123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- % vim: set foldmethod=marker foldmarker=<<<,>>>:
- \section{Introduction} %<<<
- \begin{FIframe}{Slender Body Theory}{} %<<<
- \vspace{-1.5em}
- \begin{columns}[t]
- \column{0.5\textwidth}
- \vspace{1em}
- Stokes simulations with fibers are key to modeling complex fluids
- (suspensions, rheology, industrial, biomedical, cellular biophysics).
- %\only<2->
- {
- \vspace{2em}
- {\bf Slender Body Theory (SBT):}
- \begin{itemize}
- \item Asymptotic expansion in radius ($\varepsilon$) \\
- as $\varepsilon \to\ 0$ (Keller-Rubinow '76).
- \vspace{1em}
- \item Doublet correction to make velocity theta-independent (Johnson '80).
- \end{itemize}
- %\vspace{1em}
- %The force rep w/ plain Stokeslets doesn't make velocity theta-independent on the surface, so the doublet is added to do that better.
- %With doublet correction , error $\sim r^2. \log(r)$.
- }
- %\only<3->{
- %\vspace{1em}
- %SBT has only very recently been placed on rigorous footing.
- %(Koens-Lauga '18, Mori-Ohm-Spirn '19). %(error $\sim r \log^k(r)$)
- %}
- \column{0.5\textwidth}
- \begin{columns}
- \column{0.5\textwidth}
- \only<1>{\embedvideo{\includegraphics[width=0.99\textwidth]{videos/starfish}}{videos/starfish.mov}}%
- %\starttext
- % \setupinteraction[state=start]
- % \enabletrackers[graphics.locating]
- % \externalfigure[sample.mov][width=10cm, height=10cm]
- %\stoptext
- %\only<2->{\includegraphics[width=0.99\textwidth]{videos/starfish1}}
- \\Starfish larvae \\
- (Gilpin et al. 2016)
- \column{0.5\textwidth}
- \vspace{1em}
- \includegraphics[width=0.99\textwidth]{figs/oocyte} \\
- Drosophila oocyte (Stein et al. 2021)
- \end{columns}
- \centering
- \includegraphics[width=0.6\textwidth]{figs/mitosis} \\
- Mitotic spindle (Nazockdast et al. 2015)
- \end{columns}
- \end{FIframe} %>>>
- \begin{FIframe}{Slender Body Theory Error Estimates}{} %<<<
- {\bf Error estimates:} Rigorous analysis difficult (few very recent studies)
- \begin{itemize}
- \item classical asymptotics claims: $\varepsilon^2 \log(\varepsilon)$
- \item rigorous analysis: $\varepsilon \log^{3/2}(\varepsilon)$ \qquad (Mori-Ohm-Spirn '19)
- \item numerical tests: $\varepsilon^{1.7}$ \qquad (Mitchell et al. '21 -- verify close-touching breakdown)\\
- \quad close-to-touching with gap of 10$\varepsilon$,~~ only 2.5-digits in the infty-norm.\\
- %\quad $\varepsilon$=1e-2 ~~only 1-2 digits achievable by SBT.\\
- \end{itemize}
- \only<1>{
- \centering
- \includegraphics[width=0.30\textwidth]{figs/cilia.jpg}
- \vspace{-2ex}
- {\tiny Source: http://remf.dartmouth.edu/imagesindex.html}
- }
- \only<2>{
- \vspace{1em}
- \begin{columns}
- \column{0.5\textwidth}
- \begin{tabular}{| r r r|}
- \hline
- $\varepsilon$ & $\vct{u}_{exact}$ & Rel-Error \\
- \hline
- 1e-1 & 6.1492138359856e-2 & 0.5e-2 \\
- 1e-2 & 9.0984522324584e-2 & 0.1e-3 \\
- 1e-3 & 1.2015655889904e-1 & 0.2e-5 \\
- 1e-4 & 1.4931932907587e-1 & 0.2e-7 \\
- 1e-5 & 1.7848191313097e-1 & 0.3e-9 \\
- \hline
- \end{tabular}
- %\begin{tabular}{r r r r | c r r r r} // these are for elipse
- % \hline
- % $\varepsilon$ & $\bm u_0$ & Error \\
- % \hline
- % $0.1$ & $0.0518$ & $0.7e-2$ \\
- % $0.01$ & $0.0736$ & $0.2e-3$ \\
- % $0.001$ & $0.0950$ & $0.3e-5$ \\
- % $0.0001$ & $0.1163$ & $0.4e-7$ \\
- % %$0.00001$ & $0.1377$ & $0.6e-9$ \\
- % \hline
- %\end{tabular}
- % ellipse (semiaxes 2,0.5) radius eps=0.1...
