1)*COORD_DIM+2][j] * nxB[i*COORD_DIM+1][j];
  3686. dphi_dnu_ += -normal[i*COORD_DIM+0][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+0][j] * nxB[i*COORD_DIM+2][j];
  3687. dphi_dnu_ += -normal[i*COORD_DIM+1][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+1][j] * nxB[i*COORD_DIM+2][j];
  3688. dphi_dnu_ += -normal[i*COORD_DIM+2][j] * dGv[(i*COORD_DIM+2)*COORD_DIM+2][j] * nxB[i*COORD_DIM+2][j];
  3689. dphi_dnu[i][j] = dphi_dnu_;
  3690. }
  3691. }
  3692. return dphi_dnu;
  3693. };
  3694. auto dphi_dnu0 = compute_dphi_dnu0();
  3695. auto dphi_dnu1 = compute_dphi_dnu1();
  3696. auto dphi_dnu2 = compute_dphi_dnu2();
  3697. auto dphi_dnu3 = compute_dphi_dnu3();
  3698. auto dphi_dnu4 = compute_dphi_dnu4();
  3699. auto dphi_dnu5 = compute_dphi_dnu5();
  3700. auto dphi_dnu6 = compute_dphi_dnu6();
  3701. return (dphi_dnu0+dphi_dnu1+dphi_dnu2+dphi_dnu3+dphi_dnu4+dphi_dnu5+dphi_dnu6) * (u[Nelem*Nnodes] * v[Nelem*Nnodes]);
  3702. };
  3703. { // Set dg_dnu -= dg_dsigma invA dA_dnu sigma
  3704. Vector<Real> sigma_(Nelem*Nnodes+1);
  3705. for (Long i = 0; i < Nelem; i++) {
  3706. for (Long j = 0; j < Nnodes; j++) {
  3707. sigma_[i*Nnodes+j] = sigma[i][j];
  3708. }
  3709. }
  3710. sigma_[Nelem*Nnodes] = alpha;
  3711. auto dg_dnu1 = compute_u_dAdnu_v_00(dg_dsigma_invA, sigma_)*(-1);
  3712. auto dg_dnu2 = compute_u_dAdnu_v_01(dg_dsigma_invA, sigma_)*(-1);
  3713. auto dg_dnu3 = compute_u_dAdnu_v_10(dg_dsigma_invA, sigma_)*(-1);
  3714. auto dg_dnu4 = compute_u_dAdnu_v_11(dg_dsigma_invA, sigma_)*(-1);
  3715. dg_dnu += dg_dnu1;
  3716. dg_dnu += dg_dnu2;
  3717. dg_dnu += dg_dnu3;
  3718. dg_dnu += dg_dnu4;
  3719. }
  3720. return dg_dnu;
  3721. };
  3722. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3723. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  3724. if (1) { // test grad_g
  3725. const Long Nelem = S.GetElemList().NElem();
  3726. const Long Nnodes = ElemBasis::Size();
  3727. auto dg_dnu = compute_gradient();
  3728. { // Write VTU
  3729. VTUData vtu;
  3730. vtu.AddElems(S.GetElemList(), dg_dnu, ORDER);
  3731. vtu.WriteVTK("dg_dnu", comm);
  3732. }
  3733. { // Save data
  3734. Matrix<Real> M(S.NtNp_[0]*ORDER, S.NtNp_[1]*ORDER);
  3735. for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  3736. for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  3737. for (Long t = 0; t < ORDER; t++) {
  3738. for (Long p = 0; p < ORDER; p++) {
  3739. Long elem_idx = tt * S.NtNp_[1] + pp;
  3740. Long node_idx = p * ORDER + t;
  3741. M[tt*ORDER+t][pp*ORDER+p] = dg_dnu[elem_idx][node_idx];
  3742. }
  3743. }
  3744. }
  3745. }
  3746. M.Write("dg_dnu.mat");
  3747. }
  3748. if (0) { // filter dg_dnu and write VTU
  3749. const Long Nelem = S.GetElemList().NElem();
  3750. const Long Nnodes = ElemBasis::Size();
  3751. const Integer INTERP_ORDER = 12;
  3752. Long Nt = S.NtNp_[0]*ORDER/5, Np = S.NtNp_[1]*ORDER/5;
  3753. Matrix<Real> M(Nt, Np); M = 0;
  3754. const auto& quad_wts = ElemBasis::QuadWts();
  3755. const Matrix<Real>& Mnodes = Basis<Real,1,ORDER>::Nodes();
  3756. for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  3757. for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  3758. for (Long t = 0; t < ORDER; t++) {
  3759. for (Long p = 0; p < ORDER; p++) {
  3760. Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  3761. Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  3762. Long i = (Long)(theta * Nt);
  3763. Long j = (Long)(phi * Np);
  3764. Real x = theta * Nt - i;
  3765. Real y = phi * Np - j;
  3766. Long elem_idx = tt * S.NtNp_[1] + pp;
  3767. Long node_idx = p * ORDER + t;
  3768. Vector<Real> Interp0(INTERP_ORDER);
  3769. Vector<Real> Interp1(INTERP_ORDER);
  3770. { // Set Interp0, Interp1
  3771. auto node = [] (Long i) {
  3772. return (Real)i - (INTERP_ORDER-1)/2;
  3773. };
  3774. for (Long i = 0; i < INTERP_ORDER; i++) {
  3775. Real wt_x = 1, wt_y = 1;
  3776. for (Long j = 0; j < INTERP_ORDER; j++) {
  3777. if (j != i) {
  3778. wt_x *= (x - node(j)) / (node(i) - node(j));
  3779. wt_y *= (y - node(j)) / (node(i) - node(j));
  3780. }
  3781. Interp0[i] = wt_x;
  3782. Interp1[i] = wt_y;
  3783. }
  3784. }
  3785. }
  3786. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  3787. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  3788. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  3789. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  3790. M[idx_i][idx_j] += dg_dnu[elem_idx][node_idx] * quad_wts[node_idx] * Interp0[ii] * Interp1[jj] / (S.NtNp_[0] * S.NtNp_[1]) * (Nt * Np);
  3791. }
  3792. }
  3793. }
  3794. }
  3795. }
  3796. }
  3797. Vector<ElemBasis> f(Nelem);
  3798. for (Long tt = 0; tt < S.NtNp_[0]; tt++) {
  3799. for (Long pp = 0; pp < S.NtNp_[1]; pp++) {
