intro.tex 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247
  1. % vim: set foldmethod=marker foldmarker=<<<,>>>:
  2. \section{Introduction} %<<<
  3. \begin{FIframe}{Slender Body Theory}{} %<<<
  4. \vspace{-1.5em}
  5. \begin{columns}[t]
  6. \column{0.5\textwidth}
  7. \vspace{1em}
  8. Stokes simulations with fibers are key to modeling complex fluids
  9. (suspensions, rheology, industrial, biomedical, cellular biophysics).
  10. %\only<2->
  11. {
  12. \vspace{2em}
  13. {\bf Slender Body Theory (SBT):}
  14. \begin{itemize}
  15. \item Asymptotic expansion in radius ($\varepsilon$) \\
  16. as $\varepsilon \to\ 0$ (Keller-Rubinow '76).
  17. \vspace{1em}
  18. \item Doublet correction to make velocity theta-independent (Johnson '80).
  19. \end{itemize}
  20. %\vspace{1em}
  21. %The force rep w/ plain Stokeslets doesn't make velocity theta-independent on the surface, so the doublet is added to do that better.
  22. %With doublet correction , error $\sim r^2. \log(r)$.
  23. }
  24. %\only<3->{
  25. %\vspace{1em}
  26. %SBT has only very recently been placed on rigorous footing.
  27. %(Koens-Lauga '18, Mori-Ohm-Spirn '19). %(error $\sim r \log^k(r)$)
  28. %}
  29. \column{0.5\textwidth}
  30. \begin{columns}
  31. \column{0.5\textwidth}
  32. \only<1>{\embedvideo{\includegraphics[width=0.99\textwidth]{videos/starfish}}{videos/starfish.mov}}%
  33. %\starttext
  34. % \setupinteraction[state=start]
  35. % \enabletrackers[graphics.locating]
  36. % \externalfigure[sample.mov][width=10cm, height=10cm]
  37. %\stoptext
  38. %\only<2->{\includegraphics[width=0.99\textwidth]{videos/starfish1}}
  39. \\Starfish larvae \\
  40. (Gilpin et al. 2016)
  41. \column{0.5\textwidth}
  42. \vspace{1em}
  43. \includegraphics[width=0.99\textwidth]{figs/oocyte} \\
  44. Drosophila oocyte (Stein et al. 2021)
  45. \end{columns}
  46. \centering
  47. \includegraphics[width=0.6\textwidth]{figs/mitosis} \\
  48. Mitotic spindle (Nazockdast et al. 2015)
  49. \end{columns}
  50. \end{FIframe} %>>>
  51. \begin{FIframe}{Slender Body Theory Error Estimates}{} %<<<
  52. {\bf Error estimates:} Rigorous analysis difficult (few very recent studies)
  53. \begin{itemize}
  54. \item classical asymptotics claims: $\varepsilon^2 \log(\varepsilon)$
  55. \item rigorous analysis: $\varepsilon \log^{3/2}(\varepsilon)$ \qquad (Mori-Ohm-Spirn '19)
  56. \item numerical tests: $\varepsilon^{1.7}$ \qquad (Mitchell et al. '21 -- verify close-touching breakdown)\\
  57. \quad close-to-touching with gap of 10$\varepsilon$,~~ only 2.5-digits in the infty-norm.\\
  58. %\quad $\varepsilon$=1e-2 ~~only 1-2 digits achievable by SBT.\\
  59. \end{itemize}
  60. \only<1>{
  61. \centering
  62. \includegraphics[width=0.30\textwidth]{figs/cilia.jpg}
  63. \vspace{-2ex}
  64. {\tiny Source: http://remf.dartmouth.edu/imagesindex.html}
  65. }
  66. \only<2>{
  67. \vspace{1em}
  68. \begin{columns}
  69. \column{0.5\textwidth}
  70. \begin{tabular}{| r r r|}
  71. \hline
  72. $\varepsilon$ & $\vct{u}_{exact}$ & Rel-Error \\
  73. \hline
  74. 1e-1 & 6.1492138359856e-2 & 0.5e-2 \\
  75. 1e-2 & 9.0984522324584e-2 & 0.1e-3 \\
  76. 1e-3 & 1.2015655889904e-1 & 0.2e-5 \\
  77. 1e-4 & 1.4931932907587e-1 & 0.2e-7 \\
  78. 1e-5 & 1.7848191313097e-1 & 0.3e-9 \\
  79. \hline
  80. \end{tabular}
  81. %\begin{tabular}{r r r r | c r r r r} // these are for elipse
  82. % \hline
  83. % $\varepsilon$ & $\bm u_0$ & Error \\
  84. % \hline
  85. % $0.1$ & $0.0518$ & $0.7e-2$ \\
  86. % $0.01$ & $0.0736$ & $0.2e-3$ \\
  87. % $0.001$ & $0.0950$ & $0.3e-5$ \\
  88. % $0.0001$ & $0.1163$ & $0.4e-7$ \\
  89. % %$0.00001$ & $0.1377$ & $0.6e-9$ \\
  90. % \hline
  91. %\end{tabular}
  92. % ellipse (semiaxes 2,0.5) radius eps=0.1...
