conclusions.tex 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117
  1. % vim: set foldmethod=marker foldmarker=<<<,>>>:
  2. \section{Conclusions} %<<<
  3. \begin{FIframe}{Conclusions}{} %<<<
  4. %\vspace{1.2em}
  5. \begin{itemize}
  6. \item Convergent boundary integral formulation for slender bodies,
  7. \begin{itemize}
  8. \item unlike SBT, boundary conditions enforced to high accuracy.
  9. \end{itemize}
  10. \vspace{0.5ex}
  11. \item Special quadrature - efficient for aspect ratios as large as $10^5$.
  12. \begin{itemize}
  13. %\item fast computation of modal/toroidal Green's function.
  14. %\item special (Chebyshev) quadratures for singular integrals along length of fibers.
  15. \item quadrature setup rates $\sim 20,\!000$ unknowns/s/core (at 7-digits).
  16. \end{itemize}
  17. \vspace{0.5ex}
  18. \item Combined field BIE formulations,
  19. \begin{itemize}
  20. \item well-conditioned for slender-body geometries.
  21. %\item high-order time stepping (SDC), Krylov subspace preconditioner.
  22. \end{itemize}
  23. \end{itemize}
  24. \only<2>{
  25. \vspace{1.5em}
  26. {\bf Limitations and ongoing work:}
  27. \begin{itemize}
  28. \item Flexible fibers -- applications in biological fluids.
  29. %\item Open problems: collision handling.
  30. %\item Open fibers (singularities at ends). %Special elements (and quadratures) for fiber endpoints (non-loop geometries).
  31. %%\item Replace Chebyshev quadratures with generalized Gaussian quadratures% of Bremer, Gimbutas and Rokhlin - SISC 2010.
  32. %%\item Parallelisation with proper load balancing.
  33. %%\item FMM acceleration of far-field computation.
  34. %%\item Apply to problems in biological fluids.
  35. %\item Mobility problem and flexible fibers.
  36. %\item Comparison w/ SBT efficiency when SBT is sufficiently accurate.
  37. \end{itemize}
  38. }
  39. % - end-caps so that we can have non-loop geometries
  40. % - replace Chebyshev quadratures with Generalized Gaussian Quadratures
  41. %%%%%%%% - develop preconditioners for close to touching geometries?
  42. % direct comparison with slender-body theory
  43. % develop applications ...
  44. % parallelization
  45. %\vspace{1em}
  46. %\textcolor{blue}{\bf Future directions}
  47. %\vspace{0.5em}
  48. %\begin{columns}
  49. % \column{0.9\textwidth}
  50. % \begin{itemize}
  51. % \item apply quadratures to numerical simulations of biological processes (collaboration with CCB).
  52. % \end{itemize}
  53. % \column{0.1\textwidth}
  54. %\end{columns}
  55. %\vspace{0.5em}
  56. %\begin{columns}
  57. % \column{0.65\textwidth}
  58. % \begin{itemize}
  59. % \item study convergence in close-to-touching setups; ~~ require adaptivity in length as well as $\theta$-dimensions.
  60. % \end{itemize}
  61. % \column{0.35\textwidth}
  62. % \includegraphics[width=0.9\textwidth]{figs/close-touching}
  63. % {\small (fig from Morse et al.)}
  64. %\end{columns}
  65. % - end-caps so that we can have non-loop geometries
  66. % - replace Chebyshev quadratures with Generalized Gaussian Quadratures
  67. %%%%%%%% - develop preconditioners for close to touching geometries?
  68. % direct comparison with slender-body theory
  69. % develop applications ...
  70. % parallelization
  71. %\vspace{0.75em}
  72. %\begin{columns}
  73. % \column{0.9\textwidth}
  74. % \begin{itemize}
  75. % \item develop similar ideas for other special cases and more generally for high aspect ratio panels
  76. % \begin{center}
  77. % \includegraphics[width=0.6\textwidth]{slender-body/high-aspect-panels.png}
  78. % \end{center}
  79. % \end{itemize}
  80. % \column{0.1\textwidth}
  81. %\end{columns}
  82. \end{FIframe} %>>>
  83. %>>>
  84. \begin{FIframe}{Extra}{} %<<<
  85. \end{FIframe} %>>>
  86. \begin{FIframe}{Extra}{} %<<<
  87. \end{FIframe} %>>>
  88. \begin{FIframe}{Numerical Results - Sedimentation Flow}{} %<<<
  89. \vspace{-1.9em}
  90. \centering
  91. \only<1>{ \embedvideo{\includegraphics[width=0.94\textwidth]{videos/bacteria2_.png}}{videos/bacteria2_.mov} }%
  92. \only<2>{ \embedvideo{\includegraphics[width=0.47\textwidth]{videos/bacteria64-density.png}}{videos/bacteria64-density.mov} }
  93. \end{FIframe} %>>>