  3800. for (Long t = 0; t < ORDER; t++) {
  3801. for (Long p = 0; p < ORDER; p++) {
  3802. Matrix<Real> Mnodes = Basis<Real,1,ORDER>::Nodes();
  3803. Real theta = (tt + Mnodes[0][t]) / S.NtNp_[0];
  3804. Real phi = (pp + Mnodes[0][p]) / S.NtNp_[1];
  3805. Long i = (Long)(theta * Nt);
  3806. Long j = (Long)(phi * Np);
  3807. Real x = theta * Nt - i;
  3808. Real y = phi * Np - j;
  3809. Vector<Real> Interp0(INTERP_ORDER);
  3810. Vector<Real> Interp1(INTERP_ORDER);
  3811. { // Set Interp0, Interp1
  3812. auto node = [] (Long i) {
  3813. return (Real)i - (INTERP_ORDER-1)/2;
  3814. };
  3815. for (Long i = 0; i < INTERP_ORDER; i++) {
  3816. Real wt_x = 1, wt_y = 1;
  3817. for (Long j = 0; j < INTERP_ORDER; j++) {
  3818. if (j != i) {
  3819. wt_x *= (x - node(j)) / (node(i) - node(j));
  3820. wt_y *= (y - node(j)) / (node(i) - node(j));
  3821. }
  3822. Interp0[i] = wt_x;
  3823. Interp1[i] = wt_y;
  3824. }
  3825. }
  3826. }
  3827. Real f0 = 0;
  3828. for (Long ii = 0; ii < INTERP_ORDER; ii++) {
  3829. for (Long jj = 0; jj < INTERP_ORDER; jj++) {
  3830. Long idx_i = (i + ii-(INTERP_ORDER-1)/2 + Nt) % Nt;
  3831. Long idx_j = (j + jj-(INTERP_ORDER-1)/2 + Np) % Np;
  3832. f0 += Interp0[ii] * Interp1[jj] * M[idx_i][idx_j];
  3833. }
  3834. }
  3835. Long elem_idx = tt * S.NtNp_[1] + pp;
  3836. Long node_idx = p * ORDER + t;
  3837. f[elem_idx][node_idx] = f0;
  3838. }
  3839. }
  3840. }
  3841. }
  3842. { // Write VTU
  3843. VTUData vtu;
  3844. vtu.AddElems(S.GetElemList(), f, ORDER);
  3845. vtu.WriteVTK("dg_dnu_filtered", comm);
  3846. }
  3847. dg_dnu = f;
  3848. }
  3849. auto compute_g = [&compute_gvec,&sigma,&alpha,&S,&area_elem,&normal,&Jt,&Jp,&compute_harmonic_vector_potentials,&compute_norm_area_elem,&compute_invA,&compute_half_n_plus_dG,&compute_B0,&compute_inner_prod,&comm] (const Vector<ElemBasis>& nu, Real eps) {
  3850. const Long Nelem = S.GetElemList().NElem();
  3851. const Long Nnodes = ElemBasis::Size();
  3852. Vector<ElemBasis> X_orig(Nelem*COORD_DIM);
  3853. for (Long i = 0; i < Nelem; i++) {
  3854. for (Long j = 0; j < Nnodes; j++) {
  3855. X_orig[i*COORD_DIM+0][j] = S.Elem(i,0)[j];
  3856. X_orig[i*COORD_DIM+1][j] = S.Elem(i,1)[j];
  3857. X_orig[i*COORD_DIM+2][j] = S.Elem(i,2)[j];
  3858. S.Elem(i,0)[j] += eps*nu[i][j] * normal[i*COORD_DIM+0][j];
  3859. S.Elem(i,1)[j] += eps*nu[i][j] * normal[i*COORD_DIM+1][j];
  3860. S.Elem(i,2)[j] += eps*nu[i][j] * normal[i*COORD_DIM+2][j];
  3861. }
  3862. }
  3863. compute_harmonic_vector_potentials(Jt, Jp);
  3864. compute_norm_area_elem(S.GetElemList(), normal, area_elem);
  3865. S.quadrature_BS .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3866. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3867. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  3868. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  3869. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  3870. Real flux = 1.0, alpha;
  3871. Vector<ElemBasis> sigma;
  3872. compute_invA(sigma, alpha, flux);
  3873. Vector<ElemBasis> B = compute_half_n_plus_dG(sigma) + compute_B0(alpha);
  3874. Real g = compute_inner_prod(area_elem,compute_gvec(B), area_elem*0+1);
  3875. for (Long i = 0; i < Nelem; i++) {
  3876. for (Long j = 0; j < Nnodes; j++) {
  3877. S.Elem(i,0)[j] = X_orig[i*COORD_DIM+0][j];
  3878. S.Elem(i,1)[j] = X_orig[i*COORD_DIM+1][j];
  3879. S.Elem(i,2)[j] = X_orig[i*COORD_DIM+2][j];
  3880. }
  3881. }
  3882. compute_harmonic_vector_potentials(Jt, Jp);
  3883. compute_norm_area_elem(S.GetElemList(), normal, area_elem);
  3884. S.quadrature_BS .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.BiotSavart , order_singular, order_direct, -1.0, comm, -0.01 * pow<-2,Real>(ORDER));
  3885. S.quadrature_FxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxU , order_singular, order_direct, -1.0, comm);
  3886. S.quadrature_DxU .template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_DxU , order_singular, order_direct, -1.0, comm);
  3887. S.quadrature_FxdU.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_FxdU, order_singular, order_direct, -1.0, comm);
  3888. S.quadrature_dUxF.template Setup<ElemBasis, ElemBasis>(S.GetElemList(), S.Laplace_dUxF, order_singular, order_direct, -1.0, comm);
  3889. return g;
  3890. };
  3891. {
  3892. Vector<ElemBasis> nu(Nelem);
  3893. nu = dg_dnu;
  3894. Real eps = 1e-4;
  3895. Real g0 = compute_g(nu,-eps);
  3896. Real g1 = compute_g(nu,eps);
  3897. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3898. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3899. }
  3900. {
  3901. Vector<ElemBasis> nu(Nelem);
  3902. nu = area_elem;
  3903. Real eps = 1e-4;
  3904. Real g0 = compute_g(nu,-eps);
  3905. Real g1 = compute_g(nu,eps);