- % N=480: L=8.578421775156826 drag force
- % F. = 19.17234313264176
- % Fexact = 19.31188135187
- %
- % ellipse (semiaxes 2,0.5) radius eps=0.01...
- % N=480: L=8.578421775156826 drag force
- % F = 13.58844162453679
- % Fexact = 13.59082284902
- %
- % ellipse (semiaxes 2,0.5) radius eps=0.001...
- % N=480: L=8.578421775156826 drag force
- % F = 10.52899298797188
- % Fexact = 10.52902479066
- %
- % ellipse (semiaxes 2,0.5) radius eps=0.0001...
- % N=480: L=8.578421775156826 drag force
- % F. = 8.594914613917958
- % Fexact = 8.594914990618
- %
- % ellipse (semiaxes 2,0.5) radius eps=1e-05...
- % N=480: L=8.578421775156826 drag force
- % F = 7.261368067858561
- % Fexact = 7.2613680720
- \column{0.5\textwidth}
- \includegraphics[width=0.95\textwidth]{figs/ring-sed}
- \end{columns}
- }
- \only<3>{
- \centering
- \includegraphics[align=c,width=0.50\textwidth]{figs/sbt-close-error2}
- \includegraphics[align=c,width=0.40\textwidth]{figs/sbt-close-error1}
- }
- \end{FIframe} %>>>
- \begin{FIframe}{Convergent Slender Body Theory}{} %<<<
- %Goals: Develop a boundary integral framework
- %\begin{itemize}
- % \item to actually solve the slender body BVP \\
- % (in convergent way, not just asymptotically)
- % \item with efficient quadratures \\
- % (effort independent of radius)
- % \item
- %\end{itemize}
- \vspace{1.5em}
- {\bf Goals:} Develop boundary integral methods to solve the slender body BVP
- \begin{itemize}
- \item in a convergent way.
- \item adaptively when fibers get close.
- \item efficiently with effort independent of radius.
- \end{itemize}
- %\begin{itemize}
- % \item No convergence analysis for fibers of given nonzero radius. %, you do not know errors in simulation .
- % \item Uncontrolled errors when fibers close $O(\varepsilon)$. %, SBT assumptions break down.
- %\end{itemize}
- %%Efficient convergent BIE method needed, allowing adaptivity for close interactions.
- %\only<2->{
- % \vspace{1.5em}
- % {\bf Goals:} Develop boundary integral methods to solve the slender body BVP
- % \begin{itemize}
- % \item in a convergent way.
- % \item adaptively when fibers get close.
- % \item efficiently with effort independent of radius.
- % \end{itemize}
- % Validate current SBT simulations.
- %}
- %%\vspace{0.5em}
- %%Most existing qudaratures cannot resolve high aspect ratio geometries.
- \only<2->{
- \vspace{3.5em}
- Focus on rigid fibers in this talk ~~--~~ flexible fibers for future.
- \vspace{0.5em}
- {\em Related work:} ~~ Mitchell et al, '21 (mixed-BVP corresponding to flexible fiber loop)
- }
- %Only loops for now, to avoids complications with endpoint singularities.
- %\textcolor{blue}{\bf Quadratures for slender bodies}
- %\begin{itemize}
- % \item compute interactions of filaments (eg. microtubules) in viscous fluids without asymptotic approximations.
- % \item fully resolved boundary-integral formulation; have to deal with highly anisotropic elements.
- %\end{itemize}
- \end{FIframe} %>>>
- %\begin{FIframe}{Challenges for Boundary Integral Methods}{} %<<<
- % Slender body aspect ratio $\sim$ $\mathcal{O}(10)$ to $\mathcal{O}(10^5)$
- % \vspace{1em}
- % {\bf Layer-potential quadrature}
- % \begin{itemize}
- % \item efficient with cost independent of aspect ratio.
- % \end{itemize}
- % \vspace{1em}
- % {\bf Boundary integral equation formulations}
- % \begin{itemize}
- % \item remain well-conditioned as $\epsilon \rightarrow 0$
- % \end{itemize}
- %\end{FIframe}
- %%\begin{FIframe}{Motivation}{} %<<<
- %% \begin{itemize}
- %% \item aspect ratios of $10^4$ or greater
- %% \item existing quadrature schemes are not efficient in this regime
- %% \end{itemize}
- %%\end{FIframe} %>>>
- %%\begin{FIframe}{Outline}{} %<<<
- %%{\large
- %% \begin{itemize}
- %% \item Slender Body Quadrature
- %% \vspace{1em}
- %% \item Stokes Mobility Problem
- %% \end{itemize}
- %%}
- %%\end{FIframe} %>>>
- %%>>>
|