123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- % vim: set foldmethod=marker foldmarker=<<<,>>>:
- \section{Conclusions} %<<<
- \begin{FIframe}{Conclusions}{} %<<<
- %\vspace{1.2em}
- \begin{itemize}
- \item Convergent boundary integral formulation for slender bodies,
- \begin{itemize}
- \item unlike SBT, boundary conditions enforced to high accuracy.
- \end{itemize}
- \vspace{0.5ex}
- \item Special quadrature - efficient for aspect ratios as large as $10^5$.
- \begin{itemize}
- %\item fast computation of modal/toroidal Green's function.
- %\item special (Chebyshev) quadratures for singular integrals along length of fibers.
- \item quadrature setup rates $\sim 20,\!000$ unknowns/s/core (at 7-digits).
- \end{itemize}
- \vspace{0.5ex}
- \item Combined field BIE formulations,
- \begin{itemize}
- \item well-conditioned for slender-body geometries.
- %\item high-order time stepping (SDC), Krylov subspace preconditioner.
- \end{itemize}
- \end{itemize}
- \only<2>{
- \vspace{1.5em}
- {\bf Limitations and ongoing work:}
- \begin{itemize}
- \item Flexible fibers -- applications in biological fluids.
- %\item Open problems: collision handling.
- %\item Open fibers (singularities at ends). %Special elements (and quadratures) for fiber endpoints (non-loop geometries).
- %%\item Replace Chebyshev quadratures with generalized Gaussian quadratures% of Bremer, Gimbutas and Rokhlin - SISC 2010.
- %%\item Parallelisation with proper load balancing.
- %%\item FMM acceleration of far-field computation.
- %%\item Apply to problems in biological fluids.
- %\item Mobility problem and flexible fibers.
- %\item Comparison w/ SBT efficiency when SBT is sufficiently accurate.
- \end{itemize}
- }
- % - end-caps so that we can have non-loop geometries
- % - replace Chebyshev quadratures with Generalized Gaussian Quadratures
- %%%%%%%% - develop preconditioners for close to touching geometries?
- % direct comparison with slender-body theory
- % develop applications ...
- % parallelization
- %\vspace{1em}
- %\textcolor{blue}{\bf Future directions}
- %\vspace{0.5em}
- %\begin{columns}
- % \column{0.9\textwidth}
- % \begin{itemize}
- % \item apply quadratures to numerical simulations of biological processes (collaboration with CCB).
- % \end{itemize}
- % \column{0.1\textwidth}
- %\end{columns}
- %\vspace{0.5em}
- %\begin{columns}
- % \column{0.65\textwidth}
- % \begin{itemize}
- % \item study convergence in close-to-touching setups; ~~ require adaptivity in length as well as $\theta$-dimensions.
- % \end{itemize}
- % \column{0.35\textwidth}
- % \includegraphics[width=0.9\textwidth]{figs/close-touching}
- % {\small (fig from Morse et al.)}
- %\end{columns}
- % - end-caps so that we can have non-loop geometries
- % - replace Chebyshev quadratures with Generalized Gaussian Quadratures
- %%%%%%%% - develop preconditioners for close to touching geometries?
- % direct comparison with slender-body theory
- % develop applications ...
- % parallelization
- %\vspace{0.75em}
- %\begin{columns}
- % \column{0.9\textwidth}
- % \begin{itemize}
- % \item develop similar ideas for other special cases and more generally for high aspect ratio panels
- % \begin{center}
- % \includegraphics[width=0.6\textwidth]{slender-body/high-aspect-panels.png}
- % \end{center}
- % \end{itemize}
- % \column{0.1\textwidth}
- %\end{columns}
- \end{FIframe} %>>>
- %>>>
- \begin{FIframe}{Extra}{} %<<<
- \end{FIframe} %>>>
- \begin{FIframe}{Extra}{} %<<<
- \end{FIframe} %>>>
- \begin{FIframe}{Numerical Results - Sedimentation Flow}{} %<<<
- \vspace{-1.9em}
- \centering
- \only<1>{ \embedvideo{\includegraphics[width=0.94\textwidth]{videos/bacteria2_.png}}{videos/bacteria2_.mov} }%
- \only<2>{ \embedvideo{\includegraphics[width=0.47\textwidth]{videos/bacteria64-density.png}}{videos/bacteria64-density.mov} }
- \end{FIframe} %>>>
|