  3906. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3907. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3908. }
  3909. {
  3910. Vector<ElemBasis> nu(Nelem);
  3911. nu = 1;
  3912. Real eps = 1e-4;
  3913. Real g0 = compute_g(nu,-eps);
  3914. Real g1 = compute_g(nu,eps);
  3915. std::cout<<"g = "<<g0<<" g = "<<g1<<" dg_dnu = "<<(g1-g0)/(2*eps)<<'\n';
  3916. std::cout<<"dg_dnu = "<<compute_inner_prod(area_elem,nu, dg_dnu)<<'\n';
  3917. }
  3918. }
  3919. }
  3920. private:
  3921. void InitSurf(Long l) {
  3922. const auto& nodes = ElemBasis::Nodes();
  3923. const Long Nt = NtNp_[l*2+0];
  3924. const Long Np = NtNp_[l*2+1];
  3925. for (Long i = 0; i < Nt; i++) {
  3926. for (Long j = 0; j < Np; j++) {
  3927. for (Long k = 0; k < ElemBasis::Size(); k++) {
  3928. Real theta = (i + nodes[0][k]) * 2*const_pi<Real>()/Nt;
  3929. Real phi = (j + nodes[1][k]) * 2*const_pi<Real>()/Np;
  3930. Real X,Y,Z;
  3931. SurfGeom(X,Y,Z,theta,phi);
  3932. Elem(ElemIdx(l,i,j),0)[k] = X;
  3933. Elem(ElemIdx(l,i,j),1)[k] = Y;
  3934. Elem(ElemIdx(l,i,j),2)[k] = Z;
  3935. }
  3936. }
  3937. }
  3938. }
  3939. static void SurfGeom(Real& X, Real& Y, Real& Z, Real theta, Real phi) {
  3940. sctl::Integer Nperiod = 5;
  3941. #if 0
  3942. Real Aspect_ratio = 10.27932548522949;
  3943. Real coeffmat[21][21] = { 0.00000478813217, 0.00000000000000, 0.00000351611652, 0.00000135354389, 0.00000061357832, 0.00000220091101, 0.00000423862912, -0.00003000058678, 0.00000064187111, -0.00024228452821, 0.00003116775770, 0.00000176210710, 0.00000289141326, -0.00000150300525, 0.00000772853855, 0.00000098855242, 0.00000316606793, 0.00000002168364, 0.00000212047939, 0.00000299016097, 0.00000443224508,
  3944. 0.00000028202930, 0.00000000000000, -0.00000249222421, -0.00000203136278, 0.00000131104809, 0.00000011987446, -0.00000370760154, 0.00004553918916, -0.00007711342914, -0.00004685295062, 0.00011049838213, -0.00000197486270, 0.00000395827146, 0.00000615046474, 0.00000755337123, 0.00000700606006, 0.00000922725030, -0.00000043310337, 0.00000107416383, 0.00000449787694, 0.00000305137178,
  3945. 0.00001226376662, 0.00000000000000, 0.00000270820692, 0.00000208059305, 0.00000521478523, 0.00001779037302, 0.00000846544117, 0.00001120913385, -0.00065816845745, -0.00085107452469, -0.00013171190221, -0.00005540943675, -0.00001835885450, 0.00000101879823, 0.00000209222071, 0.00000091532502, -0.00000521515358, -0.00000209227142, -0.00000678545939, -0.00000034963549, -0.00000015111488,
  3946. 0.00001560274177, 0.00000000000000, 0.00000350691471, -0.00001160475040, -0.00001763036562, 0.00003487367940, -0.00002787247831, -0.00000910982726, 0.00008818832430, -0.00524408789352, 0.00009378376126, 0.00004184526188, 0.00002849263365, -0.00002757280527, 0.00003388467667, 0.00000706207265, 0.00000625263419, -0.00003315929280, -0.00001181772132, 0.00000311426015, 0.00001875682574,
  3947. -0.00000398287420, 0.00000000000000, -0.00001524541040, 0.00001724056165, 0.00002245173346, 0.00002806861812, -0.00000388776925, 0.00008143573359, -0.00005900909309, 0.00110496615525, 0.00134626252111, 0.00005128383054, -0.00001372421866, 0.00003612563887, 0.00002236580076, -0.00002728391883, 0.00001981237256, 0.00000655450458, 0.00000985319002, 0.00001347597299, 0.00000645987802,
  3948. 0.00003304968050, 0.00000000000000, -0.00000530822217, 0.00001324870937, -0.00003610889689, -0.00005478735329, -0.00005818806312, -0.00037112057908, -0.00017812002625, -0.00093204283621, 0.00115969858598, -0.00033559172880, -0.00010441876657, -0.00001617923044, -0.00000555065844, 0.00007343527250, -0.00004408047607, 0.00000403802142, 0.00001843931204, 0.00001694047933, 0.00001213414362,
  3949. -0.00000751115658, 0.00000000000000, 0.00005457974839, -0.00000334614515, 0.00005845565465, 0.00015000770509, 0.00021849104087, 0.00002724147635, 0.00167233624961, 0.00011666602222, 0.00276563479565, -0.00085952825611, -0.00030217235326, -0.00008841593808, 0.00000997664119, -0.00015285826521, 0.00002517224675, 0.00003009161810, 0.00001883217556, 0.00002146127554, 0.00001822445302,
  3950. -0.00004128706860, 0.00000000000000, -0.00003496417776, 0.00001088761655, -0.00000298955979, -0.00005359326315, -0.00019021633489, -0.00017992728681, -0.00347794801928, 0.00064632791327, 0.00449698418379, -0.00017710507382, 0.00006126180233, 0.00018059254216, 0.00002354096432, 0.00008189838991, -0.00010060678323, -0.00017183290038, 0.00019413756672, 0.00021334811754, 0.00011263617489,
  3951. 0.00000853522670, -0.00000000000000, -0.00006544789358, 0.00005424076880, -0.00000679056529, -0.00001249735487, -0.00053082982777, 0.00035396864405, -0.00115020677913, 0.05894451215863, 0.06573092192411, 0.01498018857092, 0.00278125284240, 0.00145188067108, 0.00033717858605, 0.00000800427370, -0.00009335305367, 0.00024286781263, -0.00023916347709, 0.00031213948387, 0.00018134393031,