  93. % N=480: L=8.578421775156826 drag force
  94. % F. = 19.17234313264176
  95. % Fexact = 19.31188135187
  96. %
  97. % ellipse (semiaxes 2,0.5) radius eps=0.01...
  98. % N=480: L=8.578421775156826 drag force
  99. % F = 13.58844162453679
  100. % Fexact = 13.59082284902
  101. %
  102. % ellipse (semiaxes 2,0.5) radius eps=0.001...
  103. % N=480: L=8.578421775156826 drag force
  104. % F = 10.52899298797188
  105. % Fexact = 10.52902479066
  106. %
  107. % ellipse (semiaxes 2,0.5) radius eps=0.0001...
  108. % N=480: L=8.578421775156826 drag force
  109. % F. = 8.594914613917958
  110. % Fexact = 8.594914990618
  111. %
  112. % ellipse (semiaxes 2,0.5) radius eps=1e-05...
  113. % N=480: L=8.578421775156826 drag force
  114. % F = 7.261368067858561
  115. % Fexact = 7.2613680720
  116. \column{0.5\textwidth}
  117. \includegraphics[width=0.95\textwidth]{figs/ring-sed}
  118. \end{columns}
  119. }
  120. \only<3>{
  121. \centering
  122. \includegraphics[align=c,width=0.50\textwidth]{figs/sbt-close-error2}
  123. \includegraphics[align=c,width=0.40\textwidth]{figs/sbt-close-error1}
  124. }
  125. \end{FIframe} %>>>
  126. \begin{FIframe}{Convergent Slender Body Theory}{} %<<<
  127. %Goals: Develop a boundary integral framework
  128. %\begin{itemize}
  129. % \item to actually solve the slender body BVP \\
  130. % (in convergent way, not just asymptotically)
  131. % \item with efficient quadratures \\
  132. % (effort independent of radius)
  133. % \item
  134. %\end{itemize}
  135. \vspace{1.5em}
  136. {\bf Goals:} Develop boundary integral methods to solve the slender body BVP
  137. \begin{itemize}
  138. \item in a convergent way.
  139. \item adaptively when fibers get close.
  140. \item efficiently with effort independent of radius.
  141. \end{itemize}
  142. %\begin{itemize}
  143. % \item No convergence analysis for fibers of given nonzero radius. %, you do not know errors in simulation .
  144. % \item Uncontrolled errors when fibers close $O(\varepsilon)$. %, SBT assumptions break down.
  145. %\end{itemize}
  146. %%Efficient convergent BIE method needed, allowing adaptivity for close interactions.
  147. %\only<2->{
  148. % \vspace{1.5em}
  149. % {\bf Goals:} Develop boundary integral methods to solve the slender body BVP
  150. % \begin{itemize}
  151. % \item in a convergent way.
  152. % \item adaptively when fibers get close.
  153. % \item efficiently with effort independent of radius.
  154. % \end{itemize}
  155. % Validate current SBT simulations.
  156. %}
  157. %%\vspace{0.5em}
  158. %%Most existing qudaratures cannot resolve high aspect ratio geometries.
  159. \only<2->{
  160. \vspace{3.5em}
  161. Focus on rigid fibers in this talk ~~--~~ flexible fibers for future.
  162. \vspace{0.5em}
  163. {\em Related work:} ~~ Mitchell et al, '21 (mixed-BVP corresponding to flexible fiber loop)
  164. }
  165. %Only loops for now, to avoids complications with endpoint singularities.
  166. %\textcolor{blue}{\bf Quadratures for slender bodies}
  167. %\begin{itemize}
  168. % \item compute interactions of filaments (eg. microtubules) in viscous fluids without asymptotic approximations.
  169. % \item fully resolved boundary-integral formulation; have to deal with highly anisotropic elements.
  170. %\end{itemize}
  171. \end{FIframe} %>>>
  172. %\begin{FIframe}{Challenges for Boundary Integral Methods}{} %<<<
  173. % Slender body aspect ratio $\sim$ $\mathcal{O}(10)$ to $\mathcal{O}(10^5)$
  174. % \vspace{1em}
  175. % {\bf Layer-potential quadrature}
  176. % \begin{itemize}
  177. % \item efficient with cost independent of aspect ratio.
  178. % \end{itemize}
  179. % \vspace{1em}
  180. % {\bf Boundary integral equation formulations}
  181. % \begin{itemize}
  182. % \item remain well-conditioned as $\epsilon \rightarrow 0$
  183. % \end{itemize}
  184. %\end{FIframe}
  185. %%\begin{FIframe}{Motivation}{} %<<<
  186. %% \begin{itemize}
  187. %% \item aspect ratios of $10^4$ or greater
  188. %% \item existing quadrature schemes are not efficient in this regime
  189. %% \end{itemize}
  190. %%\end{FIframe} %>>>
  191. %%\begin{FIframe}{Outline}{} %<<<
  192. %%{\large
  193. %% \begin{itemize}
  194. %% \item Slender Body Quadrature
  195. %% \vspace{1em}
  196. %% \item Stokes Mobility Problem
  197. %% \end{itemize}
  198. %%}
  199. %%\end{FIframe} %>>>
  200. %%>>>