  3952. -0.00002521496390, -0.00000000000000, -0.00054337945767, 0.00012690725271, 0.00053313979879, 0.00064233405283, -0.00047686311882, 0.00176536326762, 0.00074157933705, -0.02684566564858, 1.00000000000000, 0.07176169008017, 0.00837037432939, -0.00000381640211, 0.00088998704450, -0.00049218931235, -0.00024546548957, -0.00036608282244, 0.00049480766756, 0.00031158892671, 0.00006898906577,
  3953. 0.00021280418150, 0.00028127161204, -0.00070030166535, 0.00022237010126, -0.00028713891516, -0.00013800295710, 0.00005912094275, 0.00172126013786, -0.00618684850633, 0.03608432412148, Aspect_ratio , 0.49896776676178, 0.00091372377938, -0.00085712829605, -0.00124801427592, -0.00007427225501, -0.00005245858847, 0.00002841771493, 0.00020249813679, -0.00014303345233, 0.00001406490901,
  3954. 0.00023699452868, 0.00008661757602, 0.00025744654704, -0.00022715188970, -0.00076146807987, 0.00055185536621, -0.00012325309217, -0.00072356045712, -0.00160693109501, 0.00246682553552, -0.14175094664097, -0.36207047104836, -0.04089594259858, 0.00060774467420, 0.00088646943914, 0.00004865296432, -0.00041878610500, -0.00023025234987, -0.00009676301852, -0.00000000000000, 0.00008409228758,
  3955. 0.00011432896281, -0.00000707848403, 0.00004698805787, -0.00043642931269, 0.00081384339137, -0.00065635429928, -0.00011831733718, 0.00017413357273, 0.00224463525228, 0.00478497287259, 0.03294761106372, 0.01078986655921, 0.10731782764196, 0.00075034319889, -0.00009241879889, 0.00055023463210, 0.00006596000458, 0.00005045382932, 0.00014874986664, 0.00000000000000, -0.00015369028552,
  3956. 0.00001037383754, 0.00009250180301, 0.00026204055757, 0.00007424291834, -0.00047751804232, 0.00029184055165, 0.00050921301590, -0.00004825839278, -0.00029933769838, 0.00279659987427, 0.00210463814437, -0.00618590926751, -0.02400829829276, -0.02316811867058, -0.00086368201301, -0.00032258985448, -0.00018304496189, 0.00008438774967, -0.00008305341908, 0.00000000000000, 0.00013047417451,
  3957. -0.00001376930322, -0.00001723831701, -0.00011543079017, -0.00022646733851, 0.00013467084500, -0.00004661652201, -0.00008419520600, 0.00035772417323, -0.00011815709877, 0.00028718306567, 0.00092207465786, -0.00317224999890, 0.00061770365573, 0.01017294172198, 0.00294739892706, 0.00014669894881, 0.00015702951350, 0.00003432080121, -0.00008555022214, -0.00000000000000, 0.00000454909878,
  3958. -0.00000196001542, -0.00003198397462, -0.00004425687075, -0.00004129848094, -0.00003789070615, -0.00027583551127, 0.00025874207495, -0.00002334945384, -0.00007259396807, -0.00008295358566, 0.00011360697681, -0.00101968157105, 0.00046784928418, -0.00208410434425, -0.00313158822246, -0.00046005158219, -0.00010552268213, -0.00005850767775, 0.00003971093611, 0.00000000000000, -0.00005275657168,
  3959. -0.00001065901233, -0.00001934838656, -0.00001220186732, -0.00002060524639, -0.00000225423423, -0.00001894621164, -0.00001533334580, -0.00001791087379, 0.00008156246622, -0.00008441298269, 0.00021060956351, -0.00030303673702, 0.00075949780876, -0.00010539998038, 0.00109045265708, 0.00068949378328, 0.00009268362192, 0.00003471063246, 0.00001204656473, -0.00000000000000, 0.00001500743110,
  3960. 0.00000105878155, -0.00000910870767, -0.00000172467264, -0.00000722095228, 0.00000699280463, -0.00002061720625, -0.00000889817693, -0.00001993474507, 0.00000370749740, -0.00000090311920, 0.00002677819793, 0.00043428712524, 0.00210293265991, 0.00018200518389, -0.00009621794743, -0.00035250501242, -0.00012996385340, -0.00002185157609, -0.00001116586463, -0.00000000000000, -0.00000451994811,
  3961. 0.00000424055270, -0.00000463139304, 0.00000301006116, -0.00000123974939, 0.00000632465435, -0.00002090823000, 0.00001773388794, 0.00000121050368, 0.00001886057362, -0.00001043497195, -0.00002269273500, -0.00021979617304, -0.00001043962493, -0.00116343051195, -0.00004193381756, 0.00007944958634, 0.00007301353617, 0.00002082651736, -0.00000119863023, -0.00000000000000, -0.00001440504820,
  3962. -0.00000391270805, -0.00000490489265, -0.00000504441778, -0.00000904507579, -0.00000111389932, 0.00000597532107, 0.00000047090245, -0.00001553130096, -0.00001524566323, -0.00000522222899, -0.00007707672921, -0.00004165665086, 0.00015764687851, 0.00035649110214, 0.00038701237645, 0.00002386798405, -0.00001946414341, -0.00000913835174, -0.00000489907188, 0.00000000000000, 0.00000172327657,
  3963. -0.00000015388650, -0.00000603232729, -0.00000397650865, 0.00000280493782, 0.00000463132073, -0.00000788678426, -0.00000471605335, -0.00000283715985, -0.00000422824724, 0.00000366817630, -0.00001159603562, -0.00001625759251, 0.00049116823357, 0.00005048640014, -0.00020234247495, -0.00006341376866, -0.00000807822744, 0.00000070463199, 0.00000014041755, 0.00000000000000, -0.00000718306910};
  3964. #else
  3965. Real Aspect_ratio = 5;
  3966. Real coeffmat[21][21] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3967. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3968. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3969. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3970. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3971. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3972. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3973. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3974. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3975. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3976. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Aspect_ratio, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3977. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3978. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3979. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3980. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3981. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3982. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3983. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3984. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3985. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3986. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0};
  3987. #endif
  3988. Z = 0;
  3989. Real R = 0;
  3990. for (long i = -10; i <= 10; i++) {
  3991. for (long j = -10; j <= 10; j++) {
  3992. R += coeffmat[i+10][j+10] * sctl::cos(-i*phi + Nperiod*j*theta);
  3993. Z += coeffmat[i+10][j+10] * sctl::sin(-i*phi + Nperiod*j*theta);
  3994. }
  3995. }
  3996. X = R * sctl::cos(theta);
  3997. Y = R * sctl::sin(theta);
  3998. }
  3999. GenericKernel<BiotSavart3D> BiotSavart ;
  4000. GenericKernel<BiotSavartGrad3D> BiotSavartGrad;
  4001. GenericKernel<Laplace3D_FxU > Laplace_FxU ;
  4002. GenericKernel<Laplace3D_DxU > Laplace_DxU ;
  4003. GenericKernel<Laplace3D_FxdU> Laplace_FxdU;
  4004. GenericKernel<Laplace3D_dUxF> Laplace_dUxF;
  4005. GenericKernel<Laplace3D_dUxD> Laplace_dUxD;
  4006. GenericKernel<Laplace3D_Fxd2U> Laplace_Fxd2U;
  4007. Quadrature<Real> quadrature_BS ;
  4008. Quadrature<Real> quadrature_dBS ;
  4009. Quadrature<Real> quadrature_FxU ;
  4010. Quadrature<Real> quadrature_DxU ;
  4011. Quadrature<Real> quadrature_FxdU;
  4012. Quadrature<Real> quadrature_dUxF;
  4013. Quadrature<Real> quadrature_dUxD;
  4014. Quadrature<Real> quadrature_Fxd2U;
  4015. ElemLst elements;
  4016. Vector<Long> NtNp_;
  4017. Vector<Long> elem_dsp;
  4018. };
  4019. template <class Real, Integer ORDER=5> class Spheres {
  4020. static constexpr Integer COORD_DIM = 3;
  4021. static constexpr Integer ELEM_DIM = COORD_DIM-1;
  4022. using PotentialBasis = Basis<Real, ELEM_DIM, ORDER>;
  4023. using DensityBasis = Basis<Real, ELEM_DIM, ORDER>;
  4024. using CoordBasis = Basis<Real, ELEM_DIM, ORDER>;
  4025. using ElemLst = ElemList<COORD_DIM, CoordBasis>;
  4026. public:
  4027. Spheres(Long N = 0) {
  4028. Vector<Real> X(N*COORD_DIM);
  4029. Vector<Real> R(N);
  4030. X=0;
  4031. R=1;
  4032. for (Long i = 0; i < N; i++) X[i*COORD_DIM] = (i==0?-1.015:1.015); ///////////
  4033. InitSpheres(X,R);
  4034. }
  4035. const ElemLst& GetElem() const {
  4036. return elements;
  4037. }
  4038. static void test() {
  4039. constexpr Integer order_singular = 35;
  4040. constexpr Integer order_direct = 35;
  4041. Comm comm = Comm::World();
  4042. Profile::Enable(true);
  4043. Long Ns = 2;
  4044. Spheres S(Ns);
  4045. S.quadrature_FxT.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxT, order_singular, order_direct, -1.0, comm);
  4046. S.quadrature_FxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_FxU, order_singular, order_direct, -1.0, comm);
  4047. S.quadrature_DxU.template Setup<DensityBasis, PotentialBasis>(S.GetElem(), S.Stokes_DxU, order_singular, order_direct, -1.0, comm);
  4048. const auto SetMotion = [&S](Vector<DensityBasis>& density, const Vector<Real>& force_avg, const Vector<Real>& torque_avg) {
  4049. Long Nelem = S.GetElem().NElem();
  4050. Long Nsurf = S.elem_cnt.Dim();
  4051. const auto& X = S.GetElem().ElemVector();
  4052. Vector<Real> area, Xc;
  4053. Vector<DensityBasis> one(Nelem);
  4054. for (Long i = 0; i < Nelem; i++) {
  4055. for (Long j = 0; j < DensityBasis::Size(); j++) {
  4056. one[i][j] = 1;
  4057. }
  4058. }
  4059. S.SurfInteg(area, one);
  4060. S.SurfInteg(Xc, S.GetElem().ElemVector());
  4061. for (Long i = 0; i < Nsurf; i++) {
  4062. for (Long k = 0; k < COORD_DIM; k++) {
  4063. Xc[i*COORD_DIM+k] /= area[i];
  4064. }
  4065. }
  4066. if (density.Dim() != Nelem*COORD_DIM) density.ReInit(Nelem*COORD_DIM);
  4067. Long elem_itr = 0;
  4068. for (Long i = 0; i < Nsurf; i++) {
  4069. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  4070. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4071. StaticArray<Real,COORD_DIM> dX;
  4072. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  4073. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  4074. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  4075. density[elem_itr*COORD_DIM+0][k] = force_avg[i*COORD_DIM+0]*(1/area[i]) + (torque_avg[i*COORD_DIM+1] * dX[2] - torque_avg[i*COORD_DIM+2] * dX[1]) / (2*area[i]/3);
  4076. density[elem_itr*COORD_DIM+1][k] = force_avg[i*COORD_DIM+1]*(1/area[i]) + (torque_avg[i*COORD_DIM+2] * dX[0] - torque_avg[i*COORD_DIM+0] * dX[2]) / (2*area[i]/3);
  4077. density[elem_itr*COORD_DIM+2][k] = force_avg[i*COORD_DIM+2]*(1/area[i]) + (torque_avg[i*COORD_DIM+0] * dX[1] - torque_avg[i*COORD_DIM+1] * dX[0]) / (2*area[i]/3);
  4078. }
  4079. elem_itr++;
  4080. }
  4081. }
  4082. };
  4083. const auto GetMotion = [&S](Vector<Real>& force_avg, Vector<Real>& torque_avg, const Vector<DensityBasis>& density) {
  4084. Long Nelem = S.GetElem().NElem();
  4085. Long Nsurf = S.elem_cnt.Dim();
  4086. const auto& X = S.GetElem().ElemVector();
  4087. S.SurfInteg(force_avg, density);
  4088. Vector<Real> area, Xc;
  4089. Vector<DensityBasis> one(Nelem);
  4090. for (Long i = 0; i < Nelem; i++) {
  4091. for (Long j = 0; j < DensityBasis::Size(); j++) {
  4092. one[i][j] = 1;
  4093. }
  4094. }
  4095. S.SurfInteg(area, one);
  4096. S.SurfInteg(Xc, S.GetElem().ElemVector());
  4097. for (Long i = 0; i < Nsurf; i++) {
  4098. for (Long k = 0; k < COORD_DIM; k++) {
  4099. Xc[i*COORD_DIM+k] /= area[i];
  4100. }
  4101. }
  4102. { // Set torque_avg
  4103. Long elem_itr = 0;
  4104. Vector<DensityBasis> torque(Nelem*COORD_DIM);
  4105. for (Long i = 0; i < Nsurf; i++) {
  4106. for (Long j = 0; j < S.elem_cnt[i]; j++) {
  4107. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4108. StaticArray<Real,COORD_DIM> dX;
  4109. dX[0] = (X[elem_itr*COORD_DIM+0][k] - Xc[i*COORD_DIM+0]);
  4110. dX[1] = (X[elem_itr*COORD_DIM+1][k] - Xc[i*COORD_DIM+1]);
  4111. dX[2] = (X[elem_itr*COORD_DIM+2][k] - Xc[i*COORD_DIM+2]);
  4112. torque[elem_itr*COORD_DIM+0][k] = dX[1] * density[elem_itr*COORD_DIM+2][k] - dX[2] * density[elem_itr*COORD_DIM+1][k];
  4113. torque[elem_itr*COORD_DIM+1][k] = dX[2] * density[elem_itr*COORD_DIM+0][k] - dX[0] * density[elem_itr*COORD_DIM+2][k];
  4114. torque[elem_itr*COORD_DIM+2][k] = dX[0] * density[elem_itr*COORD_DIM+1][k] - dX[1] * density[elem_itr*COORD_DIM+0][k];
  4115. }
  4116. elem_itr++;
  4117. }
  4118. }
  4119. S.SurfInteg(torque_avg, torque);
  4120. }
  4121. };
  4122. const auto BIOpL = [&GetMotion,&SetMotion](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4123. Vector<Real> force_avg, torque_avg;
  4124. GetMotion(force_avg, torque_avg, density);
  4125. SetMotion(potential, force_avg, torque_avg);
  4126. };
  4127. const auto BIOpK = [&S](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4128. Vector<DensityBasis> traction;
  4129. S.quadrature_FxT.Eval(traction, S.GetElem(), density, S.Stokes_FxT);
  4130. Vector<CoordBasis> dX;
  4131. const auto X = S.GetElem().ElemVector();
  4132. CoordBasis::Grad(dX, X);
  4133. Long Nelem = S.GetElem().NElem();
  4134. Long Nnodes = CoordBasis::Size();
  4135. potential.ReInit(Nelem * COORD_DIM);
  4136. for (Long i = 0; i < Nelem; i++) {
  4137. for (Long j = 0; j < Nnodes; j++) {
  4138. StaticArray<Real,COORD_DIM> Xn;
  4139. Xn[0] = dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+3][j];
  4140. Xn[1] = dX[i*COORD_DIM*2+4][j]*dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+5][j];
  4141. Xn[2] = dX[i*COORD_DIM*2+0][j]*dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+2][j]*dX[i*COORD_DIM*2+1][j];
  4142. Real AreaElem = sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]);
  4143. Real OOAreaElem = 1 / AreaElem;
  4144. Xn[0] *= OOAreaElem;
  4145. Xn[1] *= OOAreaElem;
  4146. Xn[2] *= OOAreaElem;
  4147. potential[i*COORD_DIM+0][j] = traction[i*COORD_DIM*COORD_DIM+0][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+1][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+2][j]*Xn[2];
  4148. potential[i*COORD_DIM+1][j] = traction[i*COORD_DIM*COORD_DIM+3][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+4][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+5][j]*Xn[2];
  4149. potential[i*COORD_DIM+2][j] = traction[i*COORD_DIM*COORD_DIM+6][j]*Xn[0] + traction[i*COORD_DIM*COORD_DIM+7][j]*Xn[1] + traction[i*COORD_DIM*COORD_DIM+8][j]*Xn[2];
  4150. }
  4151. }
  4152. };
  4153. const auto BIOp_half_K_L = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4154. Vector<DensityBasis> potential_K;
  4155. Vector<DensityBasis> potential_L;
  4156. BIOpK(potential_K, density);
  4157. BIOpL(potential_L, density);
  4158. if (potential.Dim() != potential_K.Dim()) {
  4159. potential.ReInit(potential_K.Dim());
  4160. }
  4161. for (Long i = 0; i < potential_K.Dim(); i++) {
  4162. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4163. potential[i][k] = -0.5*density[i][k] + potential_K[i][k] + potential_L[i][k];
  4164. }
  4165. }
  4166. };
  4167. const auto BIOp_half_K = [&S,&BIOpK,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4168. Vector<DensityBasis> potential_K;
  4169. BIOpK(potential_K, density);
  4170. if (potential.Dim() != potential_K.Dim()) {
  4171. potential.ReInit(potential_K.Dim());
  4172. }
  4173. for (Long i = 0; i < potential_K.Dim(); i++) {
  4174. for (Long k = 0; k < DensityBasis::Size(); k++) {
  4175. potential[i][k] = -0.5*density[i][k] + potential_K[i][k];
  4176. }
  4177. }
  4178. };
  4179. const auto BIOp_half_S_D = [&S,&BIOpL](Vector<DensityBasis>& potential, const Vector<DensityBasis>& density) {
  4180. Vector<DensityBasis> U;
  4181. S.quadrature_DxU.Eval(U, S.GetElem(), density, S.Stokes_DxU);
  4182. Vector<PotentialBasis> U1;
  4183. Vector<DensityBasis> sigma1;
  4184. BIOpL(sigma1,density);
  4185. S.quadrature_FxU.Eval(U1, S.GetElem(), sigma1, S.Stokes_FxU);
  4186. Long Nelem = S.GetElem().NElem();
  4187. Long Nnodes = CoordBasis::Size();
  4188. potential.ReInit(Nelem * COORD_DIM);
  4189. for (Long i = 0; i < Nelem; i++) {
  4190. for (Long j = 0; j < Nnodes; j++) {
  4191. potential[i*COORD_DIM+0][j] = 0.5*density[i*COORD_DIM+0][j] + U[i*COORD_DIM+0][j] + U1[i*COORD_DIM+0][j];
  4192. potential[i*COORD_DIM+1][j] = 0.5*density[i*COORD_DIM+1][j] + U[i*COORD_DIM+1][j] + U1[i*COORD_DIM+1][j];
  4193. potential[i*COORD_DIM+2][j] = 0.5*density[i*COORD_DIM+2][j] + U[i*COORD_DIM+2][j] + U1[i*COORD_DIM+2][j];
  4194. }
  4195. }
  4196. };
  4197. Vector<PotentialBasis> U;
  4198. { // Rachh
  4199. Vector<DensityBasis> sigma0;
  4200. { // Set sigma0
  4201. srand48(comm.Rank());
  4202. Vector<Real> force(Ns*COORD_DIM), torque(Ns*COORD_DIM);
  4203. //for (auto& x : force) x = drand48();
  4204. //for (auto& x : torque) x = drand48();
  4205. force = 0;
  4206. torque = 0;
  4207. force[0] = 1;
  4208. //force[4] = 1;
  4209. SetMotion(sigma0, force, torque);
  4210. }
  4211. Vector<DensityBasis> rhs;
  4212. BIOp_half_K(rhs, sigma0);
  4213. Vector<DensityBasis> sigma;
  4214. { // Set sigma
  4215. Long Nnode = DensityBasis::Size();
  4216. Long Nelem = S.GetElem().NElem();
  4217. typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_K_L](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  4218. Long Nnode = DensityBasis::Size();
  4219. Long Nelem = S.GetElem().NElem();
  4220. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  4221. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  4222. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  4223. for (Long k = 0; k < Nnode; k++) {
  4224. x_[i][k] = x[i*Nnode+k];
  4225. }
  4226. }
  4227. BIOp_half_K_L(Ax_, x_);
  4228. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  4229. for (Long k = 0; k < Nnode; k++) {
  4230. (*Ax)[i*Nnode+k] = Ax_[i][k];
  4231. }
  4232. }
  4233. };
  4234. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  4235. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  4236. for (Long k = 0; k < Nnode; k++) {
  4237. rhs_[i*Nnode+k] = rhs[i][k];
  4238. }
  4239. }
  4240. sigma_ = 0;
  4241. ParallelSolver<Real> linear_solver(comm, true);
  4242. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  4243. sigma.ReInit(Nelem * COORD_DIM);
  4244. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  4245. for (Long k = 0; k < Nnode; k++) {
  4246. sigma[i][k] = sigma_[i*Nnode+k] - sigma0[i][k];
  4247. }
  4248. }
  4249. }
  4250. S.quadrature_FxU.Eval(U, S.GetElem(), sigma, S.Stokes_FxU);
  4251. { // Write VTU
  4252. VTUData vtu_sigma;
  4253. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  4254. vtu_sigma.WriteVTK("sphere-sigma0", comm);
  4255. VTUData vtu_U;
  4256. vtu_U.AddElems(S.elements, U, ORDER);
  4257. vtu_U.WriteVTK("sphere-U0", comm);
  4258. }
  4259. }
  4260. { // Tornberg
  4261. Vector<DensityBasis> rhs;
  4262. BIOpL(rhs, U);
  4263. Vector<DensityBasis> sigma;
  4264. { // Set sigma
  4265. Long Nnode = DensityBasis::Size();
  4266. Long Nelem = S.GetElem().NElem();
  4267. typename sctl::ParallelSolver<Real>::ParallelOp A = [&S,&BIOp_half_S_D](sctl::Vector<Real>* Ax, const sctl::Vector<Real>& x) {
  4268. Long Nnode = DensityBasis::Size();
  4269. Long Nelem = S.GetElem().NElem();
  4270. Ax->ReInit(Nelem*COORD_DIM*Nnode);
  4271. Vector<DensityBasis> x_(Nelem*COORD_DIM), Ax_(Nelem*COORD_DIM);
  4272. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set x_
  4273. for (Long k = 0; k < Nnode; k++) {
  4274. x_[i][k] = x[i*Nnode+k];
  4275. }
  4276. }
  4277. BIOp_half_S_D(Ax_, x_);
  4278. for (Long i = 0; i < Nelem*COORD_DIM; i++) { // Set Ax
  4279. for (Long k = 0; k < Nnode; k++) {
  4280. (*Ax)[i*Nnode+k] = Ax_[i][k];
  4281. }
  4282. }
  4283. };
  4284. Vector<Real> sigma_(Nelem*COORD_DIM*Nnode), rhs_(Nelem*COORD_DIM*Nnode);
  4285. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set rhs_
  4286. for (Long k = 0; k < Nnode; k++) {
  4287. rhs_[i*Nnode+k] = rhs[i][k];
  4288. }
  4289. }
  4290. sigma_ = 0;
  4291. ParallelSolver<Real> linear_solver(comm, true);
  4292. linear_solver(&sigma_, A, rhs_, 1e-6, 50);
  4293. sigma.ReInit(Nelem * COORD_DIM);
  4294. for (Long i = 0; i < Nelem*COORD_DIM; i++) {// Set sigma
  4295. for (Long k = 0; k < Nnode; k++) {
  4296. sigma[i][k] = sigma_[i*Nnode+k];
  4297. }
  4298. }
  4299. }
  4300. Vector<PotentialBasis> U1;
  4301. BIOp_half_S_D(U1, sigma);
  4302. { // Write VTU
  4303. VTUData vtu_sigma;
  4304. vtu_sigma.AddElems(S.elements, sigma, ORDER);
  4305. vtu_sigma.WriteVTK("sphere-sigma1", comm);
  4306. VTUData vtu_U;
  4307. vtu_U.AddElems(S.elements, U1, ORDER);
  4308. vtu_U.WriteVTK("sphere-U1", comm);
  4309. }
  4310. }
  4311. Profile::print(&comm);
  4312. }
  4313. private:
  4314. template <class FnBasis> void SurfInteg(Vector<Real>& I, const Vector<FnBasis>& f) {
  4315. static_assert(std::is_same<FnBasis,CoordBasis>::value, "FnBasis is different from CoordBasis");
  4316. const Long Nelem = elements.NElem();
  4317. const Long dof = f.Dim() / Nelem;
  4318. SCTL_ASSERT(f.Dim() == Nelem * dof);
  4319. auto nodes = FnBasis::Nodes();
  4320. auto quad_wts = FnBasis::QuadWts();
  4321. const Long Nnodes = FnBasis::Size();
  4322. auto EvalOp = CoordBasis::SetupEval(nodes);
  4323. Vector<CoordBasis> dX;
  4324. const auto& X = elements.ElemVector();
  4325. SCTL_ASSERT(X.Dim() == Nelem * COORD_DIM);
  4326. CoordBasis::Grad(dX, X);
  4327. Matrix<Real> I_(Nelem, dof);
  4328. for (Long i = 0; i < Nelem; i++) {
  4329. for (Long k = 0; k < dof; k++) {
  4330. I_[i][k] = 0;
  4331. }
  4332. for (Long j = 0; j < Nnodes; j++) {
  4333. Real dA = 0;
  4334. StaticArray<Real,COORD_DIM> Xn;
  4335. Xn[0] = dX[i*COORD_DIM*2+2][j] * dX[i*COORD_DIM*2+5][j] - dX[i*COORD_DIM*2+3][j] * dX[i*COORD_DIM*2+4][j];
  4336. Xn[1] = dX[i*COORD_DIM*2+4][j] * dX[i*COORD_DIM*2+1][j] - dX[i*COORD_DIM*2+5][j] * dX[i*COORD_DIM*2+0][j];
  4337. Xn[2] = dX[i*COORD_DIM*2+0][j] * dX[i*COORD_DIM*2+3][j] - dX[i*COORD_DIM*2+1][j] * dX[i*COORD_DIM*2+2][j];
  4338. dA += sqrt<Real>(Xn[0]*Xn[0] + Xn[1]*Xn[1] + Xn[2]*Xn[2]) * quad_wts[j];
  4339. for (Long k = 0; k < dof; k++) {
  4340. I_[i][k] += dA * f[i*dof+k][j];
  4341. }
  4342. }
  4343. }
  4344. Long Ns = elem_cnt.Dim();
  4345. if (I.Dim() != Ns * dof) I.ReInit(Ns * dof);
  4346. I = 0;
  4347. Long elem_itr = 0;
  4348. for (Long i = 0; i < Ns; i++) {
  4349. for (Long j = 0; j < elem_cnt[i]; j++) {
  4350. for (Long k = 0; k < dof; k++) {
  4351. I[i*dof+k] += I_[elem_itr][k];
  4352. }
  4353. elem_itr++;
  4354. }
  4355. }
  4356. }
  4357. void InitSpheres(const Vector<Real> X, const Vector<Real>& R){
  4358. SCTL_ASSERT(X.Dim() == R.Dim() * COORD_DIM);
  4359. Long N = R.Dim();
  4360. elements.ReInit(2*COORD_DIM*N);
  4361. auto nodes = ElemLst::CoordBasis::Nodes();
  4362. for (Long l = 0; l < N; l++) {
  4363. for (Integer i = 0; i < COORD_DIM; i++) {
  4364. for (Integer j = 0; j < 2; j++) {
  4365. for (int k = 0; k < ElemLst::CoordBasis::Size(); k++) {
  4366. Real coord[COORD_DIM];
  4367. coord[(i+0)%COORD_DIM] = (j ? -1.0 : 1.0);
  4368. coord[(i+1)%COORD_DIM] = 2.0 * nodes[j?1:0][k] - 1.0;
  4369. coord[(i+2)%COORD_DIM] = 2.0 * nodes[j?0:1][k] - 1.0;
  4370. Real R0 = sqrt<Real>(coord[0]*coord[0] + coord[1]*coord[1] + coord[2]*coord[2]);
  4371. elements((l*COORD_DIM+i)*2+j,0)[k] = X[l*COORD_DIM+0] + R[l] * coord[0] / R0;
  4372. elements((l*COORD_DIM+i)*2+j,1)[k] = X[l*COORD_DIM+1] + R[l] * coord[1] / R0;
  4373. elements((l*COORD_DIM+i)*2+j,2)[k] = X[l*COORD_DIM+2] + R[l] * coord[2] / R0;
  4374. }
  4375. }
  4376. }
  4377. }
  4378. elem_cnt.ReInit(N);
  4379. elem_cnt = 6;
  4380. }
  4381. GenericKernel<Stokes3D_DxU> Stokes_DxU;
  4382. GenericKernel<Stokes3D_FxU> Stokes_FxU;
  4383. GenericKernel<Stokes3D_FxT> Stokes_FxT;
  4384. Quadrature<Real> quadrature_DxU;
  4385. Quadrature<Real> quadrature_FxU;
  4386. Quadrature<Real> quadrature_FxT;
  4387. ElemLst elements;
  4388. Vector<Long> elem_cnt;
  4389. };
  4390. } // end namespace
  4391. #endif //_SCTL_BOUNDARY_QUADRATURE_HPP_